
Journal of High Speed Networks 5 (1996) 365-381
lOS Press

Self-stabilizing end-to-end communication*

Baruch Awerbuch t
The fohns Hopkins University, Baltimore, MD, USA

Boaz Patt-Shamir:j:
Northeastern University, Boston, MA, USA

George Varghese**
School of Engineering and Applied Science, Washington University in St Louis, Campus Box 1115,
One Brookings Drive, St Louis, Missouri 63130-4899, USA

365

Abstract. Self-stabilizing protocols must begin operating correctly even when started from an arbitrary state. The end-to-end problem is
to ensure reliable message delivery across an unreliable network under the weakest possible guarantee from the network - that the sender
and receiver are never separated by a cut of permanently failed links. In this paper we present the first self-stabilizing end-to-end protocol.
Our solution has message complexities comparable with the best known non-stabilizing solutions. Our solution also has good stabilization
time complexity: the time for the protocol to stabilize has the same complexity as the time the protocol takes to deliver a message.

1. Introduction

Informally, a protocol is self-stabilizing if when started from an arbitrary global state it exhibits 'correct'
behavior after finite time. While typical protocols are designed to cope with a specified set of failure modes (e.g.,
message loss, link failures), a self-stabilizing protocol essentially copes with a set of failures that subsumes most
previous categories and is also robust against transient errors (such as memory corruption and malfunctioning
devices that send out incorrect messages). There is evidence from real networks that such transient errors do
occur [14] and cause systems to fail unpredictably. Thus stabilizing protocols are attractive because they offer
increased robustness (especially to transient faults) as well as potential simplicity (because a stabilizing protocol
can avoid the need for a slew of independent mechanisms to deal with a catalog of anticipated faults).

Self-stabilizing protocols were introduced by Dijkstra [9]. Since then, they have been studied by various
researchers; refer to [16] for a recent survey. In this paper, we will describe the first stabilizing solution to a
basic networking problem called the end-to-end communication problem.

The essence of end-to-end communication is delivery, in finite time, of a sequence of data items, generated
at a designated sender, to a designated receiver across an unreliable network, without duplication, omission
or re-ordering. If network links never fail, the end-to-end task is performed easily by establishing a fixed

'The ideas in this paper were first described in an extended abstract that appeared in the 32nd IEEE Symposium on Foundations of
Computer Science, October 1991.

t Supported by Air Force Contract TNDGAFOSR-86-0078, ARO contract DAAL03-86-K-0171, NSF contract CCR8611442, and a special
grant from IBM.

+Supported by ONR contract N00014-85-K-0168, by NSF grants CCR-8915206, and by DARPA contracts N00014-89-J-1988.
"Corresponding author, Tel.: +1 3149356106, E-mail: varghese@askew.wustl.edu. Supported by NSF Research Grant NCR-9405444;

part of this work was done while the author was at Lab. for Computer Science, MIT.

0926-6801/96/$8.00 © 1996 - lOS Press. All rights reserved

366 B. Awerbuch et al. / Self-stabilizing end-tv-end communication

Node u
_.--"' --.~

Sender(Y-
S -...... \

..... 1.
-"-..~)-

..... -- "\) Receiver ____ r

Node v

Fig. 1. In the network, dotted lines represent links that crash and recover so frequently that they cannot be used to send a single packet.

communication path of FIFO (First-In First-Out) links between sender and receiver. Unfortunately, real networks
are dynamic - links may repeatedly fail and recover.

The 'classical' approach to handle the problem is to construct a new communication path when an old path
fails and to reroute the existing virtual circuit (or transport connection) along the new path. This approach
works reasonably for small networks but assumes [1,10] that the entire network stabilizes long enough to allow
construction of a new path. As networks get larger, this assumption is overly optimistic. For example, if every
edge has a constant probability of being operational, then the probability of an entire path being operational is
exponentially small in the path length.

In the network shown in Fig. 1, assume that the dotted lines represent links that crash and recover so frequently
that they cannot be used to send a single packet. Suppose also that the link from s to u is up only in the first
5 seconds of every minute and the link from v to 1 is up only in the last 5 seconds of every minute; then the
network is disconnected at all instants of time! However, one can send packets from sender to the receiver as
follows: in the first 5 seconds of every minute, the sender sends packets to u, u then sends packets to v; finally,
v buffers the packets till it can send them to the receiver (in the last 5 seconds of every minute).

However, a conventional routing protocol (e.g., the OSI Routing Protocol [13]) can do very badly on such a
network. If the link from u to 1 has sufficiently lower 'cost' than the link from v to I, then the routing protocol
can cause packets to keep looping. When packets reach u, if u knows that its link to 1 is down, u may route
packets to v. However, suppose that when a packet reaches v, v has heard that the link from u to 1 is up; then
v may send the packet back to u and this process can continue indefinitely. Clearly any control system, where
the feedback delay is large compared to the rate at which the state changes, is subject to oscillation.! Are there
protocols that can deal with a pathological network like Fig. 1?

As we have seen in Fig. 1, the existence of an operational communication path is not necessary for commu
nication between a sender and a receiver. The necessary condition [3] is eventual connectivity - i.e., there is
no cut of permanently failed edges between the sender and receiver. Observe that in networks with frequently
changing topology, feedback about link failures is useless. So why not ignore such notifications?

Most Data Link protocols use retransmissions to deal with link errors; however, if the retransmissions exceed
some limit, the protocol will decide the link is down, and notify the routing protocol. In networks with slowly
changing topology, this notification allows the routing protocol to use other links. However, suppose that we
modify the Data Link protocol to keep retransmitting packets indefinitely till an acknowledgement is received.
If the link comes up eventually, the packets will be transmitted successfully. No failure notifications are sent.
This modification (introduced in [4]) reduces the extremely dynamic eventually connected model to a simpler
and more static fail-stop model.

In the fail-stop model, the network topology is fixed, but some links may fail forever, without notification.
A link is non-viable if, starting from some time, the link does not deliver further messages; otherwise the link
is viable. In essence, a non-viable link is a link in which the sequence of received messages is a proper prefix
of the sequence of sent messages. We say that the sender is viably connected to the receiver if there exists a
simple path of viable links between them. Thus in Fig. 1, after reduction to the fail-stop model, we can consider

1 A simple heuristic fix [15] is to use hysteresis in bringing up links such that links that keep failing and recovering are 'suspended' for
exponentially increasing amounts of time each time they fail. However, in the network of Fig. 1 that will result in suspending the link from
s to u and the link from r to v, effectively disconnecting the network forever.

B. Awerbuch et al. / Self-stabilizing end-to-end communication 367

the dotted and solid links to represent non-viable and viable links respectively. The network in Fig. 1 is viably
connected using the path from s to u, u to v and v to T.

