
Early-Delivery Dynami
 Atomi
 Broad
astZiv Bar-Joseph Idit KeidarNan
y Lyn
hMIT Laboratory for Computer S
ien
ezivbj�mit.edu, idish�theory.l
s.mit.edu, lyn
h�theory.l
s.mit.eduApril 17, 2002Abstra
tWe 
onsider a problem of atomi
 broad
ast in a dynami
 setting where pro
esses may join,leave voluntarily, or fail (by stopping) during the 
ourse of 
omputation. We provide a formalde�nition of the Dynami
 Atomi
 Broad
ast problem and present and analyze a new algorithmfor its solution in a syn
hronous system, where pro
esses have approximately syn
hronized
lo
ks.Our algorithm exhibits 
onstant message delivery laten
y in the absen
e of failures, evenduring periods when parti
ipants join or leave. To the best of our knowledge, this is the �rstalgorithm for totally ordered multi
ast in a dynami
 setting to a
hieve 
onstant laten
y boundsin the presen
e of joins and leaves. When failures o

ur, the laten
y bound is linear in thenumber of a
tual failures.Our algorithm uses a solution to a variation on the standard distributed 
onsensus problem,in whi
h parti
ipants do not know a priori who the other parti
ipants are. We de�ne thenew problem, whi
h we 
all Consensus with Unknown Parti
ipants, and give an early-de
idingalgorithm to solve it.



1 Introdu
tionWe 
onsider a problem of atomi
 broad
ast in a dynami
 setting where an unbounded number ofparti
ipants may join, leave voluntarily, or fail (by stopping) during the 
ourse of 
omputation.We formally de�ne the Dynami
 Atomi
 Broad
ast (DAB) problem, whi
h is an extension of theAtomi
 Broad
ast problem [17℄ to a setting with in�nitely many pro
esses, any �nite subset ofwhi
h 
an parti
ipate at a given time. Just as Atomi
 Broad
ast is a basi
 building blo
k for statema
hine repli
ation in a stati
 setting [20, 27℄, DAB 
an serve as a building blo
k for state ma
hinerepli
ation among a dynami
 set of pro
esses.We present and analyze a new algorithm, whi
h we 
all Atom, for solving the DAB problem ina syn
hronous 
rash failure model. Spe
i�
ally, we assume that the pro
esses solving DAB havea

ess to approximately-syn
hronized lo
al 
lo
ks and to a lower-level dynami
 network that guar-antees timely message delivery between 
urrently a
tive pro
esses. The 
hallenge is to guarantee
onsisten
y among the sequen
es of messages delivered to di�erent parti
ipants, while still a
hievingtimely delivery, even in the presen
e of joins and leaves.Atom exhibits 
onstant message delivery laten
y in the absen
e of failures, even during periodswhen parti
ipants join or leave; this is in 
ontrast to previous algorithms solving similar problemsin the 
ontext of view-oriented group 
ommuni
ation, e.g., [1, 9℄. When failures o

ur, Atom'slaten
y bound is linear in the number of failures that a
tually o

ur; it does not depend on thenumber of potential failures, nor on the number of joins and leaves that o

ur.A key diÆ
ulty for an algorithm solving DAB is that when a pro
ess fails, the network doesnot guarantee that the surviving pro
esses all re
eive the same messages from the failed pro
ess.But the strong 
onsisten
y requirements of DAB di
tate that pro
esses agree on whi
h messagesthey deliver to their 
lients. The pro
esses 
arry out a proto
ol to 
oordinate message delivery,whi
h works roughly as follows: Ea
h Atom pro
ess divides time into slots, using its lo
al 
lo
k,and assigns ea
h message sent by its 
lient to a slot. Ea
h pro
ess delivers messages to its 
lientin order of slots, and within ea
h slot, in order of sender identi�ers. Ea
h pro
ess determines themembership of ea
h slot, and delivers messages only from senders that it 
onsiders to be membersof the slot. To ensure 
onsisten
y, the pro
esses must agree on the membership of ea
h slot.Pro
esses joining (or voluntarily leaving) the servi
e 
oordinate their own join (or leave) bysele
ting a join-slot (or leave-slot) and informing the other pro
esses of this 
hoi
e, without delayingthe normal delivery of messages. When a pro
ess fails, Atom uses a novel distributed 
onsensusservi
e to agree upon the slot in whi
h it fails. The 
onsensus servi
e required by Atom di�ers fromthe standard stopping-failure 
onsensus servi
es studied in the distributed algorithms literature(see, e.g., [21℄) in that the pro
esses implementing the 
onsensus servi
e do not know a priori whothe other parti
ipants are. Atom tra
ks pro
ess joins and leaves, and uses this information toapproximate the a
tive set of pro
esses that should parti
ipate in 
onsensus. However, di�erentpro
esses running Atom may have somewhat di�erent per
eptions of the a
tive set, e.g., when aparti
ipant joins or leaves Atom at roughly the time 
onsensus is initiated.In order to address su
h un
ertainties, we de�ne a new 
onsensus servi
e, 
onsensus with un-known parti
ipants (CUP). When a pro
ess i initiates CUP, it submits to CUP a �nite set Wiestimating the 
urrent world, in addition to i's proposed initial 
onsensus value vi. The worldssuggested by di�erent parti
ipants do not have to be identi
al, but some restri
tions are imposedon their 
onsisten
y. Consider, e.g., the 
ase that pro
ess k joins Atom at roughly the time CUPis initiated. One initiator, i, may think that k has joined in time to parti
ipate and in
lude k inWi, while another, j, may ex
lude k from Wj . Pro
ess k 
annot parti
ipate in the CUP algorithmin the usual way, be
ause j would not take its value into a

ount. On the other hand, if k does not1



parti
ipate at all, i 
ould blo
k, waiting forever for a message from k. We address su
h situationsby allowing k to expli
itly abstain from an instan
e of CUP, i.e., to parti
ipate without providingan input. A servi
e that uses CUP must ensure that for every i, (1) Wi in
ludes all the pro
essesthat ever initiate this instan
e of CUP (unless they fail or leave prior to i's initiation); and (2) ifj 2 Wi, (and neither i nor j fail or leave), then j parti
ipates in CUP either by initiating or byabstaining. Thus, Wi sets 
an di�er only in the in
lusion of pro
esses that abstain, leave, or fail.Note that on
e an instan
e of CUP has been started, no new pro
esses (that are not in
ludedin Wi) 
an join the running instan
e. Nevertheless, CUP provides a good abstra
tion for solvingDAB, be
ause Atom 
an invoke multiple instan
es of CUP with di�erent sets of parti
ipants.We give an early-de
iding algorithm to solve CUP in a fail-stop model [26℄, that is, in a time-free 
rash failure model where pro
esses are equipped with perfe
t failure dete
tors [5℄. The failuredete
tor is external to CUP; it is implemented by Atom. CUP uses a strategy similar to previousearly-de
iding algorithms for 
onsensus with a predetermined set of parti
ipants [13℄, but it alsotolerates un
ertainty about the set of parti
ipants, and moreover, it allows pro
esses to leavevoluntarily without in
urring additional delays. The time required to rea
h 
onsensus is linear inthe number of failures that a
tually o

ur during an exe
ution, and does not depend on an upperbound on the number of potential failures, nor on the number of pro
esses that leave.We also analyze the message-delivery laten
y of Atom under di�erent failure assumptions. Weshow a 
onstant laten
y bound for periods when no failures o

ur, even if joins and leaves o

ur.When failures o

ur, the laten
y is proportional to the number of a
tual failures. This is inevitable:atomi
 broad
ast requires a number or rounds that is linear in the number of failures (see [2℄).We envision a servi
e using Atom, or a variation of it, deployed in a large LAN, where laten
yis predi
table and message loss is bounded. In su
h settings, a network with the properties weassume 
an be implemented using forward error 
orre
tion (see [3℄), or retransmissions (see [28℄).The algorithm 
an be extended for use in environments with looser time guarantees, e.g., networkswith di�erentiated servi
es; we outline ideas for su
h an extension in Se
tion 7.7.In summary, this paper makes the following main 
ontributions: (1) the de�nitions of two newproblems for dynami
 networks, expressed by the DAB and CUP servi
es; (2) an early-delivery DABalgorithm, Atom, whi
h exhibits 
onstant laten
y in the absen
e failures; (3) a new early-de
idingalgorithm for solving CUP in a fail-stop model; and (4) the analysis of Atom's message-deliverylaten
y under various failure assumptions.The rest of this paper is organized as follows: Se
tion 2 dis
usses related work. In Se
tion 3,we spe
ify the DAB servi
e. In Se
tion 4 we spe
ify CUP and in Se
tion 5, we present the CUPalgorithm and its analysis. We then turn to the presentation of Atom: Se
tion 6 spe
i�es theenvironment and model assumptions for Atom, and Se
tion 7 
ontains a detailed presentation ofthe Atom algorithm and its analysis. Se
tion 8 
on
ludes the paper. The Appendix 
ontainsrigorous 
orre
tness proofs for both CUP and Atom.2 Related WorkA dynami
 universe, where pro
esses join and leave, was �rst 
onsidered in the 
ontext of view-oriented group 
ommuni
ation work [7℄, pioneered by the Isis [4℄ system. The �rst analysis oftime bounds of message delivery in syn
hronous group 
ommuni
ation systems was performed byCristian [9℄. Our servi
e resembles the servi
es provided by group 
ommuni
ation systems; althoughwe do not export membership to the appli
ation, it is 
omputed, and would be easy to export.View-oriented group 
ommuni
ation systems, in
luding systems designed for syn
hronous sys-tems and real-time appli
ations (e.g., Cristian's [9℄, xAMp [25℄, and RTCAST [1℄), generally run2



a group membership proto
ol every time a pro
ess joins or leaves, and therefore delay messagedelivery to all pro
esses when joins or leaves o

ur. Cristian's system uses an atomi
 broad
astprimitive to agree upon group membership. Sin
e, unlike CUP, the atomi
 broad
ast servi
e workswith a stati
 universe, a pro
ess join has to be agreed upon before any new membership 
hangeis handled (voluntary leaves are not 
onsidered). Therefore, Cristian's servi
e exhibits 
onstantlaten
y only in periods in whi
h no joins or failures o

ur. Laten
y during periods with multiplejoins is not analyzed. xAMp is a group 
ommuni
ation system supporting a variety of 
ommuni
a-tion primitives for real-time appli
ations. The presentation of xAMp in [25℄ fo
uses on the various
ommuni
ation primitives and assumes that a membership servi
e is given. The delays due to fail-ures and joins are in
urred in the membership part, whi
h is not des
ribed or analyzed. RTCASTis a real-time group 
ommuni
ation system, for whi
h a detailed analysis of membership laten
ywas 
ondu
ted [1℄. The laten
y bound a
hieved by RTCAST is linear in the number of pro
esses,even when no pro
ess fails, due to the use of a logi
al ring. Moreover, RTCAST makes strongerassumptions about its underlying network than we do { it uses an underlying reliable broad
astservi
e that guarantees that 
orre
t pro
esses deliver the same messages from faulty ones; the 
ostof this primitive is not 
onsidered in the analysis.Some group membership servi
es avoid running the full-s
ale membership for join and leavesby using light-weight group membership [15℄ servi
es; they use an atomi
 broad
ast servi
e todisseminate join and leave messages in a 
onsistent manner, without running the full-s
ale groupmembership algorithm. However, unlike our CUP servi
e, the atomi
 broad
ast servi
e su
h systemsuse do not tolerate un
ertainty about the set of parti
ipants. Therefore, a ra
e 
ondition betweena join and a 
on
urrent failure 
an 
ause su
h light-weight group servi
es (e.g., [23, 12, 15℄) toviolate the semanti
s of the underlying heavy-weight membership servi
es. Those light-weightgroup servi
es that do preserve the underlying heavy-weight membership semanti
s (e.g. [24℄), doin
ur extra delivery laten
ies whenever joins and leaves o

ur.Other work on group membership in syn
hronous and real-time systems, e.g., [19, 18℄ has fo
usedon membership maintenan
e in a stati
, fairly small, group of pro
esses, where pro
esses are subje
tto failures but no new pro
esses 
an join the system. Likewise, work analyzing time bounds ofsyn
hronous atomi
 broad
ast, e.g. [16, 10, 8℄, 
onsidered a stati
 universe, where pro
esses 
ouldfail but not join. Thus, this work did not 
onsider the DAB problem.In a previous paper [3℄, we 
onsidered a simpler problem of dynami
 totally ordered broad
astwithout all or nothing semanti
s. For this problem, the linear lower bound does not apply, and weexhibited an algorithm that solves the problem in 
onstant time even in the presen
e of failures.Re
ent work [22, 6℄ 
onsiders di�erent servi
es, in
luding (one shot) 
onsensus, for in�nitelymany pro
esses in asyn
hronous shared memory models. Cho
kler and Malkhi [6℄ present a 
on-sensus algorithm for in�nitely many pro
esses using a stati
 set of a
tive disks, a minority of whi
h
an fail. This di�ers from the model 
onsidered here, as in our model all system 
omponents maybe ephemeral. Merritt and Taubenfeld [22℄ study 
onsensus under di�erent 
on
urren
y models; intheir terminology, our model assumes unbounded 
ongruen
y and [1;1℄-parti
ipation, whi
h meansthat at least one pro
ess must parti
ipate and there is no bound on the number of parti
ipants.They show that with these assumptions, in an asyn
hronous shared memory model, in�nitely manybits are required in order to solve 
onsensus. The algorithms they give are not fault tolerant (theytolerate only initial failures). To the best of our knowledge, atomi
 broad
ast has not been 
on-sidered in a similar 
ontext. Moreover, these problems were not 
onsidered in message-passingmodels, and it is not 
lear that a 
anoni
al transformation from the shared memory model themessage-passing model applies to a setting with in�nitely many pro
esses.3



3 Dynami
 Atomi
 Broad
ast Servi
e Spe
i�
ationWe now present the DAB servi
e spe
i�
ation. Our universe 
onsists of an in�nite ordered set ofendpoints, I. The spe
i�
ation of DAB is parameterized by a message alphabet, M . The signatureof the DAB(M) servi
e is presented in Figure 1.Input:joini, leavei, faili, i2Im
asti(m), m2M, i2IOutput:join OKi, leave OKi, i2Ir
vi(m), m2M, i2I Figure 1: The signature of the DAB(M) servi
e.We do not 
onsider re
overies from failure or rejoining after leaving. In other words, there
annot be multiple \in
arnations" at a single endpoint. Instead of new in
arnations, 
onsider thesame 
lient joining at new endpoints.Assumptions about the appli
ation: DAB(M) assumes that its appli
ation satis�es the fol-lowing safety 
onditions:� For ea
h i 2 I:{ At most one joini and at most one leavei o

ur.{ If leavei o

urs, then it is pre
eded by join OKi.{ Any m
asti(m) has a pre
eding join OKi but no pre
eding leavei or faili.� At most one m
ast(m) o

urs for ea
h parti
ular m.DAB guarantees: Given an appli
ation that satis�es the above 
onstraints, DAB(M) satis�esthe properties we now spe
ify.We �rst spe
ify some basi
 integrity properties, both safety and liveness. We later spe
ify theproperties related to the ordering and reliability of messages.Basi
 safety properties:� Join/leave integrity: For ea
h i:{ At most one join OKi and at most one leave OKi o

ur.{ If join OKi o

urs then it is pre
eded by joini.{ If leave OKi o

urs then it is pre
eded by leavei.� Message integrity:{ No two r
vj(m) a
tions o

ur for the same m and j.{ If r
vj(m) o

urs for some j then it is pre
eded by m
asti(m) for some i.4



Basi
 liveness properties:� Eventual join: If joini o

urs then either faili or join OKi o

urs.� Eventual leave: If leavei o

urs then either faili or leave OKi o

urs.To spe
ify the ordering and reliability guarantees of DAB, we require that there be a totalordering S on all the messages re
eived by any of the endpoints, su
h that for all i 2 I, thefollowing properties are satis�ed.Safety properties:� Multi
ast order: If m
asti(m) o

urs before m
asti(m'), then m pre
edes m0 in S.� Re
eive order: If r
vi(m) o

urs before r
vi(m') then m pre
edes m0 in S.� Multi
ast gap-freedom: If m
asti(m), m
asti(m'), and m
asti(m'') o

ur, in that order, andS 
ontains m and m00, then S also 
ontains m0.� Re
eive gap-freedom: If S 
ontains m, m0, and m00, in that order, and r
vi(m) and r
vi(m'')o

ur, then r
vi(m') also o

urs.Liveness property:� Multi
ast liveness: If m
asti(m) o

urs and no faili o

urs, then S 
ontains m.� Re
eive liveness: If S 
ontains m, m is sent by i and i does not leave or fail, then r
vi(m)o

urs, and for every m0 that follows m in S, r
vi(m') also o

urs.4 Consensus with Unknown Parti
ipants { Spe
i�
ationIn this se
tion we de�ne the problem of Consensus with Unknown Parti
ipants (CUP). CUP isan adaptation of the problem of fail-stop uniform 
onsensus to a dynami
 setting in whi
h theset of parti
ipants is not known ahead of time, and in whi
h parti
ipants 
an leave the algorithmvoluntarily after initiating it. Moreover, parti
ipants are not assumed to initiate at the same time.CUP uses an underlying reliable network, and a perfe
t failure dete
tor.We begin with a des
ription of CUP's external signature (interfa
e). We then spe
ify theassumptions that CUP makes about its environment, in
luding the appli
ation, the underlyingnetwork, and the external failure dete
tor. We separate these into safety and liveness assumptions.Finally, we spe
ify CUP's safety and liveness guarantees. CUP's safety guarantees depend on onlythe safety assumptions, that is, they are not allowed to be violated even if the liveness assumptionsdo not hold. On the other hand, CUP's liveness guarantees depend on both the safety and livenessassumptions.4.1 External SignatureThe CUP spe
i�
ation uses the following data types:� I, an in�nite ordered set of endpoints. Ea
h endpoint in I 
orresponds to a potential parti
-ipant in CUP.� V , a totally ordered set of values. Initial values and de
ision values are elements of V .5



