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1 IntrodutionWe onsider a problem of atomi broadast in a dynami setting where an unbounded number ofpartiipants may join, leave voluntarily, or fail (by stopping) during the ourse of omputation.We formally de�ne the Dynami Atomi Broadast (DAB) problem, whih is an extension of theAtomi Broadast problem [17℄ to a setting with in�nitely many proesses, any �nite subset ofwhih an partiipate at a given time. Just as Atomi Broadast is a basi building blok for statemahine repliation in a stati setting [20, 27℄, DAB an serve as a building blok for state mahinerepliation among a dynami set of proesses.We present and analyze a new algorithm, whih we all Atom, for solving the DAB problem ina synhronous rash failure model. Spei�ally, we assume that the proesses solving DAB haveaess to approximately-synhronized loal loks and to a lower-level dynami network that guar-antees timely message delivery between urrently ative proesses. The hallenge is to guaranteeonsisteny among the sequenes of messages delivered to di�erent partiipants, while still ahievingtimely delivery, even in the presene of joins and leaves.Atom exhibits onstant message delivery lateny in the absene of failures, even during periodswhen partiipants join or leave; this is in ontrast to previous algorithms solving similar problemsin the ontext of view-oriented group ommuniation, e.g., [1, 9℄. When failures our, Atom'slateny bound is linear in the number of failures that atually our; it does not depend on thenumber of potential failures, nor on the number of joins and leaves that our.A key diÆulty for an algorithm solving DAB is that when a proess fails, the network doesnot guarantee that the surviving proesses all reeive the same messages from the failed proess.But the strong onsisteny requirements of DAB ditate that proesses agree on whih messagesthey deliver to their lients. The proesses arry out a protool to oordinate message delivery,whih works roughly as follows: Eah Atom proess divides time into slots, using its loal lok,and assigns eah message sent by its lient to a slot. Eah proess delivers messages to its lientin order of slots, and within eah slot, in order of sender identi�ers. Eah proess determines themembership of eah slot, and delivers messages only from senders that it onsiders to be membersof the slot. To ensure onsisteny, the proesses must agree on the membership of eah slot.Proesses joining (or voluntarily leaving) the servie oordinate their own join (or leave) byseleting a join-slot (or leave-slot) and informing the other proesses of this hoie, without delayingthe normal delivery of messages. When a proess fails, Atom uses a novel distributed onsensusservie to agree upon the slot in whih it fails. The onsensus servie required by Atom di�ers fromthe standard stopping-failure onsensus servies studied in the distributed algorithms literature(see, e.g., [21℄) in that the proesses implementing the onsensus servie do not know a priori whothe other partiipants are. Atom traks proess joins and leaves, and uses this information toapproximate the ative set of proesses that should partiipate in onsensus. However, di�erentproesses running Atom may have somewhat di�erent pereptions of the ative set, e.g., when apartiipant joins or leaves Atom at roughly the time onsensus is initiated.In order to address suh unertainties, we de�ne a new onsensus servie, onsensus with un-known partiipants (CUP). When a proess i initiates CUP, it submits to CUP a �nite set Wiestimating the urrent world, in addition to i's proposed initial onsensus value vi. The worldssuggested by di�erent partiipants do not have to be idential, but some restritions are imposedon their onsisteny. Consider, e.g., the ase that proess k joins Atom at roughly the time CUPis initiated. One initiator, i, may think that k has joined in time to partiipate and inlude k inWi, while another, j, may exlude k from Wj . Proess k annot partiipate in the CUP algorithmin the usual way, beause j would not take its value into aount. On the other hand, if k does not1



partiipate at all, i ould blok, waiting forever for a message from k. We address suh situationsby allowing k to expliitly abstain from an instane of CUP, i.e., to partiipate without providingan input. A servie that uses CUP must ensure that for every i, (1) Wi inludes all the proessesthat ever initiate this instane of CUP (unless they fail or leave prior to i's initiation); and (2) ifj 2 Wi, (and neither i nor j fail or leave), then j partiipates in CUP either by initiating or byabstaining. Thus, Wi sets an di�er only in the inlusion of proesses that abstain, leave, or fail.Note that one an instane of CUP has been started, no new proesses (that are not inludedin Wi) an join the running instane. Nevertheless, CUP provides a good abstration for solvingDAB, beause Atom an invoke multiple instanes of CUP with di�erent sets of partiipants.We give an early-deiding algorithm to solve CUP in a fail-stop model [26℄, that is, in a time-free rash failure model where proesses are equipped with perfet failure detetors [5℄. The failuredetetor is external to CUP; it is implemented by Atom. CUP uses a strategy similar to previousearly-deiding algorithms for onsensus with a predetermined set of partiipants [13℄, but it alsotolerates unertainty about the set of partiipants, and moreover, it allows proesses to leavevoluntarily without inurring additional delays. The time required to reah onsensus is linear inthe number of failures that atually our during an exeution, and does not depend on an upperbound on the number of potential failures, nor on the number of proesses that leave.We also analyze the message-delivery lateny of Atom under di�erent failure assumptions. Weshow a onstant lateny bound for periods when no failures our, even if joins and leaves our.When failures our, the lateny is proportional to the number of atual failures. This is inevitable:atomi broadast requires a number or rounds that is linear in the number of failures (see [2℄).We envision a servie using Atom, or a variation of it, deployed in a large LAN, where latenyis preditable and message loss is bounded. In suh settings, a network with the properties weassume an be implemented using forward error orretion (see [3℄), or retransmissions (see [28℄).The algorithm an be extended for use in environments with looser time guarantees, e.g., networkswith di�erentiated servies; we outline ideas for suh an extension in Setion 7.7.In summary, this paper makes the following main ontributions: (1) the de�nitions of two newproblems for dynami networks, expressed by the DAB and CUP servies; (2) an early-delivery DABalgorithm, Atom, whih exhibits onstant lateny in the absene failures; (3) a new early-deidingalgorithm for solving CUP in a fail-stop model; and (4) the analysis of Atom's message-deliverylateny under various failure assumptions.The rest of this paper is organized as follows: Setion 2 disusses related work. In Setion 3,we speify the DAB servie. In Setion 4 we speify CUP and in Setion 5, we present the CUPalgorithm and its analysis. We then turn to the presentation of Atom: Setion 6 spei�es theenvironment and model assumptions for Atom, and Setion 7 ontains a detailed presentation ofthe Atom algorithm and its analysis. Setion 8 onludes the paper. The Appendix ontainsrigorous orretness proofs for both CUP and Atom.2 Related WorkA dynami universe, where proesses join and leave, was �rst onsidered in the ontext of view-oriented group ommuniation work [7℄, pioneered by the Isis [4℄ system. The �rst analysis oftime bounds of message delivery in synhronous group ommuniation systems was performed byCristian [9℄. Our servie resembles the servies provided by group ommuniation systems; althoughwe do not export membership to the appliation, it is omputed, and would be easy to export.View-oriented group ommuniation systems, inluding systems designed for synhronous sys-tems and real-time appliations (e.g., Cristian's [9℄, xAMp [25℄, and RTCAST [1℄), generally run2



a group membership protool every time a proess joins or leaves, and therefore delay messagedelivery to all proesses when joins or leaves our. Cristian's system uses an atomi broadastprimitive to agree upon group membership. Sine, unlike CUP, the atomi broadast servie workswith a stati universe, a proess join has to be agreed upon before any new membership hangeis handled (voluntary leaves are not onsidered). Therefore, Cristian's servie exhibits onstantlateny only in periods in whih no joins or failures our. Lateny during periods with multiplejoins is not analyzed. xAMp is a group ommuniation system supporting a variety of ommunia-tion primitives for real-time appliations. The presentation of xAMp in [25℄ fouses on the variousommuniation primitives and assumes that a membership servie is given. The delays due to fail-ures and joins are inurred in the membership part, whih is not desribed or analyzed. RTCASTis a real-time group ommuniation system, for whih a detailed analysis of membership latenywas onduted [1℄. The lateny bound ahieved by RTCAST is linear in the number of proesses,even when no proess fails, due to the use of a logial ring. Moreover, RTCAST makes strongerassumptions about its underlying network than we do { it uses an underlying reliable broadastservie that guarantees that orret proesses deliver the same messages from faulty ones; the ostof this primitive is not onsidered in the analysis.Some group membership servies avoid running the full-sale membership for join and leavesby using light-weight group membership [15℄ servies; they use an atomi broadast servie todisseminate join and leave messages in a onsistent manner, without running the full-sale groupmembership algorithm. However, unlike our CUP servie, the atomi broadast servie suh systemsuse do not tolerate unertainty about the set of partiipants. Therefore, a rae ondition betweena join and a onurrent failure an ause suh light-weight group servies (e.g., [23, 12, 15℄) toviolate the semantis of the underlying heavy-weight membership servies. Those light-weightgroup servies that do preserve the underlying heavy-weight membership semantis (e.g. [24℄), doinur extra delivery latenies whenever joins and leaves our.Other work on group membership in synhronous and real-time systems, e.g., [19, 18℄ has fousedon membership maintenane in a stati, fairly small, group of proesses, where proesses are subjetto failures but no new proesses an join the system. Likewise, work analyzing time bounds ofsynhronous atomi broadast, e.g. [16, 10, 8℄, onsidered a stati universe, where proesses ouldfail but not join. Thus, this work did not onsider the DAB problem.In a previous paper [3℄, we onsidered a simpler problem of dynami totally ordered broadastwithout all or nothing semantis. For this problem, the linear lower bound does not apply, and weexhibited an algorithm that solves the problem in onstant time even in the presene of failures.Reent work [22, 6℄ onsiders di�erent servies, inluding (one shot) onsensus, for in�nitelymany proesses in asynhronous shared memory models. Chokler and Malkhi [6℄ present a on-sensus algorithm for in�nitely many proesses using a stati set of ative disks, a minority of whihan fail. This di�ers from the model onsidered here, as in our model all system omponents maybe ephemeral. Merritt and Taubenfeld [22℄ study onsensus under di�erent onurreny models; intheir terminology, our model assumes unbounded ongrueny and [1;1℄-partiipation, whih meansthat at least one proess must partiipate and there is no bound on the number of partiipants.They show that with these assumptions, in an asynhronous shared memory model, in�nitely manybits are required in order to solve onsensus. The algorithms they give are not fault tolerant (theytolerate only initial failures). To the best of our knowledge, atomi broadast has not been on-sidered in a similar ontext. Moreover, these problems were not onsidered in message-passingmodels, and it is not lear that a anonial transformation from the shared memory model themessage-passing model applies to a setting with in�nitely many proesses.3



3 Dynami Atomi Broadast Servie Spei�ationWe now present the DAB servie spei�ation. Our universe onsists of an in�nite ordered set ofendpoints, I. The spei�ation of DAB is parameterized by a message alphabet, M . The signatureof the DAB(M) servie is presented in Figure 1.Input:joini, leavei, faili, i2Imasti(m), m2M, i2IOutput:join OKi, leave OKi, i2Irvi(m), m2M, i2I Figure 1: The signature of the DAB(M) servie.We do not onsider reoveries from failure or rejoining after leaving. In other words, thereannot be multiple \inarnations" at a single endpoint. Instead of new inarnations, onsider thesame lient joining at new endpoints.Assumptions about the appliation: DAB(M) assumes that its appliation satis�es the fol-lowing safety onditions:� For eah i 2 I:{ At most one joini and at most one leavei our.{ If leavei ours, then it is preeded by join OKi.{ Any masti(m) has a preeding join OKi but no preeding leavei or faili.� At most one mast(m) ours for eah partiular m.DAB guarantees: Given an appliation that satis�es the above onstraints, DAB(M) satis�esthe properties we now speify.We �rst speify some basi integrity properties, both safety and liveness. We later speify theproperties related to the ordering and reliability of messages.Basi safety properties:� Join/leave integrity: For eah i:{ At most one join OKi and at most one leave OKi our.{ If join OKi ours then it is preeded by joini.{ If leave OKi ours then it is preeded by leavei.� Message integrity:{ No two rvj(m) ations our for the same m and j.{ If rvj(m) ours for some j then it is preeded by masti(m) for some i.4



Basi liveness properties:� Eventual join: If joini ours then either faili or join OKi ours.� Eventual leave: If leavei ours then either faili or leave OKi ours.To speify the ordering and reliability guarantees of DAB, we require that there be a totalordering S on all the messages reeived by any of the endpoints, suh that for all i 2 I, thefollowing properties are satis�ed.Safety properties:� Multiast order: If masti(m) ours before masti(m'), then m preedes m0 in S.� Reeive order: If rvi(m) ours before rvi(m') then m preedes m0 in S.� Multiast gap-freedom: If masti(m), masti(m'), and masti(m'') our, in that order, andS ontains m and m00, then S also ontains m0.� Reeive gap-freedom: If S ontains m, m0, and m00, in that order, and rvi(m) and rvi(m'')our, then rvi(m') also ours.Liveness property:� Multiast liveness: If masti(m) ours and no faili ours, then S ontains m.� Reeive liveness: If S ontains m, m is sent by i and i does not leave or fail, then rvi(m)ours, and for every m0 that follows m in S, rvi(m') also ours.4 Consensus with Unknown Partiipants { Spei�ationIn this setion we de�ne the problem of Consensus with Unknown Partiipants (CUP). CUP isan adaptation of the problem of fail-stop uniform onsensus to a dynami setting in whih theset of partiipants is not known ahead of time, and in whih partiipants an leave the algorithmvoluntarily after initiating it. Moreover, partiipants are not assumed to initiate at the same time.CUP uses an underlying reliable network, and a perfet failure detetor.We begin with a desription of CUP's external signature (interfae). We then speify theassumptions that CUP makes about its environment, inluding the appliation, the underlyingnetwork, and the external failure detetor. We separate these into safety and liveness assumptions.Finally, we speify CUP's safety and liveness guarantees. CUP's safety guarantees depend on onlythe safety assumptions, that is, they are not allowed to be violated even if the liveness assumptionsdo not hold. On the other hand, CUP's liveness guarantees depend on both the safety and livenessassumptions.4.1 External SignatureThe CUP spei�ation uses the following data types:� I, an in�nite ordered set of endpoints. Eah endpoint in I orresponds to a potential parti-ipant in CUP.� V , a totally ordered set of values. Initial values and deision values are elements of V .5