The introduction of the fail-stop model leads to the first polynomial time solution [6] and finally to perhaps
the simplest and most elegant solution [5]. For the rest of this paper we will use the fail-stop model. Earlier
solutions were not stabilizing. In this paper we address the problem of designing a self-stabilizing end-to-end
protocol. We also assume self-stabilization of the Data Link layer - i.e., the Data Link begins to operate
correctly from some bounded time onwards, for all links, both viable and non-viable.2 Since the specifications
of the end-to-end and Data Link problems are identical, our task can be viewed as extending the guarantees of
a self-stabilizing Data Link protocol to the end-to-end layer.

One way to solve the end-to-end problem in a fail-stop network is to flood every message that is to be sent
through the network along with a sequence number. The sequence number allows the receiver to reject duplicate
copies and prevents messages from looping indefinitely in the network.3 However, if all the bits in the sequence
number are erroneously set to 1 at a node, the sequence number cannot be incremented further, and the protocol
will not be self-stabilizing. One way to make this scheme self-stabilizing [13] is to bound the lifetime of packets;
if the sequence number reaches the maximum value, the protocol essentially stops for a period long enough for
all old packets to die.

The disadvantage of the approach in [13] is the need to know time bounds and the fact that timers have
to be set conservatively to take into account delay variances and maximum network diameters; this results in
large stabilization times. Our solution, however, shows that it is possible to build a self-stabilizing end-to-end
protocol under the weakest possible assumptions - i.e., the network is eventually connected and completely
asynchronous.

The rest of the paper is organized as follows. First, in Section 2, we provide a formal model of a fail-stop
network model and a formal specification of what a stabilizing end-to-end protocol must provide. In Section 3
we show how to reduce a fail-stop network to what we call a C-channel in a stabilizing fashion. Our solution
consists of applying a general method called local checking to the original SLIDE protocol of [5]. Next, in
Section 4 we show how to implement reliable message transfer over a C-channel using a stabilizing bounded
channel protocol. The formal specification of a C-channel in Section 3 forms a logical firewall between the two
parts of the solution in Sections 3 and 4.

2. The model and problem statement

We model the nodes and links of a fail-stop network using a variant of the Input/Output Automaton (lOA)
model [11,12]. For example, we can model a FIFO link by an automaton (state machine) in which the state
of the link is the queue of packets stored on the link. Two transitions that can change the state of the link are
actions by which the external world or environment sends a packet to the link (e.g., SEND) and actions by which
the link delivers stored packets to the environment (e.g., RECEIVE).

In the lOA model, transitions by which the environment affects the automaton (e.g., SEND) are called Input
actions while transitions by which the automaton affects the environment (e.g., RECEIVE) are called Output
actions. Input actions are under the control of the environment while output actions are under the control of the
automaton. Finally, there are internal actions which only change the state of the automaton without affecting
the environment.

Formally, an 1/0 Automaton (henceforth lOA) is characterized by its state set S, an action set A, an action
signature G (that classifies the action set into input, output, and internal actions), a transition relation R <;;::

S x A x S, a set of initial states I <;;:: S. The set of output and internal actions are called the locally controlled

2Self-stabilizing Data Link protocols are well-known [2].
3 A similar approach is used in the OSI Link State Packet propagation algorithm described in [13].

368 B. Awerbuch et al. / Self-stabilizing end-to-end communication

actions of the automaton. Fairness is specified by dividing the set of locally controlled actions into a finite
number of equivalence classes. For stabilization, we will often limit ourselves to a special type of lOA that we
call a VIDA (for un initialized IDA) in which the state set is finite and I = S. In other words, any state is a
possible start state for a UIOA.

An action a is said to be enabled in state S if there exists s' E S such that (s, a, s') E R. By definition, input
actions are always enabled. An execution of the automaton is modeled by an alternating sequence of states arid
actions (so, aI, Sl, ...), such that (Si, ai, Si+I) E R for all i ? 0, So is a start state, and the execution is fair. An
execution E is fair if every locally controlled class C is given a 'fair turn'; more formally, if some action of
C is enabled in some state S of E, then either some action in E occurs after S or there is some later state in
which no action of C is enabled.

There is a notion of composition of automata that allows automata to be 'plugged together' using simultaneous
performance of shared actions. For example, consider a node automaton that had an action to send a packet
Smm(p) as an output action. If this is the same name as the input action for a channel automaton, when the
two automata are composed, whenever the node performs a SEND(p) output action, the channel simultaneously
performs a SEND(p) input action. Formal details can be found in [11]; intuitively the composition of automata
is a new automaton whose state set is the cross-product of the component state sets, whose transition relation is
obtained from the component automata in the natural way, and whose locally controlled classes are the union
of the locally controlled classes of the component automata.

Finally, a behavior is the subsequence of an execution consisting of external (i.e., input and output) actions.
Thus each automaton generates a set of behaviors. We specify the correctness of a protocol using a set of
behaviors P; an automaton A is said to solve P if the behaviors of A are a subset of P. This definition reflects
a belief that the correctness of an automaton should be specified in terms of its externally observable behavior.
For example, to specify a FIFO Data Link we might require that the sequence of received packets be identical
to the sequence of sent packets.

Modeling the topology oj jail-stop networks. The topology of a fail-stop network (e.g., Fig. 1) is specified
using a special graph, that we call an end-to-end graph. An end-to-end graph is a directed graph G = (V, E)
with the following additional properties:

1. Symmetry: If there is a link from u to v there is a link from v to u - i.e. (u, v) E E iff (v, u) E E.
2. Distinguished nodes: There are two distinguished nodes s, rEV called the sender and receiver nodes

respectively.
3. Edge labels: Each edge in E is labeled as either viable or non-viable subject to two conditions. First, for

every (u,v) E E the label of (u,v) is the same as the label of (v,u). Second, there must be at least one
path between sand r in G consisting of only viable links.

In what follows, when we use the word graph we will mean an end-to-end graph. Notice that the third part of
the definition models the minimum fairness condition needed to solve the end-to-end problem. The consequences
of an edge being labeled viable or non-viable were intuitively described earlier and will be formally described
below. For a graph G = (V, E), we use n = IVI and m = lEI to denote the number of nodes and links
respectively. An actual end-to-end system for a graph G will consist of node automata Nt< for every node in G
and a link automaton for every edge.

Modeling links in a jail-stop network. Traditional models of a FIFO Data Link allow a link to store an
unbounded number of packets. For the stabilizing end-to-end problem, however, we can initialize non-viable
links with an unbounded number of bad packets and deliver these bad packets an unbounded amount of time
later. Thus a stabilizing solution to the end-to-end problem would be impossible under this 'unbounded capacity'
assumption. Since real links are bounded and bounded links can be modeled elegantly, we restrict ourselves to
bounded link models.

For each unidirectional link in G, we will assume there is a special type of channel automaton called a
unit capacity Data Link (UDL). Intuitively, a UDL can store at most one packet at any instant. Node automata

B. Awerbuch et ai. / Selrstabilizing end-to-end communication

Each p belongs to the packet alphabet P defined above.