Input:initi(v,W), v 2 V, W � I, W finite, i 2 I // i initiates with value v,world Wabstaini, i 2 I // i abstainsnet r
vi(m), m 2 MCUP, i 2 I // i re
eives message mleavei, i 2 I // i leavesleave dete
ti(j), j, i 2 I // i dete
ts that j has leftfaili, i 2 I // i failsfail dete
ti(j), j, i 2 I // i dete
ts that j has failedOutput:de
idei(v), v 2 V, i 2 I // i de
ides on value vnet m
asti(m), m 2 MCUP, i 2 I // i multi
asts mFigure 2: The signature of CUP.
CUP
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net_m
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Figure 3: Interfa
e diagram for CUP.� MCUP , a message alphabet.The external signature of CUP is presented in Figure 2, and depi
ted in Figure 3.The interfa
e des
ribes four kinds of intera
tion: \normal" intera
tion with 
lients of the CUPservi
e, intera
tion with a multi
ast network, 
ommuni
ation involving leaves and leave dete
tion,and 
ommuni
ation involving failures and failure dete
tion.Normal intera
tion with 
lients: A pro
ess may parti
ipate in the CUP servi
e in two ways:it may provide an initial value, in whi
h 
ase we say that the pro
ess initiates CUP, or it mayde
line to provide an initial value, in whi
h 
ase we say that it abstains. Parti
ipant i 2 I initiatesCUP using the initi(v,W) a
tion. Here, v is i's initial value, and W is its initial world, that is,the set of pro
esses that i expe
ts to parti
ipate in CUP. Parti
ipant i abstains using the abstainia
tion. Informally speaking, a parti
ipant abstains when it does not need to parti
ipate in CUP, butbe
ause of un
ertainty about CUP parti
ipants, some other parti
ipant may expe
t it to parti
ipate.6



An environment assumption ensures that, if any pro
ess expe
ts i to parti
ipate in CUP, i will infa
t parti
ipate, unless it leaves or fails. CUP reports the 
onsensus de
ision value to pro
ess iusing the de
idei(v) a
tion.Multi
ast network: The network interfa
e 
onsists of the net m
ast and net r
v a
tions.Leaves: A parti
ipant 
an leave the CUP servi
e voluntarily using the leavei a
tion. We assumethat the environment provides a leave dete
tor: the leave dete
ti(j) a
tion is used to notify ithat j has left the algorithm voluntarily.Failures: The faili a
tion represents the failure of endpoint i. We assume that the environmentprovides a failure dete
tor, whi
h uses the fail dete
ti(j) a
tion to notify i that j has failed.4.2 Environment AssumptionsHere we list and explain the assumptions that CUP makes about its environment. We 
lassify theseas safety and liveness assumptions. Formally, ea
h of the properties given here is a tra
e property([21, Ch. 8℄).4.2.1 Safety assumptionsThe �rst assumption expresses simple well-formedness 
onditions saying that ea
h parti
ipant be-gins parti
ipating (by initiating or abstaining) at most on
e, leaves at most on
e, and fails at moston
e.� Well-formedness: For any i 2 I,1. At most one initi or abstaini event1 o

urs.2. At most one leavei event o

urs.3. At most one faili event o

urs.4. No leavei or faili pre
edes an initi.The next assumption says that, while the worlds W suggested by di�erent parti
ipants in their initevents do not have to be identi
al, CUP's environment must guarantee that they have a 
ertainkind of 
onsisten
y. Namely, ea
h W set submitted by an initiating parti
ipant i must in
lude allparti
ipants that ever initiate CUP and that do not leave or fail prior to the initi event. Thisimplies that every parti
ipant must be in
luded in its own estimated world.� World 
onsisten
y: If initi(*, W) and initj(*,*) events o

ur, then either j 2 W , or aleavej or failj event o

urs before the initi(*, W) event.The next property des
ribes the 
orre
tness of the message deliveries: every message that is re
eivedwas previously sent, and no message is re
eived at the same lo
ation more than on
e. Moreover,the order of message re
eipt between parti
ular senders and re
eivers is fifo.1An \event" is an o

urren
e of an a
tion in a sequen
e.7



� Message integrity: There is a mapping from net r
v events to pre
eding net m
ast events,su
h that the same message in MCUP appears in both events, and su
h that no two net r
vievents for the same i map to the same net m
ast event. Moreover, two net r
vi events thatmap to net m
ast events of the same sender o

ur in the same order as the net m
ast events.The next two properties des
ribe assumptions about leaves and leave dete
tion. The �rst says thatleave dete
tion is \a

urate", in the sense that the o

urren
e of a leave dete
ti(j) implies thatj has really left; it also in
ludes a simple well-formedness 
ondition. The se
ond property says thatleaves are handled gra
efully, in the sense that the o

urren
e of a leave dete
ti(j) implies thati has already re
eived any network messages sent by j prior to leaving. Thus, a leave dete
ti(j)is an indi
ation that i has not lost any messages from j.� A

urate leave dete
tor: For any i; j 2 I, at most one leave dete
ti(j) event o

urs, and ifleave dete
ti(j) o

urs, then it is pre
eded by a leavej.� Lossless leave: Assume net m
astj(m) o

urs and is followed by a leavej. Then if aleave dete
ti(j) o

urs, it is pre
eded by net r
vi(m).The �nal safety assumption says that failure dete
tion is a

urate.� A

urate failure dete
tor: For any i; j 2 I, at most one fail dete
ti(j) event o

urs, and iffail dete
ti(j) o

urs, then it is pre
eded by a failj.Note that we do not have a failure assumption analogous to the lossless leave property; thus, failuresare di�erent from leaves in that we allow the possibility that some messages from failed pro
essesmay be lost.4.2.2 Liveness assumptionsThe �rst liveness assumption says that, if any pro
ess i expe
ts another pro
ess j to parti
ipate,then j will a
tually do so, unless either i or j leaves or fails.� Init o

urren
e: If an initi(*,W) event o

urs and j 2 W, then an initj, abstainj, leavei,faili, leavej, or failj o

urs.The next assumption des
ribes reliability of message delivery. It says that any message thatis multi
ast by a non-failing parti
ipant that belongs to any of the W sets submitted to CUP, isre
eived by all the non-leaving, non-failing members of all those W sets.� Reliable delivery: De�ne U = [k2If W j initk(*, W) o

ursg. If i; j 2 U and net m
asti(m)o

urs after an initi or abstaini event, then a net r
vj(m), leavej, faili, or failj o

urs.The �nal liveness assumption says that the leaving or failure of any pro
ess that belongs to aninitiator's W set is dete
ted by that initiator, unless it �nishes by de
iding, leaving, or failing.� Complete leave and failure dete
tor: If initi(*,W) o

urs, j 2 W , and leavej or failjo

urs, then fail dete
ti(j), leave dete
ti(j), de
idei, leavei, or faili o

urs.8



4.3 CUP Servi
e GuaranteesNow we list CUP's servi
e guarantees. Again, we 
lassify these as safety and liveness properties. Aswe noted earlier, CUP's safety guarantees depend only on its safety assumptions, whereas CUP'sliveness guarantees depend on both its safety and liveness assumptions.Formally, ea
h individual property is a tra
e property. The 
omplete spe
i�
ation 
onsists oftwo general tra
e properties whose respe
tive sets of tra
es are de�ned by the following predi
ates:1. The 
onjun
tion of all the CUP safety assumptions implies all the CUP safety guarantees.2. The 
onjun
tion of all the CUP safety and liveness assumptions implies all the CUP livenessguarantees.4.3.1 Safety guaranteesThe �rst guarantee expresses well-formedness 
onditions saying that only parti
ipants that haveinitiated 
an de
ide, and ea
h parti
ipant de
ides at most on
e.� Well-formedness: For any i 2 I,1. If de
idei o

urs then it is pre
eded by an initi.2. At most one de
idei o

urs.The next two guarantees are the main agreement and validity guarantees for 
onsensus. Theuniform agreement property says that everyone who de
ides agrees. The validity property has twoparts: it says that any de
ision value is some parti
ipant's initial value, and moreover, that anyparti
ipant's de
ision is no greater than its initial value. The latter is not a \standard" propertyfor 
onsensus but is needed for our use in Atom.� Uniform Agreement: For any i; j 2 I, if de
idei(v) and de
idej(v') both o

ur then v = v0.� Validity: For any i 2 I, if de
idei(v) o

urs then1. For some j, initj(v, *) o

urs.2. If initi(v',*) o

urs then v � v0.4.3.2 Liveness guaranteesCUP provides one liveness guarantee, whi
h says that any parti
ipant that initiates and neitherleaves nor fails must eventually de
ide. We do not make su
h a guarantee for a parti
ipant thatabstains, that is, parti
ipants that abstain need not be informed of the de
ision value.� Termination: If an initi event o

urs then a de
idei, leavei, or faili o

urs.5 The CUP AlgorithmIn this se
tion, we present our implementation of CUP.9



5.1 Modeling Assumptions and ConventionsWe use the I/O automaton model of Lyn
h and Tuttle (see, e.g., [21, Ch. 8℄), using standardpre
ondition/e�e
t (guarded 
ommand) pseudo-
ode, augmented with one new 
onstru
t: e�e
tsmay in
lude statements of the form trigger(a), where a is an output a
tion. Formally, we assumethe automaton's state 
ontains a spe
ial fifo bu�er trigger-buffer. The trigger(a) statementadds a to the end of trigger-buffer. The a
tion at the head of trigger-buffer is alwaysenabled, and gets removed from trigger-buffer when it is performed. No other state 
hanges areasso
iated with a
tion a.The faili a
tion des
ribed in the CUP interfa
e represents the failure of endpoint i. In termsof the algorithm, we interpret this to mean that on
e faili o

urs, i performs no more lo
ally
ontrolled a
tions, and input a
tions have no e�e
t on the state. We treat this as a general
onvention, and do not in
lude event handlers for faili a
tions in our pseudo-
ode.5.2 The AlgorithmFigures 4 and 5 
ontain the CUP implementation for a parti
ular endpoint i 2 I. The algorithmin
ludes no internal a
tions. Therefore, the signature 
onsists of the a
tions indexed by this parti
-ular i in the external signature of CUP (see Se
tion 4). The message alphabet MCUP is spe
ializedto the set of messages of the following forms:� (i,r,v,W), where i 2 I, r 2 N, v 2 V, and W is a �nite subset of I.� (i,OUT,r), where i 2 I and r 2 N,The algorithm pro
eeds in asyn
hronous rounds numbered 1; 2; : : :. In ea
h round, a pro
esssends its 
urrent estimates of the value and the world (the set of a
tive pro
esses) to the otherpro
esses. Ea
h pro
ess maintains two-dimensional arrays, value and world, in whi
h it 
olle
tsthe value and world information it re
eives from all pro
esses in all rounds. It re
ords, in avariable out[r℄, the other pro
esses that it knows will not parti
ipate in round r be
ause theyhave previously left, abstained, or de
ided. It also re
ords, in a variable failed, the pro
esses thatit knows have failed.mode 2 { ?, running, done}, initially ?round 2 N, initially 0for ea
h r 2 N+, j 2 I:value[r,j℄ 2 V [ { ? }, initially ?world[r,j℄, a finite subset of I or ?, initially ?for ea
h r 2 N+out[r℄, a finite subset of I, initially f gfailed[r℄, a finite subset of I, initially f gDerived variables:for ea
h r 2 N+out-by[r℄, a finite subset of I, defined as [r 0 � r out[r 0℄failed-by[r℄, a finite subset of I, defined as [r 0 � r failed[r 0℄Figure 4: CUPi state.10



initi(v,W)Eff: if mode = ? thenmode  runninground  1trigger(net m
asti(i,1,v,W))net m
asti(i,r,v,W) where r � 2Pre: mode = runningr = round + 1W = world[round,i℄ n out[round℄ n failed[round℄// All messages for the previous round have been re
eived.8 j 2 W: value[round,j℄ 6= ?W 6= f g ^ v = min{value[round,j℄ | j 2 W}// No de
ision 
an be made.: 8 j 2 world[round,i℄ n out[round℄:value[round,j℄ = value[round,i℄ ^ world[round,j℄ � world[round,i℄Eff: round  rnet r
vi(j,r,v,W)Eff: if mode 6= done ^ j =2 failed-by[r℄ thenvalue[r,j℄  vworld[r,j℄  WabstainiEff: if mode = ? thenmode  donetrigger(net m
asti(i,OUT))de
idei(v)Pre: mode = runningvalue[round,i℄ 6= ?8 j 2 world[round,i℄ n out[round℄:value[round,j℄ = v ^ world[round,j℄ � world[round,i℄Eff: mode  donetrigger(net m
asti(i,OUT))net r
vi(j,OUT)Eff: if mode 6= done thenlet r = min {r 0 2 N+ | value[r 0,j℄ = ?}out[r℄  out[r℄ [ {j}leaveiEff: mode  doneleave dete
ti(j)Eff: if mode 6= done thenlet r = min {r 0 2 N+ | value[r 0,j℄ = ?}out[r℄  out[r℄ [ {j}fail dete
ti(j)Eff: if mode 6= done thenlet r = min {r 0 2 N+ | value[r 0,j℄ = ?}failed[r℄  failed[r℄ [ {j}Figure 5: CUPi transitions.11



