
DISTRI8UTED BFS ALGORITHl\fi

(Ex tendcd Ab st ract)

Baruch Awerbuch

Robert G. Gallager

MIT

ABSTRACT

This paper devclops a new dis tributed BFS algo­

rithtn for an asynchronous communication network.

]l1is paper presents two new BFS algorithm s

with improved communication complexity. The first

algorithm has complexity O«E+V1.S)·logV) in com­

munication and O(V1.5·logV) in time. The second

algorithm uses the technique of the first recursively

and achieves O(E·2vIOgVlOglogV) in comtnunication and

O(V· 2Vlog Vloglog Y) in tim e .

~lhis paper presents new efficient distributed

Brea dth-Fi rs t-Sea rch (8FS) aIgor it hmsin an as yn­

chronous communication network. TIle major appli­

cat ion 0 f BFS innetworksis const ruc t ion 0 f sh0 r t

paths (in tcrms of num ber of edges) from some des­

tination node to all other nodes in the network. The

resulting BFS tree is used then for routing of data

from other nodes to that destination. rll1e BFS algo­

rithm may be rcpeated many times in case that the

network's topology changes.

From the point of view of network's perfor­

mance, it is desirable that the messages of the con­

trol algorithms like BFS don't occupy much of the

0272-5428/85/0000/0250$01.00 © 1985 IEEE
250

network bandwidth. Thus, we will be interested to

const ruc t BFS t rees effie ie ntly , in the sense 0 f

minimizing the message exchange. Improving

efficiency of distributed BFS yields improvement in

more complex distributed algorithms, like 0-1 net­

work flow, network connectivity, planar separator,

etc., in whic h DFS appears to be the bottlenec k. In

short, the BFS appears to be a basic problem in the

field of complexity of distributed algorithms.

For a synccronous network model, there exists

a fairly trivial BFS algorithm which achieves the

lower bounds on the comm unication and time com­

plexities' namely n(E) and U(V), respectively, where

E is the num ber of edges and V is the number of

nodes,. In this paper t we confin~ ourselves to the

asy nc hronous net work. whic his, unfortunately, a

tnuch more realistic model; most existing networks

arc asynchronous (e.g. ARPANET). ~l1le asynchronous

nature of our network seems to makc thc problem of

pe r form ing BFS surpr is in,gly diffic uIt.

~Ih c best pre vi 0 usBFS a1go r it 11 In for densene t ­

works is given in [A-84]. 'lhis algorithm requires

O(V·log k V) time and O(k· V2) cOin In unication, for

any constant 1 < k < V. 'Ihe best algorithm in term s

of communication for sparse networks is due to

Fredrickson [F-85] and has complexity O(Vv'E) both

in comtn unication and time. With E =O(V) say, this

complexity is V1.5 which is substantially better in

communication and poorer in time than [A-84].

This paper presents two new DFS algorithms.

The first new algorithm here has complexity

O((E+V1.5)·10gV) in communication and

O(V1.5·log V) in time. For dense networks, with

E~O(V1.5), this is within a a factor of log V of the

lower bound on communication cOJnplexity, and for

all but very sparse networks, this improves on [F-85].

The second algorithm is a recursive extension of the

first algorithm. Its complexity is O(E·2v'lOgV10g1ogV) in

communication and O(V·2v'lOgV1og10gV) in time, This

algorithm meets the lower bounds both on communi­

cation and time except for 2v'logV10g1ogV) factor, which

is asymtotically less than any polynomial in V.

2. TilE ~lO()~:L

An asynchronous network is a point-tn-point (or

store-and-forward) communication network.

des c rib ed by an undire c ted COllI III U n icat i 011 graph

(V,E) where the set of nodes V represents proces­

sors of the network and the set of edges E

represents bidirectional non-interfering communica­

tion channels operating between neighboring nodes.

No cOlnmon memory is shared by the node's proces­

sors. Each node processes messages received from

its neighbors, performs local computations, and

sends messages to its neighbors, all in negligible

tim e. The sequenceof m essagessenton any given

edge in given direction is correctly received in FIFO

(First -In -First -Ou t) order'; with finite but variable

and unpredictable delay. This isa common model for

commun'ication networks [A-84],[G-821,(F-S5].

