DISTRIBUTED BES ALGORITHMS

(Extended Abstract)

Baruch Awerbuch

Robert G. Gallager
MIT

ABSTRACT

This paper develops a new distributed BFS algo-

rithm for an asynchronous communication network.

This paper presents two new BFS algorithms
with impifoved communication complexity. The first
algorithm has complexity O((E +V13)-logV) in com-
munication and O(¥'%-logV) in time. The second
algorithm uses the tcchnique of the first recursively
and achicves O(E-ZVW“’?"—W) in communication and

O(V-2YlosVioglog V) in time.

1. INTRODUCTION

‘This paper presents new cfficient distributed
Breadth-First-Search (BFS) algorithms in an asyn-
chronous communication nctwork. The major appli-
cation of BFS in networks is construction of short
paths (in terms of number of edges) from somec des-
tination node to all other nodes in the network. The
resulting BFS tree is used then for routing of data
from other nodes to that destination. The BFS algo-
rithm may be rcpeated many times in case that the

nctwork’s topology changes.

From the point of view of network's perfor-
mance, it is desirable that the messages of the con-

trol algorithms like BFS don’t occupy much of the

0272-5428/85/0000/0250$01.00 © 1985 IEEE

250

network bandwidth. Thus, we will be interested to
construct BFS trees efficiently, in the sense of
minimizing the message exchange. Improving
efficiency of distributed BFS yields improvement in
more complex distributed algorithms, like 0-1 net-
work flow, network connectivity, planar separator,
etc., in which BFS appears to be the bottleneck. In
short, the BFS appears to be a basic problem in the

field of complexity of distributed algorithms.

For a synckronous network model, there exists
a fairly trivial BFS algorithm which achieves the
lower bounds on the communication and time com-
plexities, namely Q(E) and Q(V), respectively, where
E is the number of edges and ¥ is the number of
nodes. In this paper, we confine oursclves to the
asynchronous nectwork, which is, unfortunately, a
much more rcalistic model; most existing nctworks
arc asynchronous (c.g. ARPANET). The asynchronous
nature of our network seems to make the problem of
performing BFS surprisingly difficult.

The best previous BFS algorithm for dense net-
works is given in [A-84]. This algorithm requires
O(V-log, V) time and O(k-¥?) communication, for
any constant 1< k < V. 'The best algorithm in terms
of communication for sparse nctworks is duc to
Fredrickson [F-85] and has complexity O(VV I) both
in communication and time. With E=0(V) say, this

complexity is V!5 which is substantially better in

communication and poorer in time than [A-84].

This paper presents two new BFS algorithms.

The first new algorithm here has complexity

O((E +V15)-1og V) in communication and
O(V3-logV) in time. For dense nctworks, with
E >0(V19), this is within a a factor of logV of the
lower bound on communication complexity, and for
all but very sparse networks, this improves on [F-85].
The second algorithm is a recursive extension of the
first algorithm. Its complexity is O(E-2YiosVioglog¥y jp
communication and O(V-2ViesVoeloe¥) in time, This
algorithm mcets the lower bounds both on communi-

cation and time except for 2VioeVogloe¥) factor, which

is asymtotically less than any polynomial in V.

2. THE MODEL

An asynchronous network is a point-to-point (or

storc-and-forward) communication network,
described by an undirected communication graph
(V.E) where the set of nodes V represents proces-
sors of the nctwork and the set of cdges E
represcnts bidirectional non-interfering communica-
tion channcls operating between ncighboring nodes.
No common memory is shared by the node’s proces-
sors. Each node processes messages rcceived from
its ncighbors, performs local computations, and
sends messages to its ncighbors, all in negligible
time. The sequence of messages sent on any given
edge in given direction is correctly received in FIFO
(First —=In —First —Out) order, with finite but variable
and unpredictable delay. This is a common model for

communication networks [A-84],[G-82],[F-85].

The following complexity measures are used to

evaluate performance for distributéd algorith.ms.

251

The Communication Complexity, C, is the worst case
total number of elementary messages sent during
the algorithm, where an elementary message con-
tains at.most O(log¥) bits. The Time Complexity, T,
is the maximum possible number of time units from
start to the completion of the algorithm, assuming
that the inter-message delay and the propagation
delay of an edge is at most one time unit. This is
under

the provision that the algorithm works

correctly without this assumption.

3. THE PROBLEM

Given an undirected graph (V,E) and a a start
node s €V, the Breadth-First Search (BI'S) problem
is to find, for cach node i#s, the length /; of:; shor-
test path in (V,E) (in terms of the number of ecdges)
from s to i and the immecdiate predecessor (parent)
of i on that path. The length /; is called the "layer
number" of i. The edge lcading from a node to its
parent (child) is called inedge (outedge). This prob-
lem is also known as the Minimum-Hop Problem [G
82], [S-83].

In a distributed algorithm for the BFS problem,
each node has a copy of a node algorithm determin-
ing the response of the node to messages received at
that node. Namely, the algorithm speccifies which
computations should be performed and which mes-
sages should be sent. Initially, each node is ignorant
of the global network topology cxcept for its own
edges. The algorithm is initiated by the start node s.
Upon completion of the algorithm, the start node
enters a given final state. At that time, all other
nodes in the same connected component of the net-
work know' their (correct) layer numbers, their

inedges and their outedges.