The state of the automaton consists of a single valiable Qu,v E P U {nil}.

SENDu,v (p) (* input action by which u sends a packet to link *)

Effect:
If Qu,v = nil then Qu,v := p; (* packet stored if link was empty *)

FREEu,v (* output action that tells node u that link is free *)

Precondition: Qu,v = nil (* enabled whenever link is empty *)

Effect: None

RECEIVEu,v (p) (* output action by which link delivers a packet to node v *)

Precondition: p = Qu,v =I nil

Effect: Qu,v := nil; (* remove delivered packet from link *)

If (u, v) is a viable link the FREE and RECEIVE actions are in separate

classes. If (u, v) is non-viable there are no locally controlled classes.

Fig. 2. Unit capacity Data Link automaton.

369

communicate by sending packets to the UDLs that connect them. We show [17] that a UDL can be implemented
over real physical channels and can be generalized to bounded capacity links.

Besides the usual actions to send and receive packets a UDL also has an output action FREE to tell the sender
that the link is ready to accept a new packet. This allows the sender to cope with the fact that the link has
bounded capacity without causing packets to be dropped. Formally, we say that Cu,v is the UDL cOlTesponding
to link (u, v) in an end-to-end graph G if Cu,v is the IOA defined in Fig. 2.

We parameterize the UDL by the sender and receiver nodes. For the UDL Cu,v, the sender is u and the
receiver is v. The external interface to Cu,v includes an action to send a packet at node u (SENDu,v(p), an
action to deliver a packet at node v (RECEIVEu,v(p), and an action FREEu,v(p) that tells node u that the link is
free. The state of Cu,v is simply a single variable Qu,v that stores a packet or has the default value of nil.

Notice three points about the specification of the UDL. The UDL is the UIOA - i.e., we have not defined any
start states for the UDL. Second, if the UDL has a packet stored, then any new packet sent will be dropped. The
FREE action is enabled whenever the UDL does not contain a packet. Notice also that if the link is viable, then
any stored packet will eventually be delivered; also if the link is empty, eventually, a FREE action is delivered.
However, with a non-viable link there are no such guarantees.

Modeling a fail-stop network. We use a second unit of data transfer called message. Informally, messages are
the units of data that are input to the fail-stop network at the sender node and delivered from the network at the
receiver node; packets are the unit of data transfer that the protocol uses within the network. We use the letter
m to denote messages and the letter P to denote packets. Formally, messages are drawn from a fixed message
alphabet M.

We model a fail-stop network for end-to-end graph G as the composition of arbitrary node automata and
UDLs for every edge. We also require that the sender and receiver nodes have special interfaces to send and
receive messages. Formally, an end-to-end automaton for end-to-end graph G is the composition of arbitrary
node automata {Nu, u E V} and UDL's {Cu,v, (u,v) E E}. The sender node s must have an input action
SEND..MESSAGE(m), mE M, and an output action FREE.MESSAGE; also the receiver node r must have output
action RECEIVE..MESSAGE(m), mE M.

370 B. Awerbuch et ai. / Self:stabilizing end-to-end communication

Correctness and performance metrics. A behavior of an end-to-end automaton is the subsequence of execu
tions containing SEND_MESSAGE, FREE_MESSAGE and RECEIVE_MESSAGE actions. We would like an end-to-end
automaton to deliver messages sent at the sender reliably and in FIFO order to the receiver. We state this
correctness condition formally using what we call a unit capacity message link (UML). Formally, a UML is
identical to a viable UDL except with messages replacing packets and the SENDu,v, FREEu,v and RECEIVEu,v
actions replaced by SEND~ESSAGE, FREE~ESSAGE and RECEIVE~ESSAGE actions respectively.

For stabilization, we allow the channels initially to have stored packets and the nodes to be uninitialized
automata. However, we will only require that the network 'eventually' begins to behave like a unit capacity
message link.

Formally, let G be any end-to-end graph. We say that N is a stabilizing end-to-end protocol for graph G if:

- N is an end-to-end automaton for graph G in which all node and channel automata are UIOA (i.e., every
state is a possible start state).

- Every behavior of N has some suffix that is a behavior of the UML.

Our definition says nothing about how long a solution N takes to stabilize. Thus we use time complexity
measures to evaluate solutions to the end-to-end problem. For an end-to-end automaton, to evaluate time
complexity4 we assume that no packet can be stored on a viable link for more than 1 time unit, and that a viable
link cannot be empty for more than 1 time unit without delivering a free signal. With this assumption, we can
define the following metrics for a stabilizing end-to-end protocol N for graph G. Intuitively, Stabilization time
is the worst case time it takes N to stabilize; Message delivery time is the worst case time to deliver a message.
Formal definitions can be found in [7]. Space is the maximal amount of space required by a node program.

3. Reducing a fail-stop network to a C-channel using SLIDE

The (non-stabilizing) end-to-end protocol described in [5] has two parts: first part is the SLIDE protocol that
is used to reduce a fail-stop network to a non-FIFO bounded capacity link that we call a C-channel. In this
section, we review their solution and briefly describe the modifications required to create a stabilizing SLIDE.
The second part of [5] shows how to implement reliable message delivery over a C-channel. Our protocol to
implement the second part is quite different from the original solution. We describe the second part of our
solution in Section 4. We start by formally defining a C-channel.

A C-channel is a Data Link that can store up to C packets but can deliver stored packets in any order. The
state of a C-channel state consists of two components: an input queue IQ that can store a single packet and a
multiset M that can store up to (C - 1) packets. The state machine has three main transitions that can change its
state: an action SENDJ'ACKET by which a sender sends a packet, an action FREE_PACKET by which the channel
announces that its input queue is free, and an action RECEIVE_PACKET by which the channel delivers a packet
to a receiver. There is also an internal action called FILL-CHANNEL.

The formal specification for the C-channel is given in Fig. 3. The state machine works as follows. Whenever
the input queue is empty, the channel can perform a FREE_PACKET event. A SEND_PACKET(p) event can occur at
any time but if it occurs when the input queue already stores a packet, the packet is dropped (as in the UDL);
otherwise, the packet p is stored in the Input queue. A FILL-CHANNEL event can occur whenever the input queue
stores a packet p and the channel multiset has strictly less than (C - 1) packets; it results in emptying the input
queue and placing packet p in the multiset. Finally, a RECEIVE_PACKET(p) event is enabled whenever p E M,
after which p is removed from the multi set.

Notice that all locally controlled actions are in a single class. Thus the 'liveness' guarantees of the C-channel
are very weak. For example, it guarantees that if the C-channel is completely empty then a FREE_PACKET signal
will eventually be delivered; similarly, if the C-channel is full, then some packet will be eventually delivered.
This specification does not seem much stronger than the original fail-stop network; nevertheless, protocols can
be devised that use the weak guarantees of a C-channel to create reliable Data Links.

4Note this assumption is only used to evaluate time complexity; the solutions must work correctly regardless of timing assumptions.