The 
ode works as follows. When an initi(v,W) input o

urs, pro
ess i triggers a net m
ast(i,1,v,W)to send its initial value v and estimated world W to all pro
esses, in
luding itself.For ea
h round r � 2, pro
ess i performs an expli
it net m
asti(i,r,v,W) to multi
ast itsround r value v and world W. The world W is determined to be the set of pro
esses that i thinks arestill a
tive, that is, the pro
esses in i's previous world that i does not know to be out or to havefailed in round r. Pro
ess i may perform this multi
ast only if its round is r-1, it has re
eivedround r-1 messages from all the pro
esses in W, and it is not 
urrently able to de
ide. The value vthat is sent is the minimum value that i has re
orded for round r-1 from a pro
ess in W.When a net r
vi(j,r,v,W) o

urs, pro
ess i puts v and W into the appropriate pla
es in thevalue and world arrays.When an abstaini input o

urs, pro
ess i sends an OUT message, so that other pro
esses willknow not to wait for further messages from it, and stops parti
ipating in the algorithm.Pro
ess i 
an de
ide at a round r when it has re
eived messages from all pro
esses in itsworld[r,i℄ ex
ept those that are out at round r, su
h that all of these messages 
ontain thesame value and 
ontain worlds that are subsets of world[r,i℄. The subset requirement ensuresthat pro
esses in world[r,i℄ will not 
onsider values from pro
esses outside of world[r,i℄ indetermining their values for future rounds. When pro
ess i de
ides, it multi
asts an OUT messageand stops parti
ipating in the algorithm.When a net r
vi(j,OUT) o

urs, pro
ess i re
ords that j is out of the algorithm starting fromthe �rst round for whi
h i has not yet re
eived a regular message from j.When leavei o

urs, pro
ess i just stops parti
ipating in the algorithm. When leave dete
ti(j)o

urs, pro
ess i re
ords that j is out; when this o

urs, the lossless leave assumption ensures thati has already re
eived all the messages j sent. The round that is re
orded for the leave is the �rstround after the round of the last message re
eived from j.Pro
ess i knows that another pro
ess has failed if it learns about the failure via a fail dete
tevent.In the next se
tion, we prove the algorithm's 
orre
tness. In Se
tion 5.3, we show that thealgorithm is early-de
iding in the sense that the number of rounds it exe
utes is proportional tothe number of a
tual failures that o

ur, and does not depend on the number of parti
ipants or onthe number of pro
esses that leave.5.3 The Early-De
iding PropertyWe now show that the algorithm is early-de
iding in the sense that the number of rounds it exe
utesis proportional to the number of a
tual failures that o

ur, and does not depend on the number ofparti
ipants or on the number of pro
esses that leave.We start with some more lemmas.Lemma 5.1 If initi(*,W) o

urs prior to initj, then j 2 W.Proof: The environment well-formedness assumption implies that j does not leave or fail beforeit initiates, and hen
e does not leave or fail before i initiates. Therefore, by world 
onsisten
y, j 2W.Invariant 5.1 If (i,1,*,W) and (j,2,*,*) are in the Net then j 2 W.Proof: By strong indu
tion. For the indu
tive step, assume that, in the �nal state of the exe-
ution, (i,1,*,W) and (j,2,*,*) are in the Net. Then both initi and initj events appear in12



the exe
ution. If initi pre
edes initj, then Lemma 5.1 implies the result, so assume that initjpre
edes initi.Sin
e a round 2 message from j is in the Net, a round 1 message (j,1,*,W') is also. ThenLemma 5.1 implies that i 2 W'.We 
laim that j does not leave or fail before the initi. Suppose for the sake of 
ontradi
tionthat it does. Then the net m
ast(j,2,*,*) event pre
edes the initi. Then environment well-formedness implies that i does not fail or leave prior to the net m
ast(j,2,*,*) event, be
ause itinitiates after this event. Also, i does not abstain, be
ause it initiates. And i does not de
ide priorto the net m
ast(j,2,*,*) event, be
ause that pre
edes the initi. Therefore, i =2 failed[1℄j[out[1℄j in the pre-state of the net m
ast(j,2,*,*) event, so i 2 world[1,j℄j n failed[1℄j[out[1℄j in that state. The pre
ondition of net m
ast implies that value[1,i℄j 6= ? in the pre-state, that is, j has re
eived a round 1 message from i before the net m
ast(j,2,*,*). But this
annot happen, be
ause initi happens after the net m
ast(j,2,*,*). This 
ontradi
tion impliesthat j does not leave or fail before the initi. Then world 
onsisten
y implies that j 2 W, as needed.In the rest of this se
tion, we 
onsider a situation where no failures happen from some pointonward in an exe
ution, and where the rounds of all pro
esses are at most r at the point wherefailures 
ease. The following lemma says that all round r+2 messages that are ever sent have thesame world 
omponent.Lemma 5.2 Suppose that r > 0. Suppose that there is a point t in an exe
ution su
h that everypro
ess has round � r at point t, and no fail events happen from t onward.If net m
ast(i,r+2,v,W) and net m
ast(j,r+2,v',W') both o

ur in the exe
ution, then W =W'.Proof: We show that W � W'. The other dire
tion is analogous.The two sets are determined in the pre
ondition of net m
ast, as follows:W = world[r+1,i℄i n out[r+1℄i n failed[r+1℄i, where the values of the last two terms aretaken from the pre-state of net m
ast(i,r+2,v,W), andW' = world[r+1,j℄j n out[r+1℄j n failed[r+1℄j, where the values of the last two terms aretaken from the pre-state of net m
ast(j,r+2,v',W'). Invariant A.7 implies that W = world[1,i℄in out-by[r+1℄i n failed-by[r+1℄i, where the values of the last two terms are taken from thepre-state of net m
ast(i,r+2,v,W), andW' = world[1,j℄j n out-by[r+1℄j n failed-by[r+1℄j, where the values of the last two termsare taken from the pre-state of net m
ast(j,r+2,v',W').Consider some k 2 W. The pre
ondition of net m
ast(i,r+2,v,W) implies that in the pre-state, value[r+1,k℄i 6= ?, that is, i has re
eived a round r+1 message from k. This meansthat k has previously sent a round r+1 message. Sin
e (by assumption) r > 0, it follows that r+1 � 2, whi
h means that k has sent a round 2 message. Invariant 5.1, applied to any state afterboth net m
ast(j,1,*,*) and net m
ast(k,2,*,*) have o

urred, implies that k is in the world
omponent of j's round 1 message, and so k is put into world[1,j℄j when that is de�ned. Toprove that k 2 W', it suÆ
es to show that k is never pla
ed into either of the sets out-by[r+1℄j orfailed-by[r+1℄j.First, we show that k is never pla
ed into out-by[r+1℄j. Suppose for the sake of 
ontradi
tionthat k is put into out-by[r+1℄j at some point in the exe
ution. Then 
onsider some state thato

urs after this has happened, and that is not before the pre-state of net m
ast(i,r+2,v,W). In13



this state, we have both value[r+1,k℄i 6= ? and k 2 out-by[r+1℄j. This 
ontradi
ts Invariant A.4.Therefore, k is never pla
ed into out-by[r+1℄j.Se
ond, we show that k is never pla
ed into failed-by[r+1℄j. Suppose for the sake of 
on-tradi
tion that k is put into failed-by[r+1℄j at some point in the exe
ution. Then k fails in theexe
ution, whi
h implies that it fails before point t. But we have already noted that k sends around r +1 message during the exe
ution. It does not send this before point t, be
ause that wouldmean that it would rea
h round r +1 before point t, 
ontradi
tion our assumptions. So k sends theround r +1 message after point t, and so it 
annot fail before point t, a 
ontradi
tion. Therefore,k is never pla
ed into failed-by[r+1℄j.The next lemma says that, under the same assumptions as for the previous lemma, all the roundr+2 messages have the same value 
omponent.Lemma 5.3 Suppose that r > 0. Suppose that there is a point t in an exe
ution su
h that everypro
ess has round � r at point t, and no fail events happen from t onward.If net m
ast(i,r+2,v,W) and net m
ast(j,r+2,v',W') both o

ur in the exe
ution, then v =v'.Proof: Pro
ess i determines v as the minimum of all values value[r+1,k℄i for all k 2 W, andpro
ess i determines v0 as the minimum of all values value[r+1,k℄j for all k 2 W'. Lemma 5.2implies that W = W'. Sin
e values are 
onsistent (by Invariant A.2), the sets of values over whi
hthe two minima are taken are identi
al. Therefore, v = v'.Finally, we prove the main early-de
iding theorem. It says that, if no failures happen fromsome point onward and the rounds of all pro
esses are at most r when failures 
ease, then no CUPparti
ipant ever advan
es beyond round r +2. Sin
e we have already proved termination, thisimplies that all a
tive CUP parti
ipants de
ide by round r +2.Theorem 5.4 Suppose that r > 0. Suppose that there is a point t in the exe
ution su
h that everypro
ess has round � r at point t, and no fail events happen from t onward.Then every pro
ess always has round � r +2.Proof: Lemmas 5.2 and 5.3 yield a 
ommon value and world for round r+2 messages. Fix v' andW' to be the 
ommon value and world, respe
tively.We show that the pre
ondition of net m
ast(i,r+3,*,*) 
an never be true, whi
h impliesthat su
h an event 
an never happen. This implies that every pro
ess always has round � r +2.Suppose for the sake of 
ontradi
tion that the pre
ondition of net m
ast(i,r+3,v,W) is true insome rea
hable state s, for some �xed i.Sin
e the pre
ondition holds in s, world[r+2,i℄i 6= ? in s, and so Invariant A.1 impliesthat some (i,r+2,v'',W'') message is in the Net in s, where v'' = value[r+2,i℄i and W'' =world[r+2,i℄i. Sin
e v' and W' are the 
ommon value and world for round r+2 messages, thisimplies that value[r+2,i℄i = v' and world[r+2,i℄i = W'.We show that for all j 2 world[r+2,i℄i n out[r+2℄i, value[r+2,j℄i = value[r+2,i℄i andworld[r+2℄i � world[r+2,i℄i. This suÆ
es to show that the �nal pre
ondition fails, whi
h yieldsa 
ontradi
tion.Fix j 2 world[r+2,i℄i n out[r+2℄i. Sin
e failed[r+2℄i = f g, if follows that j 2 world[r+2,i℄in out[r+2℄i n failed[r+2℄i. The pre
ondition of the net m
ast then implies that value[r+2,j℄i 6=? in state s. Invariant A.1 then implies that some (i,r+2,v''',W''') message is in the Net in s,14



where v''' = value[r+2,j℄i and W''' = world[r+2,i℄i. Sin
e v' and W' are the only value andworld for round 2 messages, this implies that value[r+2,j℄i = v' and world[r+2,j℄i = W' instate s. Thus, value[r+2,j℄i = value[r+2,i℄i and world[r+2℄i � world[r+2,i℄i, as needed.Note that this proof does not work for the 
ase where r=0, be
ause of potential di�eren
es inthe initial worlds of 
orre
t pro
esses. Consider, for example, an exe
ution in whi
h no pro
essever fails, and some pro
ess, k, leaves after sending a round 1 message. Pro
ess k may be in
ludedin the initial world of pro
ess i but not in the initial world of another pro
ess j, if j initiates CUPafter k leaves. In this 
ase, i takes k's round 1 message into a

ount when 
hoosing its round 2message, while j does not (be
ause k is not in j's initial world). This s
enario 
an only o

ur inround 1, be
ause no pro
ess 
an send a round 2 message before j initiates.For the 
ase where r = 0, the best we 
an state is:Corollary 5.5 Suppose there is a point t in the exe
ution su
h that every pro
ess has round = 0at point t, and no fail events happen from t onward.Then every pro
ess always has round � 3.Proof: This is immediate from Theorem 5.4, using r = 1.5.4 Timing AssumptionsFor the sake of analyzing the performan
e of the CUP algorithm, we use timed I/O automata [21,Ch. 23℄. We 
an regard an ordinary I/O automaton as a spe
ial 
ase of the timed model, in whi
harbitrary amounts of time 
an pass between events. All the safety results 
arry over to this model.For this analysis, we add an extra assumption: we assume that any a
tion that is enabled eithergets performed or gets disabled by another a
tion, before any time passes.5.5 Laten
y AnalysisWe now analyze the algorithm's laten
y in exe
utions in whi
h there are time bounds on 
ertainenvironment a
tions. We assume the following bounds:1. Æ1 is an upper bound on message laten
y. That is, if a net r
v(m) event o

urs, the timesin
e the 
orresponding net m
ast(m) is at most Æ1.2. Æ2 is an upper bound on failure and leave dete
tion time. Moreover, if a message is lost due tofailure, then the failure is dete
ted at most Æ2 after the lost message was sent. More pre
isely,(a) Assume initi(*,W) o

urs with j 2 W and failj or leavej o

urs at time t. Thenfail dete
ti(j), leave dete
ti(j), de
idei, leavei, or faili o

urs by time t+ Æ2.(b) De�ne U = [k2IfW j initk(�;W ) o

ursg. Assume i; j 2 U and net m
astj(m) o
-
urs at time t but no net r
vi(m) o

urs. Then fail dete
ti(j), leave dete
ti(j),de
idei, leavei, or faili o

urs by time t+ Æ2.3. Æ3 is an upper bound on the time di�eren
e between the initiation time of di�erent pro
esses.More pre
isely:Assume some pro
ess initiates at time t and does not fail by time t+ Æ1. Assume further thatiniti(*, W) o

urs. Then, every pro
ess j 2 W initiates, abstains, leaves, or fails by timet+ Æ3. 15



In pra
ti
e, the failure dete
tion time would be at least as large as the message laten
y. Wetherefore assume that Æ2 � Æ1.We now use the above bounds on the environment to establish bounds on CUP's running times.The next lemma bounds the time it takes from when some pro
ess initiates CUP until all pro
essesterminate round 1.Lemma 5.6 Assume that some pro
ess initiates CUP at time t and does not fail by time t + Æ1.Then by time t+ Æ2+ Æ3, every pro
ess that initiates either terminates round 1, or leaves, or fails.Proof: Let i be a pro
ess that initiates and does not leave or fail by time t + Æ2 + Æ3. We nowshow that i terminates round 1 by time t + Æ2 + Æ3. If i de
ides by time t + Æ2 + Æ3, then we aredone. We therefore assume that i does not de
ide by this time.In order to terminate round 1, i has to have a round 1 message from every pro
ess j 2world[1,i℄i n out[1℄i n failed[1℄i. That is, for every pro
ess j 2 world[1,i℄i, i has to re-
eive a round 1 message or an OUT message from j, or a fail dete
ti(j) or a leave dete
ti(j)event.Fix a pro
ess j 2world[1,i℄i, i.e., j is in i's initial world. Sin
e some pro
ess initiates at timet, by our assumption on initiation times, j initiates, abstains, leaves, or fails by time t+ Æ3.If j fails or leaves by time t+ Æ3, then by our assumption on failure and leave dete
tion times,fail dete
ti(j) or leave dete
ti(j) o

urs by time t+ Æ2+ Æ3 (sin
e we assume that i does notde
ide, leave, or fail by this time), and we are done.Assume now that j does not fail or leave by time t+ Æ3. Sin
e j is in i's initial world, j eitherinitiates or abstains by this time, at whi
h point j sends a round 1 message or an OUT message(resp.). If i re
eives this message, i re
eives it by time t+Æ3+Æ1. If i does not re
eive this message,fail dete
t(j)i or leave dete
t(j)i o

urs by time t+ Æ3 + Æ2.Sin
e Æ2 � Æ1, we get that for every j 2world[1,i℄i, by time t + Æ3 + Æ2, i either re
eives around 1 message or an OUT message from j or a fail dete
t(j)i or leave dete
t(j)i evento

urs.The following lemma bounds the duration of subsequent rounds.Lemma 5.7 Assume that by time t, every pro
ess that initiates CUP either terminates round r> 0, or de
ides, or leaves, or fails. Then, by time t + Æ2, every pro
ess that initiates CUP eitherterminates round r+1, or de
ides, or leaves, or fails.Proof: Consider a pro
ess i that initiates CUP and does not leave or fail or de
ide by time t+Æ2.We now show that i terminates round r+1 by time t+ Æ2.In order to terminate round r+1, i has to have a round r+1 message from every pro
ess j 2world[r+1,i℄i n out[r+1℄i n failed[r+1℄i. That is, for every pro
ess j 2 world[r+1,i℄i, ihas to either re
eive a round r+1 message or an OUT message from j, or a fail dete
ti(j) or aleave dete
ti(j) event has to o

ur.Fix a pro
ess j 2world[r+1,i℄i. Pro
ess j must have initiated. By time t, j terminatesround r+1, or de
ides, or leaves, or fails. If j leaves or fails by time t, then fail dete
t(j)i orleave dete
t(j)i o

urs by time t + Æ2. Otherwise, j sends a round r+1 message or an OUTmessage (in 
ase it de
ides) by time t. If i re
eives this message, i re
eives it by time t + Æ1.Otherwise, fail dete
t(j)i or leave dete
t(j)i o

urs by time t+Æ2. Sin
e Æ2 � Æ1, we get thati terminates round r+1 by time t+ Æ2. 16