Input:initi(v,W), v 2 V, W � I, W finite, i 2 I // i initiates with value v,world Wabstaini, i 2 I // i abstainsnet rvi(m), m 2 MCUP, i 2 I // i reeives message mleavei, i 2 I // i leavesleave deteti(j), j, i 2 I // i detets that j has leftfaili, i 2 I // i failsfail deteti(j), j, i 2 I // i detets that j has failedOutput:deidei(v), v 2 V, i 2 I // i deides on value vnet masti(m), m 2 MCUP, i 2 I // i multiasts mFigure 2: The signature of CUP.
CUP

init

abstain
net_m

cast

net_rcv
decide

leave

leave_detect

fail

fail_detect

Figure 3: Interfae diagram for CUP.� MCUP , a message alphabet.The external signature of CUP is presented in Figure 2, and depited in Figure 3.The interfae desribes four kinds of interation: \normal" interation with lients of the CUPservie, interation with a multiast network, ommuniation involving leaves and leave detetion,and ommuniation involving failures and failure detetion.Normal interation with lients: A proess may partiipate in the CUP servie in two ways:it may provide an initial value, in whih ase we say that the proess initiates CUP, or it maydeline to provide an initial value, in whih ase we say that it abstains. Partiipant i 2 I initiatesCUP using the initi(v,W) ation. Here, v is i's initial value, and W is its initial world, that is,the set of proesses that i expets to partiipate in CUP. Partiipant i abstains using the abstainiation. Informally speaking, a partiipant abstains when it does not need to partiipate in CUP, butbeause of unertainty about CUP partiipants, some other partiipant may expet it to partiipate.6



An environment assumption ensures that, if any proess expets i to partiipate in CUP, i will infat partiipate, unless it leaves or fails. CUP reports the onsensus deision value to proess iusing the deidei(v) ation.Multiast network: The network interfae onsists of the net mast and net rv ations.Leaves: A partiipant an leave the CUP servie voluntarily using the leavei ation. We assumethat the environment provides a leave detetor: the leave deteti(j) ation is used to notify ithat j has left the algorithm voluntarily.Failures: The faili ation represents the failure of endpoint i. We assume that the environmentprovides a failure detetor, whih uses the fail deteti(j) ation to notify i that j has failed.4.2 Environment AssumptionsHere we list and explain the assumptions that CUP makes about its environment. We lassify theseas safety and liveness assumptions. Formally, eah of the properties given here is a trae property([21, Ch. 8℄).4.2.1 Safety assumptionsThe �rst assumption expresses simple well-formedness onditions saying that eah partiipant be-gins partiipating (by initiating or abstaining) at most one, leaves at most one, and fails at mostone.� Well-formedness: For any i 2 I,1. At most one initi or abstaini event1 ours.2. At most one leavei event ours.3. At most one faili event ours.4. No leavei or faili preedes an initi.The next assumption says that, while the worlds W suggested by di�erent partiipants in their initevents do not have to be idential, CUP's environment must guarantee that they have a ertainkind of onsisteny. Namely, eah W set submitted by an initiating partiipant i must inlude allpartiipants that ever initiate CUP and that do not leave or fail prior to the initi event. Thisimplies that every partiipant must be inluded in its own estimated world.� World onsisteny: If initi(*, W) and initj(*,*) events our, then either j 2 W , or aleavej or failj event ours before the initi(*, W) event.The next property desribes the orretness of the message deliveries: every message that is reeivedwas previously sent, and no message is reeived at the same loation more than one. Moreover,the order of message reeipt between partiular senders and reeivers is fifo.1An \event" is an ourrene of an ation in a sequene.7



� Message integrity: There is a mapping from net rv events to preeding net mast events,suh that the same message in MCUP appears in both events, and suh that no two net rvievents for the same i map to the same net mast event. Moreover, two net rvi events thatmap to net mast events of the same sender our in the same order as the net mast events.The next two properties desribe assumptions about leaves and leave detetion. The �rst says thatleave detetion is \aurate", in the sense that the ourrene of a leave deteti(j) implies thatj has really left; it also inludes a simple well-formedness ondition. The seond property says thatleaves are handled graefully, in the sense that the ourrene of a leave deteti(j) implies thati has already reeived any network messages sent by j prior to leaving. Thus, a leave deteti(j)is an indiation that i has not lost any messages from j.� Aurate leave detetor: For any i; j 2 I, at most one leave deteti(j) event ours, and ifleave deteti(j) ours, then it is preeded by a leavej.� Lossless leave: Assume net mastj(m) ours and is followed by a leavej. Then if aleave deteti(j) ours, it is preeded by net rvi(m).The �nal safety assumption says that failure detetion is aurate.� Aurate failure detetor: For any i; j 2 I, at most one fail deteti(j) event ours, and iffail deteti(j) ours, then it is preeded by a failj.Note that we do not have a failure assumption analogous to the lossless leave property; thus, failuresare di�erent from leaves in that we allow the possibility that some messages from failed proessesmay be lost.4.2.2 Liveness assumptionsThe �rst liveness assumption says that, if any proess i expets another proess j to partiipate,then j will atually do so, unless either i or j leaves or fails.� Init ourrene: If an initi(*,W) event ours and j 2 W, then an initj, abstainj, leavei,faili, leavej, or failj ours.The next assumption desribes reliability of message delivery. It says that any message thatis multiast by a non-failing partiipant that belongs to any of the W sets submitted to CUP, isreeived by all the non-leaving, non-failing members of all those W sets.� Reliable delivery: De�ne U = [k2If W j initk(*, W) oursg. If i; j 2 U and net masti(m)ours after an initi or abstaini event, then a net rvj(m), leavej, faili, or failj ours.The �nal liveness assumption says that the leaving or failure of any proess that belongs to aninitiator's W set is deteted by that initiator, unless it �nishes by deiding, leaving, or failing.� Complete leave and failure detetor: If initi(*,W) ours, j 2 W , and leavej or failjours, then fail deteti(j), leave deteti(j), deidei, leavei, or faili ours.8



4.3 CUP Servie GuaranteesNow we list CUP's servie guarantees. Again, we lassify these as safety and liveness properties. Aswe noted earlier, CUP's safety guarantees depend only on its safety assumptions, whereas CUP'sliveness guarantees depend on both its safety and liveness assumptions.Formally, eah individual property is a trae property. The omplete spei�ation onsists oftwo general trae properties whose respetive sets of traes are de�ned by the following prediates:1. The onjuntion of all the CUP safety assumptions implies all the CUP safety guarantees.2. The onjuntion of all the CUP safety and liveness assumptions implies all the CUP livenessguarantees.4.3.1 Safety guaranteesThe �rst guarantee expresses well-formedness onditions saying that only partiipants that haveinitiated an deide, and eah partiipant deides at most one.� Well-formedness: For any i 2 I,1. If deidei ours then it is preeded by an initi.2. At most one deidei ours.The next two guarantees are the main agreement and validity guarantees for onsensus. Theuniform agreement property says that everyone who deides agrees. The validity property has twoparts: it says that any deision value is some partiipant's initial value, and moreover, that anypartiipant's deision is no greater than its initial value. The latter is not a \standard" propertyfor onsensus but is needed for our use in Atom.� Uniform Agreement: For any i; j 2 I, if deidei(v) and deidej(v') both our then v = v0.� Validity: For any i 2 I, if deidei(v) ours then1. For some j, initj(v, *) ours.2. If initi(v',*) ours then v � v0.4.3.2 Liveness guaranteesCUP provides one liveness guarantee, whih says that any partiipant that initiates and neitherleaves nor fails must eventually deide. We do not make suh a guarantee for a partiipant thatabstains, that is, partiipants that abstain need not be informed of the deision value.� Termination: If an initi event ours then a deidei, leavei, or faili ours.5 The CUP AlgorithmIn this setion, we present our implementation of CUP.9



5.1 Modeling Assumptions and ConventionsWe use the I/O automaton model of Lynh and Tuttle (see, e.g., [21, Ch. 8℄), using standardpreondition/e�et (guarded ommand) pseudo-ode, augmented with one new onstrut: e�etsmay inlude statements of the form trigger(a), where a is an output ation. Formally, we assumethe automaton's state ontains a speial fifo bu�er trigger-buffer. The trigger(a) statementadds a to the end of trigger-buffer. The ation at the head of trigger-buffer is alwaysenabled, and gets removed from trigger-buffer when it is performed. No other state hanges areassoiated with ation a.The faili ation desribed in the CUP interfae represents the failure of endpoint i. In termsof the algorithm, we interpret this to mean that one faili ours, i performs no more loallyontrolled ations, and input ations have no e�et on the state. We treat this as a generalonvention, and do not inlude event handlers for faili ations in our pseudo-ode.5.2 The AlgorithmFigures 4 and 5 ontain the CUP implementation for a partiular endpoint i 2 I. The algorithminludes no internal ations. Therefore, the signature onsists of the ations indexed by this parti-ular i in the external signature of CUP (see Setion 4). The message alphabet MCUP is speializedto the set of messages of the following forms:� (i,r,v,W), where i 2 I, r 2 N, v 2 V, and W is a �nite subset of I.� (i,OUT,r), where i 2 I and r 2 N,The algorithm proeeds in asynhronous rounds numbered 1; 2; : : :. In eah round, a proesssends its urrent estimates of the value and the world (the set of ative proesses) to the otherproesses. Eah proess maintains two-dimensional arrays, value and world, in whih it olletsthe value and world information it reeives from all proesses in all rounds. It reords, in avariable out[r℄, the other proesses that it knows will not partiipate in round r beause theyhave previously left, abstained, or deided. It also reords, in a variable failed, the proesses thatit knows have failed.mode 2 { ?, running, done}, initially ?round 2 N, initially 0for eah r 2 N+, j 2 I:value[r,j℄ 2 V [ { ? }, initially ?world[r,j℄, a finite subset of I or ?, initially ?for eah r 2 N+out[r℄, a finite subset of I, initially f gfailed[r℄, a finite subset of I, initially f gDerived variables:for eah r 2 N+out-by[r℄, a finite subset of I, defined as [r 0 � r out[r 0℄failed-by[r℄, a finite subset of I, defined as [r 0 � r failed[r 0℄Figure 4: CUPi state.10



initi(v,W)Eff: if mode = ? thenmode  runninground  1trigger(net masti(i,1,v,W))net masti(i,r,v,W) where r � 2Pre: mode = runningr = round + 1W = world[round,i℄ n out[round℄ n failed[round℄// All messages for the previous round have been reeived.8 j 2 W: value[round,j℄ 6= ?W 6= f g ^ v = min{value[round,j℄ | j 2 W}// No deision an be made.: 8 j 2 world[round,i℄ n out[round℄:value[round,j℄ = value[round,i℄ ^ world[round,j℄ � world[round,i℄Eff: round  rnet rvi(j,r,v,W)Eff: if mode 6= done ^ j =2 failed-by[r℄ thenvalue[r,j℄  vworld[r,j℄  WabstainiEff: if mode = ? thenmode  donetrigger(net masti(i,OUT))deidei(v)Pre: mode = runningvalue[round,i℄ 6= ?8 j 2 world[round,i℄ n out[round℄:value[round,j℄ = v ^ world[round,j℄ � world[round,i℄Eff: mode  donetrigger(net masti(i,OUT))net rvi(j,OUT)Eff: if mode 6= done thenlet r = min {r 0 2 N+ | value[r 0,j℄ = ?}out[r℄  out[r℄ [ {j}leaveiEff: mode  doneleave deteti(j)Eff: if mode 6= done thenlet r = min {r 0 2 N+ | value[r 0,j℄ = ?}out[r℄  out[r℄ [ {j}fail deteti(j)Eff: if mode 6= done thenlet r = min {r 0 2 N+ | value[r 0,j℄ = ?}failed[r℄  failed[r℄ [ {j}Figure 5: CUPi transitions.11



The ode works as follows. When an initi(v,W) input ours, proess i triggers a net mast(i,1,v,W)to send its initial value v and estimated world W to all proesses, inluding itself.For eah round r � 2, proess i performs an expliit net masti(i,r,v,W) to multiast itsround r value v and world W. The world W is determined to be the set of proesses that i thinks arestill ative, that is, the proesses in i's previous world that i does not know to be out or to havefailed in round r. Proess i may perform this multiast only if its round is r-1, it has reeivedround r-1 messages from all the proesses in W, and it is not urrently able to deide. The value vthat is sent is the minimum value that i has reorded for round r-1 from a proess in W.When a net rvi(j,r,v,W) ours, proess i puts v and W into the appropriate plaes in thevalue and world arrays.When an abstaini input ours, proess i sends an OUT message, so that other proesses willknow not to wait for further messages from it, and stops partiipating in the algorithm.Proess i an deide at a round r when it has reeived messages from all proesses in itsworld[r,i℄ exept those that are out at round r, suh that all of these messages ontain thesame value and ontain worlds that are subsets of world[r,i℄. The subset requirement ensuresthat proesses in world[r,i℄ will not onsider values from proesses outside of world[r,i℄ indetermining their values for future rounds. When proess i deides, it multiasts an OUT messageand stops partiipating in the algorithm.When a net rvi(j,OUT) ours, proess i reords that j is out of the algorithm starting fromthe �rst round for whih i has not yet reeived a regular message from j.When leavei ours, proess i just stops partiipating in the algorithm. When leave deteti(j)ours, proess i reords that j is out; when this ours, the lossless leave assumption ensures thati has already reeived all the messages j sent. The round that is reorded for the leave is the �rstround after the round of the last message reeived from j.Proess i knows that another proess has failed if it learns about the failure via a fail detetevent.In the next setion, we prove the algorithm's orretness. In Setion 5.3, we show that thealgorithm is early-deiding in the sense that the number of rounds it exeutes is proportional tothe number of atual failures that our, and does not depend on the number of partiipants or onthe number of proesses that leave.5.3 The Early-Deiding PropertyWe now show that the algorithm is early-deiding in the sense that the number of rounds it exeutesis proportional to the number of atual failures that our, and does not depend on the number ofpartiipants or on the number of proesses that leave.We start with some more lemmas.Lemma 5.1 If initi(*,W) ours prior to initj, then j 2 W.Proof: The environment well-formedness assumption implies that j does not leave or fail beforeit initiates, and hene does not leave or fail before i initiates. Therefore, by world onsisteny, j 2W.Invariant 5.1 If (i,1,*,W) and (j,2,*,*) are in the Net then j 2 W.Proof: By strong indution. For the indutive step, assume that, in the �nal state of the exe-ution, (i,1,*,W) and (j,2,*,*) are in the Net. Then both initi and initj events appear in12