The following com plexity measures are' used to

evaluate performance for distributed algorithms.

251

The Cont m unication Complexity, c: is the worst case

total num ber of elementary messages sent during

the algorithm, where an elementary message con­

tains at ,most O(1og V) bits. The Tim e Complexity, T,

is the maximum possible number of time units from

start to the completion of the algorithm, assuming

that the inter-message delay and the propagation

delay of an edge is at most one time unit. This is

unde r the provision that the algorithm works

correctly without this assumption.

3. THE PI~08LEM

Gi ven anun dire c ted grap h (V. E) and a a star t

nod e s EV, the Breadth-First Sea rCh (B FS) probIe m

is to find. for cae h node i ~s. the length 1; of a shor­

test path in (V,E) (in terms of the number of edges)

from s to i and the immediate predecessor (parent)

of i on tha t pa tho 'Ine Ie ngth Ii is caIled the "laye r

num ber" of i. The edge leading from a node to its

parent (child) is caIled illedge (autedge). This prob­

lem is also known as the A/in inl urn -Hop Problem [G­

82), [S-S3).

In a distributed algorithm for the BFS problem,

each node has a copy of a node algorithm determin­

ing the response of the node to messages received at

that node. Namely, the algorithm specifies which

computations should be performed and which mes·

sages should be sent. Initially, each node is ignorant

of the global network topology except for its own

edges. The algorithm is initiated by the start node s.

Uponcompletioo' of the algorithm, the start node

enters a given final state. At that time, all other

nodes in the same''Connected component of the net­

work know' their (correct)' ·layernum bers, their

inedges and their outedges.

4. BASIC KNO\\N-CONNECllVllY ALGORlllIM)

Let us first outline a simple BFS algorithm,

which will be referred to as the Basic Coordinated

Algorithm. It operates in success'ive iterations, each

processing another BFS layer. 'Ibe start node

controls these iterations by means of a synchroniza­

t ion proc ess. pe r form edove r the part of the BFS

tree built in previous iterations. At the beginning of

a given it era t ion i, the BFS t ree has bee ncon­

structed for all nodes in layers j < i. The start node

broadcasts a message over that tree, which is for­

warded out to nodes at layer i-I. These nodes send

"exploration" messages to all neighbors, trying to

discover nodes at layer i. \\ben a node first receives

such an exploration message, it chooses the sender

as its parent and deduces that it belongs to layer i.

It sends back an acknow.ledgement (ack) with an

indication whether the sender was chosen as parent

or not. Each node at layer i -1 waits until all

exploration messages have been. acknowledged and

then sends an ack to its parent in the BFS tree, indi­

cating whether any new descendents have been

discovered. \\ben an internal node gets such acks

from all children, it sends an ack to its parent.

Eventually, all the acks are collected by the start

node and thus layer i has been processed com­

pletely. If any nodes have been discovered at that

layer, the next iteration i +1 is started. Otherwise,

the algorithm term inates. This algorithm is quite

inefficient in the num ber of messages and time used

for synchronization purposes. If one considers a net­

work with allnod'es on a single path of length V-I,

one sees that the communication and time complex­

ity. are each D(V2).Obviously, the performance of

tbe algorithm degrades as the diameter of the

252

network increases.

One of the major approaches in the past [0.82].

[F-85] has been to divide the network into groups of

successive layers. called sirips. and to process these

strips one-by-one. synchronizing only once per strip.

Our first algorithm, described in the next section.

uses a sim Har approac h, but processes strips in a

novel way. Before processing a new strip. assume

tha t the BFS tree was cons true ted for a11 the previ­

ous strips. Each node in the last layer of this already

constructed tree will be called a start node a the

new strip. The problem of processing a strip is in a

sense a generalization of the original BFS problem

ins tead of construe ting a BFS tree from a sin gle

start node, we want to construct a forest of shortest

paths from a set of start nodes.

\\e now want to distinguish between two types of

BFS problem s on a s trip. The first problem, referred

to ask Il 0 W n -c 0 nnecti vity BFS, is to const ructaBFS

forest on a strip with starting knowledge of a span­

ning forest of the strip, each tree spanning another

connected component of the strip. The second prob­

lem, referred to as unknown -connectivity BFS, is

to construc t a BFS forest on a strip withou t such

knowledge.