Using the two lemmas above, we get the following bound on the running time of an exe
utionof CUP with r rounds.Lemma 5.8 Assume that some pro
ess initiates CUP at time t and does not fail by time t + Æ1.If i de
ides at round r > 0, it does so by time t+ Æ3 + rÆ2.Proof: By Lemma 5.6, by time t + Æ3 + Æ2, every pro
ess that initiates CUP either terminatesround 1, or leaves, or fails. By iterative appli
ation of Lemma 5.7, we get that by time t+ Æ3+ Æ2+(r� 1)Æ2 = t+ Æ3 + rÆ2, every pro
ess that initiates CUP either terminates round r, or de
ides, orleaves, or fails.As a 
onsequen
e of the above lemmas and the early-de
iding theorem of the previous se
tionwe get the following theorem:Theorem 5.9 Suppose that there is a point t in the exe
ution su
h that no fail events happenfrom t onward. Suppose also that some pro
ess initiates CUP by time t. Then every pro
ess thatde
ides, de
ides by time t+ Æ3 + 3Æ2.Proof: Let r be the highest value of round of any pro
ess at time t. Sin
e some pro
ess initiatedCUP by time t, r > 0. By Theorem 5.4, every pro
ess that de
ides, de
ides at the end of roundr+2 at the latest.We 
onsider two 
ases. First, if r > 1, then by Invariant A.12, every pro
ess that initiatedCUP has either terminated round r-1 or left or failed by time t. By applying Lemma 5.7 threetimes, we get that every pro
ess that initiates CUP either terminates round r+2 or leaves or failsby time t+ 3Æ2. Therefore, in this 
ase, every pro
ess that de
ides, de
ides by time t+ 3Æ2.Next, assume that r = 1. Sin
e some pro
ess initiates CUP by time t and does not fail, byLemma 5.6, by time t + Æ3 + Æ2, every pro
ess that initiates CUP either terminates round 1, orleaves, or fails. By applying Lemma 5.7 twi
e, we get that every pro
ess that initiates CUP eitherterminates round r+2 or leaves or fails by time t+ Æ3 + 3Æ2. Therefore, in this 
ase, every pro
essthat de
ides, de
ides by time t+ Æ3 + 3Æ2.6 Environment and Model Assumptions for Atom6.1 Timing AssumptionsWe model time using a 
ontinuous global variable now, whi
h holds the real time. This is a realvariable, initially 0. We assume that it in
reases with derivative 1. Ea
h endpoint i is equippedwith a lo
al 
lo
k, 
lo
ki, modeled by a 
ontinuous, bije
tive, monotoni
ally in
reasing fun
tionfrom the nonnegative R to the nonnegative R.We assume a bound of � on 
lo
k skew, where � is a positive real number. Spe
i�
ally, forea
h endpoint i, we assume that in any state of the system that is rea
hable j
lo
k i � now j � �=2.That is, the di�eren
e between ea
h lo
al 
lo
k and the real time is at most �=2. It follows thatthe 
lo
k skew between any pair of pro
esses is �, formally: in any rea
hable state, and for any twoendpoints i and j, j
lo
k i � 
lo
k j j � �.We assume that lo
al pro
essing time is 0 and that a
tions are s
heduled immediately whenthey are enabled. Formally, when any lo
ally 
ontrolled a
tion of any pro
ess that is part of ourlo
al algorithm is enabled, then before any time passes, the a
tion is either performed or be
omesdisabled. 17



6.2 Reliable Network AssumptionsWe assume that we are given a low-level reliable network servi
e Net. Like DAB, Net is parame-terized by a message alphabet, M .The Net(M) signature is de�ned in Figure 6. The a
tions are the same as those of DAB, ex
eptthat they are pre�xed with net .Input:net joini, net leavei, faili, i2I,net m
asti(m), m2M, i2IOutput:net join OKi, net leave OKi, i2I,net r
vi(m), m2M, i2I Figure 6: The signature of the Net servi
e.Net(M) assumes that its appli
ation satis�es the same basi
 safety 
onditions as those spe
i�edabove for DAB(M), ex
ept that a
tion names are pre
eded with net . Assuming the appli
ationsatis�es these 
onditions, Net(M) satis�es a number of safety and liveness properties.First, Net satis�es the basi
 properties spe
i�ed above for DAB: join/leave integrity, messageintegrity, eventual join, and eventual leave. All of these properties are the same as for DAB, ex
eptthat a
tion names are pre�xed with net .In addition, Net guarantees fifo delivery of messages:� fifo delivery: If net m
asti(m) o

urs before net m
asti(m'), and net r
vj(m') o

urs,then net r
vj(m) o

urs before net r
vj(m').Net(M) also satis�es the following liveness property:� Eventual delivery: Suppose net m
asti(m) o

urs after net join OKj, and no faili o

urs.Then either net leavej or failj or net r
vj(m) o

urs.Additionally, the network laten
y is bounded by a 
onstant nonnegative real number �. For-mally, Net(M) guarantees:� Message laten
y: If net r
vj(m) o

urs, then the real time elapsed sin
e the 
orrespondingnet m
asti(m) is at most �.The maximum message laten
y of � guaranteed by Net is intended to in
lude any pre-senddelay at the network module of the sending pro
ess.Sin
e an implementation of Net 
annot predi
t the future, it must deliver messages within time� as long as no failures o

ur. In parti
ular, if a message is sent more than � time before its senderfails, it must be delivered.7 The Atom AlgorithmThe Atom algorithm 
onsists of a 
olle
tion of pro
esses 
orresponding to the di�erent endpointsin I. It uses Net and CUP servi
es as building blo
ks. It uses multiple instan
es of CUP.18



7.1 Data TypesAtom de�nes the 
onstant �, a positive real number. This will represent a time slot. We assumethat � > �.Re
all thatM represents the message alphabet of DAB. We will useM 0 to represent the messagealphabet of Net. We de�ne the message alphabet of Net in term of the alphabet of Atom:� M1, the set of �nite sequen
es of elements of M . These are the bulk messages pro
esses send.� M2 =M1 [ fJOIN;LEAV Eg [ fCUP � INITg � Ig� M 0 = I �M2 � N.M 0 is the 
omplete message alphabet of Net. Ea
h message 
ontains either a bulk message (sequen
eof 
lient messages) for a parti
ular slot, a request to join or leave a parti
ular slot, or a report thatpro
ess has initiated 
onsensus on behalf of a parti
ular endpoint. Ea
h message is tagged withthe sender and the slot.7.2 Using the Net and CUPThe Net servi
e alphabet is instantiated with M 0. That is, Atom uses a servi
e Net(M 0) to im-plement the servi
e DAB(M). Atom uses multiple instan
es of CUP, at most one for ea
h pro
essj. As before, a faili a
tion 
auses pro
ess i to stop. faili a
tions go to all the 
omponents, i.e.,Net and all instan
es of CUP (in
luding dormant ones), and 
ause all of them to stop taking anylo
ally 
ontrolled a
tions. Sin
e faili a
tions 
annot be inter
epted, we do not in
lude them inthe 
ode.leavei a
tions also go dire
tly to all the lo
al instan
es of CUP, in
luding dormant ones.7.3 Atom Algorithm OverviewThe algorithm divides time, and respe
tively, messages, into slots. As time advan
es, ea
h pro
essadvan
es through slot. The duration of a slot is �.Ea
h pro
ess multi
asts all of its messages for a given slot in one bulk message. This is auseful abstra
tion that we make in order to simplify the presentation and analysis of the Atomalgorithm. In pra
ti
e, the bulk message does not have to be sent as one message; a standardpa
ket assembly/disassembly layer 
an be used to provide all-or-nothing behavior.Message delivery is also done in order of slots. Before delivering messages of a 
ertain slot s,ea
h pro
ess has to determine the membership of this slot, that is, the set of pro
esses from whi
hto deliver messages in this slot. To ensure total order, all the pro
esses that deliver messages for a
ertain slot have to agree upon the membership of ea
h slot. For ea
h slot, messages are delivered inthe order of pro
ess indi
es, and for ea
h pro
ess, the messages are unpa
ked from its bulk messageand delivered in fifo order.7.4 SignatureThe signature of Atom at pro
ess i, Atomi, is presented in Figure 7. It in
ludes all the intera
tionwith the 
lient and all the intera
tion with the underlying network. The implementation of Atomuses CUP as a building blo
k. Hen
e Atomi has additional input and output a
tions for intera
tingwith CUP. Sin
e Atom uses multiple instan
es of CUP, at most one for ea
h pro
ess j, a
tions of19



CUP automata are pre�xed with CUP(j). For example, pro
ess i uses the a
tion CUP(j).initi toinitiate the CUP automaton asso
iated with pro
ess j. CUP.fail and CUP.leave are not outputa
tions of Atom, sin
e they are routed dire
tly from the environment to all instan
es of CUP.The signature of Atomi also in
ludes two internal a
tions, end slot, and members. These twoa
tions play a role in determining the membership for ea
h slot. end slot(s)i o

urs at a time bywhi
h slot s messages from all pro
esses should have rea
hed pro
ess i. At this point, pro
essesfrom whi
h messages are expe
ted but do not arrive are suspe
ted to have failed. For ea
h suspe
tedpro
ess j, CUP(j) is run to have the surviving pro
esses agree upon j's failure slot. This is neededbe
ause failed pro
esses 
an be suspe
ted at di�erent slots by di�erent surviving pro
esses. AfterCUP rea
hes de
isions about all the suspe
ted pro
esses that 
ould have failed at slot s, members(P,s) 
an o

ur, with P being the agreed membership for slot s. When pro
ess i performs members(P,s)i, all the messages in
luded in bulk messages that i re
eived for slot s from pro
esses in P aredelivered (their delivery is triggered) in order of pro
ess indi
es.Input:joini, leaveinet join OKi, net leave OKim
asti(m), m2Mnet r
vi(m), m2M 0failiCUP(j).de
idei(v), v2NOutput:join OKi, leave OKinet joini, net leaveinet m
asti(i, m, s), m2M2, s2Nr
vi(m), m2MCUP(j).initi(v, W), v2NCUP(j).abstainiCUP(j).leave dete
ti(j), j2ICUP(j).fail dete
ti(j), j2IInternal:end sloti(s), s2Nmembersi(P, s), P set of I, s2N Figure 7: Atomi: Signature.7.5 Pseudo-
odeThe Atomi 
ode is presented in Figures 8{10. The state 
omponents are presented in Figure 8.Re
all that we do not assume that pro
esses exe
ute the algorithm from the beginning oftime. Rather, the appli
ation issues an expli
it join event, and waits for a join OK. The variablejoin-slot holds the slot at whi
h a pro
ess starts parti
ipating in the algorithm; this will be thevalue of 
urrent-slot when join OK will be issued, and the �rst slot for whi
h a bulk messagewill be sent. If a pro
ess expli
itly leaves the algorithm, its leave-slot holds the slot immediatelyfollowing the last slot in whi
h the pro
ess sends a bulk message. Both join-slot and leave-slotare initially1, so as to be larger than any a
tual slot number they are 
ompared with.20




lo
k2R, initially2[0, �/2℄; dynami
 type: 
ontinuous fun
tionsjoin-slot 2 N [ 1, initially 1leave-slot 2 N [ 1, initially 1did-join-OK, boolean, initially falsedid-leave, boolean, initially falsem
ast-slots � N, initially f gended-slots � N, initially f greported-slots � N, initially f gfor every s 2 Nout-buf[s℄ 2 M2, initially empty sequen
e of Mjoiners[s℄ � I, initially f gleavers[s℄ � I, initially f gsuspe
ts[s℄ � I, initially f gfor every s 2 N, j 2 Iin-buf[j,s℄, j 2 I, s 2 N, finite sequen
e of M or ?, initially ?for every j 2 In{ i }CUP-status[j℄ 2 { idle, req, running, done }, initially idleCUP-req-val[j℄ 2 N [ { ? }, initially ?CUP-de
-val[j℄ 2 N [ { ? }, initially ?derived variables:
urrent-slot 2 N = b 
lo
k / � 
for every s 2 Nalive[s℄ � I = { j | in-buf[s,j℄ 6= ? }Figure 8: Atomi: State.The boolean 
ags did-join-OK and did-leave are used to ensure that join OK and net leavea
tions will not be performed more than on
e. The set m
ast-slots keeps tra
k of the slots forwhi
h the pro
ess already multi
ast a message (JOIN, LEAVE, or bulk). Likewise, ended-slotsand reported-slots keep tra
k of the slots for whi
h the pro
ess already performed the end slotor members a
tions, resp.out-buf[s℄ stores the message (bulk, JOIN, or LEAVE) that is multi
ast for slot s; it initiallyholds an empty sequen
e, and in an a
tive slot, all appli
ation messages are appended into it.A JOIN message is inserted for the slot before the join-slot, and a LEAVE message for theleave-slot. Either way, there is no overlap with a bulk message.The variables joiners[s℄ and leavers[s℄ keep tra
k of the pro
esses j for whi
h join-slotj=s (resp. leave-slotj =s). suspe
ts[s℄ is the set of pro
esses suspe
ted in slot s as determinedwhen end slot(s) o

urs.The variable in-buf[j,s℄ is a �nite sequen
e of messages re
eived in a slot s bulk messagefrom pro
ess j. The data type �nite sequen
e supports assignment, extra
tion of the head of thequeue, and testing for emptiness.There are three variables for tra
king the status and values of the di�erent instan
es of CUP.CUP-status[j℄ is initially idle; when CUP(j) is initiated, it be
omes running; if a CUP-INITmessage for j arrives, it be
omes req; and when there is a de
ision for CUP(j), or if the pro
essabstains from CUP(j), it be
omes done. CUP-req-val[j℄ holds the lowest slot value asso
iated21



with a CUP-INIT message for j (? if no su
h message has arrived). Finally, CUP-de
-val[j℄ holdsthe de
ision rea
hed by CUP(j), and ? if there is none.alive[s℄ is a derived variable, storing the set of pro
esses from whi
h slot s bulk messageswere re
eived.joiniEff: trigger(net joini)net join OKiEff: join-slot  
urrent-slot + 2 + d �/� eout-buf[join-slot - 1℄  JOINjoin OKiPre: did-join-OK = false
urrent-slot = join-slotEff: did-join-OK  trueleaveiEff: if (join-slot 2 N) thenleave-slot  max(
urrent-slot, join-slot) + 1out-buf[leave-slot℄  LEAVEnet leaveiPre: did-leave = falseleave-slot 2 m
ast-slotsEff: did-leave  truenet leave OKEff: trigger(leave OKi)m
asti(m)Eff: if (join-slot � 
urrent-slot < leave-slot) thenappend m to out-buf[
urrent-slot℄net m
asti(i, m, s)Pre: join-slot 2 Njoin-slot - 1 � s � leave-slot
urrent-slot = s+1s 62 m
ast-slotsm = out-buf[s℄Eff: m
ast-slots  m
ast-slots [ { s }net r
vi(j, JOIN, s)Eff: joiners[s+1℄  joiners[s+1℄ [ { j }net r
vi(j, LEAVE, s)Eff: leavers[s℄  leavers[s℄ [ { j }forea
h (k su
h that CUP-status[k℄ = running) dotrigger(CUP(k).leave dete
ti(j))net r
vi(j, m, s), m sequen
e of MEff: in-buf[j,s℄  mFigure 9: Atomi: Transitions related to multi
ast, join, and leave.In Figure 9 we present the �rst part of Atom's transitions, in
luding transitions related tojoining, leaving, multi
asting messages, and re
eiving messages from the network. Transitionsrelated to membership and totally ordered delivery are presented in Figure 10.22