4. BASIC KNOWN-CONNECTIVITY ALGORITHMS

Let us first outline a simple BFS algorithm,
which will be referred to as the Basic Coordinated
Algorithm. It operates in successive iterations, each
start node

processing another BFS layer. The

controls these itcrations by mcans of a synchroniza-
tion process, performed over the part of the BFS
trce built in previous itcrations. At the beginning of
a given itcration i, the BFS trce has bcen con-
structed for all nodes in layers j < i. The start node
broadcasts a message over that tree, which is for-
warded out to nodes at layer i —1. Thesc nodes send
"exploration” messages to all ncighbors, trying to
discover nodcs at layer ;. When a node first reccives
such an cxploration message, it chooses the sender
as its parent and deduces that it belongs to layer i.
It sends back an acknowledgement (ack) with an
indication whether the sender was chosen as parent
or not. Each node at layer i-1 waits until all
exploration messages have been acknowledged and
then sends an ack to its parent in the BFS tree, indi-
cating whether any new descendents have been
discovered. When an internal node gets such acks
from all children, it sends an ack to its parent.
Eventually, all the acks are collected by the start
node and thus layer i has been processed com-
pletely. If any nodes have been discovered at that
layer, the next iteration /+! is started. Otherwise,
the algorithm terminates. This algorithm is quite
inefficient in the number of messages and time used
for synchronization purposes. If one considers a net-
work with all nodes on a single path of length V-1,
one sces that the communication and time complex-
ity. are cach O(}2). Obviously, the performance of

the algorithm dcgrades as the diamecter of the

252

nctwork increases.

Onc of the major approaches in the past [G82],
[F-85] has been to divide the network into groups of
successive layers, called s/rips, and to proccess these
strips one-by-one, synchronizing only once per strip.
Our first algorithm, described in the next section,
uses a similar approach, but processes strips in a
novel way. Before processing a new strip, assume
that the BFS tree was constructed for all the previ-
ous strips. Each node in thc last layer of this already
constructed tree will be called a srart node a the
new strip. The problem of processing a strip is in a
sense a gencralization of the original BFS problem
instead of constructing a BFS tree from a single

start node, we want to construct a forest of shortest

paths from a set of start nodes.

We now want to distinguish between two types of
BFS problems on a strip. The first problem, referred
to as known —connectivity BFS, is to construct a BFS
forest on a strip with starting knowledge of a span-
ning forest of the strip, each tree spanning another
connected component of the strip. The second prob-
lem, referred to as unknown —connectivity BFS, is
to construct a BFS forest on a strip without such

knowledge.

We present now a simple algorithm solving the
first problem, referred to as the basic coordinated
multiple-source algorithm, which is a natural exten-

sion of the basic single-source algorithm above. The

idea is that all the start nodes grow their BFS trees
by applying the basic algorithm above. All the start
nodes in the same connccted component will syn-
chronize through the spanning tree of the com-

ponent so that they procced at the same speed, i.c.

perform the samec iteration at a given time. In par-
ticular, the forest is constructed layer by layer. At
the beginning of processing a new layer, say layer i,
somc leader among the start nodes in a given con-
nectecd component propagates a message to the
other start nodes via the spanning trece and such
start nodes propagate the message through the
already constructed layers of the forest. The nodes
at layer i-1 then send exploration messages as
before, and acks are collected back to the start
nodes and then through the spanning tree to the
leader. This process is performed independently in
each connected component. Note that the absence of

coordination between components causes no harm.

With the above strategy, at most one exploration
message is sent in each direction on each edge of
the strip. Thus, the total number of exploration mes-
sages is linear in number of edges. Also, each node in
the strip (counting the strip’s start nodes) receives
at most one coordination message over the spanning
tree from the leader and at most one message from
its start node through the BFS forest during one
iteration of the algorithm. Finally, there is one ack
message for each broadcast and exploration mes-
sage. Altogether there are 4 messages per node per

itcration and 4 messages per cdge of the strip.

However, what we really nced to solve is the
second problem. ‘The coordinated algorithm above
cannot be applied to solve the sccond problem,
because spanning forest inside the strip is not avail-
able. Conceptually, the sccond problem appcars to
be more complex than the first problem because,
since it is not clear a priori which nodes are in the
new strip, there is no obvious method for coordina-

tion between multiple start nodes. It turns out that

253

therc is no apparent way to reduce the second prob-
lem to the first one in an cfficicnt way. There is an
cfficient distributed algorithm [GHS-83] available for
finding a spanning tree and connected components
(with almost linear complexities), but it cannot be
used because the nodes in the strip are unknown.
One may suggest the following naive solution to the
problem: construct a global spanning tree in the net-
work and coordinate between start nodes of the strip
through that tree. However, coordination over such
"big" tree is too expensive and in fact we end up with

an algorithm whose complexity may reach O(}2).