~ present now a simple algorithm solving the

first problem, re ferred to as the basic coordinated

multiple-source algorilhl'n, which is a nalural exten­

sion of the basic single-source algorithm above. The

ide a is that a11 the star t nodcs grow the i r BFS t rees

by applying the basic algorithm above. All the start

nodes in the same connected component willsy n­

chronize through the spanning tree of the com­

ponent sotl1at they proceed at the same speed, Le.

perform the same iteration at a given time. In par­

ticular, the forest is constructed layer by layer. At

the beginning of processing a new layer, say layer i,

some leader among the start nodes in a given con­

nected component propagates a message to the

other start nodes via the spanning tree and such

start nodes propagate the message through the

already constructed layers of the forest. The nodes

at layer i-I then send exploration messages as

before, and acks are collected back to the start

nodes and then through the spanning tree to the

leader. This process is performed independently in

each connected component. Note that the absence of

coordination between components causes no harm.

\\ith the above strategy, at most one exploration

message is sent in each direction on each edge of

the strip. Thus, the total num ber of exploration mes­

sages is linear in num ber of edges. Also, eac h node in

the strip (counting the strip's start nodes) receives

at most one coordination message over the spanning

tree from the leader and at most one message from

its start node through the BFS forest during one

iteration of the algorithm. Finally, there is one ack

message for each broadcast and exploration mes­

sage. Altogether there are 4 messages per node per

iteration and 4 messages per edge of the strip.

However. what we really need to solve is the

second problem. The coordinated algorithm above

cannot be applied to solve the second problem,

because spanning forest inside the strip is not avail­

able. Conceptually, the second problem appears to

be more complex than the first problem because,

since it is not clear a priori which nodes are in the

ne\\' strip, there is no obvious method for coordina­

tion between multiple start nodes. It turns out that

253

there is no apparent way to reduce the second prob­

lem to the first one in an efficient way. There is an

efficient distributed algorithm [GHS-S3] available for

finding a spanning tree and connected components

(with almost linear complexities), but it cannot be

used because the nodes in the strip are unknown.

One may suggest the following naive solution to the

problem: construct a global spanning tree in the net­

work and coordinate between start "nodes of the strip

through that tree. However, coordination over such

"big" tree is too expensive and in fact we end up with

an algorithm whose complexity may reach D(y2).

However, let us assume that, magically, span­

ning forests are available in each strip, and that we

can should only solve the known-connectivity BFS

inside each strip. Then the BFS tree for the whole

network can be generated by using the above coordi­

natedm ultiple sources algorithm for each strip and

by using the synchronization technique of the basic

coordinated algorithm between strips. Each node

then receives at most 2 synchronization messages

pe r node for eac h strip be ing proc essed. Su ppose

that strips arc chosen to contain vV layers. Since

there are at most vV strips and vV layers inside

each strip, altogether we have O(Vl. S) synchroniza­

tion messages and in total, O(E +Vl.S) messages have

been sent; this is a considerable improvement com­

paring to the basic algorithm above. lbis observa­

tion shows how nice it would bc to reduce the

unknown-connectivity problem to the known­

connectivity onc. In the next section, we show how

this reduc tion can be performed.

s. UNKNO\\N-CONNECTIVIlY ALGORI1lIM

The algorithm presented here is referred to as

bootstrap algorithm. The idea is to perform BFS and

the spanning tree algorithms interchangingly', each

algorithm supporting the other. In general, the algo­

rithm maintains forest of trees, each of the start

nodes belonging to some of these trees. Initially,

each tree consists of a single start node. The set of

start nodes in the same tree is called a cluster; one

of these nodes is chosen as the leader of the cluster,

which coordinates operation of the whole cluster.

The idea of the algorithm is to try to achieve greater

degree of coordination by merging together as many

trees as possible._

The algorithm proceeds in iterations, each con­

sisting of two stages. The purpose of the first stage is

to Arow independently BFS trees form each cluster

while the second stage stitches together neighboring

trees. Upon completion of a stage. all the start nodcs

of a certain cIus ter coordina te with a 11 th~ other

clusters back through the original start node. Thus,

at a certain time, all the clusters perform the same

stage of the same iteration.