When the appli
ation issues a join, Atom triggers net join. On
e the Net responds with anet join OK, Atom 
al
ulates the join-slot to be 2 + d�=�e slots in the future. This will allowenough time for the join message to rea
h the other pro
esses. A JOIN message is then insertedinto out-buf[join-slot-1℄. On
e the 
urrent-slot rea
hes join-slot, join OK is issued to theappli
ation.When the appli
ation issues a leave, the leave-slot is 
hosen to be the ensuing slot, and aLEAVE message is inserted into out-buf[leave-slot℄. A net leave is issued after the LEAVEmessage has been multi
ast, and the net leave OK triggers a leave OK to the appli
ation.Messages multi
ast by the appli
ation are appended to the bulk message for the 
urrent slotin out-buf[
urrent-slot℄. On
e a slot s ends, the message pertaining to this slot is multi
astto the other pro
esses using net m
ast. If s = join-slot - 1, a JOIN message is sent. If s =leave-slot, a LEAVE message is sent, and if s is between join-slot and leave-slot - 1, abulk message is sent.When a bulk message is re
eived, it is stored in the appropriate in-buf. When a JOIN (LEAVE)message is re
eived, the sender is added to the joiners (resp. leavers) set for the appropriate slot.Additionally, when a LEAVE message is re
eived, CUP.leave dete
t is triggered for all runninginstan
es of CUP.Pro
ess i performs end sloti(s) on
e it should have re
eived all the slot s messages sent byother non-failed pro
esses. Sin
e slot s messages are sent immediately when slot s ends, messagesare delayed at most � time in Net, and the 
lo
k di�eren
e is at most �, pro
ess i should haveall the non-failed pro
esses' slot s messages � + � time after slot s+1 began. At this time, 
lo
k> (s+ 1)� +�+ �. Pro
ess i expe
ts to re
eive slot s bulk messages from all the pro
esses thatare in alive[s-1℄, ex
ept for those that are leaving in slot s. Any pro
ess from whi
h a slot sbulk message is expe
ted but does not arrive be
omes suspe
ted at this point, and is in
luded insuspe
ts[s℄.For every suspe
ted pro
ess, CUP is run in order to agree upon the slot at whi
h the pro
essfailed. The slot s in whi
h the pro
ess is suspe
ted is used as the initial value for CUP. The estimatedworld for CUP is alive[s℄ [ joiners[s+1℄. This way, if k joins in slot s+1, k is in
luded inthe estimated world. This is needed in order to satisfy the world 
onsisten
y assumption of CUP,be
ause k 
an dete
t the same failure at slot s+1, and therefore parti
ipate in CUP(j). When iinitiates CUP(j), it also multi
asts a (CUP-INIT, j) message. If a pro
ess k does not dete
t thefailure and does not parti
ipate, the (CUP-INIT, j) message for
es k to abstain.Sin
e Atom implements the failure dete
tor for CUP, the e�e
t of end sloti(s) also triggersCUP(k).fail dete
t(j) a
tions for every suspe
ted pro
ess j, and for every 
urrently runninginstan
e k of CUP.Pro
ess i abstains from CUP(j) only if a (CUP-INIT,j) message has previously arrived, settingCUP-status[j℄i = req, and only if end sloti has already o

urred for a slot value greater thanCUP-req-val[j℄i. The latter 
ondition ensures that i abstains only from instan
es of CUP that itwill not initiate. This is be
ause the network guarantees that when a pro
ess fails, at most one slotbulk message from this pro
ess is lost (sin
e we assume that Delta � �). This implies that thedete
tion of j's failure by two non-failed pro
esses 
an o

ur at most one slot apart. Therefore, ifend sloti has already o

urred for a slot value greater than CUP-req-val[j℄i, i will never suspe
tj. The members(P, s) a
tion triggers the delivery of all slot s messages from pro
esses in P. It 
anonly o

ur on
e agreement has been rea
hed about the pro
esses to be in
luded in P. Sin
e the slotat whi
h a pro
ess k is suspe
ted by two pro
esses i and j 
an di�er by at most one, membersi(P,s) 
an o

ur after i re
eives de
ision from all instan
es of CUP pertaining to pro
esses suspe
ted in23



end sloti(s)Pre: join-slot � sleave-slot = 1s 62 ended-slots
lo
k i (s+1)� + � + �Eff: ended-slots  ended-slots [ { s }suspe
ts[s℄  (alive[s-1℄ [ joiners[s℄ n leavers[s℄) n alive[s℄forea
h (j 2 suspe
ts[s℄) dotrigger(CUP(j).initi(s, alive[s℄ [ joiners[s+1℄))net m
asti(i, (CUP-INIT, j), s)CUP-status[j℄  runningforea
h (k su
h that CUP-status[k℄ = running) dotrigger(CUP(k).fail dete
ti(j))net r
vi(j, (CUP-INIT, k), s)Eff: if (CUP-status[k℄ = idle _ CUP-req-val[k℄ i s) thenCUP-status[k℄  reqCUP-req-val[k℄  sCUP(j).abstainiPre: CUP-status[j℄ = req9s 2 ended-slots : s > CUP-req-val[j℄Eff: CUP-status[j℄  doneCUP(j).de
idei(s)Eff: CUP-status[j℄  doneCUP-de
-val[j℄  smembersi(P, s)Pre: s = min{ ended-slots n reported-slots }s + 1 2 ended-slots8j 2 (suspe
ts[s℄ [ suspe
ts[s+1℄) : CUP-status[j℄ = doneP = { j 2 alive[s℄ | CUP-de
-val[j℄ = ? _ CUP-de
-val[j℄ > s }Eff: reported-slots  reported-slots [ { s }forea
h j 2 P, in order of indi
es dowhile in-buf[j,s℄ not empty dotrigger(r
vi(head(in-buf[i,s℄)))Figure 10: Atomi: Transitions related to membership and message delivery.slots up to s+1. Therefore, membersi(P, s) must o

urs after end slot(s+1), when the suspi
ionsfor slot s+1 are determined. The set P in
ludes every pro
ess j that is alive in slot s and for whi
hthere is either no CUP instan
e running (in whi
h 
ase j was not suspe
ted), or the CUP de
isionvalue is greater than s.7.6 Laten
y AnalysisIn this se
tion we analyze the laten
y guarantees of Atom. In Se
tion 7.6.1 we show that in failurefree exe
utions, Atom's message laten
y is bounded by � + 2� + 2�. We denote this bound by�Atom. In Se
tion 7.6.2, we assign values to the 
onstants that were used in the analysis of CUPin Se
tion 5.5 (Æ1, Æ2, and Æ3). Then, in Se
tion 7.6.3, we 
onsider exe
utions in whi
h failures doo

ur but there is a long time period with no failures. We analyze the time it takes Atom to 
learthe ba
klog it has due to past failures, and rea
h a situation in whi
h message laten
y is bounded24



by the same bound as in failure free exe
utions, namely �Atom, barring additional failures.The fa
t that on
e failures stop for a bounded time all messages are delivered within 
onstanttime implies that in periods with f failure, Atom's laten
y is at most linear in the number of failingpro
esses.7.6.1 Failure free exe
utionsLemma 7.1 The time from when pro
ess j starts slot s (i.e., 
urrent-slotj be
omes s) untilpro
ess i performs end sloti(s+1) is at most �+ 2� + 2�.Proof: A

ording to its pre
onditions, end sloti(s) o

urs 2� + � + � time after i starts slots. Sin
e the di�eren
e between two pro
esses' 
lo
ks is at most �, i starts slot s at most � timeafter j starts this slot.Lemma 7.2 Consider an exe
ution in whi
h no pro
ess fails. If the appli
ation at pro
ess j per-forms m
astj(m) when 
urrent-sloti = s and if pro
ess i delivers m, then i delivers m immedi-ately after end sloti(s+1) o

urs.Proof: If i delivers m, r
vi(m) is triggered during the Membersi(P,s) a
tion. Sin
e no pro
essfails, suspe
ts[s℄i[ suspe
ts[s+1℄i is an empty set, and thus the only pre
ondition that needsto be satis�ed in order to perform Membersi(P,s) is s+1 2 ended-slotsi, whi
h is true immediatelyafter end sloti(s+1) o

urs.As a dire
t result of these two lemmas, we get the following theorem:Theorem 7.3 If the appli
ation at pro
ess j performs m
astj(m) at time t, and if pro
ess i deliversm, then i delivers m by time t+�Atom = t+�+ 2�+ 2�.7.6.2 CUP boundsWe now assign values to the 
onstants used in the analysis of CUP in Se
tion 5.5. Re
all, Æ1 is anupper bound on message laten
y; Æ2 is an upper bound on failure and leave dete
tion time, and ifa message is lost due to failure, then the failure is dete
ted at most Æ2 after the lost message wassent; and Æ3 is an upper bound on the di�eren
e between di�erent pro
esses' initiation times.Lemma 7.4 Æ1 = �Proof: By de�nition, both � and Æ1 are de�ned to be upper bounds on the underlying networklaten
y.Lemma 7.5 Æ2 = �+ 3�+ 2�Proof: Assume that CUP(k).initi(*,W) o

urs with j 2 W . Assume that one of the follow-ing happens at time t: failj, leavej, or net m
astj(m) for a message m that is lost be
ause jsubsequently fails. Let s be the value of 
urrent-slotj at time t. Assume also that by timet+�+ 3�+ 2�, i does not de
ide, leave, or fail, so CUP-status[k℄i = running and i is a
tive atthis time. We have to show that by this time, fail dete
ti(j) or leave dete
ti(j) o

urs.If j fails at time t, then j's slot s message is never sent, and therefore i dete
ts the failure andinvokes CUP(k).fail dete
ti(j) during end sloti(s) at the latest. By Lemma 7.1, this o

urs25



by time t + 2� + � + 2�. Likewise, if j sends a message m while 
urrent-slotj = s, and m islost, then by the fifo nature of the network, j's slot s message is also lost and i dete
ts j's failureduring end sloti(s) at the latest.Assume next that j leaves when 
urrent-slotj = s, i.e., j's leave-slot is s+1. If i re
eivesa LEAVE message from j, it re
eives it before end sloti(s+1) o

urs, and immediately triggersCUP(k).leave dete
ti(j). Otherwise, i re
eives no slot s+1 message from j and suspe
ts j andinvokes CUP(k).fail dete
ti(j) during end sloti(s+1). This o

urs by time t + 3� + � + 2�.Lemma 7.6 Æ3 = �+�Proof: Assume that some pro
ess pro
ess l initiates CUP(k) at time t and does not fail by timet + �. Assume further that CUP(k).initi(*, W) o

urs with j 2 W . We have to show that jinitiates, abstains, leaves, or fails by time t+�+�.Pro
ess l triggers CUP(k).initl(s, *) during the end slotl(s) a
tion, and k 2suspe
tsl[s℄.If j initiates CUP(k), there is a slot s' su
h that j triggers CUP(k).initj during the end slotj(s')a
tion, and k 2suspe
tsj[s'℄. By Invariant A.19, s' � s+1. Therefore, CUP(k).initj o

ursno later than time t+ �+�, and we are done.Assume now that j does not initiate CUP(k), and does not leave or fail by time t+�+�. Wenow show that j abstains from CUP(k) by time t+ �+�.When CUP(k).initl(s, *) is triggered, l multi
asts a (CUP-INIT, k) message. By Lemma A.8,net join OKj o

urs before l initiates CUP(k), that is, before l multi
asts this message. Moreover,by assumption, l does not fail by time t + � and j does not leave or fail by time t +� (be
ause� � �). Therefore, j re
eives this message by time t+�, whi
h is before time t+�+�. After jre
eives this message, CUP-status[k℄j is req and CUP-req-val[k℄j is less than or equal to s. Bytime t+�+�, end slotj(s+1) o

urs and the 
ondition for CUP(k).abstainj be
omes true, andremains true until CUP(k).abstainj o

urs and 
hanges CUP-status[k℄j. Therefore, before anytime passes, CUP(k).abstainj o

urs.7.6.3 Failure free periodsWe now 
onsider exe
utions in whi
h failures do o

ur but there are long time periods with nofailures. We analyze the time it takes Atom to 
lear the ba
klog it has due to past failures, andagain rea
h a situation in whi
h message laten
y is bounded by �Atom, barring additional failures.Let t1 = Æ3 + 4Æ2, where Æ3 and Æ2 are bounds as given above for the di�eren
e betweenpro
ess initiation times and failure dete
tion time, resp. From Lemmas 7.6 and 7.5 we get thatt1 = �+�+ 4(� + 3�+ 2�) = 4�+ 9� + 13�.Assume that from time t to time t0 = t+ t1 there are no failures. We now show that if a messagem is sent after time t0, and there are no failures for a period of length �Atom after m is sent, then mis delivered within �Atom time of when it is sent. Sin
e the delivery order preserves the fifo order,this also implies that any message m0 sent before time t0 is delivered by time t0 barring failures inthe �Atom time interval after m0 is sent.Theorem 7.7 Assume no pro
ess fails between time t and t0 = t + t1. If m
ast(m)j o

urs at atime t00 su
h that t+ t1 � t00, and no failures o

ur from time t00 to time t00+�Atom, and if i deliversm, then i delivers m by time t00 +�Atom. 26



Proof: By Lemma 7.5, by time t+Æ2 all the pro
esses dete
t all the failures that o

ur by time t.Therefore, no pro
ess initiates an instan
e of CUP after time t+Æ2. Sin
e no failures o

ur after timet+Æ2, by Theorem 5.9, all CUP instan
es that i initiates terminate by time t+Æ2+Æ3+3Æ2 = t+ t1.Let s be the value of 
urrent-slotj at time t00 (i.e., when m
ast(m)j o

urs). By Lemma 7.1,pro
ess i performs end sloti(s+1) by time t00+�+2�+2� = t00+�Atom. At this time, there areno a
tive CUP instan
es, be
ause CUP instan
es pertaining to failures that o

urred before time thave all terminated and no new failures o

ur until time t00 +�Atom. Therefore, for every slot s'� s, in order of slot numbers, Members(P, s')i be
omes enabled until it o

urs. So Members(P,s)i o

urs before any time passes. If i delivers m, r
vi(m) is triggered during the Membersi(P, s)a
tion, so r
vi(m) also o

urs before any time passes.7.7 Extending Atom to Cope with Late MessagesIn this paper, we assumed a syn
hronous model with deterministi
 network laten
y guarantees.Sin
e the network laten
y, � is expe
ted to be of a smaller order of magnitude than �, it wouldnot signi�
antly hurt time bounds if 
onservative assumptions are made in the 
hoi
e of �.In ongoing resear
h we are 
onsidering networks where laten
y bounds are more likely to beviolated. For example, some networks may support di�erentiated servi
es with probabilisti
 laten
yguarantees. Moreover, loss rates may ex
eed the bounds assumed in the implementation of thereliable network. Su
h networks 
an be represented using the timed-asyn
hronous [11℄ failuremodel.Although our algorithm 
annot guarantee atomi
 broad
ast semanti
s while network laten
yand reliability guarantees are violated, it is important for the algorithm to be able to re
overfrom su
h situations, and to on
e more provide 
orre
t semanti
s after network guarantees are re-established. In addition, it would be desirable to inform the appli
ation when a violation of Atomsemanti
s o

urs, and when the 
orre
t semanti
s are resumed (following the failure awarenessapproa
h of [14℄).There are some strategies that 
an be used to make Atom re
over from periods in whi
h networkguarantees are violated. For example, a lost or late message 
an 
ause ina

urate failure suspi
ions.With Atom, if a pro
ess k is falsely suspe
ted, it will re
eive a (CUP-INIT, k) message for itself.In order to re
over from su
h a situation, we 
ould have the pro
ess \
ommit sui
ide" in su
h asituation, that is inform the appli
ation of the failure and have the appli
ation re-join as a newpro
ess. The full modi�
ation of Atom for this setting is ongoing work.8 Con
lusionsWe have de�ned two new problems, Dynami
 Atomi
 Broad
ast and Consensus with UnknownParti
ipants. We have presented new algorithms for both problems. The laten
y of both of ouralgorithms depends linearly on the number of failures that o

ur during a parti
ular exe
ution, butdoes not depend on an upper bound on the potential number of failures, nor on the numbers ofjoins and leaves that happen during the exe
ution.A
knowledgmentsWe thank Alan Fekete and Ra
hid Guerraoui for 
omments that helped improve the presentation.27
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A Corre
tness ProofsA.1 Corre
tness of the CUP AlgorithmWe 
onsider the system 
onsisting of a 
omposition of automata CUPi, one for ea
h i 2 I. We
onsider a restri
ted set of exe
utions of this 
omposition|those in whi
h the environment safetyassumptions are all satis�ed. The invariants we state throughout this se
tion should be interpretedas saying that the stated property is true for all states that o

ur in su
h exe
utions.A.1.1 General invariantsWe say that a message is in the Net if a net m
ast event for that message has o

urred or is in atrigger-buffer.The �rst invariant lists an assortment of basi
 
onstraints. They 
an be proved using indu
tion.Invariant A.1 1. value[r,i℄j = ? if and only if world[r,i℄j = ?.2. If value[r,i℄j = v 6= ? and world[r,i℄j = W 6= ? then an (i,r,v,W) message is in theNet.3. If (i,r,*,*) is in the Net then roundi � r.4. If modei = ? then roundi = 0.5. If modei = running then some (i,1,*,*) message is in the Net.6. If i 2 failed[r℄j then faili has o

urred.7. If i 2 failed[r℄j and s � r, then value[s,i℄j = ?.The next invariant expresses 
onsisten
y of values and worlds of the same pro
ess at di�erent pla
esin the system.Invariant A.2 1. If messages (j,r,v,W) and (j,r,v',W') are in the Net then v = v' and W= W'.2. If value[r,j℄i 6= ? and value[r,j℄i0 6= ? then value[r,j℄i = value[r,j℄i0.3. If world[r,j℄i 6= ? and world[r,j℄i0 6= ? then world[r,j℄i = world[r,j℄i0.4. If value[r,j℄i 6= ? and world[r,j℄i 6= ? and a message (j,r,v,W) is in the Net thenvalue[r,j℄i = v and world[r,j℄i = W.The next two invariants des
ribe some fa
ts that follow from the existen
e of OUT messages andfrom the dete
tion of leaves.Invariant A.3 1. If an (i,OUT) message is in the Net then modei = done.2. If i 2 out[r℄j then modei = done.Proof: By indu
tion. Part 2 uses the a

urate leave dete
tor assumption.Invariant A.4 If i 2 out[r℄k and s � r, then no message of the form (i,s,*,*) is in the Net,and for all j, value[s,i℄j = ?. 30