B. Awerbuch et at. I Self-stabilizing end-to-end communication

Let P be the data packet alphabet. IQ belongs to the domain P U {nil}

M is a multiset of size at most C containing packets that belong to
domain P. We use p to denote an element of P.

SEND.l'ACKET(p) (* input action to send packet to channel *)

Action:
If IQ = nil then IQ := p; (* store packet if input queue is empty *)

FREE.l'ACKET (* output action to tell sender that channel is not full *)

Precondition: IQ = nil (* enabled whenever input queue is empty *)

FILLCHANNEL(p) (* internal action to remove packet from input queue and place in multiset *)

Precondition: IQ = p, IMI < C - 1
Action: IQ := nil; M := M U {p};

RECEIVE.l'ACKET(p) (* output action to deliver packet stored in multiset *)

Precondition: p E M
Action: M := M - p; (* remove delivered packet *)

The FREE_PACKET, FILL-CHANNEL and RECEIVE_PACKET actions are in a single class.

Fig. 3. Formal specification of a C-channel.

371

Why SLIDE implements a C-channel. We now review the original SLIDE protocol and describe why it imple
ments a C-channel when properly initialized. Figure 4 is an expanded view of Fig. 1, together with the key
protocol variables used to implement the SLIDE protocol. Notice that Fig. 4 has the same network interface as
a C -channel. Each node u has a 'pile' of bounded size for each incoming link L where u stores data packets
arriving on link L. If the sender keeps sending packets to the network, then packets 'slide' along a viable path
to the receiver.

Recall that n is the number of nodes in graph G. All nodes have a pile of n slots for each incoming link; a
pile is an array of packets. Each slot or array element has a unique array index that we call its height which
ranges from 1 to n. Packets in a pile are placed consecutively starting from the lowest numbered slot. The
height of a pile is the height of the highest occupied slot in the pile. In Fig. 4 we use dark ink to denote the
portion of a pile that contains packets.

The sender and receiver have one additional pile each. The sender's (Fig. 4) has an input queue which stores
one packet. New data packets that arrive to the network in a SEND_PACKET action are placed in the input queue
if the queue does not already contain a packet. Similarly the receiver has an output queue which stores one
packet. Any packet that is in one of the other piles at the receiver can be removed and placed in the output
queue for a later RECEIVE_PACKET action.

The sender's input queue, by definition, is considered to be a single slot of height n and the receiver's output
queue is considered to be at height 1. The basic idea is that data packets only travel from higher numbered slots
to lower numbered slots. Each node u tries to remove a packet from slot h on one of its incident piles and send
it to a lower numbered (than h) slot in some neighbor v. If the sender's input queue is empty, the protocol will
deliver a FREE_PACKET event which indicates willingness to receive new packets.

For node u to send a packet over link (u, v), u needs an upper bound on the highest occupied slot at the
(u, v) pile at node v. This bound is maintained by a simple incremental bound estimation protocol between u
and v (Fig. 5). Assume that u initializes (recall we are discussing the non-stabilizing protocol) the bound to 1

372 B. Awerbuch et al. / Se!rstabilizing end-to-end communication

Sender
Nodes

Fig. 4. The dotted lines represent non-viable links while solid lines represent viable. Without knowing in advance which links are viable,
SLIDE pushes packets from the sender to receiver along a path of viable links by pushing packets from piles of higher height to piles of
lower height.

P (Number of Packets in forward

h' = 3

Node u Node v

Fig. 5. Key variables for the bound estimation protocol on a link. The protocol maintains the invariant b = h + P + D + 1.

initially and the pile at v is initially empty. The bound at u is incremented whenever u sends a data packet to v;
v sends a special Decrement packet whenever v removes a packet from its incident pile; finally, u decrements
its bound when it gets a Decrement packet from v.

Let P represent the number in packets in transit (Fig. 5) from u to v, and D represent the number of Decrement
packets in transit from v to u. It is not hard to see that the bound estimation protocol maintains the following
predicate that we will call Lu,v. This predicate states that b = P + D + h + 1, where b is the bound at u for
neighbor v, and h is the height of the incident pile for node u at node v. This simple predicate ensures correct
operation because it ensures that b is indeed an upper bound. It also ensures that for any viable link (u, v), if
u stops sending packets to v, then eventually all transit packets will be delivered, resulting in a state where the
bound is exact, i.e., b = h + 1.

This predicate guarantees that a properly initialized SLIDE protocol behaves like a C-channel with C = O(nm).
Observe (from Lu,v) there are at most O(n) packets in transit on every edge, and at most n packets in every
pile. Thus there can be at most O(nm) packets stored in the network. Also since the bound is an upper bound,
no packets are ever dropped. Thus we can map the input queue in the SLIDE to the input queue in the C-channel
and the packets stored in the SLIDE networkS to the packets stored in the C-channel multiset. We map the
FILL-CHANNEL event to any action at the sender node by which a packet is moved from the input queue to some
adjacent link.

However, the C-channel also guarantees a live ness condition: at least one of the FREE_PACKET, FILL-CHANNEL,
or RECEIVE_PACKET events will eventually occur. So suppose this is not true starting from some state s. Then
it must be true that the input queue remains full and the output queue remains empty after state s. Consider

5 Including the output queue.

, B. Awerbuch et af. / Self-stabilizing end-to-end communication

SENDER
(Node 1)

Node d-2

IQ /~--'. b 2 < d - (

(fUll)':.) ~\
'- h < 3

d-2

Node d-l RECEIVER
(Node d)
/~. OQ O. .)D (empty)

hd< l~-

373

Fig. 6. To prove that the SLIDE protocol does not deadlock, we consider a viable path VI, V2, ... , Vd· Using the facts that the bounds are
exact in a deadlocked state, we build a chain of inequalities linking the heights of the output and input queues.

any path of viable links between the sender and receiver. Packet sending must eventually stop after s because
packets only move downwards and no packets enter or leave; thus the bounds on all links in the viable path
eventually become exact. But if the bounds are exact we can build a chain of inequalities (see Fig. 6) linking
the heights of the output and input queues which shows that at the sender node the bound for the outbound link
(to the second node in the viable path) is strictly less than N. But this implies that the sender could remove a
packet from its input queue (which is at height N), a contradiction. Thus the liveness condition must be true.

Making SLIDE stabilizing. We saw that SLIDE behaves 'correctly' as long as the predicate Lu,v holds for every
edge (u, v) in the graph. Clearly, a stabilizing protocol cannot rely on initialization. Thus we have each node u
run a snapshot protocol [8] to check the state of the bound estimation protocol to node v and check if predicate
Lu v holds; if not, node u initiates a local reset which basically results in u initializing its bound to 1 and
v ~mptying its incident pile corresponding to node u. Thus we essentially replace initialization with periodic
local checking and correction of the bound estimation protocols on each link. Of course, the snapshot and reset
protocols must themselves work correctly without initialization [17].