the exeution. If initi preedes initj, then Lemma 5.1 implies the result, so assume that initjpreedes initi.Sine a round 2 message from j is in the Net, a round 1 message (j,1,*,W') is also. ThenLemma 5.1 implies that i 2 W'.We laim that j does not leave or fail before the initi. Suppose for the sake of ontraditionthat it does. Then the net mast(j,2,*,*) event preedes the initi. Then environment well-formedness implies that i does not fail or leave prior to the net mast(j,2,*,*) event, beause itinitiates after this event. Also, i does not abstain, beause it initiates. And i does not deide priorto the net mast(j,2,*,*) event, beause that preedes the initi. Therefore, i =2 failed[1℄j[out[1℄j in the pre-state of the net mast(j,2,*,*) event, so i 2 world[1,j℄j n failed[1℄j[out[1℄j in that state. The preondition of net mast implies that value[1,i℄j 6= ? in the pre-state, that is, j has reeived a round 1 message from i before the net mast(j,2,*,*). But thisannot happen, beause initi happens after the net mast(j,2,*,*). This ontradition impliesthat j does not leave or fail before the initi. Then world onsisteny implies that j 2 W, as needed.In the rest of this setion, we onsider a situation where no failures happen from some pointonward in an exeution, and where the rounds of all proesses are at most r at the point wherefailures ease. The following lemma says that all round r+2 messages that are ever sent have thesame world omponent.Lemma 5.2 Suppose that r > 0. Suppose that there is a point t in an exeution suh that everyproess has round � r at point t, and no fail events happen from t onward.If net mast(i,r+2,v,W) and net mast(j,r+2,v',W') both our in the exeution, then W =W'.Proof: We show that W � W'. The other diretion is analogous.The two sets are determined in the preondition of net mast, as follows:W = world[r+1,i℄i n out[r+1℄i n failed[r+1℄i, where the values of the last two terms aretaken from the pre-state of net mast(i,r+2,v,W), andW' = world[r+1,j℄j n out[r+1℄j n failed[r+1℄j, where the values of the last two terms aretaken from the pre-state of net mast(j,r+2,v',W'). Invariant A.7 implies that W = world[1,i℄in out-by[r+1℄i n failed-by[r+1℄i, where the values of the last two terms are taken from thepre-state of net mast(i,r+2,v,W), andW' = world[1,j℄j n out-by[r+1℄j n failed-by[r+1℄j, where the values of the last two termsare taken from the pre-state of net mast(j,r+2,v',W').Consider some k 2 W. The preondition of net mast(i,r+2,v,W) implies that in the pre-state, value[r+1,k℄i 6= ?, that is, i has reeived a round r+1 message from k. This meansthat k has previously sent a round r+1 message. Sine (by assumption) r > 0, it follows that r+1 � 2, whih means that k has sent a round 2 message. Invariant 5.1, applied to any state afterboth net mast(j,1,*,*) and net mast(k,2,*,*) have ourred, implies that k is in the worldomponent of j's round 1 message, and so k is put into world[1,j℄j when that is de�ned. Toprove that k 2 W', it suÆes to show that k is never plaed into either of the sets out-by[r+1℄j orfailed-by[r+1℄j.First, we show that k is never plaed into out-by[r+1℄j. Suppose for the sake of ontraditionthat k is put into out-by[r+1℄j at some point in the exeution. Then onsider some state thatours after this has happened, and that is not before the pre-state of net mast(i,r+2,v,W). In13



this state, we have both value[r+1,k℄i 6= ? and k 2 out-by[r+1℄j. This ontradits Invariant A.4.Therefore, k is never plaed into out-by[r+1℄j.Seond, we show that k is never plaed into failed-by[r+1℄j. Suppose for the sake of on-tradition that k is put into failed-by[r+1℄j at some point in the exeution. Then k fails in theexeution, whih implies that it fails before point t. But we have already noted that k sends around r +1 message during the exeution. It does not send this before point t, beause that wouldmean that it would reah round r +1 before point t, ontradition our assumptions. So k sends theround r +1 message after point t, and so it annot fail before point t, a ontradition. Therefore,k is never plaed into failed-by[r+1℄j.The next lemma says that, under the same assumptions as for the previous lemma, all the roundr+2 messages have the same value omponent.Lemma 5.3 Suppose that r > 0. Suppose that there is a point t in an exeution suh that everyproess has round � r at point t, and no fail events happen from t onward.If net mast(i,r+2,v,W) and net mast(j,r+2,v',W') both our in the exeution, then v =v'.Proof: Proess i determines v as the minimum of all values value[r+1,k℄i for all k 2 W, andproess i determines v0 as the minimum of all values value[r+1,k℄j for all k 2 W'. Lemma 5.2implies that W = W'. Sine values are onsistent (by Invariant A.2), the sets of values over whihthe two minima are taken are idential. Therefore, v = v'.Finally, we prove the main early-deiding theorem. It says that, if no failures happen fromsome point onward and the rounds of all proesses are at most r when failures ease, then no CUPpartiipant ever advanes beyond round r +2. Sine we have already proved termination, thisimplies that all ative CUP partiipants deide by round r +2.Theorem 5.4 Suppose that r > 0. Suppose that there is a point t in the exeution suh that everyproess has round � r at point t, and no fail events happen from t onward.Then every proess always has round � r +2.Proof: Lemmas 5.2 and 5.3 yield a ommon value and world for round r+2 messages. Fix v' andW' to be the ommon value and world, respetively.We show that the preondition of net mast(i,r+3,*,*) an never be true, whih impliesthat suh an event an never happen. This implies that every proess always has round � r +2.Suppose for the sake of ontradition that the preondition of net mast(i,r+3,v,W) is true insome reahable state s, for some �xed i.Sine the preondition holds in s, world[r+2,i℄i 6= ? in s, and so Invariant A.1 impliesthat some (i,r+2,v'',W'') message is in the Net in s, where v'' = value[r+2,i℄i and W'' =world[r+2,i℄i. Sine v' and W' are the ommon value and world for round r+2 messages, thisimplies that value[r+2,i℄i = v' and world[r+2,i℄i = W'.We show that for all j 2 world[r+2,i℄i n out[r+2℄i, value[r+2,j℄i = value[r+2,i℄i andworld[r+2℄i � world[r+2,i℄i. This suÆes to show that the �nal preondition fails, whih yieldsa ontradition.Fix j 2 world[r+2,i℄i n out[r+2℄i. Sine failed[r+2℄i = f g, if follows that j 2 world[r+2,i℄in out[r+2℄i n failed[r+2℄i. The preondition of the net mast then implies that value[r+2,j℄i 6=? in state s. Invariant A.1 then implies that some (i,r+2,v''',W''') message is in the Net in s,14



where v''' = value[r+2,j℄i and W''' = world[r+2,i℄i. Sine v' and W' are the only value andworld for round 2 messages, this implies that value[r+2,j℄i = v' and world[r+2,j℄i = W' instate s. Thus, value[r+2,j℄i = value[r+2,i℄i and world[r+2℄i � world[r+2,i℄i, as needed.Note that this proof does not work for the ase where r=0, beause of potential di�erenes inthe initial worlds of orret proesses. Consider, for example, an exeution in whih no proessever fails, and some proess, k, leaves after sending a round 1 message. Proess k may be inludedin the initial world of proess i but not in the initial world of another proess j, if j initiates CUPafter k leaves. In this ase, i takes k's round 1 message into aount when hoosing its round 2message, while j does not (beause k is not in j's initial world). This senario an only our inround 1, beause no proess an send a round 2 message before j initiates.For the ase where r = 0, the best we an state is:Corollary 5.5 Suppose there is a point t in the exeution suh that every proess has round = 0at point t, and no fail events happen from t onward.Then every proess always has round � 3.Proof: This is immediate from Theorem 5.4, using r = 1.5.4 Timing AssumptionsFor the sake of analyzing the performane of the CUP algorithm, we use timed I/O automata [21,Ch. 23℄. We an regard an ordinary I/O automaton as a speial ase of the timed model, in whiharbitrary amounts of time an pass between events. All the safety results arry over to this model.For this analysis, we add an extra assumption: we assume that any ation that is enabled eithergets performed or gets disabled by another ation, before any time passes.5.5 Lateny AnalysisWe now analyze the algorithm's lateny in exeutions in whih there are time bounds on ertainenvironment ations. We assume the following bounds:1. Æ1 is an upper bound on message lateny. That is, if a net rv(m) event ours, the timesine the orresponding net mast(m) is at most Æ1.2. Æ2 is an upper bound on failure and leave detetion time. Moreover, if a message is lost due tofailure, then the failure is deteted at most Æ2 after the lost message was sent. More preisely,(a) Assume initi(*,W) ours with j 2 W and failj or leavej ours at time t. Thenfail deteti(j), leave deteti(j), deidei, leavei, or faili ours by time t+ Æ2.(b) De�ne U = [k2IfW j initk(�;W ) oursg. Assume i; j 2 U and net mastj(m) o-urs at time t but no net rvi(m) ours. Then fail deteti(j), leave deteti(j),deidei, leavei, or faili ours by time t+ Æ2.3. Æ3 is an upper bound on the time di�erene between the initiation time of di�erent proesses.More preisely:Assume some proess initiates at time t and does not fail by time t+ Æ1. Assume further thatiniti(*, W) ours. Then, every proess j 2 W initiates, abstains, leaves, or fails by timet+ Æ3. 15



In pratie, the failure detetion time would be at least as large as the message lateny. Wetherefore assume that Æ2 � Æ1.We now use the above bounds on the environment to establish bounds on CUP's running times.The next lemma bounds the time it takes from when some proess initiates CUP until all proessesterminate round 1.Lemma 5.6 Assume that some proess initiates CUP at time t and does not fail by time t + Æ1.Then by time t+ Æ2+ Æ3, every proess that initiates either terminates round 1, or leaves, or fails.Proof: Let i be a proess that initiates and does not leave or fail by time t + Æ2 + Æ3. We nowshow that i terminates round 1 by time t + Æ2 + Æ3. If i deides by time t + Æ2 + Æ3, then we aredone. We therefore assume that i does not deide by this time.In order to terminate round 1, i has to have a round 1 message from every proess j 2world[1,i℄i n out[1℄i n failed[1℄i. That is, for every proess j 2 world[1,i℄i, i has to re-eive a round 1 message or an OUT message from j, or a fail deteti(j) or a leave deteti(j)event.Fix a proess j 2world[1,i℄i, i.e., j is in i's initial world. Sine some proess initiates at timet, by our assumption on initiation times, j initiates, abstains, leaves, or fails by time t+ Æ3.If j fails or leaves by time t+ Æ3, then by our assumption on failure and leave detetion times,fail deteti(j) or leave deteti(j) ours by time t+ Æ2+ Æ3 (sine we assume that i does notdeide, leave, or fail by this time), and we are done.Assume now that j does not fail or leave by time t+ Æ3. Sine j is in i's initial world, j eitherinitiates or abstains by this time, at whih point j sends a round 1 message or an OUT message(resp.). If i reeives this message, i reeives it by time t+Æ3+Æ1. If i does not reeive this message,fail detet(j)i or leave detet(j)i ours by time t+ Æ3 + Æ2.Sine Æ2 � Æ1, we get that for every j 2world[1,i℄i, by time t + Æ3 + Æ2, i either reeives around 1 message or an OUT message from j or a fail detet(j)i or leave detet(j)i eventours.The following lemma bounds the duration of subsequent rounds.Lemma 5.7 Assume that by time t, every proess that initiates CUP either terminates round r> 0, or deides, or leaves, or fails. Then, by time t + Æ2, every proess that initiates CUP eitherterminates round r+1, or deides, or leaves, or fails.Proof: Consider a proess i that initiates CUP and does not leave or fail or deide by time t+Æ2.We now show that i terminates round r+1 by time t+ Æ2.In order to terminate round r+1, i has to have a round r+1 message from every proess j 2world[r+1,i℄i n out[r+1℄i n failed[r+1℄i. That is, for every proess j 2 world[r+1,i℄i, ihas to either reeive a round r+1 message or an OUT message from j, or a fail deteti(j) or aleave deteti(j) event has to our.Fix a proess j 2world[r+1,i℄i. Proess j must have initiated. By time t, j terminatesround r+1, or deides, or leaves, or fails. If j leaves or fails by time t, then fail detet(j)i orleave detet(j)i ours by time t + Æ2. Otherwise, j sends a round r+1 message or an OUTmessage (in ase it deides) by time t. If i reeives this message, i reeives it by time t + Æ1.Otherwise, fail detet(j)i or leave detet(j)i ours by time t+Æ2. Sine Æ2 � Æ1, we get thati terminates round r+1 by time t+ Æ2. 16



Using the two lemmas above, we get the following bound on the running time of an exeutionof CUP with r rounds.Lemma 5.8 Assume that some proess initiates CUP at time t and does not fail by time t + Æ1.If i deides at round r > 0, it does so by time t+ Æ3 + rÆ2.Proof: By Lemma 5.6, by time t + Æ3 + Æ2, every proess that initiates CUP either terminatesround 1, or leaves, or fails. By iterative appliation of Lemma 5.7, we get that by time t+ Æ3+ Æ2+(r� 1)Æ2 = t+ Æ3 + rÆ2, every proess that initiates CUP either terminates round r, or deides, orleaves, or fails.As a onsequene of the above lemmas and the early-deiding theorem of the previous setionwe get the following theorem:Theorem 5.9 Suppose that there is a point t in the exeution suh that no fail events happenfrom t onward. Suppose also that some proess initiates CUP by time t. Then every proess thatdeides, deides by time t+ Æ3 + 3Æ2.Proof: Let r be the highest value of round of any proess at time t. Sine some proess initiatedCUP by time t, r > 0. By Theorem 5.4, every proess that deides, deides at the end of roundr+2 at the latest.We onsider two ases. First, if r > 1, then by Invariant A.12, every proess that initiatedCUP has either terminated round r-1 or left or failed by time t. By applying Lemma 5.7 threetimes, we get that every proess that initiates CUP either terminates round r+2 or leaves or failsby time t+ 3Æ2. Therefore, in this ase, every proess that deides, deides by time t+ 3Æ2.Next, assume that r = 1. Sine some proess initiates CUP by time t and does not fail, byLemma 5.6, by time t + Æ3 + Æ2, every proess that initiates CUP either terminates round 1, orleaves, or fails. By applying Lemma 5.7 twie, we get that every proess that initiates CUP eitherterminates round r+2 or leaves or fails by time t+ Æ3 + 3Æ2. Therefore, in this ase, every proessthat deides, deides by time t+ Æ3 + 3Æ2.6 Environment and Model Assumptions for Atom6.1 Timing AssumptionsWe model time using a ontinuous global variable now, whih holds the real time. This is a realvariable, initially 0. We assume that it inreases with derivative 1. Eah endpoint i is equippedwith a loal lok, loki, modeled by a ontinuous, bijetive, monotonially inreasing funtionfrom the nonnegative R to the nonnegative R.We assume a bound of � on lok skew, where � is a positive real number. Spei�ally, foreah endpoint i, we assume that in any state of the system that is reahable jlok i � now j � �=2.That is, the di�erene between eah loal lok and the real time is at most �=2. It follows thatthe lok skew between any pair of proesses is �, formally: in any reahable state, and for any twoendpoints i and j, jlok i � lok j j � �.We assume that loal proessing time is 0 and that ations are sheduled immediately whenthey are enabled. Formally, when any loally ontrolled ation of any proess that is part of ourloal algorithm is enabled, then before any time passes, the ation is either performed or beomesdisabled. 17