Proof: By strong indu
tion. First, we 
laim that a net m
asti event 
annot 
onvert the invariantfrom true to false by falsifying the 
on
lusion while leaving the hypothesis true. This is be
ause,if the hypothesis is true, then i 2 out[r℄k in the pre-state of the net m
asti, whi
h implies, byInvariant A.3, that modei = done. But the pre
ondition of net m
asti requires that modei =running, a 
ontradi
tion.The key steps are, therefore, those that make the hypothesis true. Index i 
an be added toout[r℄k by re
eipt of an OUT message by k or by a leave dete
tk(i). An OUT message mayresult from a previous abstaini that o

urs when modei = ?, or a previous de
idei event.For abstaini, by Invariant A.1, we know that in the pre-state of the abstaini, roundi = 0.Then Invariant A.1 implies that in the pre-state, no message of the form (i,*,*,*) is in the Net,and for all j and all s, value[s,i℄j = ?. On
e the abstaini happens, modei be
omes done, whi
hmeans that no later messages are sent.For de
idei, the fifo assumption for message delivery implies that the de
idei event must haveo

urred when round = r �1. Invariant A.1 then implies that in the pre-state of the de
idei, the
on
lusion of the invariant holds. Sin
e the de
idei event sets modei to done, i sends no furthermessages, so the 
on
lusion 
ontinues to hold.For leave dete
tk(i), we know by the lossless leave assumption that before the leave dete
tk(i)o

urs, k has already re
eived every message that has ever been net m
ast by i. Sin
e k expli
itly
he
ks that it has no values from i for round r, there are no su
h messages in the Net.The following says that any value that appears anywhere in the system is some parti
ipant's initialvalue.Invariant A.5 1. If (i,r,v,W) is in the Net then there exists j and W' su
h that (j,1,v,W')is in the Net.2. If value[r,k℄i = v 6= ? then there exists j and W' su
h that (j,1,v,W') is in the Net.Proof: We show Parts 1 and 2 together by indu
tion on the length of a �nite exe
ution.Base: Trivial, be
ause no messages are initially in the Net and no values are initially non-?.Indu
tive step: We �rst show part 1. The interesting steps are those in whi
h a message (i,r,v,W)is put into the Net. If r = 1 then (i,r,v,W) is put into the Net by an initi(v,W) event, whi
hputs the net m
ast into trigger-bufferi. But this immediately satis�es the 
on
lusion. On theother hand, if r � 2, then (i,r,v,W) is put into the Net by an expli
it net m
ast(i,r,v,W) step.In this 
ase, v is obtained from a set of values already in i's value array in the pre-state. Theindu
tion hypothesis, part 2, then implies that some (j,1,v,W') is already in the Net, as needed.For part 2, the key step is a net r
vi(k,r,v,W) for some W. In the pre-state of su
h a step, mes-sage (k,r,v,W) is in the Net. The indu
tive hypothesis, part 1, then implies that some (j,1,v,W')is already in the Net, as needed.The following invariant asserts that pro
esses are always in their own worlds.Invariant A.6 1. If a message (i,r,v,W) is in the Net then i 2 W.2. If world[r,i℄j 6= ? then i 2 world[r,i℄j.Proof: We prove part 1 by indu
tion on the length of the exe
ution, with a trivial base 
ase.Indu
tive step: The interesting steps are those in whi
h a message (i,r,v,W) is put into the Net.If r = 1, then this is done by an initi(v,W) step. In this 
ase, the environment well-formedness31



assumption implies that no leavei or faili event pre
edes the initi, and so the world 
onsisten
yassumption implies that i 2 W, as needed. On the other hand, if r � 2, then (i,r,v,W) is put intothe Net by an expli
it net m
ast(i,r,v,W) step. In this 
ase, the pre
ondition says that modei =running and world[1,i℄i 6= ? in the pre-state. In this pre-state, i is not in any failed[r℄i set,be
ause if it were, Invariant A.1 would imply that i has failed, and it would not be able to performthe net m
ast. Also, in this pre-state, i is not in any out[r℄i set, by Invariant A.3. Therefore, iis in
luded in W, be
ause of the way W is de�ned.Part 2 follows follows from part 1 and Invariant A.1.The following invariant des
ribes 
onsequen
es of the de�nition of a round r+1 world and value:Invariant A.7 If (i,r+1,v,W) is in the Net, for r � 1, then:1. For every j 2 W, world[r,j℄i 6= ?.2. W = world[r,i℄i n out[r℄i n failed[r℄i.3. v = min fvalue[r,j℄i : j 2 Wg.4. W = world[1,i℄i n out-by[r℄i n failed-by[r℄i.Proof: Part 1 is proved by an easy indu
tion; the key step is net m
ast(i,r+1,v,W), and the
on
lusion follows immediately from the pre
ondition.Given part 1, we prove part 2 by indu
tion. Now the interesting steps are net m
asti(i,r+1,v,W),net r
vi(j,OUT), leave dete
ti(j), and fail dete
ti(j). The fa
t that net m
asti(i,r+1,v,W)yields the property follows immediately from the pre
ondition. A net r
vi(j,OUT) event 
ouldonly falsify the property if j 2 W and the event puts j into out[r℄i. However, part 1 impliesthat world[r,j℄i 6= ? in the post-state, and hen
e value[r,j℄i 6= ? in the post-state. Butthis would 
ause the post-state to violate Invariant A.4, a 
ontradi
tion. A similar argumentshows that leave dete
ti(j) 
annot falsify the property. Finally, fail dete
ti(j) 
ould onlyfalsify the property if j 2 W and the event puts j into failed[r℄i. However, part 1 implies thatworld[r,j℄i 6= ? in the post-state, and hen
e value[r,j℄i 6= ? in the post-state. But this would
ause the post-state to violate Invariant A.1, a 
ontradi
tion.We prove part 3 by indu
tion, using part 1. This time, the interesting steps are net m
asti(i,r+1,v,W)and net r
vi(j,r,*,*). Again, the net m
asti(i,r+1,v,W) step yields the property immedi-ately. A net r
vi(j,r,v',*) 
ould only falsify the property if j 2 W. But in this 
ase we knowthat value[r,j℄i 6= ? i the pre-state, and then Invariant A.2 implies that v' = value[r,j℄i inthe pre-state. It follows that this step does not 
hange value[r,j℄i, and so does not falsify theproperty.Part 4 is proved by indu
tion on r (not indu
tion on the length of the exe
ution), using part2. The base 
ase, r = 1, follows immediately from part 2. For the indu
tive step, we sup-pose that the 
laim is true for some r � 1 and show it for r + 1. That is, we assume that(i,r+2,v,W) is in the Net. Then by part 2, W = world[r+1,i℄i n out[r+1℄i n failed[r+1℄i.Now, sin
e world[r+1,i℄i 6= ?, Invariant A.1 implies that a message of the form (i,r+1,v',W')is in the Net, where W' = world[r+1,i℄i. By indu
tive hypothesis, part 4, this implies that W'= world[1,i℄i n out-by[r℄i n failed-by[r℄i. Therefore, W = world[1,i℄i n out-by[r℄i nfailed-by[r℄i n out[r+1℄i n failed[r+1℄i. This is equal to world[1,i℄i n out-by[r+1℄i nfailed-by[r+1℄i, as needed.Invariant A.8 Suppose that de
idei(v) has happened at round r. Then:32



1. For all j 2 world[r,i℄i n out[r℄i, value[r,j℄i = value[r,i℄i and world[r,j℄i � world[r,i℄i.2. For all j 2 world[r,i℄i, if (j,r,v',W) is in the Net then v' = v and W � world[r,i℄i.Proof: Part 1 follows from an easy indu
tion: out 
an only grow, and value and world do not
hange on
e they are non-?. Therefore, the only interesting step is de
idei(v), and the resultfollows dire
tly from the pre
ondition.For part 2, 
onsider any state s after a de
idei(v) has happened at round r. Suppose thatj 2 world[r,i℄i and (j,r,v',W) is in the Net, in state s. Then Invariant A.4 implies that j =2out[r℄i. Thus, j 2 world[r,i℄in out[r℄i. Then part 1 and Invariant A.2 imply the 
on
lusion.The following invariants say that any pro
ess' values and worlds de
rease as rounds in
rease.Invariant A.9 For any r � 1, if a message (i,r+1,v,W) is in the Net then value[r,i℄i 6= ?, v� value[r,i℄i, and W � world[r,i℄i.Proof: By indu
tion. For the indu
tive step, the interesting 
ase is when the last a
tion of theexe
ution is net m
ast(i,r+1,v,W). Invariant A.6 implies that i 2 W. Therefore, the pre
onditionfor net m
ast(i,r+1,v,W) implies that, in the pre-state, value[r,i℄i 6= ?. Therefore, this is alsotrue in the post-state, as needed.Next, we show that v � value[r,i℄i. The value v is determined in the net m
ast event to bethe minimum of the set of values of the form value[r,j℄i, for j 2 W. Sin
e i 2 W, this minimumin
ludes value[r,i℄i. Therefore, v � value[r,i℄i.Finally, we show that W � world[r,i℄i. The value W is determined in the net m
ast event tobe world[r,i℄i n out-by[r℄ n failed-by[r℄, a

ording to the values of the out and failed setsin the pre-state. It follows immediately that W is a subset of world[r,i℄i.Invariant A.10 For any r � 1,1. If value[r+1,i℄i 6= ? then value[r,i℄i 6= ?, value[r+1,i℄i � value[r,i℄i, and world[r+1,i℄i �world[r,i℄i.2. If value[r,i℄i 6= ? and 1 � s � r then value[s,i℄i 6= ?, value[r,i℄i � value[s,i℄i,and world[r,i℄i � world[s,i℄i.Proof: For part 1, assume that, in some rea
hable state, value[r+1,i℄i 6= ?, and hen
e world[r+1,i℄i6= ?. Then Invariant A.1 implies that in the same state, a message (i,r+1,v,W) must be in theNet, where v = value[r+1,i℄i and W = world[r+1,i℄i. Invariant A.9 then yields the 
on
lu-sions. Part 2 follows from part 1, using indu
tion on r-s.The following invariant says that, if all the messages for a parti
ular round r are \
onsistent", thenso are all the messages for all later rounds.Invariant A.11 Let W be a nonempty �nite set, v 2 V, and r � 1. Suppose that, for every i 2 W,if a message of the form (i,r,v',W') is in the Net, then W' � W and v' = v.Then for every i; j 2 W and for every s � r,1. If a message of the form (i,s,v',W') is in the Net, then W' � W and v = v'.2. value[s,i℄j is either v or ?. 33



3. world[s,i℄j is either a subset of W or ?.Proof: We prove part 1 by indu
tion on the length of an exe
ution.Base: The 
on
lusion of the invariant is va
uously true in the start state.Indu
tive step: The interesting steps are those that put some message (i,s,v',W') into the Net,where i 2 W and s � r. We may restri
t attention to the 
ase where s > r, be
ause if s = r andthe step falsi�es part 1, it also falsi�es the hypothesis of the invariant. Thus, the only interestingsteps are of the form net m
ast(i,s,v',W') where i 2 W and s > r. So 
onsider su
h a step, and�x i, s, v', and W'. Assume that the hypothesis of the invariant is true after (and hen
e before)the step.We show that W' � W. After the net m
ast step, the message is in the Net. Invariant A.9then implies that W' � world[s-1,i℄i. Invariant A.10 then implies that world[r,i℄i 6= ?and world[s-1,i℄i � world[r,i℄i. Therefore, W' � world[r,i℄i. Sin
e world[r,i℄i 6= ?,an (i,r,*,W'') message is in the Net, where W'' = world[r,i℄i. Then sin
e the hypothesis ofthe invariant is true, it follows that world[r,i℄i � W. Putting all the pie
es together yields thatW' � W.Next, we argue that v' = v. The value v' is determined by the pre
ondition of the net m
asta
tion, as the minimum of a set of values value[s-1,j℄i, taken over all indi
es j in W'. Be
ause W'� W, every su
h index j is in W. Sin
e value[s-1,j℄i 6= ?, a (j,s-1,v'',W'') message is in theNet in the pre-state of the new net m
ast, where v'' = value[s-1,j℄i. Our assumption that the
on
lusion of the invariant is true in the pre-state then implies that value[s-1,j℄i = v. Thus, allthe values 
onsidered in the min are equal to v, whi
h implies that v = v'.This proves part 1. Parts 2 and 3 follow from part 1 and Invariant A.1.Invariant A.12 If roundi = r > 1 and modej = running and j is not failed, then roundj � r- 1.Proof: Sin
e j is not failed, by Invariant A.1(6), j 62failed[s℄i for any s, so j 62failed-by[r-1℄i.By Invariant A.3(2), j 62 out[s℄i for any s, so j 62out-by[r-1℄i. Sin
e modej = running, j initi-ated, and by the world 
onsisten
y assumption, j 2world[1,i℄i. By Invariant A.7(4), j is in i'sworld for round r. Therefore, i must have re
eived a round r-1 message from j before moving toround r.A.1.2 CUP safety guaranteesWe now prove that the CUP implementation satis�es the CUP safety guarantees, assuming theenvironment satis�es the safety assumptions.Theorem A.1 The CUP algorithm satis�es well-formedness.Proof: This is straightforward from the 
ode and the well-formedness assumptions on the en-vironment. For 
ondition 1, assume that de
idei o

urs. Then in the pre
eding state, mode =running. mode is initially ?, and the only way it be
omes running is via initi. So there must bea pre
eding initi.For 
ondition 2, assume for the sake of 
ontradi
tion that two de
idei events o

ur. Part 1implies that an initi pre
edes the �rst de
idei. The �rst de
idei sets modei to done. After thispoint, and before the se
ond de
idei event o

urs, modei must be
ome running. This 
an happenonly as a result of another initi event. This means that two initi events must o

ur, whi
h
ontradi
ts the environment well-formedness assumption. Therefore, no more than one de
ideievent o

urs. 34



Theorem A.2 The CUP algorithm satis�es uniform agreement.Proof: If at most one de
ide event o