However, non-viable links may stop delivering any packets. Hence any snapshot or reset procedures initiated
on such links may never terminate and so Lu,v may never hold on such links. Our solution to this problem is
to always perform one invocation of the snapshot/reset protocol between the sending of any two data packets
on a link. Our snapshot and reset protocols on a single link can be made stabilizing. Thus we can show [17]
that within a constant number of invocations of the snapshot/reset protocol on link (u, v), Lu,v will become and
stay true. Thus, for any link we guarantee that we send at most a constant number of 'bad' data packets when
the link predicate does not hold. Essentially, this allows us to bound the damage done when the link predicate
does not hold.

'Bad' packets cause two kinds of problems; a packet may be sent to a pile of higher height (if all packets
can be sent to piles of arbitrary height, the SLIDE protocol can livelock). Second, it can lead to packets being
dropped in three ways: i) on the link because the sender sends a packet when the link has a packet; ii) at the
receiver because a packet arrives to find a full pile at the receiver; and iii) at the receiver when the receiver
does a local reset and empties its incident pile.

However, alternating checking/correction phases with the sending of data packets guarantees that in any
execution: i) At most O(n) packets per link can be dropped, leading to an upper bound of O(nm) dropped
packets per execution. ii) At most a constant number of packets per link are sent upwards. With this 'bounded'
amount of damage, the modified SLIDE protocol continues to behave like a C-channel except that we increase
the capacity of the C-channel to account for the O(nm) dropped packets; also the liveness arguments have to
be modified slightly to account for O(m) aberrant packets that may move 'upwards'.

A single phase of either a snapshot or reset procedure consists of u sending a request that is received by v,
followed by v sending a response that is received by u. The snapshot and reset procedures are summarized in
Fig. 7, where as before b denotes the bound at u, h denotes the height at v and D denotes the number of queued
Decrement packets at node v when a request reaches v, and P denotes the number of queued data packets at
u when the response reaches u. At the end of a snapshot phase if b i- h + P + D + 1, then u concludes that
local property Lu,v does not hold, and initiates a reset. The reset effectively resets all variables in the bound
estimation protocol.

The snapshot protocol we described may fail if there are spurious response packets in the initial state of
the protocol. To make the snapshot and reset protocols stabilizing, we consecutively number all request and

374 B. Awerbuch et al. / Self-stabilizing end-to-end communication

u v

o o
~equest

Don't send ---------...
data packets Record h, D

~
"' ... ".'."""""""."~"""."."

h,D
Check i

~ -- -- - --- --. - -.- - --- ------ ---" -. -- -_.
b=h+D+P+l

Correct Snapshot Phase

u v

o o
TIME

~quest

Don't send ---------....
data packets Empty Pile

Set D=D

~
Set b=l,P=Q

Correct Reset Phase

Fig. 7. Local snapshots and resets.

response packets and only accept responses at u if they match the number of the last request sent. Using this we
can show [17] that within four invocations of the snapshot protocol that the snapshot/reset protocol will begin
correctly even after starting in an arbitrary state.

The formal code for our stabilizing SLIDE is given in [7].. We do not provide the details here for lack of
space and because our changes to the SLIDE protocol are quite simple. Instead we concentrate next on providing
details of the second part of our solution.

4. Stabilizing bounded channel protocol

We turn to the second part of our solution, that of implementing a stabilizing and reliable message delivery
protocol over a C-channel. We describe our solution in terms of a sender process SF and a receiver process
RF that communicate over a C-channel (Fig. 8). We first describe our solution and then compare it with the
(non-stabilizing) solution given in [5].

The specification of the C-channel (Fig. 3) provides two useful properties, unlimited acceptance and set
delivery.

Unlimited acceptance. All packets that the Sender Process wishes to send will eventually be accepted by the
network6 if the Sender Process follows the sending discipline where it waits for a FREE_PACKET signal before
sending another packet. This follows from the liveness condition and from the fact that SEND_PACKET and
FILLCHANNEL events cannot keep occurring without a FREE_PACKET occurring.

Set delivery. If in some interval the sender sends a set of S packets that are accepted by the C -channel and
lSI >C, then in the same interval the receiver will receive a set SI that is derived from S by at most C
omissions and at most C additions. This follows because the C-channel can store at most C packets and can
deliver at most C previously stored packets.

If the sender and receiver were perfectly synchronized, the following protocol is sufficient to deliver a single
message m. To send m,· the sender sends (2C + 1) copies· of a packet p containing m using the SEND...'PACKET(p)
interface to a C -channel. Once this is done, we know from the set delivery property that at least (C + 1) packets
containing m are delivered and at most C 'bad' packets (containing arbitrary information) are delivered. Thus
the receiver can extract m from the packet that is received a majority of times. Abstractly, this amounts to
encoding a message m as a set S of (2C + 1) packets and decoding the received set using a simple majority
rul~.

6 A packet is said to be accepted if it is stored in the input queue of the network.

B. Awerbuch et al. / Self-stabilizing end-to-end communication 375

Fig. 8. The Bounded Channel Protocol (BCP) consists of a Sender Process and a Receiver Process that communicate over a C -channel.
The key variables are a sender bit sb, a receiver bit rb, and a packet queue (Q) at the receiver.

This simple scheme breaks down when we send more than one message. To allow for sending a sequence of
messages, especially when the sender and receiver are not initially synchronized:

- We modify the abstract encoding and decoding functions to allow for 2C omissions and C deletions .. The
extra 'slop' of C omissions is important for our protocol.

- We add a bit to every packet such that the bit toggles on the packets in alternate messages. This is used
for stabilization.

So far we have not committed to the format of a packet. We let a packet be a message with a bit and an
integer field appended to it (i.e., p = (m, b, i), where b is a bit and i is a positive integer whose size will depend
on the encoding used). We use the bit to implement an alternating bit protocol that will help the sender and
receiver recover synchronization even after starting in al\ arbitrary state. The integer i is a position index field
that is used for one particular encoding of messages described in Section 4.3.

We now abstract the notion of an Encode-Decode function. This allows us to define a generic message
delivery protocol using the Encode-Decode function, and then customize the protocol by plugging in different
Encode-Decode functions. This motivates:

Definition 4.1. An Encode-Decode specifier (E, D, l) is a pair of functions E, D such that:

E takes as argument a message drawn from M and a bit and returns a multiset of packets of size at most I;
D takes as argument a multiset of length at most I and returns a message drawn from M.

If E(m, b) = S then all packets p in S will have bit b (i.e., the encoding must preserve the bit passed as an
argument).

For any m if E(m, b) = S, and S' is any set that contains at most C packets not in S and all but 2C packets
in S, then D(S') = m. We assume that I> 2C.