The first stage is a slight generalization of the

above coordinated multiplc-source algorithm, which

will be referred to as generalized coordinated algo­

rithm. It uses the above basic coordinated

multiple-source algorithm to build an independent

BFS forest from each cluster for a given number of

layers. (This process is coordinated by the leader of

the cluster via the tree.) Since there is no coordina­

tion between different clusters and the network is

asynchronous, some clusters might grow their

forests much quicker than others. As a result, some

node ffi\ght be improperly seized by a forest A which

progresses quickly, while actually it might be closer

to a start node in another cluster and thus should

254

belong to a forest B grown by that cluster. This

situation is discovered la ter when B eventually grows

up and an exploration message sent by a node in B

reaches one of the improperly seized nodes. In this

situation, the edge carrying that message is remem­

bered by the adjacent nodes as an inter -forest

edge and both forests A and B terminate their part

in the firststage, even though the required number

of layers has not yet been explored.

Upon the com pletion of the first stage, the clus­

ter and its BFS forest arc called active if the BFS

forest is adjacent to any inter-forest edges; other­

wisethey are inact ive . No te that aninact ive

cluster's 8FS forest must contain all nodes whose

t rue 8FS pat hs mus t gothr0 ugh the star t nodes 0 f

the cluster, since none of these nodes could be

im prope rly seized by other fores ts. 'Ibus, if upon

completion of the first stage all the clusters are

inactive, then the strip has been processed correctly

and the bootstrap algorithm terminates.

Otherwise, the second stage is started, in which

the spanning tree algorithm [GHS-S3j is applied to a·

super-graph whose nodes are active forests and

whose edges are the inter-forest edges. (A more

detailed description is given in the full paper.) The

output of this algorithm is a spanning forest of the

super-graph, each tree spanning another com­

ponent; in addition a leader is chosen inside each

tree. As a result, active forests which share common

inter-forest edges are merged together into bigger

forests.

In the successive iterations, the first stage is

modified as follows. \\benever an active forest meets

another inactive forest on its way, the former forest

penetrates into the latter, absorbing all of its nodes

which were improperly seized. (This could not occur

in the first iteration since all the forests are initially

active.) Ifan active forest is met, then, as before, the

exploration process is stopped and an inter-forest

edge is remembered. The idea behind this rather

peculiar rule is to reduce the number of iterations

without increasing too much the number of penetra­

tions.

~ now observe that after each iteration. each

active cluster either becomes inactive' or merges

with at least one other active cluster.., Thus, after i

iterations, each cluster not yet inac:ti~<r contains at

least 2i start nodes. 11lus after at miDst log V itera­

tions, each cluster is inactive an'd. the resulting

forest is a genuine BFS forest for the st,rip.

Itt sum mary, the bootstrap alg,Q;lrhanm effec tively

sol,es. the problem of processing. a strip wit.h

unknown-connectivity by at most IOiV iterations~

each involving one application of' the generalized

coordinated algorithm, two global synchronization

procedure and one application of the spanning tree

algorithm. Each application of the spanning tree

algorithm of [GHS-83] requires O(logV) messages

per node plus 0(1) message per edge of the strip. In

terms of time, it requires O(togV) time per node of

the strip. (Here we use the fact that the sub­

network, which is the input to the spanning tree

algorithm, belongs entirely to the strip.)

Let us now plug 'the the bootstrap algorithm

into the scheme at the end of the previous section,

which divided the network into strips of size v'V and

processed them serially. It is easy to show that the

resultin~ algorithm has corom unication complexity

O((E +V1.S)·log V). Since the exploration messages,

which account for the term E above. are sent in

255

parallel at each node, (and similarly for the spanning

tree algorithm), the time complexity is

O(V1.s·log V). Note tha t this algorithm requires

knowledge of V; however, both V and E can be easily

calculated with complexity O(E) in communication

and O(V) in time.

6. O(E· 2vlog J'loglog V) ALGORITI-IM

~ now modify the generalized coordinated

algorithm above, making it recursive. This

modification will be referred to as main algorithm.