urs, the result follows immediately. So assume thatthere are at least two de
ide events. Consider the �rst de
ide event, de
idei(v). By the pre-
ondition, we know that in the pre-state, there exists r su
h that world[r,i℄i 6= ? and 8j 2world[r,i℄i n out[r℄i, value[r,j℄i = v and world[r,j℄i � world[r,i℄i. Sin
e i does notleave, abstain, or de
ide before the de
idei event, we know that i =2 out[r℄i in the pre-state; there-fore, value[r,i℄i = v. Also 
onsider any parti
ular later de
ide event, de
idei0(v'). As above,we know that in the pre-state of this event, there exists r' su
h that world[r',i'℄i0 6= ? and8j 2 world[r',i'℄i0 n out[r'℄i0, value[r',j℄i0 = v' and world[r',j℄i0 � world[r',i'℄i0.Moreover, value[r',i'℄i0 = v'.We now show that i0 2 world[r,i℄i. Sin
e i0 de
ides, it initiates and does not leave or fail beforeit de
ides. Sin
e i initiates before it de
ides, and thus before i0 de
ides, i0 does not leave or failbefore i initiates. Then the world 
onsisten
y assumption implies that i0 gets put into world[1,i℄i.If r = 1 then we are done, so assume that r � 2. Then the value of world[r,i℄i is determined in anet m
asti(i,r,*,*) step. To see that i0 is in
luded in world[r,i℄i, note that that set is de�nedin the net m
asti(i,r,*,*) step to in
lude (at least) all pro
esses in world[1,i℄i that do notleave, abstain, de
ide, or fail before the net m
asti(i,r,*,*) event. And i0 does not leave, abstain,de
ide, or fail by then, be
ause this net m
asti(i,r,*,*) event happens prior to the de
idei.We also know that i0 =2 out[r℄i in the pre-state of de
idei. This is be
ause i0 has not left,abstained, or de
ided before the de
idei.Next, we show that r' � r, that is, the round at whi
h i0 de
ides is at least as great as theround at whi
h i de
ides. Sin
e i0 2 world[r,i℄i and i0 =2 out[r℄i in the pre-state of de
idei, thepre
ondition for de
idei implies that value[r,i'℄i 6= ? in the pre-state of de
idei. This meansthat i0 must send an (i',r,v,*) message. This implies that the round r' at whi
h i0 de
ides is atleast as great as r, that is, r' � r.Finally, we argue that v' = v. Invariant A.8, part 2, implies that in the pre-state of de
idei0,if j 2 world[r,i℄i and if (j,r,v'',W'') is in the Net, then v'' = value[r,i℄i and W'' �world[r,i℄i. Sin
e r' � r and i0 2 world[r,i℄i, Invariant A.11, part 2, implies that in thepre-state of de
idei0, value[r',i'℄i0 is either v or ?. Sin
e (as noted earlier) value[r',i'℄i0 =v', we have that v=v'.Theorem A.3 The CUP algorithm satis�es validity.Proof: Part 1 follows from Invariant A.5. Part 2 follows from Invariant A.10.A.1.3 CUP liveness guaranteesWe now show that CUP satis�es its liveness property|termination. Formally, the lemmas andtheorem we state in this se
tion should be interpreted with respe
t to an exe
ution � of the
omposition of automata CUPi for i 2 I su
h that:1. All the environment safety and liveness assumptions are satis�ed in �.2. � is \weakly fair" to all a
tions of all CUPi automata, in the sense that if an a
tion is enabledfrom some point onward, it eventually is performed.35



Lemma A.4 Let J be the set of pro
esses that initiate and never de
ide, leave, or fail, and supposethat i 2 J. If initi(v, W) o

urs and j 2 W then either j 2 J or else j abstains, leaves, de
ides, orfails.Proof: Follows from the init o

urren
e assumption.Lemma A.5 If pro
ess i initiates and never de
ides, leaves, or fails, then roundi in
reases withoutbound.Proof: Let J be the set of all pro
esses that initiate and never de
ide, leave, or fail. Assume forthe sake of 
ontradi
tion that, for some pro
ess i 2 J , roundi is bounded. Let r be the smallestround number su
h that for some pro
ess i 2 J, roundi is bounded by r, and �x su
h i 2 J. Pro
essi 
annot get stu
k at round 0, be
ause the initi a
tion immediately in
rements the round to 1. Sowe may assume that r > 0.We argue that i 
annot be stu
k at round r, by showing that for some v, W, the net m
asti(i,r+1,v,W)a
tion is eventually enabled and stays enabled. Then weak fairness implies that net m
asti(i,r+1,v,W)eventually o

urs.We 
laim that the last pre
ondition of net m
asti(i,r+1,*,*) (the negation of the de
idepre
ondition) is always true. For if not, then de
idei(v) would be enabled for some v, and wouldstay enabled forever. This implies, by weak fairness, that de
idei o

urs, a 
ontradi
tion.Next, we 
laim that for every j 2 world[1,i℄, either i re
eives a round r message from j, orelse i puts j into its failed[r'℄ set or out[r'℄ set for some r' � r. Fix any su
h j. Lemma A.4implies that either j 2 J or j eventually abstains, leaves, de
ides, or fails. If j 2 J then by 
hoi
eof r, j does not get stu
k at any round less than r, and so j eventually sends a round r message,whi
h i eventually re
eives.If j fails, then eventually a fail dete
ti(j) o

urs, whi
h makes i put j into one of itsfailed[r'℄ sets. If r' � r then we are done; on the other hand, if r' > r then i re
eives around r message from j.If j abstains and does not fail, then eventually i puts j into its out[1℄ set (whi
h suÆ
esbe
ause 1 � r). If j leaves or de
ides at a round r' � r, then eventually i puts j into its out[r'℄set. Finally, if j leaves or de
ides at a round r' > r, then eventually i re
eives a round r messagefrom j.This 
laim implies that eventually the pre
ondition of net m
asti(i,r+1,v,W) is satis�ed forsome v, W. Be
ause the values and worlds 
an only de
rease, eventually the pre
ondition is satis�ed,and remains satis�ed, for the same v, W. Then weak fairness implies that the a
tion eventuallyo

urs, whi
h moves j to round r + 1. This is a 
ontradi
tion.Lemma A.6 Let J be the set of pro
esses that initiate and never de
ide, leave, or fail, and supposethat i 2 J. Then for r suÆ
iently large, world[r,i℄i = J.Proof: The result follows from two 
laims: that for all r, J � world[r,i℄i, and that for suÆ-
iently large r, world[r,i℄i is a subset of J.First, we show that for all r, J � world[r,i℄i. World 
onsisten
y implies that J � world[1,i℄i.Sin
e no element of J ever abstains, leaves, fails, or de
ides, no element of J is ever put into anyfailed[r℄i or out[r℄i. Then the de�nition of world[r,i℄i (in net m
ast(i,r,*,*)) implies thatfor all r, J � world[r,i℄i.Se
ond, we show that for suÆ
iently large r, world[r,i℄i is a subset of J. Let j be any elementof world[r,i℄i. Lemma A.4 implies that if j =2 J, then j eventually abstains, leaves, de
ides, or36



fails. But in any of these 
ases, j eventually gets put into some failed[r℄i or out[r℄i. This meansthat j is ex
luded from world[r,i℄i for suÆ
iently large r.Theorem A.7 The CUP algorithm satis�es termination.Proof: We prove that every pro
ess that initiates eventually de
ides, leaves, or fails. Assume forthe sake of 
ontradi
tion that there is at least one initiator that does not de
ide, leave, or fail. LetJ be the set of pro
esses that initiate and never de
ide, leave, or fail; then J is not empty. ThenLemma A.5 implies that the rounds of all pro
esses in J in
rease without bound, and Lemma A.6implies that for suÆ
iently large r, world[r,i℄i = J for all i 2 J. Thus from some round onward,every pro
ess in J bases its new value on values heard from exa
tly the members of J.Thereafter, ea
h i 2 J eventually rea
hes some minimum value of value[r,i℄i (by monotoni
ityand the fa
t that only �nitely many values 
an be used). Consider a round beyond whi
h all theminima have been attained. If these are all identi
al, then all pro
esses 
an de
ide based on thisvalue and world J, and we are done. On the other hand, if they are not all identi
al, then let i be apro
ess whose minimum is larger than some other pro
ess' minimum. Then i would see a smallervalue and redu
e its value further, a 
ontradi
tion.A.2 Atom Corre
tness Proof: Safety ArgumentsA.2.1 General InvariantsThe following invariants follow immediately from the 
ode:Invariant A.13 If join-sloti 6=1 then leave-sloti > join-sloti.Invariant A.14 Suppose s 2 ended-slotsi. Then:1. If j 2 joiners[s℄i then join-slotj = s.2. If j 2 leavers[s℄i then leave-slotj = s.Proof: Pro
ess j 
an be inserted into joiners[s℄i (leavers[s℄i) only if i re
eives a (j, JOIN,s-1) (resp. (j, LEAVE, s)) message, whi
h 
an be sent only by j and only if join-slotj = s(resp. leave-slotj = s).The following invariant asserts that from the join slot onward, slot messages (bulk, join, orleave) are multi
ast in order.Invariant A.15 If join-sloti� 1 � s' � s and s 2 m
ast-slotsi then s' 2 m
ast-slotsi.Proof: join-sloti had to have been set before 
urrent-sloti be
omes s'+1 be
ause it is always
hosen to be in the future. Therefore, net m
asti(i, *, s') is enabled on
e 
urrent-slotibe
omes s'+1. This is earlier than the time at whi
h net m
asti(i, *, s) 
an o

ur, so time
ould not have passed beyond that point without net m
asti(i, *, s-1) o

urring.The following invariant is 
entral to the rest of the proof. It asserts that by the time ofend sloti(s), i has all the right pro
esses in alive[s-1℄, alive[s℄, joiners[s℄, and joiners[s+1℄.37



Invariant A.16 If s 2 ended-slotsi then1. If join-slotj � s and s 2 m
ast-slotsj then j 2 alive[s-1℄i[ joiners[s℄i.2. If join-slotj � s+1 and s+1 2 m
ast-slotsj then j 2 alive[s℄i[ joiners[s+1℄.Proof: If j joined by slot s, it registered for the network before starting slot s-1. Moreover,if s 2 m
ast-slotsj, then by Invariant A.15, s-1 2 m
ast-slotsj, and therefore j multi
astseither a (j, JOIN, s-1) or a bulk message in slot s-1, and by the Net's reliable delivery property,this message is not lost due to j's failure be
ause j multi
asts a message in the following slot,whi
h o

urs � time later, and we assume that � > �, and messages sent more than � timebefore the failure are not lost. Likewise, if join-slotj � s+1 and s+1 2 m
ast-slotsj, then s2 m
ast-slotsj (by Invariant A.15), and j multi
asts a bulk or join message in slot s, whi
h isnot lost due to j's failure.We will now show two things: �rst, that i joined early enough to get j's slot s-1 bulk or joinmessage; and se
ond, that end sloti(s) o

urred late enough for i to have re
eived j's slot s bulkor join message.Sin
e i does end slot for s, join-sloti � s. Pro
ess i 
hooses its join-slot following thenet join OKi to be 
urrent-sloti + 2 + d�=�e, so 
urrent-sloti be
omes s-1 at least � timeafter the net join OKi. Sin
e the maximum 
lo
k di�eren
e between i and j is �, j sends itsmessage (join or bulk) for slot s-1 no earlier than the time of the net join OKi, so i joined earlyenough to get j's message for slot s.It is left to show that i gets j's slot s bulk or join message for slot s before end sloti(s). Thisfollows from the pre
ondition for end sloti whi
h asserts that 
lo
ki > (s+ 1)� +�+ �. Thatis, that at least � + � time has elapsed sin
e slot s+1 has begun at i. Sin
e the 
lo
k di�eren
ebetween i and j is at most �, we get that at least � time has elapsed sin
e slot s+1 has begun atj. Sin
e j sends its slot s message on
e slot s+1 begins at j, and the network laten
y is boundedby �, the message rea
hes i before end sloti(s).The following invariants are related to the suspe
ts[s℄ sets.Invariant A.17 If suspe
ts[s℄i is not empty, then join-sloti � s.Proof: suspe
ts[s℄i gets set only upon end sloti(s), for whi
h this is a pre
ondition. On
ejoin-sloti is set to a non-1 value, it does not 
hange, by the singularity of join and net join OK.Invariant A.18 If j 2 suspe
ts[s℄i then j has failed.Proof: Sin
e j gets inserted to suspe
ts[s℄i during end sloti(s), j is in (alive[s-1℄i [joiners[s℄i n leavers[s℄i) n alive[s℄i). In parti
ular, j is in alive[s-1℄i[ joiners[s℄i,and therefore join-slotj � s. Moreover, j is not in alive[s℄i, so by the 
ontrapositive of In-variant A.16(2), s+1 62 m
ast-slotsj, whi
h implies that j either fails or leaves before sending aslot s+1 message. Sin
e j is also not in leavers[s℄i, j must have failed.Invariant A.19 If j 2 suspe
ts[s℄i and j 2 suspe
ts[s'℄i0 then |s' - s| � 1.38



Proof: Without loss of generality, assume s' � s. Sin
e j 2 suspe
ts[s℄i, then j 2alive[s-1℄i[joiners[s℄i, and therefore join-slotj � s. Moreover, j is not in alive[s℄i when s 2 ended-slotsi,so by the 
ontrapositive of Invariant A.16(2), s+1 62 m
ast-slotsj. By Invariant A.15, for anyslot r > s, r 62 m
ast-slotsj, and therefore j 62 alive[r℄i0 for any r > s. Sin
e i0 suspe
ts j inslot s', j is in alive[s'-1℄i0, and therefore s'-1 � s.The following invariant states that a pro
ess does not abstain from CUP instan
es pertainingto pro
esses that it suspe
ts.Invariant A.20 If k 2 suspe
ts[s℄i and CUP-status[k℄i = done then CUP-de
-val[k℄i 6= ?.Proof: Assume by 
ontradi
tion that the invariant is false. Sin
e CUP-status[k℄i = done whileCUP-de
-val[k℄i = ?, then i must have performed CUP(k).abstaini. By the pre
ondition forCUP(k).abstaini, CUP-status[k℄i was req when abstaini o

urred, whi
h implies that end slot(s)i
ould not have already o

urred, that is, all the slots in ended-slotsi were smaller than sat the time of CUP(k).abstaini. By the pre
ondition for CUP(k).abstaini, when it o

urred,CUP-req-val[k℄i had some non-? value, v, su
h that v < s-1. This, in turn, implies that a(CUP-INIT, k) message with slot v had previously arrived. That means that su
h a message waspreviously sent by some j, whi
h implies that k is added to suspe
ts[v℄j, during end slotj(v),and remains there hen
eforward. But k 2 suspe
ts[s℄i and v < s-1, a 
ontradi
tion to Invari-ant A.19.Invariant A.21 If k 2 alive[s℄i, k 62 alive[s℄j, and s 2 ended-slotsj then k 2 suspe
ts[s℄j.Moreover, if s+1 2 ended-slotsi then k 2 suspe
ts[s+1℄i.Proof: Sin
e k 2 alive[s℄i, we know that join-slotk � s < leave-slotk and that s 2m
ast-slotsk. Therefore, by Invariant A.16(1), if s 2 ended-slotsj then k 2 alive[s-1℄j[joiners[s℄j. Additionally, k is neither in leavers[s℄i nor in leavers[s℄j, be
ause it doesnot leave at slot s. Therefore, sin
e k 62 alive[s℄j, in end slotj(s), k gets inserted intosuspe
ts[s℄j.Sin
e k 62 alive[s℄j, by the 
ontrapositive of Invariant A.16(2), we get that s+1 62 m
ast-slotsk.That is, k does not send a bulk or leave message for slot s+1. Therefore, k 62 alive[s+1℄i[leavers[s+1℄i when end sloti(s+1) o

urs, and k gets inserted into suspe
ts[s+1℄i when s+1is inserted to ended-slotsi.Invariant A.22 If k 2 alive[s℄i and s+1 2 ended-slotsi and CUP-de
-val[k℄j � s then k 2suspe
ts[s+1℄i.Proof: Sin
e k 2 alive[s℄i, join-slotk � s < leave-slotk. Sin
e CUP-de
-val[k℄j �,then by the validity property of CUP, some pro
ess l must have initiated CUP(k) with an ini-tial value s' � s. This implies that k 2 suspe
ts[s'℄l, and therefore k 62 alive[s'℄l and s'2 ended-slotsl. By 
ontrapositive of Invariant A.16, s'+1 62 m
ast-slotsk, and therefore alsos'+1 62 m
ast-slotsk. So i does not hear a bulk or leave message from k for slot s+1, and k 2suspe
ts[s+1℄i.Lemma A.8 Assume that for some pro
esses j; k; l CUP(k).initl(v, W) o