4.1. Protocol code

We use a generic Encode-Decode specifier (ENCODE, DECODE, X) to build a self-stabilizing message delivery
protocol over a C-channel. Recall that X > 2C (the reason for this assumption will become apparent below).
Figure 8 shows the main data structures used by our protocol. In order to allow the sender and receiver
to synchronize even after starting from an arbitrary state, the sender and receiver run a protoc()l that is a
generalization of the alternating bit protocol. All encodings of a message carry the sender's current bit sb.
Similarly the receiver only uses packets that match the current receiver bit rb in order to decode packets into
messages,

In Fig. 8, the receiver also uses a queue Q (of size X) which stores the last X packets received. Let R...set
be the subset of packets in queue Q with a bit equal to receiver bit rb. When R...set becomes 'large enough'
(see Fig. 10), the receiver decodes R...set to a message, outputs this message, and then flips bit rb. The sender
protocol is even simpler: the sender simply encodes each message into a set of packets and sends them to the
network, flipping its bit sb between messages.

The sender also uses a flag Jreepacket (that tells it when it can send another packet to the C-channel). The
sender also uses a multi set S...set of size X which is used to store the encoded version of the current I)1essage

376 B. Awerbuch et al. / Seit:stabilizing end-Io-end communication

VaIiable Range Restrictions

sb is a bit, and Jreepacket is a boolean

SSet is a multiset containing at most X packets, X > 2C.

SEND...MESSAGE(m)

If SSet is empty

sb:= sb ;

SSet:= ENcODE(m,sb);

SEND...PACKET(p)

Preconditions:

pES_Set;

Jreepacket = true;

Effect:
SSet := SSet - {p}
Jreepacket:= Jalse;

FREE...MESSAGE

Precondition: SSet is empty;

FREEJ'ACKET

Jreepacket := true;

Variable Range Restrictions

rb is a bit

(* input action to send a message *)

(* ignore input if busy sending a previous message *)

(* flip sender bit for new message *)

(* fill set with encoding of message *)

(* output action to send packet to network *)

(* packet in sender's set? *)

(* network is ready to accept a packet *)

(* remove packet from sender set *)

(* assume network is busy until notified *)

(* output action that denotes readiness to accept a new message *)

(* input action that says network can accept a new packet *)

Fig. 9. Sender message delivery Protocol (SP).

Q is a queue containing exactly X packets, X > 2C
RSet is a multiset containing at most X packets

RECEIVE...PACKET(p)

ADDQ(p,Q)
RSet:= {p E Q: p.bit = rb};

If IRSetl ~ X - C then

Let m = DECODE(RSet)

RECEIVE...MESSAGE(m);

rb:= rb;

(* input action, executed on receipt of a packet *)

(* add p at the end of receiver queue *)

(* extract packets with bit equal to receiver bit *)

(* enough packets with correct bit? *)

(* make message out of them *)

(* output message m to external user *)

(* flip receiver bit *)

Fig. 10. Receiver message delivery Protocol (RP).

being sent; more precisely, SSet stores the remainder of the current message encoding that has not yet been
sent to the network.

The sender and receiver protocols (SP and RP) are described in Fig. 9 and Fig. 10. We assume that all
locally controlled actions are in different classes; thus every continuously enabled action will eventually occur.
We also assume that the operation ADDQ(p, Q) shifts the queue Q forward and adds packet p to the end of Q.

B. Awerbuch et al. / Self:stabiliZing end-Io-end communication 377

If Q had X packets before p was added, the packet at the head of Q is removed to make room for p. It is easy
to implement such a queue in a self-stabilizing fashion using an array of X packets. Let BCP (for Bounded
Channel Protocol) denote the composition of the receiver and sender processes with a C-channel.

4.2. Correctness arguments for the 'message delivery protocol

First we notice (from the code of the C-channel) that any packet p sent by SF will result in p being stored
in the channel if the following predicate holds in the prior state. We say the channel is drop-free in a state s of
BCP if whenever (jreepacket = true) then (IQ = nil). (Recall that IQ is the input queue of the network.) It is
easy to see that the channel being drop-free is a stable property that holds after the first SEND.PACKET event in
any execution. It is also easy to see that in any well-formed execution of BCP, the channel is drop-free in all
states that follow the second SEND.MESSAGE event because in between two such events there must have been a
SEND.PACKET event.

We can divide any execution into non-overlapping message intervals using the following definition. In any
execution the i-th message interval is the interval [B(i), E(i)] where B(i) is the state immediately after the i-th
SEND.MESSAGE event and E(i) is the state just before the i + 1st SEND.MESSAGE event. B(i) and E(i) can be
read as the beginning and end of the i-th interval. Let Bit(i) be the value of sb in state B(i) (i.e., the value
of the sender bit at the start of the i-th interval). Notice that Bit(i) is also the value of the sender bit for any
state in the i-th interval, since the sender bit only toggles at the start of an interval. Define the set of received
packets in an interval I to be the multiset containing an element p for every RECEIVE.PACKET(p) event that
occurs in I. Clearly if the channel is drop-free in some interval all packets that are sent in the interval must
either be received or stored in the channel.

We will use A + B to denote the union of multisets A and B that creates a new multiset which includes
all elements in both A and B. Let CHANNEL denote the multi set containing the multi set M of the C-channel
together with any packet in the input queue of the C-channel. More precisely, CHANNEL = M U {IQ}. The
following notation is convenient for our proofs. For any bit b we denote by Qb' CHANNELb and S-.Setb the
multi set of packets in Q, CHANNEL and S..set respectively with bit equal to b.

We will see that the following notion of synchronization is the key to ensuring that messages are delivered.

Definition 4.2. We say that the sender and receiver are synchronized if whenever S-.Set is empty:

- sb = rb (i.e., the receiver is expecting the opposite bit), and
- IQsb + CHANNELsbl :::;; C. (i.e., there is only a small number of potentially confusing old packets in the

network and the receiver with bit equal to the bit of the next message that will be sent.)

Let mi denote the message that is sent at the start of the i-th interval. Informally, it is easy to see that if the
sender and receiver are synchronized at the end of Interval i-I, then during Interval i message mi (and only
message mi) is delivered to the receiver message queue. This is because when we go from the end of Interval
i-I to the start of Interval i, the value of sb toggles (see code). Thus, at this point, the sender and receiver
bits are equal and the number of old packets with bit equal to the sender bit are small. Given this it is easy to
show that the receiver must output exactly one message during this interval. This is because the sender sends
X packets during this interval with bit equal to sb. Of these at least X - C must get to the receiver, which will
force the receiver to output a single message.

Second, we know that at the beginning of the interval there were at most C old packets with bit equal to sb.
Thus of the X - C packets that the receiver uses to output a message, there can be at most C packets with bit
equal to sb that are not part of the encoding of message mi. The remaining (;?: X - 2C) packets must belong
to encoded multiset corresponding to mi. Thus applying the decode function to these packets will correctly
recover mi.

We will prove this below. However, we first prove a self-stabilization property: regardless of the initial state
of BCP, the sender and receiver are synchronized after the second message is sent.