6.2 Reliable Network AssumptionsWe assume that we are given a low-level reliable network servie Net. Like DAB, Net is parame-terized by a message alphabet, M .The Net(M) signature is de�ned in Figure 6. The ations are the same as those of DAB, exeptthat they are pre�xed with net .Input:net joini, net leavei, faili, i2I,net masti(m), m2M, i2IOutput:net join OKi, net leave OKi, i2I,net rvi(m), m2M, i2I Figure 6: The signature of the Net servie.Net(M) assumes that its appliation satis�es the same basi safety onditions as those spei�edabove for DAB(M), exept that ation names are preeded with net . Assuming the appliationsatis�es these onditions, Net(M) satis�es a number of safety and liveness properties.First, Net satis�es the basi properties spei�ed above for DAB: join/leave integrity, messageintegrity, eventual join, and eventual leave. All of these properties are the same as for DAB, exeptthat ation names are pre�xed with net .In addition, Net guarantees fifo delivery of messages:� fifo delivery: If net masti(m) ours before net masti(m'), and net rvj(m') ours,then net rvj(m) ours before net rvj(m').Net(M) also satis�es the following liveness property:� Eventual delivery: Suppose net masti(m) ours after net join OKj, and no faili ours.Then either net leavej or failj or net rvj(m) ours.Additionally, the network lateny is bounded by a onstant nonnegative real number �. For-mally, Net(M) guarantees:� Message lateny: If net rvj(m) ours, then the real time elapsed sine the orrespondingnet masti(m) is at most �.The maximum message lateny of � guaranteed by Net is intended to inlude any pre-senddelay at the network module of the sending proess.Sine an implementation of Net annot predit the future, it must deliver messages within time� as long as no failures our. In partiular, if a message is sent more than � time before its senderfails, it must be delivered.7 The Atom AlgorithmThe Atom algorithm onsists of a olletion of proesses orresponding to the di�erent endpointsin I. It uses Net and CUP servies as building bloks. It uses multiple instanes of CUP.18



7.1 Data TypesAtom de�nes the onstant �, a positive real number. This will represent a time slot. We assumethat � > �.Reall thatM represents the message alphabet of DAB. We will useM 0 to represent the messagealphabet of Net. We de�ne the message alphabet of Net in term of the alphabet of Atom:� M1, the set of �nite sequenes of elements of M . These are the bulk messages proesses send.� M2 =M1 [ fJOIN;LEAV Eg [ fCUP � INITg � Ig� M 0 = I �M2 � N.M 0 is the omplete message alphabet of Net. Eah message ontains either a bulk message (sequeneof lient messages) for a partiular slot, a request to join or leave a partiular slot, or a report thatproess has initiated onsensus on behalf of a partiular endpoint. Eah message is tagged withthe sender and the slot.7.2 Using the Net and CUPThe Net servie alphabet is instantiated with M 0. That is, Atom uses a servie Net(M 0) to im-plement the servie DAB(M). Atom uses multiple instanes of CUP, at most one for eah proessj. As before, a faili ation auses proess i to stop. faili ations go to all the omponents, i.e.,Net and all instanes of CUP (inluding dormant ones), and ause all of them to stop taking anyloally ontrolled ations. Sine faili ations annot be interepted, we do not inlude them inthe ode.leavei ations also go diretly to all the loal instanes of CUP, inluding dormant ones.7.3 Atom Algorithm OverviewThe algorithm divides time, and respetively, messages, into slots. As time advanes, eah proessadvanes through slot. The duration of a slot is �.Eah proess multiasts all of its messages for a given slot in one bulk message. This is auseful abstration that we make in order to simplify the presentation and analysis of the Atomalgorithm. In pratie, the bulk message does not have to be sent as one message; a standardpaket assembly/disassembly layer an be used to provide all-or-nothing behavior.Message delivery is also done in order of slots. Before delivering messages of a ertain slot s,eah proess has to determine the membership of this slot, that is, the set of proesses from whihto deliver messages in this slot. To ensure total order, all the proesses that deliver messages for aertain slot have to agree upon the membership of eah slot. For eah slot, messages are delivered inthe order of proess indies, and for eah proess, the messages are unpaked from its bulk messageand delivered in fifo order.7.4 SignatureThe signature of Atom at proess i, Atomi, is presented in Figure 7. It inludes all the interationwith the lient and all the interation with the underlying network. The implementation of Atomuses CUP as a building blok. Hene Atomi has additional input and output ations for interatingwith CUP. Sine Atom uses multiple instanes of CUP, at most one for eah proess j, ations of19



CUP automata are pre�xed with CUP(j). For example, proess i uses the ation CUP(j).initi toinitiate the CUP automaton assoiated with proess j. CUP.fail and CUP.leave are not outputations of Atom, sine they are routed diretly from the environment to all instanes of CUP.The signature of Atomi also inludes two internal ations, end slot, and members. These twoations play a role in determining the membership for eah slot. end slot(s)i ours at a time bywhih slot s messages from all proesses should have reahed proess i. At this point, proessesfrom whih messages are expeted but do not arrive are suspeted to have failed. For eah suspetedproess j, CUP(j) is run to have the surviving proesses agree upon j's failure slot. This is neededbeause failed proesses an be suspeted at di�erent slots by di�erent surviving proesses. AfterCUP reahes deisions about all the suspeted proesses that ould have failed at slot s, members(P,s) an our, with P being the agreed membership for slot s. When proess i performs members(P,s)i, all the messages inluded in bulk messages that i reeived for slot s from proesses in P aredelivered (their delivery is triggered) in order of proess indies.Input:joini, leaveinet join OKi, net leave OKimasti(m), m2Mnet rvi(m), m2M 0failiCUP(j).deidei(v), v2NOutput:join OKi, leave OKinet joini, net leaveinet masti(i, m, s), m2M2, s2Nrvi(m), m2MCUP(j).initi(v, W), v2NCUP(j).abstainiCUP(j).leave deteti(j), j2ICUP(j).fail deteti(j), j2IInternal:end sloti(s), s2Nmembersi(P, s), P set of I, s2N Figure 7: Atomi: Signature.7.5 Pseudo-odeThe Atomi ode is presented in Figures 8{10. The state omponents are presented in Figure 8.Reall that we do not assume that proesses exeute the algorithm from the beginning oftime. Rather, the appliation issues an expliit join event, and waits for a join OK. The variablejoin-slot holds the slot at whih a proess starts partiipating in the algorithm; this will be thevalue of urrent-slot when join OK will be issued, and the �rst slot for whih a bulk messagewill be sent. If a proess expliitly leaves the algorithm, its leave-slot holds the slot immediatelyfollowing the last slot in whih the proess sends a bulk message. Both join-slot and leave-slotare initially1, so as to be larger than any atual slot number they are ompared with.20



lok2R, initially2[0, �/2℄; dynami type: ontinuous funtionsjoin-slot 2 N [ 1, initially 1leave-slot 2 N [ 1, initially 1did-join-OK, boolean, initially falsedid-leave, boolean, initially falsemast-slots � N, initially f gended-slots � N, initially f greported-slots � N, initially f gfor every s 2 Nout-buf[s℄ 2 M2, initially empty sequene of Mjoiners[s℄ � I, initially f gleavers[s℄ � I, initially f gsuspets[s℄ � I, initially f gfor every s 2 N, j 2 Iin-buf[j,s℄, j 2 I, s 2 N, finite sequene of M or ?, initially ?for every j 2 In{ i }CUP-status[j℄ 2 { idle, req, running, done }, initially idleCUP-req-val[j℄ 2 N [ { ? }, initially ?CUP-de-val[j℄ 2 N [ { ? }, initially ?derived variables:urrent-slot 2 N = b lok / � for every s 2 Nalive[s℄ � I = { j | in-buf[s,j℄ 6= ? }Figure 8: Atomi: State.The boolean ags did-join-OK and did-leave are used to ensure that join OK and net leaveations will not be performed more than one. The set mast-slots keeps trak of the slots forwhih the proess already multiast a message (JOIN, LEAVE, or bulk). Likewise, ended-slotsand reported-slots keep trak of the slots for whih the proess already performed the end slotor members ations, resp.out-buf[s℄ stores the message (bulk, JOIN, or LEAVE) that is multiast for slot s; it initiallyholds an empty sequene, and in an ative slot, all appliation messages are appended into it.A JOIN message is inserted for the slot before the join-slot, and a LEAVE message for theleave-slot. Either way, there is no overlap with a bulk message.The variables joiners[s℄ and leavers[s℄ keep trak of the proesses j for whih join-slotj=s (resp. leave-slotj =s). suspets[s℄ is the set of proesses suspeted in slot s as determinedwhen end slot(s) ours.The variable in-buf[j,s℄ is a �nite sequene of messages reeived in a slot s bulk messagefrom proess j. The data type �nite sequene supports assignment, extration of the head of thequeue, and testing for emptiness.There are three variables for traking the status and values of the di�erent instanes of CUP.CUP-status[j℄ is initially idle; when CUP(j) is initiated, it beomes running; if a CUP-INITmessage for j arrives, it beomes req; and when there is a deision for CUP(j), or if the proessabstains from CUP(j), it beomes done. CUP-req-val[j℄ holds the lowest slot value assoiated21



with a CUP-INIT message for j (? if no suh message has arrived). Finally, CUP-de-val[j℄ holdsthe deision reahed by CUP(j), and ? if there is none.alive[s℄ is a derived variable, storing the set of proesses from whih slot s bulk messageswere reeived.joiniEff: trigger(net joini)net join OKiEff: join-slot  urrent-slot + 2 + d �/� eout-buf[join-slot - 1℄  JOINjoin OKiPre: did-join-OK = falseurrent-slot = join-slotEff: did-join-OK  trueleaveiEff: if (join-slot 2 N) thenleave-slot  max(urrent-slot, join-slot) + 1out-buf[leave-slot℄  LEAVEnet leaveiPre: did-leave = falseleave-slot 2 mast-slotsEff: did-leave  truenet leave OKEff: trigger(leave OKi)masti(m)Eff: if (join-slot � urrent-slot < leave-slot) thenappend m to out-buf[urrent-slot℄net masti(i, m, s)Pre: join-slot 2 Njoin-slot - 1 � s � leave-sloturrent-slot = s+1s 62 mast-slotsm = out-buf[s℄Eff: mast-slots  mast-slots [ { s }net rvi(j, JOIN, s)Eff: joiners[s+1℄  joiners[s+1℄ [ { j }net rvi(j, LEAVE, s)Eff: leavers[s℄  leavers[s℄ [ { j }foreah (k suh that CUP-status[k℄ = running) dotrigger(CUP(k).leave deteti(j))net rvi(j, m, s), m sequene of MEff: in-buf[j,s℄  mFigure 9: Atomi: Transitions related to multiast, join, and leave.In Figure 9 we present the �rst part of Atom's transitions, inluding transitions related tojoining, leaving, multiasting messages, and reeiving messages from the network. Transitionsrelated to membership and totally ordered delivery are presented in Figure 10.22