urs with j 2W, andthat CUP(k).initi(v', W') also o

urs. Then net join OKj has o

urred before CUP(k).initi(v',W'). 39



Proof: By the pre
ondition for CUP(k).init, k 2 suspe
ts[v'℄i and k 2 suspe
ts[v℄l, so byInvariant A.19, v0 � v � 1. When CUP(k).initl(v, W) o

urs, W = alive[v℄l[ joiners[v+1℄l.Sin
e j 2W, this implies that join-slotj � v+1 � v'+2. Assume CUP(k).initi(v', W') o

ursat time t. So at time t, v' 2 ended-slotsi. By the pre
ondition for end sloti(v'), at time t
lo
ki > (v0+1)�+�+�. Sin
e v'+1 � join-slotj �1, at this time 
lo
ki > (join-slotj�1)�+�+�. Sin
e the 
lo
k skew is bounded by �, at time t, 
lo
kj > (join-slotj� 1)�+�.So t is at least � time after j begins slot join-slotj � 1. But join-slotj is 
hosen to be atleast 2 slots after the slot at whi
h net join OKj o

urs at j, so j begins join-slotj � 1 after thenet join OKj, i.e., before time t.A.2.2 Safety environment 
onditions for CUPWell-formedness CUP(k).initi only o

urs when k be
omes suspe
ted at i. On
e k is sus-pe
ted, it is never again alive. Therefore, it is never suspe
ted again and CUP(k).initi o

urs atmost on
e. By Invariant A.20, sin
e k is suspe
ted at i, i does not abstain. Thus, at most oneiniti or abstaini event o

urs.The fa
t that at most one leavei event o

urs and at most one faili event o

urs is ensuredby the appli
ation, sin
e leave and fail a
tions are routed dire
tly from the appli
ation to allinstan
es of CUP.The fa
t that no faili pre
edes an initi follows from the fa
t that failures a�e
t all 
omponentsand pro
esses do not take any steps after they fail.One of the pre
onditions end sloti is that leave-sloti = 1, that is, that leavei did noto

ur. Therefore, no leavei pre
edes an initi.World 
onsisten
y Assume that CUP(k).initi(s, W) o

urs at time t, j does not leave or failbefore time t, and CUP(k).initj(s', *) also o

urs. We need to show that j 2W.CUP(k).initi(s, W) is triggered during end sloti(s). We need to show that at this time j 2alive[s℄i[ joiners[s+1℄i. This is true if i re
eives j's slot s bulk or join message.By the pre
ondition for end sloti(s), 
lo
ki > (s+1)�+�+� at time t. Sin
e the di�eren
ebetween a pro
ess 
lo
k and real time is at most �=2, the real time asso
iated with point t is atleast (s+1)�+�+ �=2. By assumption, j does not fail or leave until this time.By Invariant A.19, s' � s+1. When CUP(k).initj(s',*) o

urs, k 2suspe
ts[s'℄j. ByInvariant A.17, join-slotj � s'. Together these two inequalities imply that join-slotj � s+1.Therefore, if j does not fail or leave before 
lo
kj be
omes s+1�, j multi
asts its slot s bulk or joinmessage when 
lo
kj = (s+1)� (a join message is multi
ast if join-slotj = s+1; otherwise jmulti
asts a slot s bulk message). When 
lo
kj = (s+1)�, the real time is at most (s+1)�+�=2.If j does not fail until the real time be
omes (s+1)�+�=2+�, then j's message is not lost, and ire
eives it by time (s+1)�+�=2 +�. But we assume that j does not fail or leave until this time.A

urate failure dete
tor CUP(k).fail dete
ti(j) o

urs only if for some slot s j 2suspe
ts[s℄i.Therefore, by Invariant A.18, j has previously failed. Moreover, sin
e a pro
ess is never again aliveafter it is suspe
ted, it is never again suspe
ted, and CUP(k).fail dete
ti(j) does not re
ur.A

urate leave dete
tor CUP(k).leave dete
ti(j) o

urs only if a LEAVE message is re-
eived from j; j sends at most one su
h a message and only if it a
tually leaves.40



Lossless leave Assume a CUP pro
ess at j multi
asts a message m, and subsequently, leavejo

urs. When leavej o

urs, a LEAVE message is inserted to out-bufj to be sent in the ensuingslot. This LEAVE message is multi
ast after m. leave dete
ti(j) o

urs when this LEAVEmessage is re
eived. By the fifo property of Net, net r
vj(m) o

urs beforehand.A.2.3 Proving the total order propertyWe now prove that all the pro
ess deliver messages in a 
onsistent total order. We de�ne the totalorder S as follows: Let Ps be the union of all sets P su
h that an a
tion members(P, s)i o

urs.The set of messages Ss is de�ned to be those messages in
luded in slot s bulk messages by pro
essesin Ps. The set of messages in S is de�ned to be the union of all sets Ss.The ordering is based on slots, so that for s < s', all messages in Ss pre
ede all messages inS0s. For messages pertaining to the same set Ss, the ordering is by pro
ess indi
es. For the sameslot and pro
ess index, the ordering is the temporal order of sending (at the external boundary ofAtom).We have to show that every pro
ess delivers a 
ontiguous subsequen
e of S. We �rst proveLemma A.9, asserting that every two pro
esses that perform a members(P, s) a
tion for a slots do so with the same membership set P. As part of this a
tion, pro
esses deliver messages forslot s. Next, we prove Lemma A.10, asserting that if a pro
ess i performs membersi(P, s) withj 2P, then i has re
eived a bulk message for slot s from j, and therefore triggers the delivery ofall the messages in
luded in it as an e�e
t of the membersi(P, s) a
tion. Thus, every pro
essthat performs members(P, s), triggers the delivery of all the messages in Ss. These messages aredelivered in order of the sender's pro
ess index, and for ea
h pro
ess, in fifo order. Therefore,these messages are delivered in the order de�ned on Ss.Sin
e every pro
ess performs members(P, s) for a 
ontiguous subsequen
e of slots, every pro
essdelivers a 
ontiguous subsequen
e of the messages in S.We now prove the lemmas:Lemma A.9 If members(P,s)i and members(P',s)j o

ur, then P= P'.Proof: Let k be a pro
ess in P. At the time members(P,s)i o

urs, k 2 alive[s℄i, s+1 2ended-slotsi, and CUP-de
-val[k℄i is either ? or larger than s. Assume by way of 
ontradi
tionthat k 62 P', then either k 62 alive[s℄j or CUP-de
-val[k℄j � s when members(P',s)j o

urs.Assume �rst that k 62 alive[s℄j. Note that s 2 ended-slotsj when members(P',s)j o
-
urs, so by Invariant A.21, k 2 suspe
ts[s℄j at the time members(P',s)j o

urs. By the pre-
ondition for members(P',s)j, CUP-status[k℄j = done when it o

urs, and by Invariant A.20,CUP-de
-val[k℄j 6= ?, that is, CUP(k).de
idej(v) o

urred for some v and set CUP-de
-val[k℄j= v. By the well-formedness property of CUP, j initiated CUP(k). Sin
e k 2 suspe
ts[s℄j, k
annot be in
luded in suspe
ts[s'℄j for any s' 6= s, and so j initiated CUP(k) with s. By thevalidity 
ondition of CUP, v � s.Sin
e s+1 2 ended-slotsi when members(P,s)i o

urs, by Invariant A.21, k 2 suspe
ts[s+1℄iat this time. Therefore, by the pre
ondition for members(P,s)i, CUP-status[k℄i = done. By A.20,CUP-de
-val[k℄i 6= ?, that is, CUP(k).de
idei o

urred, and by the uniform agreement property,CUP-de
-val[k℄i = CUP-de
-val[k℄j � s. A 
ontradi
tion.Now, assume that CUP-de
-val[k℄j � s when members(P',s)j o

urs. Sin
e s+1 2 ended-slotsiwhen members(P,s)i o

urs, by Invariant A.22, k 2 suspe
ts[s+1℄i at this time. Therefore, bythe pre
ondition for members(P,s)i, CUP-status[k℄i = done. By Invariant A.20, CUP-de
-val[k℄i 6=41



?, that is, CUP(k).de
idei o

urred, and by the uniform agreement property, CUP-de
-val[k℄i =CUP-de
-val[k℄j � s. A 
ontradi
tion.Lemma A.10 If membersi(P,s) o

urs, then for every j 2P, i re
eived a bulk message for slot sfrom j prior to the membersi(P,s) a
tion.Proof: Assume membersi(P,s) o

urs. Sin
e j 2P, by the pre
ondition for membersi(P,s), j 2alive[s℄i. By de�nition of alive[s℄, in-buf[s,j℄ 6= ? , that is, i re
eived a bulk message fromj for slot s.A.3 Atom Corre
tness Proof: Liveness ArgumentsIn the liveness proof, we 
an use the safety guarantees of CUP, sin
e they depend only on the safetyassumptions about the environment.A.3.1 General liveness lemmasLemma A.11 Time passes. 
urrent-sloti in
reases through all slot values from zero onward, aslong as i does not fail.Lemma A.12 If i does not leave or fail, then end sloti(s) o

urs for every slot s � join-sloti.Lemma A.13 If i leaves and does not fail, then eventually i multi
asts a (i, LEAVE, s) message.A.3.2 Liveness environment 
onditions for CUPInit o

urren
e Assume that initi(s, W) event o

urs and j 2 W, and neither i nor j leaves orfails.Sin
e j 2W, j 2alive[s℄ [ joiners[s+1℄ at the time initi(s, W) is triggered, whi
h meansthat net join OKj had already o

urred prior to the initi(s, W) event. When initi(s, W) istriggered, i multi
asts an (CUP-INIT, k) message. Sin
e neither i nor j leaves or fails, j re
eivesthis message.Consider the pre-state value of CUP-status[k℄ when the (CUP-INIT, k) message from i arrivesat j. If CUP-status[k℄ is running or done, then either CUP(k).initj or CUP(k).abstainj hadto have already o

urred and we are done. Otherwise, after this step CUP-status[k℄ = req, andCUP-req-val[k℄ =v. Sin
e j does not leave or fail, by Lemma A.12, it eventually has slots largerthan v in ended-slotsj, so either CUP(k).initj(*) or abstain CUP(k).abstainj be
omes enabled,depending on whether k is suspe
ted in some slot or in none.Reliable delivery Assume that for some pro
esses j; k; l CUP(k).initl(v, W) o

urs with j 2W,and that either CUP(k).initi(v', W') or CUP(k).abstaini o

urs. We will show that by thetime that either CUP(k).initi(v', W') or CUP(k).abstaini o

urs, net join OKj had alreadyo

urred. This will imply that for any net m
asti(m) that o

urs after this event, a net r
vj(m)will o

ur unless either i will fail, or j will fail or leave.If CUP(k).initi(v', W') o

urs, by Lemma A.8, net join OKj o

urs �rst. Now, 
onsiderthe 
ase that CUP(k).abstaini o

urs. Pro
ess i 
an only abstain after it re
eives an (CUP-INIT, k) message whi
h 
ould have only been sent if some other pro
ess i0 has already triggeredCUP(k).initi0. By Lemma A.8, net join OKj must have o

urred before the CUP(k).initi0 event.42



Complete leave and failure dete
tor If CUP(k).initi(v,W) o

urs with j 2W , then j 2alive[v℄i[ joiners[v+1℄. Assume that i does not de
ide or leave or fail. Then CUP-status[k℄i remainsrunning from the time of the CUP(k).initi(v,W) event onward. If leavej o

urs, j sends a LEAVEmessage whi
h i re
eives. When i re
eives j's LEAVE message, i triggers leave dete
ti(j) andwe are done. Otherwise, assume j does not leave and failj o

urs, then eventually there is aslot for whi
h i does not re
eive j's messages. Let s be the �rst su
h slot, so j 62alive[s℄iwhile j 2alive[s-1℄i [ joiners[s℄i, so sin
e j does not leave in s, j 2suspe
ts[s℄. Sin
ej 2alive[v℄i [ joiners[v+1℄, s > v, and i triggers fail dete
ti(j)while performing end sloti(s).A.3.3 Liveness of AtomEventual join Assume no faili o

urs. When joini o

urs, net joini is triggered, and byfairness, eventually o

urs. By the eventual join property of Net, net join OKi eventually o

urs.At that point, join-sloti is set to be bigger than 
urrent-sloti. join-sloti does not 
hange fromthat point onward, sin
e by the join integrity property of Net, no more net join OKi events o

ur.By Lemma A.11, 
urrent-sloti eventually be
omes equal to join-sloti. When that happens,join OKi be
omes enabled, and remains enabled, as long as no time passes, until it o

urs. Byour assumption on time passage, no time passes until join OKi o

urs. Therefore, by fairness, iteventually o

urs.Eventual leave Assume no faili o

urs. When leavei o

urs, leave-sloti is set to be biggerthan 
urrent-sloti. leave-sloti does not 
hange from that point onward, sin
e by our assump-tion on the appli
ation, no more leavei events o

ur. By Lemma A.13, i eventually multi
asts a (i,LEAVE, leave-sloti) message, at whi
h point leave-sloti is added to m
ast-slotsi. When thathappens, net leavei be
omes enabled and remains enabled until it o

urs. Then, by the eventualleave property of Net, net leave OKi eventually o

urs and triggers leave OKi.Message delivery The following lemma asserts that a pro
ess that parti
ipates in the algorithmand does not leave or fail 
ontinues to perform members(P, s) forever.Lemma A.14 If m
asti(m) o

urs for some m when s = 
urrent-sloti, and no faili or leaveio

urs, then for every s' � s, membersi(P, s') o

urs.Proof: Sin
e m
asti(m) o

urs, by our assumption about the appli
ation, it is pre
eded by ajoin OKi. Therefore, m is appended to out-buf[s℄i. By Lemma A.11, 
urrent-sloti be
omess+1, and so i eventually sends its bulk message for slot s with m in
luded in it. By liveness of Net,net r
vi(i, m', s) o

urs, where m0 is i's slot s bulk message.By Lemma A.12, end sloti(s) o

urs for every slot s � join-sloti. The sets suspe
ts[s℄iand suspe
ts[s+1℄i are set when end sloti(s) (resp. end sloti(s+1)) o

urs, at whi
h pointa CUP instan
e for ea
h pro
ess in these sets is initiated, and the set do not 
hange afterwards.By the termination property of CUP, these instan
es of CUP eventually terminate, setting the
orresponding CUP-status to done. Therefore, members(P, s)i eventually be
omes enabled forsome P, and by fairness, o

urs.We now prove that the message delivery liveness property holds.Assume m
asti(m) o

urs, and no faili or leavei o

urs. We �rst show that S 
ontains m andr
vi(m) o

urs. Let s = 
urrent-sloti when m
asti(m) o

urs. By Lemma A.14, members(P,43



s)i o

urs. We now show that i 2 P . This will imply that m 2 S (by de�nition of S), and thatr
vi(m) o

urs (sin
e it is triggered by members(P, s)i).To show that i 2P, we have to show that j 2 alive[s℄i and CUP-de
-val[i℄i = ? at thetime members(P, s)i o

urs. Sin
e at this time s+1 2 ended-slotsi, by Invariant A.16, j 2alive[s℄i. By Invariant A.18, sin
e i does not fail it never be
omes a suspe
t, and therefore, noinstan
e of CUP is run for i, and CUP-de
-val[i℄i = ?.It remains to show that for every m0 that follows m in S, r
vi(m') also o

urs. By de�nitionof S, m0 is in
luded in a bulk message for some slot s' � s from some pro
ess i0, su
h that i0 2 P 0and membersj(P', s') o

urs for some j. By Lemma A.14, members(P'', s')i also o

urs, andby Lemma A.9, P' = P''. Therefore, r
vi(m') is triggered by the members(P'', s')i a
tion.
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