378 B. Awerbuch et al. / Se1rstahilizing end-to-end communication

Lemma 4.1. After the secondSEND~ESSAGE event in any execution, if S--Set is empty then IQ sb +
CHANNELsbl ~ o.

Proof. Consider some state s that occurs after the second SEND~ESSAGE event in any execution of BCP, and
such that s.S--Set is empty. Now s is part of some message interval, say the i-th message interval. By assumption,
i ;.? 2. In this interval, the channel is drop-free. Recall that B(i) denotes the state that begins the i-th message
interval and Bit(i) denotes the sender bit in B(i). Clearly, IB(i).S--Setl = X and Is.S--Setl = O. Notice also
that the value of sb remains unchanged in an interval; hence all packets in set B(i).S--Set have a bit equal to
Bit(i) = s .sb.

Let R denote the set of received packets in the interval [B(i), s]. We know that, all packets sent in this
interval must either be received or be stored in the channel. Now we consider two cases:

Case 1: All packets in set R are in Q in state s. Recall that packets can be lost from Q when new packets
are added; this case essentially says that any received packets in this interval do not overflow. All X packets
sent during this interval are either in the channel or in the receiver queue at the end of the interval. But since
all X packets that were sent have bit Bit(i), and the total capacity of channel plus receiver queue is at most
X + 0, the lemma follows.

Case 2: There is at least one packet in R that is not in Q in state s. (i.e., at least one received packet has
overflowed the receiver queue during this intervaL) Let Bit(i) = b. Since the receiver packet queue is FIFO,
any packets with bit b that were in the queue at the start of the 'i-th interval must have been removed from the
queue by the time we reach state s. Thus the only packets that could be in the queue plus channel in state s
must consist of packets sent during the i-th interval as well as packets that were in the channel at the start of
the i-th interval. But the former set consists entirely of packets with bit Ii = Bit(i) and the size of the latter set
is at mostthe channel capacity O. Thus the number of packets in the queue plus channel with bit equal to b in
state s-is at most O. The lemma follows. 0

Lemma 4.2. For any execution of BCP, IQrbl < X - 0 in all states following the second SEND~ESSAGE
event.

Proof. It is easy to see from the code that IQrbl < X - 0 is true after the first RECEIVE_PACKET event. This is
because whenever a packet is received that causes IQrbl ;.? X - 0, the receiver toggles the value of rb which
then makes the condition untrue. (Recall that we have assumed that X > 2C.) It is also not hard to see that
between the first and second SEND~ESSAGE events at least one RECEIVEYACKET event must have occurred. 0

Lemma 4.3. After the second SEND_MESSAGE event in any execution of BCP, the sender and receiver are
synchronized.

Proof. Consider any state s after the second SEND_MESSAGE event in the execution. If s.S--Set is empty,
we know from Lemma 4.1 that in s, IQsb + CHANNELsbl ~ O. But IQ + CHANNELl;.? X + O. Hence

IQsb + CHANNELsbl ? X - O.
Suppose, for contradiction, that in s, sb = rb. Then it follows that IQrb + CHANNELrbl ? X - O. But this

contradicts Lemma 4.2, which states that in s, IQI < X-C. Hence s.sb = s.rb. 0

We now prove carefully what we intuitively expect, that after the sender and receiver are synchronized, any
behaviour of the protocol is a behaviour of a unit capacity message link. First, we need some invariants and we
also need to define two new history variables that are used for a mapping proof.

For any state s in any execution we define the history variables s.Previous..Message and s.Previous--Set as
follows. If there is no SEND_MESSAGE event before s, then both history variables are undefined. If not, let
s' be the first state before s that is immediately preceded by a SEND_MESSAGE event, say SEND_MESSAGE(m).
Then s.Previous..Message = m and s.Previous--Set = s'.CHANNELb + S'.Qb where b = s'.sb. In other words
Previous..Message records the last message that was input to BCP; also Previous--Set records the set of packets
(with bit equal to the sender bit) in the channel and receiver queues at the instant after the last message arrives.

B. Awerbuch et al. / Self-stabilizing end-to-end communication 379

Lemma 4.4. Consider any well-formed execution that starts with a state in which S..5et is empty, and such that
the sender and receiver are synchronized in all states. Then the following predicates hold in all states of a.

1. If (sb = rb) then IQrb + CHANNELrbl :::::; 2C.
2. If (sb = rb) then S..5etsb + CHANNELsb + Qsb c:: ENCODE(PreviousMessage)+ Previous..5et and

IPrevious..5etl :::::; C.

Proof. Simple inductive proof. See [7] for details. 0

Armed with the invariants we can easily prove that any synchronized behavior of the protocol is a behavior
of the UML, as we desire.

Lemma 4.5. Consider any well-formed execution that starts with a state in which S..5et is empty, and such that
the sender and receiver are synchronized in all states. Then the behavior corresponding to this exeCution is a
behaviour of UML.

Proof. To do so we exhibit a mapping function f from the states of the protocol to the states of UML. We
define f (s) formally as follows:

- If s.sb = s.rb then f(s).Q = s.PreviousMessage (i.e., if the sender and receiver bits match, the message
stored in UML's queue is the last message sent).

- If s.sb = s.rb then f(s).Q = nil (i.e., if the sender and receiver bits do not match there is no message
stored in UML's queue).

First, we see that BCP and UML have the same external action signature and for any s, f (s) is a valid state
of UML. We now show that for all transitions (s, Jr, s') of BCP, the UML transition (1(s), Jr, f(s')) has the
same external behavior. This can be used to show, by induction, that any behavior of BCP is a behavior of
UML [11]. The details can be found in [7].

We also need to verify that the liveness properties are preserved by this mapping. It is clear that at the
start of any message interval of BCP, S..5et is non-empty; the mapping then implies that there is a message in
the corresponding queue of UML. We also know from the Unlimited Acceptance property of a C-channel that
eventually within this interval S..5et will become empty; the invariants (Lemma 4.4) then imply that the sender
and receiver bits are unequal, which in turn implies that the message is removed from the UML queue. This
remains true till the end of the interval, after which the argument can be repeated. 0

Theorem 4.6. Consider any behavior b of the message delivery subsystem formed by the composition of the
sender process (Fig. 9, the receiver process (Fig. 10), and the C-channel (Fig. 3). Any SUffix of b starting after
the third SEND_MESSAGE event in b is a behavior of UML.

Proof. Follows from Lemma 4.5 and Lemma 4.3. 0

We would like to conclude from Theorem 4.6 that:

Theorem 4.7. The message delivery subsystem stabilizes to the behaviors of UML.

Unfortunately, this theorem is not true for the protocol we described because it is possible that the user never
sends three messages, in which case we cannot claim that the message delivery protocol has stabilized. But this
is just a technicality that can be solved as follows. We modify the sender protocol SP to keep two outstanding
messages, the current message being sent in S..5et as well as an additional buffer to store the next message to
be sent. If after finishing sending the current message (i.e., S..5et is empty), SP finds thatthe additional buffer
is empty, then SP inserts an encoding of a 'Dummy' message into S..5et. In effect, this allows a continuous
stream of messages even when the user does not send messages. If the receiver protocol 'sieves' out such
'Dummy' messages, it will not affect the correctness of the protocol. However, Theorem 4:7 applies to this
modified protocol because we can bound the time taken for the protocol to stabilize.