When the appliation issues a join, Atom triggers net join. One the Net responds with anet join OK, Atom alulates the join-slot to be 2 + d�=�e slots in the future. This will allowenough time for the join message to reah the other proesses. A JOIN message is then insertedinto out-buf[join-slot-1℄. One the urrent-slot reahes join-slot, join OK is issued to theappliation.When the appliation issues a leave, the leave-slot is hosen to be the ensuing slot, and aLEAVE message is inserted into out-buf[leave-slot℄. A net leave is issued after the LEAVEmessage has been multiast, and the net leave OK triggers a leave OK to the appliation.Messages multiast by the appliation are appended to the bulk message for the urrent slotin out-buf[urrent-slot℄. One a slot s ends, the message pertaining to this slot is multiastto the other proesses using net mast. If s = join-slot - 1, a JOIN message is sent. If s =leave-slot, a LEAVE message is sent, and if s is between join-slot and leave-slot - 1, abulk message is sent.When a bulk message is reeived, it is stored in the appropriate in-buf. When a JOIN (LEAVE)message is reeived, the sender is added to the joiners (resp. leavers) set for the appropriate slot.Additionally, when a LEAVE message is reeived, CUP.leave detet is triggered for all runninginstanes of CUP.Proess i performs end sloti(s) one it should have reeived all the slot s messages sent byother non-failed proesses. Sine slot s messages are sent immediately when slot s ends, messagesare delayed at most � time in Net, and the lok di�erene is at most �, proess i should haveall the non-failed proesses' slot s messages � + � time after slot s+1 began. At this time, lok> (s+ 1)� +�+ �. Proess i expets to reeive slot s bulk messages from all the proesses thatare in alive[s-1℄, exept for those that are leaving in slot s. Any proess from whih a slot sbulk message is expeted but does not arrive beomes suspeted at this point, and is inluded insuspets[s℄.For every suspeted proess, CUP is run in order to agree upon the slot at whih the proessfailed. The slot s in whih the proess is suspeted is used as the initial value for CUP. The estimatedworld for CUP is alive[s℄ [ joiners[s+1℄. This way, if k joins in slot s+1, k is inluded inthe estimated world. This is needed in order to satisfy the world onsisteny assumption of CUP,beause k an detet the same failure at slot s+1, and therefore partiipate in CUP(j). When iinitiates CUP(j), it also multiasts a (CUP-INIT, j) message. If a proess k does not detet thefailure and does not partiipate, the (CUP-INIT, j) message fores k to abstain.Sine Atom implements the failure detetor for CUP, the e�et of end sloti(s) also triggersCUP(k).fail detet(j) ations for every suspeted proess j, and for every urrently runninginstane k of CUP.Proess i abstains from CUP(j) only if a (CUP-INIT,j) message has previously arrived, settingCUP-status[j℄i = req, and only if end sloti has already ourred for a slot value greater thanCUP-req-val[j℄i. The latter ondition ensures that i abstains only from instanes of CUP that itwill not initiate. This is beause the network guarantees that when a proess fails, at most one slotbulk message from this proess is lost (sine we assume that Delta � �). This implies that thedetetion of j's failure by two non-failed proesses an our at most one slot apart. Therefore, ifend sloti has already ourred for a slot value greater than CUP-req-val[j℄i, i will never suspetj. The members(P, s) ation triggers the delivery of all slot s messages from proesses in P. It anonly our one agreement has been reahed about the proesses to be inluded in P. Sine the slotat whih a proess k is suspeted by two proesses i and j an di�er by at most one, membersi(P,s) an our after i reeives deision from all instanes of CUP pertaining to proesses suspeted in23



end sloti(s)Pre: join-slot � sleave-slot = 1s 62 ended-slotslok i (s+1)� + � + �Eff: ended-slots  ended-slots [ { s }suspets[s℄  (alive[s-1℄ [ joiners[s℄ n leavers[s℄) n alive[s℄foreah (j 2 suspets[s℄) dotrigger(CUP(j).initi(s, alive[s℄ [ joiners[s+1℄))net masti(i, (CUP-INIT, j), s)CUP-status[j℄  runningforeah (k suh that CUP-status[k℄ = running) dotrigger(CUP(k).fail deteti(j))net rvi(j, (CUP-INIT, k), s)Eff: if (CUP-status[k℄ = idle _ CUP-req-val[k℄ i s) thenCUP-status[k℄  reqCUP-req-val[k℄  sCUP(j).abstainiPre: CUP-status[j℄ = req9s 2 ended-slots : s > CUP-req-val[j℄Eff: CUP-status[j℄  doneCUP(j).deidei(s)Eff: CUP-status[j℄  doneCUP-de-val[j℄  smembersi(P, s)Pre: s = min{ ended-slots n reported-slots }s + 1 2 ended-slots8j 2 (suspets[s℄ [ suspets[s+1℄) : CUP-status[j℄ = doneP = { j 2 alive[s℄ | CUP-de-val[j℄ = ? _ CUP-de-val[j℄ > s }Eff: reported-slots  reported-slots [ { s }foreah j 2 P, in order of indies dowhile in-buf[j,s℄ not empty dotrigger(rvi(head(in-buf[i,s℄)))Figure 10: Atomi: Transitions related to membership and message delivery.slots up to s+1. Therefore, membersi(P, s) must ours after end slot(s+1), when the suspiionsfor slot s+1 are determined. The set P inludes every proess j that is alive in slot s and for whihthere is either no CUP instane running (in whih ase j was not suspeted), or the CUP deisionvalue is greater than s.7.6 Lateny AnalysisIn this setion we analyze the lateny guarantees of Atom. In Setion 7.6.1 we show that in failurefree exeutions, Atom's message lateny is bounded by � + 2� + 2�. We denote this bound by�Atom. In Setion 7.6.2, we assign values to the onstants that were used in the analysis of CUPin Setion 5.5 (Æ1, Æ2, and Æ3). Then, in Setion 7.6.3, we onsider exeutions in whih failures doour but there is a long time period with no failures. We analyze the time it takes Atom to learthe baklog it has due to past failures, and reah a situation in whih message lateny is bounded24



by the same bound as in failure free exeutions, namely �Atom, barring additional failures.The fat that one failures stop for a bounded time all messages are delivered within onstanttime implies that in periods with f failure, Atom's lateny is at most linear in the number of failingproesses.7.6.1 Failure free exeutionsLemma 7.1 The time from when proess j starts slot s (i.e., urrent-slotj beomes s) untilproess i performs end sloti(s+1) is at most �+ 2� + 2�.Proof: Aording to its preonditions, end sloti(s) ours 2� + � + � time after i starts slots. Sine the di�erene between two proesses' loks is at most �, i starts slot s at most � timeafter j starts this slot.Lemma 7.2 Consider an exeution in whih no proess fails. If the appliation at proess j per-forms mastj(m) when urrent-sloti = s and if proess i delivers m, then i delivers m immedi-ately after end sloti(s+1) ours.Proof: If i delivers m, rvi(m) is triggered during the Membersi(P,s) ation. Sine no proessfails, suspets[s℄i[ suspets[s+1℄i is an empty set, and thus the only preondition that needsto be satis�ed in order to perform Membersi(P,s) is s+1 2 ended-slotsi, whih is true immediatelyafter end sloti(s+1) ours.As a diret result of these two lemmas, we get the following theorem:Theorem 7.3 If the appliation at proess j performs mastj(m) at time t, and if proess i deliversm, then i delivers m by time t+�Atom = t+�+ 2�+ 2�.7.6.2 CUP boundsWe now assign values to the onstants used in the analysis of CUP in Setion 5.5. Reall, Æ1 is anupper bound on message lateny; Æ2 is an upper bound on failure and leave detetion time, and ifa message is lost due to failure, then the failure is deteted at most Æ2 after the lost message wassent; and Æ3 is an upper bound on the di�erene between di�erent proesses' initiation times.Lemma 7.4 Æ1 = �Proof: By de�nition, both � and Æ1 are de�ned to be upper bounds on the underlying networklateny.Lemma 7.5 Æ2 = �+ 3�+ 2�Proof: Assume that CUP(k).initi(*,W) ours with j 2 W . Assume that one of the follow-ing happens at time t: failj, leavej, or net mastj(m) for a message m that is lost beause jsubsequently fails. Let s be the value of urrent-slotj at time t. Assume also that by timet+�+ 3�+ 2�, i does not deide, leave, or fail, so CUP-status[k℄i = running and i is ative atthis time. We have to show that by this time, fail deteti(j) or leave deteti(j) ours.If j fails at time t, then j's slot s message is never sent, and therefore i detets the failure andinvokes CUP(k).fail deteti(j) during end sloti(s) at the latest. By Lemma 7.1, this ours25



by time t + 2� + � + 2�. Likewise, if j sends a message m while urrent-slotj = s, and m islost, then by the fifo nature of the network, j's slot s message is also lost and i detets j's failureduring end sloti(s) at the latest.Assume next that j leaves when urrent-slotj = s, i.e., j's leave-slot is s+1. If i reeivesa LEAVE message from j, it reeives it before end sloti(s+1) ours, and immediately triggersCUP(k).leave deteti(j). Otherwise, i reeives no slot s+1 message from j and suspets j andinvokes CUP(k).fail deteti(j) during end sloti(s+1). This ours by time t + 3� + � + 2�.Lemma 7.6 Æ3 = �+�Proof: Assume that some proess proess l initiates CUP(k) at time t and does not fail by timet + �. Assume further that CUP(k).initi(*, W) ours with j 2 W . We have to show that jinitiates, abstains, leaves, or fails by time t+�+�.Proess l triggers CUP(k).initl(s, *) during the end slotl(s) ation, and k 2suspetsl[s℄.If j initiates CUP(k), there is a slot s' suh that j triggers CUP(k).initj during the end slotj(s')ation, and k 2suspetsj[s'℄. By Invariant A.19, s' � s+1. Therefore, CUP(k).initj oursno later than time t+ �+�, and we are done.Assume now that j does not initiate CUP(k), and does not leave or fail by time t+�+�. Wenow show that j abstains from CUP(k) by time t+ �+�.When CUP(k).initl(s, *) is triggered, l multiasts a (CUP-INIT, k) message. By Lemma A.8,net join OKj ours before l initiates CUP(k), that is, before l multiasts this message. Moreover,by assumption, l does not fail by time t + � and j does not leave or fail by time t +� (beause� � �). Therefore, j reeives this message by time t+�, whih is before time t+�+�. After jreeives this message, CUP-status[k℄j is req and CUP-req-val[k℄j is less than or equal to s. Bytime t+�+�, end slotj(s+1) ours and the ondition for CUP(k).abstainj beomes true, andremains true until CUP(k).abstainj ours and hanges CUP-status[k℄j. Therefore, before anytime passes, CUP(k).abstainj ours.7.6.3 Failure free periodsWe now onsider exeutions in whih failures do our but there are long time periods with nofailures. We analyze the time it takes Atom to lear the baklog it has due to past failures, andagain reah a situation in whih message lateny is bounded by �Atom, barring additional failures.Let t1 = Æ3 + 4Æ2, where Æ3 and Æ2 are bounds as given above for the di�erene betweenproess initiation times and failure detetion time, resp. From Lemmas 7.6 and 7.5 we get thatt1 = �+�+ 4(� + 3�+ 2�) = 4�+ 9� + 13�.Assume that from time t to time t0 = t+ t1 there are no failures. We now show that if a messagem is sent after time t0, and there are no failures for a period of length �Atom after m is sent, then mis delivered within �Atom time of when it is sent. Sine the delivery order preserves the fifo order,this also implies that any message m0 sent before time t0 is delivered by time t0 barring failures inthe �Atom time interval after m0 is sent.Theorem 7.7 Assume no proess fails between time t and t0 = t + t1. If mast(m)j ours at atime t00 suh that t+ t1 � t00, and no failures our from time t00 to time t00+�Atom, and if i deliversm, then i delivers m by time t00 +�Atom. 26



Proof: By Lemma 7.5, by time t+Æ2 all the proesses detet all the failures that our by time t.Therefore, no proess initiates an instane of CUP after time t+Æ2. Sine no failures our after timet+Æ2, by Theorem 5.9, all CUP instanes that i initiates terminate by time t+Æ2+Æ3+3Æ2 = t+ t1.Let s be the value of urrent-slotj at time t00 (i.e., when mast(m)j ours). By Lemma 7.1,proess i performs end sloti(s+1) by time t00+�+2�+2� = t00+�Atom. At this time, there areno ative CUP instanes, beause CUP instanes pertaining to failures that ourred before time thave all terminated and no new failures our until time t00 +�Atom. Therefore, for every slot s'� s, in order of slot numbers, Members(P, s')i beomes enabled until it ours. So Members(P,s)i ours before any time passes. If i delivers m, rvi(m) is triggered during the Membersi(P, s)ation, so rvi(m) also ours before any time passes.7.7 Extending Atom to Cope with Late MessagesIn this paper, we assumed a synhronous model with deterministi network lateny guarantees.Sine the network lateny, � is expeted to be of a smaller order of magnitude than �, it wouldnot signi�antly hurt time bounds if onservative assumptions are made in the hoie of �.In ongoing researh we are onsidering networks where lateny bounds are more likely to beviolated. For example, some networks may support di�erentiated servies with probabilisti latenyguarantees. Moreover, loss rates may exeed the bounds assumed in the implementation of thereliable network. Suh networks an be represented using the timed-asynhronous [11℄ failuremodel.Although our algorithm annot guarantee atomi broadast semantis while network latenyand reliability guarantees are violated, it is important for the algorithm to be able to reoverfrom suh situations, and to one more provide orret semantis after network guarantees are re-established. In addition, it would be desirable to inform the appliation when a violation of Atomsemantis ours, and when the orret semantis are resumed (following the failure awarenessapproah of [14℄).There are some strategies that an be used to make Atom reover from periods in whih networkguarantees are violated. For example, a lost or late message an ause inaurate failure suspiions.With Atom, if a proess k is falsely suspeted, it will reeive a (CUP-INIT, k) message for itself.In order to reover from suh a situation, we ould have the proess \ommit suiide" in suh asituation, that is inform the appliation of the failure and have the appliation re-join as a newproess. The full modi�ation of Atom for this setting is ongoing work.8 ConlusionsWe have de�ned two new problems, Dynami Atomi Broadast and Consensus with UnknownPartiipants. We have presented new algorithms for both problems. The lateny of both of ouralgorithms depends linearly on the number of failures that our during a partiular exeution, butdoes not depend on an upper bound on the potential number of failures, nor on the numbers ofjoins and leaves that happen during the exeution.AknowledgmentsWe thank Alan Fekete and Rahid Guerraoui for omments that helped improve the presentation.27
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A Corretness ProofsA.1 Corretness of the CUP AlgorithmWe onsider the system onsisting of a omposition of automata CUPi, one for eah i 2 I. Weonsider a restrited set of exeutions of this omposition|those in whih the environment safetyassumptions are all satis�ed. The invariants we state throughout this setion should be interpretedas saying that the stated property is true for all states that our in suh exeutions.A.1.1 General invariantsWe say that a message is in the Net if a net mast event for that message has ourred or is in atrigger-buffer.The �rst invariant lists an assortment of basi onstraints. They an be proved using indution.Invariant A.1 1. value[r,i℄j = ? if and only if world[r,i℄j = ?.2. If value[r,i℄j = v 6= ? and world[r,i℄j = W 6= ? then an (i,r,v,W) message is in theNet.3. If (i,r,*,*) is in the Net then roundi � r.4. If modei = ? then roundi = 0.5. If modei = running then some (i,1,*,*) message is in the Net.6. If i 2 failed[r℄j then faili has ourred.7. If i 2 failed[r℄j and s � r, then value[s,i℄j = ?.The next invariant expresses onsisteny of values and worlds of the same proess at di�erent plaesin the system.Invariant A.2 1. If messages (j,r,v,W) and (j,r,v',W') are in the Net then v = v' and W= W'.2. If value[r,j℄i 6= ? and value[r,j℄i0 6= ? then value[r,j℄i = value[r,j℄i0.3. If world[r,j℄i 6= ? and world[r,j℄i0 6= ? then world[r,j℄i = world[r,j℄i0.4. If value[r,j℄i 6= ? and world[r,j℄i 6= ? and a message (j,r,v,W) is in the Net thenvalue[r,j℄i = v and world[r,j℄i = W.The next two invariants desribe some fats that follow from the existene of OUT messages andfrom the detetion of leaves.Invariant A.3 1. If an (i,OUT) message is in the Net then modei = done.2. If i 2 out[r℄j then modei = done.Proof: By indution. Part 2 uses the aurate leave detetor assumption.Invariant A.4 If i 2 out[r℄k and s � r, then no message of the form (i,s,*,*) is in the Net,and for all j, value[s,i℄j = ?. 30