Recall that the input to this algorithm is a set of

start nodes, or a cluster, and a spanning tree T of

the cluster which belongs entirely to the current

strip. In this algorithm, the strip is split into a set of

substrips, each with a common number of layers.

The algorithm proceeds in successive iterations,

each processing another substrip by calling the

bootstrap algorithm as a subroutine. The input to

this subroutine is a set of start nodes for the sub­

strip plus a structure for external coordination,

which is needed in order to trigger the execution of

the subroutine, to detect its term ination and to syn­

chronize between internal iterations of the subrou­

tine. This struc tUJe consists of the BFS forest of the

preceding substrips plus the above tree T. The start

nodes of the present strip are the nodes on the final

layer of the BFS forest. (For the first substrip, this

set of start nodes is simply the cluster being used by

the main algorithm.)

The subroutine itself proceeds in at most logY

internal iterations, each involving. among the rest.

solving known-connectivity problem for substrips.

Ihis problem will be solved by the sanl e 111 ain algo­

rit hnl (ins tead of the gene ralized coordina ted algo­

rithm, as before). Note that the main algorithm for

strips calls the algorithm for smaller subslrips, Le.

is performed recursively, decreasing the depth of

the s trip as the recur sion dept h inc rea ses.At the

bottom level of recursion 9 the basic coordinated

multiple-source algorithm is used.

Let us now evaluate the complexity of the main

algorithm. Consider the processing of a strip of size

d with a known connectivity by the main algorithm

above. For convenience, we will consider here the

normalized complexities of the algorithm, denoted

by CE(d) and TN(d), which are upper bounds on the

num ber of messages sent per link of the strip and

the time spent per node of the strip, respectively.

Observe that the overalt complexities of BFS algo-

rithm are C=E·CE(V) and T=V·TN(V). (\\C assume

the worst case, i.e. that the diameter of the network

is V.) ~ will provide here a recursive equation or

evaluating for CE(h); it turns out that TN(h)

satisfies the same equation and thus CE(h) =TN(h).

Let us denote by d; the, depth of the strip being

processed at the i's level of recursion,

V=d 1 > d 2 •• >dr' where r is the maximum depth of

the recursion. rIlle complexity at the bottom level is

CE(d,) =TN(dr) =O(d,). The algorithm proc essing

d·
strips of depth d; consists of -dI iterations, each

; +1

processing substrips of size d;, and involving loga-

rithmic number of internal iterations. Each internal

iteration involves one call to the algorithm process-

ing strips of size d;+}. one call to a synchronization

procedure, and one call to the spanning tree algo­

rithm. Taking these factors into account yields the

CE(d)=TN(d).

Using dynamic programming, one can optimize

total the com plexities of the resulting algorithm,

choosing properly the depth r of the recursion and

the numbers d;_ ~t us just mention that the

optimum solution for very sparse and very large net­

works has the form CE(V) = 0(2 v'logYlOBl()BY). Thus,

the total communication and time complexities of

the algorithm are bounded by 0(E·2v'IOgYlOgIOSY) and

O(V·2v'logYlOgloBY), respectively.

REFERENCES
[AG-84] B.Awerbuch and R.Gallager, "An

O(VL6·log V+E) distributed BFS", pre­
print, Novem ber 1984.

[A-84] B. Awerbuch, "An Efficient Network Syn­
chronization Protocol ", ACM Symposium
on Theory of Computing, April 1984,
Washington.

[G-85] G. Frederickson, "A single source shor­
test path algorithm for a planar distri­
buted network", Proc. 2nd Symp. on
rlbeoretic al Aspec ts of Com puter Science
(Jan. 1985).

[G-82J ItO. Gallager, "Distributed Minimum Hop
Algorithms", M.I.T. Technical Report,
UIl)-P-1175, January 1982.

[GHS-83] R.G. Gallager, P.A. Humblet and P.M
Spira, "A. Distributed Algorithm for
Minimum Weight Spanning Trees", ACM
Trans. on Program. Lang. & Systems,
Vol. 5, pp. 66-77, January 1983.

following recursive formula:

.' d;
CE(dl) = log V·(-d- + CE(di +1 »). It turns out that

1+1

TN(d) obeys the same recursive formula, and thus

256