380 B. Awerbuch et al. / Se!f-stabilizing end-to-end communication

4.3. Impro-ved efficiency for large messages

The simplest message delivery protocol is to use the majority encoder we described earlier. Since each packet
within a message can travel n hops, the resulting communication complexity is O(Cn) = O(n2m). The normal
and stabilization time complexity is O(Xn2m) which in this case is O(n4m2).

If the protocol has to send large messages (that can be modeled as a group of smaller messages) the message
complexity can be improved considerably. The basic idea is to send a large number of messages ina batch to
amortize the effect of old messages. Since the network reorders packets we append to each packet its position in
the batch (this is why we included a position index in the packet format) in order to reconstruct the order at the
receiver. It is easy to see that if we send a batch of size X then the receiver (after reconstruction) will receive
at least X - 3C correct messages in correct positions. The receiver decodes using a batch of X - C packets of
which C can be 'bad' packets. Thus the code must reconstruct the message using X - 2C original packets and
up to C bad packets. But the C bad packets can collide with the position indices of up to C original packets,
causing a total of 3C errors. All that remains is to add an error-correcting code to every batch that corrects for
up to 3C errors.

The amortized message complexity of this second protocol is O(n) if we have blocks of size at least X =

Q(C log C) since it takes O(log C) extra messages to correct each message error (using, say BCH codes). The
normal a~d stabilization time complexity for the second protocol is only slightly higher - i.e., by a factor of
log C. A formal description of the large message encoding is in [7].

5. ConclnsionS

In Section 3 we showed that every behavior of our stabilizing SLIDE protocol was a behavior of a non-FIFO
channel that we called a C-channel. Finally, we described a stabilizing message delivery protocol in Section 4
that works over a C-channel. We concluded from this that the composition of our message delivery protocol
and the stabilizing SLIDE was a stabilizing message delivery protocol. While our protocols are based· on die

" , "

protocols of [5], our contributions are:

Local checking in an e-ventually connected network. Our stabilizing SLIDE protocol is .obtained by doing an
automatic transformation called local checking and correction to the original protocol. There are subtleties that
arise with applying local checking and correction to a fail-stop network. For example, we had to work around
the problem that snapshots on non-viable links may not terminate.

Framing reco-very techniques for stabilization. The stabilizing bounded channel protocol uses a completely
different method to stabilize. The idea used is similar to the self-synchronizing codes used in Data Conununi
cation to frame packets. By numbering the packets corresponding to each message with an alternating bit, we
provide the receiver with 'framing boundaries' in case the receiver has lost synchronization.

Efficient self-stabilization. The techniques we use for self-stabilization do not come at the expense of protocol
overhead; adding self-stabilization adds only a small constant factor to the time complexity of the protocol.

Finally, we note that an end-to-end protocol may be useful in a very hostile setting where links crash contin
uously under the control of an adversary or in an extremely large network . .secondly, the end-to-end problem
is bf theoretical interest as it describes the weakest conditions under which network communication is possible.
Adding self-stabilization as a requirement for the end-to-end protocol is natural because it is meant to be a
robust protocol for hostile environments. It is. not clear that the previous end-to-end protocols can even tolerate
node crashes, a basic requirement for real protocols. Our stabilizing end-to-end protocol can tolerate continuous
link failure and node crashes and other transient errors.

B. Awerbuch et ai. / Self-stabilizing end-to-end communication 381

Unfortunately, the cost of our solution is still too high to be really practical. The space complexity required
is O(nm) for every pair of nodes that wish to communicate - an astronomical figure in a real network. If we
remove the completely asynchronous assumption, then it seems to be possible to devise more efficient solutions
using bounded sequence number and timers (e.g., [13]). However, there has been remarkable progress in this
area and a completely asynchronous and stabilizing end-to-end protocol may yet be realizable with future work.

References

[1] Y. Afek, B. Awerbuch and E. Gafni, Applying static network protocols to dynamic networks, in: Proc. 28th IEEE Symp. on
Foundations (!f Computer Science, 1987.

[2] Y. Afek ;md G. Brown, Self-stabilization of the alternating bit protocol, in: Proceedings of the 8th IEEE Symposium on Reliable
Distributed Systems, 1989, pp. 80-83.

[3] B. Awerbuch and Sh. Even, Reliable broadcast protocols in unreliable networks, Networks 16(4) (1986), 381-396.
[4] Y. Afek and E. Gafni, End-to-end communication in unreliable networks, in: Proc. 7th ACM Symp. on Principles (!t Distributed

Computing, ACM SIGACT and SIGOPS, ACM, 1988, pp. 131-148.
[5] Y. Afek, E. Gafni and A. Rosen, Slide - a technique for communication in unreliable networks, in: Proceedings (!f the 11th PODC,

Vancouver, British Columbia, 1992.
[6J B. Awerbuch, Y. Mansour and N. Shavit, End-to-end communication with polynomial overhead, in: Proc. 30th IEEE Symp. on

Foundations (!f Computer Science, 1989.
[7] B. Awerbuch, B. Patt-Shamir and G. Varghese, Self-stabilizing end-to-end communication, Technical Memo to appear, MIT, Lab. for

Computer Science, October 1995.
[8] K.M. Chandy and L. Lamport, Distributed snapshots: Determining global states of distributed systems, ACM Trans. on Comput. Syst.

3(1) (1985), 63-75.
[9J E.W. Dijkstra, Self stabilization in spite of distributed control, Comm. oj" the ACM 17 (1974), 643-644.

[10] S.G. Finn, Resynch procedures and a fail-safe network protocol, IEEE Trans. Commun. COM-27(6) (1979), 840-845.
[11] N.A. Lynch and M.R. Tuttle, An introduction to input/output automata, CWI Quarterly 2(3) (1989), 219-246.
[12] M. Merritt, F. Modugno and M.R. Tuttle, Time constrained automata, in: CONCUR '91, 1991, pp. 408-423.
[13] R. Perlman, Fault toler;mt broadcast of routing information, Computer Networks, December, 1983.
[14] E.c. Rosen, Vulnerabilities of network control protocols: An example, Computer Communications Review, July, 1981.
[15J T. Rodeheffer ;md M. Schroeder, Automatic reconfiguration in the Autonet, in: Proceedings oj" the 14th Symposium on Operating

Systems Principles, 1993.
[16] M. Schneider, Self-stabilization, ACM Computing Surveys 25 (March 1993).
[17] G. Varghese, Self-stabilization by local checking and con'ection, PhD Thesis MITILCSfTR-583, Massachusetts Institute of Technology,

1993.