Proof: By strong indution. First, we laim that a net masti event annot onvert the invariantfrom true to false by falsifying the onlusion while leaving the hypothesis true. This is beause,if the hypothesis is true, then i 2 out[r℄k in the pre-state of the net masti, whih implies, byInvariant A.3, that modei = done. But the preondition of net masti requires that modei =running, a ontradition.The key steps are, therefore, those that make the hypothesis true. Index i an be added toout[r℄k by reeipt of an OUT message by k or by a leave detetk(i). An OUT message mayresult from a previous abstaini that ours when modei = ?, or a previous deidei event.For abstaini, by Invariant A.1, we know that in the pre-state of the abstaini, roundi = 0.Then Invariant A.1 implies that in the pre-state, no message of the form (i,*,*,*) is in the Net,and for all j and all s, value[s,i℄j = ?. One the abstaini happens, modei beomes done, whihmeans that no later messages are sent.For deidei, the fifo assumption for message delivery implies that the deidei event must haveourred when round = r �1. Invariant A.1 then implies that in the pre-state of the deidei, theonlusion of the invariant holds. Sine the deidei event sets modei to done, i sends no furthermessages, so the onlusion ontinues to hold.For leave detetk(i), we know by the lossless leave assumption that before the leave detetk(i)ours, k has already reeived every message that has ever been net mast by i. Sine k expliitlyheks that it has no values from i for round r, there are no suh messages in the Net.The following says that any value that appears anywhere in the system is some partiipant's initialvalue.Invariant A.5 1. If (i,r,v,W) is in the Net then there exists j and W' suh that (j,1,v,W')is in the Net.2. If value[r,k℄i = v 6= ? then there exists j and W' suh that (j,1,v,W') is in the Net.Proof: We show Parts 1 and 2 together by indution on the length of a �nite exeution.Base: Trivial, beause no messages are initially in the Net and no values are initially non-?.Indutive step: We �rst show part 1. The interesting steps are those in whih a message (i,r,v,W)is put into the Net. If r = 1 then (i,r,v,W) is put into the Net by an initi(v,W) event, whihputs the net mast into trigger-bufferi. But this immediately satis�es the onlusion. On theother hand, if r � 2, then (i,r,v,W) is put into the Net by an expliit net mast(i,r,v,W) step.In this ase, v is obtained from a set of values already in i's value array in the pre-state. Theindution hypothesis, part 2, then implies that some (j,1,v,W') is already in the Net, as needed.For part 2, the key step is a net rvi(k,r,v,W) for some W. In the pre-state of suh a step, mes-sage (k,r,v,W) is in the Net. The indutive hypothesis, part 1, then implies that some (j,1,v,W')is already in the Net, as needed.The following invariant asserts that proesses are always in their own worlds.Invariant A.6 1. If a message (i,r,v,W) is in the Net then i 2 W.2. If world[r,i℄j 6= ? then i 2 world[r,i℄j.Proof: We prove part 1 by indution on the length of the exeution, with a trivial base ase.Indutive step: The interesting steps are those in whih a message (i,r,v,W) is put into the Net.If r = 1, then this is done by an initi(v,W) step. In this ase, the environment well-formedness31



assumption implies that no leavei or faili event preedes the initi, and so the world onsistenyassumption implies that i 2 W, as needed. On the other hand, if r � 2, then (i,r,v,W) is put intothe Net by an expliit net mast(i,r,v,W) step. In this ase, the preondition says that modei =running and world[1,i℄i 6= ? in the pre-state. In this pre-state, i is not in any failed[r℄i set,beause if it were, Invariant A.1 would imply that i has failed, and it would not be able to performthe net mast. Also, in this pre-state, i is not in any out[r℄i set, by Invariant A.3. Therefore, iis inluded in W, beause of the way W is de�ned.Part 2 follows follows from part 1 and Invariant A.1.The following invariant desribes onsequenes of the de�nition of a round r+1 world and value:Invariant A.7 If (i,r+1,v,W) is in the Net, for r � 1, then:1. For every j 2 W, world[r,j℄i 6= ?.2. W = world[r,i℄i n out[r℄i n failed[r℄i.3. v = min fvalue[r,j℄i : j 2 Wg.4. W = world[1,i℄i n out-by[r℄i n failed-by[r℄i.Proof: Part 1 is proved by an easy indution; the key step is net mast(i,r+1,v,W), and theonlusion follows immediately from the preondition.Given part 1, we prove part 2 by indution. Now the interesting steps are net masti(i,r+1,v,W),net rvi(j,OUT), leave deteti(j), and fail deteti(j). The fat that net masti(i,r+1,v,W)yields the property follows immediately from the preondition. A net rvi(j,OUT) event ouldonly falsify the property if j 2 W and the event puts j into out[r℄i. However, part 1 impliesthat world[r,j℄i 6= ? in the post-state, and hene value[r,j℄i 6= ? in the post-state. Butthis would ause the post-state to violate Invariant A.4, a ontradition. A similar argumentshows that leave deteti(j) annot falsify the property. Finally, fail deteti(j) ould onlyfalsify the property if j 2 W and the event puts j into failed[r℄i. However, part 1 implies thatworld[r,j℄i 6= ? in the post-state, and hene value[r,j℄i 6= ? in the post-state. But this wouldause the post-state to violate Invariant A.1, a ontradition.We prove part 3 by indution, using part 1. This time, the interesting steps are net masti(i,r+1,v,W)and net rvi(j,r,*,*). Again, the net masti(i,r+1,v,W) step yields the property immedi-ately. A net rvi(j,r,v',*) ould only falsify the property if j 2 W. But in this ase we knowthat value[r,j℄i 6= ? i the pre-state, and then Invariant A.2 implies that v' = value[r,j℄i inthe pre-state. It follows that this step does not hange value[r,j℄i, and so does not falsify theproperty.Part 4 is proved by indution on r (not indution on the length of the exeution), using part2. The base ase, r = 1, follows immediately from part 2. For the indutive step, we sup-pose that the laim is true for some r � 1 and show it for r + 1. That is, we assume that(i,r+2,v,W) is in the Net. Then by part 2, W = world[r+1,i℄i n out[r+1℄i n failed[r+1℄i.Now, sine world[r+1,i℄i 6= ?, Invariant A.1 implies that a message of the form (i,r+1,v',W')is in the Net, where W' = world[r+1,i℄i. By indutive hypothesis, part 4, this implies that W'= world[1,i℄i n out-by[r℄i n failed-by[r℄i. Therefore, W = world[1,i℄i n out-by[r℄i nfailed-by[r℄i n out[r+1℄i n failed[r+1℄i. This is equal to world[1,i℄i n out-by[r+1℄i nfailed-by[r+1℄i, as needed.Invariant A.8 Suppose that deidei(v) has happened at round r. Then:32



1. For all j 2 world[r,i℄i n out[r℄i, value[r,j℄i = value[r,i℄i and world[r,j℄i � world[r,i℄i.2. For all j 2 world[r,i℄i, if (j,r,v',W) is in the Net then v' = v and W � world[r,i℄i.Proof: Part 1 follows from an easy indution: out an only grow, and value and world do nothange one they are non-?. Therefore, the only interesting step is deidei(v), and the resultfollows diretly from the preondition.For part 2, onsider any state s after a deidei(v) has happened at round r. Suppose thatj 2 world[r,i℄i and (j,r,v',W) is in the Net, in state s. Then Invariant A.4 implies that j =2out[r℄i. Thus, j 2 world[r,i℄in out[r℄i. Then part 1 and Invariant A.2 imply the onlusion.The following invariants say that any proess' values and worlds derease as rounds inrease.Invariant A.9 For any r � 1, if a message (i,r+1,v,W) is in the Net then value[r,i℄i 6= ?, v� value[r,i℄i, and W � world[r,i℄i.Proof: By indution. For the indutive step, the interesting ase is when the last ation of theexeution is net mast(i,r+1,v,W). Invariant A.6 implies that i 2 W. Therefore, the preonditionfor net mast(i,r+1,v,W) implies that, in the pre-state, value[r,i℄i 6= ?. Therefore, this is alsotrue in the post-state, as needed.Next, we show that v � value[r,i℄i. The value v is determined in the net mast event to bethe minimum of the set of values of the form value[r,j℄i, for j 2 W. Sine i 2 W, this minimuminludes value[r,i℄i. Therefore, v � value[r,i℄i.Finally, we show that W � world[r,i℄i. The value W is determined in the net mast event tobe world[r,i℄i n out-by[r℄ n failed-by[r℄, aording to the values of the out and failed setsin the pre-state. It follows immediately that W is a subset of world[r,i℄i.Invariant A.10 For any r � 1,1. If value[r+1,i℄i 6= ? then value[r,i℄i 6= ?, value[r+1,i℄i � value[r,i℄i, and world[r+1,i℄i �world[r,i℄i.2. If value[r,i℄i 6= ? and 1 � s � r then value[s,i℄i 6= ?, value[r,i℄i � value[s,i℄i,and world[r,i℄i � world[s,i℄i.Proof: For part 1, assume that, in some reahable state, value[r+1,i℄i 6= ?, and hene world[r+1,i℄i6= ?. Then Invariant A.1 implies that in the same state, a message (i,r+1,v,W) must be in theNet, where v = value[r+1,i℄i and W = world[r+1,i℄i. Invariant A.9 then yields the onlu-sions. Part 2 follows from part 1, using indution on r-s.The following invariant says that, if all the messages for a partiular round r are \onsistent", thenso are all the messages for all later rounds.Invariant A.11 Let W be a nonempty �nite set, v 2 V, and r � 1. Suppose that, for every i 2 W,if a message of the form (i,r,v',W') is in the Net, then W' � W and v' = v.Then for every i; j 2 W and for every s � r,1. If a message of the form (i,s,v',W') is in the Net, then W' � W and v = v'.2. value[s,i℄j is either v or ?. 33



3. world[s,i℄j is either a subset of W or ?.Proof: We prove part 1 by indution on the length of an exeution.Base: The onlusion of the invariant is vauously true in the start state.Indutive step: The interesting steps are those that put some message (i,s,v',W') into the Net,where i 2 W and s � r. We may restrit attention to the ase where s > r, beause if s = r andthe step falsi�es part 1, it also falsi�es the hypothesis of the invariant. Thus, the only interestingsteps are of the form net mast(i,s,v',W') where i 2 W and s > r. So onsider suh a step, and�x i, s, v', and W'. Assume that the hypothesis of the invariant is true after (and hene before)the step.We show that W' � W. After the net mast step, the message is in the Net. Invariant A.9then implies that W' � world[s-1,i℄i. Invariant A.10 then implies that world[r,i℄i 6= ?and world[s-1,i℄i � world[r,i℄i. Therefore, W' � world[r,i℄i. Sine world[r,i℄i 6= ?,an (i,r,*,W'') message is in the Net, where W'' = world[r,i℄i. Then sine the hypothesis ofthe invariant is true, it follows that world[r,i℄i � W. Putting all the piees together yields thatW' � W.Next, we argue that v' = v. The value v' is determined by the preondition of the net mastation, as the minimum of a set of values value[s-1,j℄i, taken over all indies j in W'. Beause W'� W, every suh index j is in W. Sine value[s-1,j℄i 6= ?, a (j,s-1,v'',W'') message is in theNet in the pre-state of the new net mast, where v'' = value[s-1,j℄i. Our assumption that theonlusion of the invariant is true in the pre-state then implies that value[s-1,j℄i = v. Thus, allthe values onsidered in the min are equal to v, whih implies that v = v'.This proves part 1. Parts 2 and 3 follow from part 1 and Invariant A.1.Invariant A.12 If roundi = r > 1 and modej = running and j is not failed, then roundj � r- 1.Proof: Sine j is not failed, by Invariant A.1(6), j 62failed[s℄i for any s, so j 62failed-by[r-1℄i.By Invariant A.3(2), j 62 out[s℄i for any s, so j 62out-by[r-1℄i. Sine modej = running, j initi-ated, and by the world onsisteny assumption, j 2world[1,i℄i. By Invariant A.7(4), j is in i'sworld for round r. Therefore, i must have reeived a round r-1 message from j before moving toround r.A.1.2 CUP safety guaranteesWe now prove that the CUP implementation satis�es the CUP safety guarantees, assuming theenvironment satis�es the safety assumptions.Theorem A.1 The CUP algorithm satis�es well-formedness.Proof: This is straightforward from the ode and the well-formedness assumptions on the en-vironment. For ondition 1, assume that deidei ours. Then in the preeding state, mode =running. mode is initially ?, and the only way it beomes running is via initi. So there must bea preeding initi.For ondition 2, assume for the sake of ontradition that two deidei events our. Part 1implies that an initi preedes the �rst deidei. The �rst deidei sets modei to done. After thispoint, and before the seond deidei event ours, modei must beome running. This an happenonly as a result of another initi event. This means that two initi events must our, whihontradits the environment well-formedness assumption. Therefore, no more than one deideievent ours. 34



Theorem A.2 The CUP algorithm satis�es uniform agreement.Proof: If at most one deide event ours, the result follows immediately. So assume thatthere are at least two deide events. Consider the �rst deide event, deidei(v). By the pre-ondition, we know that in the pre-state, there exists r suh that world[r,i℄i 6= ? and 8j 2world[r,i℄i n out[r℄i, value[r,j℄i = v and world[r,j℄i � world[r,i℄i. Sine i does notleave, abstain, or deide before the deidei event, we know that i =2 out[r℄i in the pre-state; there-fore, value[r,i℄i = v. Also onsider any partiular later deide event, deidei0(v'). As above,we know that in the pre-state of this event, there exists r' suh that world[r',i'℄i0 6= ? and8j 2 world[r',i'℄i0 n out[r'℄i0, value[r',j℄i0 = v' and world[r',j℄i0 � world[r',i'℄i0.Moreover, value[r',i'℄i0 = v'.We now show that i0 2 world[r,i℄i. Sine i0 deides, it initiates and does not leave or fail beforeit deides. Sine i initiates before it deides, and thus before i0 deides, i0 does not leave or failbefore i initiates. Then the world onsisteny assumption implies that i0 gets put into world[1,i℄i.If r = 1 then we are done, so assume that r � 2. Then the value of world[r,i℄i is determined in anet masti(i,r,*,*) step. To see that i0 is inluded in world[r,i℄i, note that that set is de�nedin the net masti(i,r,*,*) step to inlude (at least) all proesses in world[1,i℄i that do notleave, abstain, deide, or fail before the net masti(i,r,*,*) event. And i0 does not leave, abstain,deide, or fail by then, beause this net masti(i,r,*,*) event happens prior to the deidei.We also know that i0 =2 out[r℄i in the pre-state of deidei. This is beause i0 has not left,abstained, or deided before the deidei.Next, we show that r' � r, that is, the round at whih i0 deides is at least as great as theround at whih i deides. Sine i0 2 world[r,i℄i and i0 =2 out[r℄i in the pre-state of deidei, thepreondition for deidei implies that value[r,i'℄i 6= ? in the pre-state of deidei. This meansthat i0 must send an (i',r,v,*) message. This implies that the round r' at whih i0 deides is atleast as great as r, that is, r' � r.Finally, we argue that v' = v. Invariant A.8, part 2, implies that in the pre-state of deidei0,if j 2 world[r,i℄i and if (j,r,v'',W'') is in the Net, then v'' = value[r,i℄i and W'' �world[r,i℄i. Sine r' � r and i0 2 world[r,i℄i, Invariant A.11, part 2, implies that in thepre-state of deidei0, value[r',i'℄i0 is either v or ?. Sine (as noted earlier) value[r',i'℄i0 =v', we have that v=v'.Theorem A.3 The CUP algorithm satis�es validity.Proof: Part 1 follows from Invariant A.5. Part 2 follows from Invariant A.10.A.1.3 CUP liveness guaranteesWe now show that CUP satis�es its liveness property|termination. Formally, the lemmas andtheorem we state in this setion should be interpreted with respet to an exeution � of theomposition of automata CUPi for i 2 I suh that:1. All the environment safety and liveness assumptions are satis�ed in �.2. � is \weakly fair" to all ations of all CUPi automata, in the sense that if an ation is enabledfrom some point onward, it eventually is performed.35



Lemma A.4 Let J be the set of proesses that initiate and never deide, leave, or fail, and supposethat i 2 J. If initi(v, W) ours and j 2 W then either j 2 J or else j abstains, leaves, deides, orfails.Proof: Follows from the init ourrene assumption.Lemma A.5 If proess i initiates and never deides, leaves, or fails, then roundi inreases withoutbound.Proof: Let J be the set of all proesses that initiate and never deide, leave, or fail. Assume forthe sake of ontradition that, for some proess i 2 J , roundi is bounded. Let r be the smallestround number suh that for some proess i 2 J, roundi is bounded by r, and �x suh i 2 J. Proessi annot get stuk at round 0, beause the initi ation immediately inrements the round to 1. Sowe may assume that r > 0.We argue that i annot be stuk at round r, by showing that for some v, W, the net masti(i,r+1,v,W)ation is eventually enabled and stays enabled. Then weak fairness implies that net masti(i,r+1,v,W)eventually ours.We laim that the last preondition of net masti(i,r+1,*,*) (the negation of the deidepreondition) is always true. For if not, then deidei(v) would be enabled for some v, and wouldstay enabled forever. This implies, by weak fairness, that deidei ours, a ontradition.Next, we laim that for every j 2 world[1,i℄, either i reeives a round r message from j, orelse i puts j into its failed[r'℄ set or out[r'℄ set for some r' � r. Fix any suh j. Lemma A.4implies that either j 2 J or j eventually abstains, leaves, deides, or fails. If j 2 J then by hoieof r, j does not get stuk at any round less than r, and so j eventually sends a round r message,whih i eventually reeives.If j fails, then eventually a fail deteti(j) ours, whih makes i put j into one of itsfailed[r'℄ sets. If r' � r then we are done; on the other hand, if r' > r then i reeives around r message from j.If j abstains and does not fail, then eventually i puts j into its out[1℄ set (whih suÆesbeause 1 � r). If j leaves or deides at a round r' � r, then eventually i puts j into its out[r'℄set. Finally, if j leaves or deides at a round r' > r, then eventually i reeives a round r messagefrom j.This laim implies that eventually the preondition of net masti(i,r+1,v,W) is satis�ed forsome v, W. Beause the values and worlds an only derease, eventually the preondition is satis�ed,and remains satis�ed, for the same v, W. Then weak fairness implies that the ation eventuallyours, whih moves j to round r + 1. This is a ontradition.Lemma A.6 Let J be the set of proesses that initiate and never deide, leave, or fail, and supposethat i 2 J. Then for r suÆiently large, world[r,i℄i = J.Proof: The result follows from two laims: that for all r, J � world[r,i℄i, and that for suÆ-iently large r, world[r,i℄i is a subset of J.First, we show that for all r, J � world[r,i℄i. World onsisteny implies that J � world[1,i℄i.Sine no element of J ever abstains, leaves, fails, or deides, no element of J is ever put into anyfailed[r℄i or out[r℄i. Then the de�nition of world[r,i℄i (in net mast(i,r,*,*)) implies thatfor all r, J � world[r,i℄i.Seond, we show that for suÆiently large r, world[r,i℄i is a subset of J. Let j be any elementof world[r,i℄i. Lemma A.4 implies that if j =2 J, then j eventually abstains, leaves, deides, or36



fails. But in any of these ases, j eventually gets put into some failed[r℄i or out[r℄i. This meansthat j is exluded from world[r,i℄i for suÆiently large r.Theorem A.7 The CUP algorithm satis�es termination.Proof: We prove that every proess that initiates eventually deides, leaves, or fails. Assume forthe sake of ontradition that there is at least one initiator that does not deide, leave, or fail. LetJ be the set of proesses that initiate and never deide, leave, or fail; then J is not empty. ThenLemma A.5 implies that the rounds of all proesses in J inrease without bound, and Lemma A.6implies that for suÆiently large r, world[r,i℄i = J for all i 2 J. Thus from some round onward,every proess in J bases its new value on values heard from exatly the members of J.Thereafter, eah i 2 J eventually reahes some minimum value of value[r,i℄i (by monotoniityand the fat that only �nitely many values an be used). Consider a round beyond whih all theminima have been attained. If these are all idential, then all proesses an deide based on thisvalue and world J, and we are done. On the other hand, if they are not all idential, then let i be aproess whose minimum is larger than some other proess' minimum. Then i would see a smallervalue and redue its value further, a ontradition.A.2 Atom Corretness Proof: Safety ArgumentsA.2.1 General InvariantsThe following invariants follow immediately from the ode:Invariant A.13 If join-sloti 6=1 then leave-sloti > join-sloti.Invariant A.14 Suppose s 2 ended-slotsi. Then:1. If j 2 joiners[s℄i then join-slotj = s.2. If j 2 leavers[s℄i then leave-slotj = s.Proof: Proess j an be inserted into joiners[s℄i (leavers[s℄i) only if i reeives a (j, JOIN,s-1) (resp. (j, LEAVE, s)) message, whih an be sent only by j and only if join-slotj = s(resp. leave-slotj = s).The following invariant asserts that from the join slot onward, slot messages (bulk, join, orleave) are multiast in order.Invariant A.15 If join-sloti� 1 � s' � s and s 2 mast-slotsi then s' 2 mast-slotsi.Proof: join-sloti had to have been set before urrent-sloti beomes s'+1 beause it is alwayshosen to be in the future. Therefore, net masti(i, *, s') is enabled one urrent-slotibeomes s'+1. This is earlier than the time at whih net masti(i, *, s) an our, so timeould not have passed beyond that point without net masti(i, *, s-1) ourring.The following invariant is entral to the rest of the proof. It asserts that by the time ofend sloti(s), i has all the right proesses in alive[s-1℄, alive[s℄, joiners[s℄, and joiners[s+1℄.37



Invariant A.16 If s 2 ended-slotsi then1. If join-slotj � s and s 2 mast-slotsj then j 2 alive[s-1℄i[ joiners[s℄i.2. If join-slotj � s+1 and s+1 2 mast-slotsj then j 2 alive[s℄i[ joiners[s+1℄.Proof: If j joined by slot s, it registered for the network before starting slot s-1. Moreover,if s 2 mast-slotsj, then by Invariant A.15, s-1 2 mast-slotsj, and therefore j multiastseither a (j, JOIN, s-1) or a bulk message in slot s-1, and by the Net's reliable delivery property,this message is not lost due to j's failure beause j multiasts a message in the following slot,whih ours � time later, and we assume that � > �, and messages sent more than � timebefore the failure are not lost. Likewise, if join-slotj � s+1 and s+1 2 mast-slotsj, then s2 mast-slotsj (by Invariant A.15), and j multiasts a bulk or join message in slot s, whih isnot lost due to j's failure.We will now show two things: �rst, that i joined early enough to get j's slot s-1 bulk or joinmessage; and seond, that end sloti(s) ourred late enough for i to have reeived j's slot s bulkor join message.Sine i does end slot for s, join-sloti � s. Proess i hooses its join-slot following thenet join OKi to be urrent-sloti + 2 + d�=�e, so urrent-sloti beomes s-1 at least � timeafter the net join OKi. Sine the maximum lok di�erene between i and j is �, j sends itsmessage (join or bulk) for slot s-1 no earlier than the time of the net join OKi, so i joined earlyenough to get j's message for slot s.It is left to show that i gets j's slot s bulk or join message for slot s before end sloti(s). Thisfollows from the preondition for end sloti whih asserts that loki > (s+ 1)� +�+ �. Thatis, that at least � + � time has elapsed sine slot s+1 has begun at i. Sine the lok di�erenebetween i and j is at most �, we get that at least � time has elapsed sine slot s+1 has begun atj. Sine j sends its slot s message one slot s+1 begins at j, and the network lateny is boundedby �, the message reahes i before end sloti(s).The following invariants are related to the suspets[s℄ sets.Invariant A.17 If suspets[s℄i is not empty, then join-sloti � s.Proof: suspets[s℄i gets set only upon end sloti(s), for whih this is a preondition. Onejoin-sloti is set to a non-1 value, it does not hange, by the singularity of join and net join OK.Invariant A.18 If j 2 suspets[s℄i then j has failed.Proof: Sine j gets inserted to suspets[s℄i during end sloti(s), j is in (alive[s-1℄i [joiners[s℄i n leavers[s℄i) n alive[s℄i). In partiular, j is in alive[s-1℄i[ joiners[s℄i,and therefore join-slotj � s. Moreover, j is not in alive[s℄i, so by the ontrapositive of In-variant A.16(2), s+1 62 mast-slotsj, whih implies that j either fails or leaves before sending aslot s+1 message. Sine j is also not in leavers[s℄i, j must have failed.Invariant A.19 If j 2 suspets[s℄i and j 2 suspets[s'℄i0 then |s' - s| � 1.38



Proof: Without loss of generality, assume s' � s. Sine j 2 suspets[s℄i, then j 2alive[s-1℄i[joiners[s℄i, and therefore join-slotj � s. Moreover, j is not in alive[s℄i when s 2 ended-slotsi,so by the ontrapositive of Invariant A.16(2), s+1 62 mast-slotsj. By Invariant A.15, for anyslot r > s, r 62 mast-slotsj, and therefore j 62 alive[r℄i0 for any r > s. Sine i0 suspets j inslot s', j is in alive[s'-1℄i0, and therefore s'-1 � s.The following invariant states that a proess does not abstain from CUP instanes pertainingto proesses that it suspets.Invariant A.20 If k 2 suspets[s℄i and CUP-status[k℄i = done then CUP-de-val[k℄i 6= ?.Proof: Assume by ontradition that the invariant is false. Sine CUP-status[k℄i = done whileCUP-de-val[k℄i = ?, then i must have performed CUP(k).abstaini. By the preondition forCUP(k).abstaini, CUP-status[k℄i was req when abstaini ourred, whih implies that end slot(s)iould not have already ourred, that is, all the slots in ended-slotsi were smaller than sat the time of CUP(k).abstaini. By the preondition for CUP(k).abstaini, when it ourred,CUP-req-val[k℄i had some non-? value, v, suh that v < s-1. This, in turn, implies that a(CUP-INIT, k) message with slot v had previously arrived. That means that suh a message waspreviously sent by some j, whih implies that k is added to suspets[v℄j, during end slotj(v),and remains there heneforward. But k 2 suspets[s℄i and v < s-1, a ontradition to Invari-ant A.19.Invariant A.21 If k 2 alive[s℄i, k 62 alive[s℄j, and s 2 ended-slotsj then k 2 suspets[s℄j.Moreover, if s+1 2 ended-slotsi then k 2 suspets[s+1℄i.Proof: Sine k 2 alive[s℄i, we know that join-slotk � s < leave-slotk and that s 2mast-slotsk. Therefore, by Invariant A.16(1), if s 2 ended-slotsj then k 2 alive[s-1℄j[joiners[s℄j. Additionally, k is neither in leavers[s℄i nor in leavers[s℄j, beause it doesnot leave at slot s. Therefore, sine k 62 alive[s℄j, in end slotj(s), k gets inserted intosuspets[s℄j.Sine k 62 alive[s℄j, by the ontrapositive of Invariant A.16(2), we get that s+1 62 mast-slotsk.That is, k does not send a bulk or leave message for slot s+1. Therefore, k 62 alive[s+1℄i[leavers[s+1℄i when end sloti(s+1) ours, and k gets inserted into suspets[s+1℄i when s+1is inserted to ended-slotsi.Invariant A.22 If k 2 alive[s℄i and s+1 2 ended-slotsi and CUP-de-val[k℄j � s then k 2suspets[s+1℄i.Proof: Sine k 2 alive[s℄i, join-slotk � s < leave-slotk. Sine CUP-de-val[k℄j �,then by the validity property of CUP, some proess l must have initiated CUP(k) with an ini-tial value s' � s. This implies that k 2 suspets[s'℄l, and therefore k 62 alive[s'℄l and s'2 ended-slotsl. By ontrapositive of Invariant A.16, s'+1 62 mast-slotsk, and therefore alsos'+1 62 mast-slotsk. So i does not hear a bulk or leave message from k for slot s+1, and k 2suspets[s+1℄i.Lemma A.8 Assume that for some proesses j; k; l CUP(k).initl(v, W) ours with j 2W, andthat CUP(k).initi(v', W') also ours. Then net join OKj has ourred before CUP(k).initi(v',W'). 39



Proof: By the preondition for CUP(k).init, k 2 suspets[v'℄i and k 2 suspets[v℄l, so byInvariant A.19, v0 � v � 1. When CUP(k).initl(v, W) ours, W = alive[v℄l[ joiners[v+1℄l.Sine j 2W, this implies that join-slotj � v+1 � v'+2. Assume CUP(k).initi(v', W') oursat time t. So at time t, v' 2 ended-slotsi. By the preondition for end sloti(v'), at time tloki > (v0+1)�+�+�. Sine v'+1 � join-slotj �1, at this time loki > (join-slotj�1)�+�+�. Sine the lok skew is bounded by �, at time t, lokj > (join-slotj� 1)�+�.So t is at least � time after j begins slot join-slotj � 1. But join-slotj is hosen to be atleast 2 slots after the slot at whih net join OKj ours at j, so j begins join-slotj � 1 after thenet join OKj, i.e., before time t.A.2.2 Safety environment onditions for CUPWell-formedness CUP(k).initi only ours when k beomes suspeted at i. One k is sus-peted, it is never again alive. Therefore, it is never suspeted again and CUP(k).initi ours atmost one. By Invariant A.20, sine k is suspeted at i, i does not abstain. Thus, at most oneiniti or abstaini event ours.The fat that at most one leavei event ours and at most one faili event ours is ensuredby the appliation, sine leave and fail ations are routed diretly from the appliation to allinstanes of CUP.The fat that no faili preedes an initi follows from the fat that failures a�et all omponentsand proesses do not take any steps after they fail.One of the preonditions end sloti is that leave-sloti = 1, that is, that leavei did notour. Therefore, no leavei preedes an initi.World onsisteny Assume that CUP(k).initi(s, W) ours at time t, j does not leave or failbefore time t, and CUP(k).initj(s', *) also ours. We need to show that j 2W.CUP(k).initi(s, W) is triggered during end sloti(s). We need to show that at this time j 2alive[s℄i[ joiners[s+1℄i. This is true if i reeives j's slot s bulk or join message.By the preondition for end sloti(s), loki > (s+1)�+�+� at time t. Sine the di�erenebetween a proess lok and real time is at most �=2, the real time assoiated with point t is atleast (s+1)�+�+ �=2. By assumption, j does not fail or leave until this time.By Invariant A.19, s' � s+1. When CUP(k).initj(s',*) ours, k 2suspets[s'℄j. ByInvariant A.17, join-slotj � s'. Together these two inequalities imply that join-slotj � s+1.Therefore, if j does not fail or leave before lokj beomes s+1�, j multiasts its slot s bulk or joinmessage when lokj = (s+1)� (a join message is multiast if join-slotj = s+1; otherwise jmultiasts a slot s bulk message). When lokj = (s+1)�, the real time is at most (s+1)�+�=2.If j does not fail until the real time beomes (s+1)�+�=2+�, then j's message is not lost, and ireeives it by time (s+1)�+�=2 +�. But we assume that j does not fail or leave until this time.Aurate failure detetor CUP(k).fail deteti(j) ours only if for some slot s j 2suspets[s℄i.Therefore, by Invariant A.18, j has previously failed. Moreover, sine a proess is never again aliveafter it is suspeted, it is never again suspeted, and CUP(k).fail deteti(j) does not reur.Aurate leave detetor CUP(k).leave deteti(j) ours only if a LEAVE message is re-eived from j; j sends at most one suh a message and only if it atually leaves.40



Lossless leave Assume a CUP proess at j multiasts a message m, and subsequently, leavejours. When leavej ours, a LEAVE message is inserted to out-bufj to be sent in the ensuingslot. This LEAVE message is multiast after m. leave deteti(j) ours when this LEAVEmessage is reeived. By the fifo property of Net, net rvj(m) ours beforehand.A.2.3 Proving the total order propertyWe now prove that all the proess deliver messages in a onsistent total order. We de�ne the totalorder S as follows: Let Ps be the union of all sets P suh that an ation members(P, s)i ours.The set of messages Ss is de�ned to be those messages inluded in slot s bulk messages by proessesin Ps. The set of messages in S is de�ned to be the union of all sets Ss.The ordering is based on slots, so that for s < s', all messages in Ss preede all messages inS0s. For messages pertaining to the same set Ss, the ordering is by proess indies. For the sameslot and proess index, the ordering is the temporal order of sending (at the external boundary ofAtom).We have to show that every proess delivers a ontiguous subsequene of S. We �rst proveLemma A.9, asserting that every two proesses that perform a members(P, s) ation for a slots do so with the same membership set P. As part of this ation, proesses deliver messages forslot s. Next, we prove Lemma A.10, asserting that if a proess i performs membersi(P, s) withj 2P, then i has reeived a bulk message for slot s from j, and therefore triggers the delivery ofall the messages inluded in it as an e�et of the membersi(P, s) ation. Thus, every proessthat performs members(P, s), triggers the delivery of all the messages in Ss. These messages aredelivered in order of the sender's proess index, and for eah proess, in fifo order. Therefore,these messages are delivered in the order de�ned on Ss.Sine every proess performs members(P, s) for a ontiguous subsequene of slots, every proessdelivers a ontiguous subsequene of the messages in S.We now prove the lemmas:Lemma A.9 If members(P,s)i and members(P',s)j our, then P= P'.Proof: Let k be a proess in P. At the time members(P,s)i ours, k 2 alive[s℄i, s+1 2ended-slotsi, and CUP-de-val[k℄i is either ? or larger than s. Assume by way of ontraditionthat k 62 P', then either k 62 alive[s℄j or CUP-de-val[k℄j � s when members(P',s)j ours.Assume �rst that k 62 alive[s℄j. Note that s 2 ended-slotsj when members(P',s)j o-urs, so by Invariant A.21, k 2 suspets[s℄j at the time members(P',s)j ours. By the pre-ondition for members(P',s)j, CUP-status[k℄j = done when it ours, and by Invariant A.20,CUP-de-val[k℄j 6= ?, that is, CUP(k).deidej(v) ourred for some v and set CUP-de-val[k℄j= v. By the well-formedness property of CUP, j initiated CUP(k). Sine k 2 suspets[s℄j, kannot be inluded in suspets[s'℄j for any s' 6= s, and so j initiated CUP(k) with s. By thevalidity ondition of CUP, v � s.Sine s+1 2 ended-slotsi when members(P,s)i ours, by Invariant A.21, k 2 suspets[s+1℄iat this time. Therefore, by the preondition for members(P,s)i, CUP-status[k℄i = done. By A.20,CUP-de-val[k℄i 6= ?, that is, CUP(k).deidei ourred, and by the uniform agreement property,CUP-de-val[k℄i = CUP-de-val[k℄j � s. A ontradition.Now, assume that CUP-de-val[k℄j � s when members(P',s)j ours. Sine s+1 2 ended-slotsiwhen members(P,s)i ours, by Invariant A.22, k 2 suspets[s+1℄i at this time. Therefore, bythe preondition for members(P,s)i, CUP-status[k℄i = done. By Invariant A.20, CUP-de-val[k℄i 6=41



?, that is, CUP(k).deidei ourred, and by the uniform agreement property, CUP-de-val[k℄i =CUP-de-val[k℄j � s. A ontradition.Lemma A.10 If membersi(P,s) ours, then for every j 2P, i reeived a bulk message for slot sfrom j prior to the membersi(P,s) ation.Proof: Assume membersi(P,s) ours. Sine j 2P, by the preondition for membersi(P,s), j 2alive[s℄i. By de�nition of alive[s℄, in-buf[s,j℄ 6= ? , that is, i reeived a bulk message fromj for slot s.A.3 Atom Corretness Proof: Liveness ArgumentsIn the liveness proof, we an use the safety guarantees of CUP, sine they depend only on the safetyassumptions about the environment.A.3.1 General liveness lemmasLemma A.11 Time passes. urrent-sloti inreases through all slot values from zero onward, aslong as i does not fail.Lemma A.12 If i does not leave or fail, then end sloti(s) ours for every slot s � join-sloti.Lemma A.13 If i leaves and does not fail, then eventually i multiasts a (i, LEAVE, s) message.A.3.2 Liveness environment onditions for CUPInit ourrene Assume that initi(s, W) event ours and j 2 W, and neither i nor j leaves orfails.Sine j 2W, j 2alive[s℄ [ joiners[s+1℄ at the time initi(s, W) is triggered, whih meansthat net join OKj had already ourred prior to the initi(s, W) event. When initi(s, W) istriggered, i multiasts an (CUP-INIT, k) message. Sine neither i nor j leaves or fails, j reeivesthis message.Consider the pre-state value of CUP-status[k℄ when the (CUP-INIT, k) message from i arrivesat j. If CUP-status[k℄ is running or done, then either CUP(k).initj or CUP(k).abstainj hadto have already ourred and we are done. Otherwise, after this step CUP-status[k℄ = req, andCUP-req-val[k℄ =v. Sine j does not leave or fail, by Lemma A.12, it eventually has slots largerthan v in ended-slotsj, so either CUP(k).initj(*) or abstain CUP(k).abstainj beomes enabled,depending on whether k is suspeted in some slot or in none.Reliable delivery Assume that for some proesses j; k; l CUP(k).initl(v, W) ours with j 2W,and that either CUP(k).initi(v', W') or CUP(k).abstaini ours. We will show that by thetime that either CUP(k).initi(v', W') or CUP(k).abstaini ours, net join OKj had alreadyourred. This will imply that for any net masti(m) that ours after this event, a net rvj(m)will our unless either i will fail, or j will fail or leave.If CUP(k).initi(v', W') ours, by Lemma A.8, net join OKj ours �rst. Now, onsiderthe ase that CUP(k).abstaini ours. Proess i an only abstain after it reeives an (CUP-INIT, k) message whih ould have only been sent if some other proess i0 has already triggeredCUP(k).initi0. By Lemma A.8, net join OKj must have ourred before the CUP(k).initi0 event.42



Complete leave and failure detetor If CUP(k).initi(v,W) ours with j 2W , then j 2alive[v℄i[ joiners[v+1℄. Assume that i does not deide or leave or fail. Then CUP-status[k℄i remainsrunning from the time of the CUP(k).initi(v,W) event onward. If leavej ours, j sends a LEAVEmessage whih i reeives. When i reeives j's LEAVE message, i triggers leave deteti(j) andwe are done. Otherwise, assume j does not leave and failj ours, then eventually there is aslot for whih i does not reeive j's messages. Let s be the �rst suh slot, so j 62alive[s℄iwhile j 2alive[s-1℄i [ joiners[s℄i, so sine j does not leave in s, j 2suspets[s℄. Sinej 2alive[v℄i [ joiners[v+1℄, s > v, and i triggers fail deteti(j)while performing end sloti(s).A.3.3 Liveness of AtomEventual join Assume no faili ours. When joini ours, net joini is triggered, and byfairness, eventually ours. By the eventual join property of Net, net join OKi eventually ours.At that point, join-sloti is set to be bigger than urrent-sloti. join-sloti does not hange fromthat point onward, sine by the join integrity property of Net, no more net join OKi events our.By Lemma A.11, urrent-sloti eventually beomes equal to join-sloti. When that happens,join OKi beomes enabled, and remains enabled, as long as no time passes, until it ours. Byour assumption on time passage, no time passes until join OKi ours. Therefore, by fairness, iteventually ours.Eventual leave Assume no faili ours. When leavei ours, leave-sloti is set to be biggerthan urrent-sloti. leave-sloti does not hange from that point onward, sine by our assump-tion on the appliation, no more leavei events our. By Lemma A.13, i eventually multiasts a (i,LEAVE, leave-sloti) message, at whih point leave-sloti is added to mast-slotsi. When thathappens, net leavei beomes enabled and remains enabled until it ours. Then, by the eventualleave property of Net, net leave OKi eventually ours and triggers leave OKi.Message delivery The following lemma asserts that a proess that partiipates in the algorithmand does not leave or fail ontinues to perform members(P, s) forever.Lemma A.14 If masti(m) ours for some m when s = urrent-sloti, and no faili or leaveiours, then for every s' � s, membersi(P, s') ours.Proof: Sine masti(m) ours, by our assumption about the appliation, it is preeded by ajoin OKi. Therefore, m is appended to out-buf[s℄i. By Lemma A.11, urrent-sloti beomess+1, and so i eventually sends its bulk message for slot s with m inluded in it. By liveness of Net,net rvi(i, m', s) ours, where m0 is i's slot s bulk message.By Lemma A.12, end sloti(s) ours for every slot s � join-sloti. The sets suspets[s℄iand suspets[s+1℄i are set when end sloti(s) (resp. end sloti(s+1)) ours, at whih pointa CUP instane for eah proess in these sets is initiated, and the set do not hange afterwards.By the termination property of CUP, these instanes of CUP eventually terminate, setting theorresponding CUP-status to done. Therefore, members(P, s)i eventually beomes enabled forsome P, and by fairness, ours.We now prove that the message delivery liveness property holds.Assume masti(m) ours, and no faili or leavei ours. We �rst show that S ontains m andrvi(m) ours. Let s = urrent-sloti when masti(m) ours. By Lemma A.14, members(P,43



s)i ours. We now show that i 2 P . This will imply that m 2 S (by de�nition of S), and thatrvi(m) ours (sine it is triggered by members(P, s)i).To show that i 2P, we have to show that j 2 alive[s℄i and CUP-de-val[i℄i = ? at thetime members(P, s)i ours. Sine at this time s+1 2 ended-slotsi, by Invariant A.16, j 2alive[s℄i. By Invariant A.18, sine i does not fail it never beomes a suspet, and therefore, noinstane of CUP is run for i, and CUP-de-val[i℄i = ?.It remains to show that for every m0 that follows m in S, rvi(m') also ours. By de�nitionof S, m0 is inluded in a bulk message for some slot s' � s from some proess i0, suh that i0 2 P 0and membersj(P', s') ours for some j. By Lemma A.14, members(P'', s')i also ours, andby Lemma A.9, P' = P''. Therefore, rvi(m') is triggered by the members(P'', s')i ation.
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