However, let us assume that, magically, span-
ning forests are available in each strip, and that we
can should only solve the known-connectivity BFS
inside each strip. Then the BFS tree for the whole
network can be generated by using the above coordi-
nated multiple sources algorithm for each strip and
by using the synchronization technique of the basic
coordinated algorithm between strips. Each node
then receives at most 2 synchronization messages
per node for cach strip being processed. Suppose
that strips are chosen to contain v¥ layers. Since
there are at most \/7 strips and vV layers inside
each strip, altogether we have O(V') synchroniza-
tion messages and in total, O(E +V5) messages have
been sent; this is a considerable improvement com-
paring to the basic algorithm above. This observa-
tion shows how nice it would be to reduce the
unknown-connectivity problem to the known-

connectivity onc. In the next section, we show how

this reduction can be performed.

5. UNKNOWN-CONNECTIVITY ALGORITHM

The algorithm presented here is referred to as

bootstrap algorithm . The idea is to perform BFS and
the spanning tree algorithms interchangingly, each
algorithm supporting the other. In general, the algo-
rithm maintains forest of trees, each of the start
nodes belonging to some of these trees. Initially,
each tree consists of a single start node. The set of
start nodes in the same tree is called a cluster; one
of these nodes is chosen as the leader of the cluster,
which coordinates operation of the whole cluster.
The idea of the algorithm is to try to achicve greater
degree of coordination by merging together as many

trees as possible.

The algorithm proceeds in iterations, each con-
sisting of two stages. The purpose of the first stage is

to grow independently BFS trees form each cluster

while the second stage stitches together ncighboring
trees. Upon completion of a stage, all the start nodes
of a certain cluster coordinate with all the other
clusters back through the original start node. Thus,
at a certain time, all the clusters perform the same

stage of the same iteration.

The first stage is a slight gencralization of the
above coordinated multiple-source algorithm, which
will be referred to as generalized coordinated algo-
rithm. It uses the above basic coordinated
multiple-source algorithm to build an independent
BFS forest from each cluster for a given number of
layers. (This process is coordinated by the leader of
the cluster via the tree.) Since there is no coordina-
tion between different clusters and the network is
asynchronous, some clusters might grow their
forests much quicker than others. As a result, some
node might be improperly seized by a forest 4 which
progresses quickly, while actually it might be closer

to a start node in another cluster and thus should

254

belong to a forest B grown by that cluster. This
situation is discovered later when B eventually grows
up and an cxploration message sent by a node in B
reaches one of the improperly seized nodes. In this
situation, the edge carrying that message is remem-
bered by the adjacent nodes as an inter ~forest
edge and both forests 4 and B terminate their part
in the first stage, even though the required number

of layers has not yet been explored.

Upon the completion of the first stage, the clus-
ter and its BFS forest are called active if the BFS
forest is adjacent to any inter-forest edges; other-
wise they are imactive. Note that an inactive
cluster’s BFS forest must contain all nodes whose
truc BFS paths must go through the start nodes of
the cluster, since none of these nodes could be
improperly seized by other forests. Thus, if upon
completion of the first stage all the clusters are
inactive, then the strip has been processed correctly

and the bootstrap algorithm terminates.

Otherwise, the sccond stage is started, in which
the spanning tree algorithm [GHS-83] is applied to a
super-graph whose nodes are active forests and
whose edges are the inter-forest edges. (A more
detailed description is given in the full paper.) The
output of this algorithm is a spanning forest of the
super-graph, each tree spanning another com-
ponent; in addition a leader is chosen inside each
tree. As a result, active forests which share common

inter-forest edges are merged together into bigger

forests.

In the successive iterations, the first stage is
modified as follows. Whenever an active forest meets
another inactive forest on its way, the former forest

penetrates into the latter, absorbing all of its nodes

which were improperly seized. (This could not occur
in the first itcration since all the forests are initially
active.) Ifan active forest is met, then, as before, the

exploration process is stopped and an inter-forest

cdge is remembered. The idea behind this rather
peculiar rule is to reduce the number of iterations
without incrcasing too much the number of penctra-

tions.

We now observe that after cach iteration, each
active cluster cither becomes inactive or merges
with at least onc other active cluster. Thus, after i
iterations, each cluster not yet inactive contains at
least 2¢ start nodes. Thus after at most logV itera-
tions, each cluster is inactive and the resulting

forest is a genuinc BFS forest for the strip.

In summary, the bootstrap algorithm effectively
solves the problem of processing a strip with
unknown-connectivity by at most logl iterations,
each involving one application of the generalized
coordinated algorithm, two global synchronization
procedure and one application ef the spanning tree
algorithm. Each application of the spanning tree
algorithm of [GHS-83] requires O(logV) messages
per node plus O(1) message per edge of the strip. In
terms of time, it requires O(logV) time per node of
the strip. (Here we use the fact that the sub-

network, which is the input to the spanning tree

algorithm, belongs entirely to the strip.)

Let us now plug the the bootstrap algorithm
into the scheme at the end of the previous section,
which divided the network into strips of size v¥ and
processed them serially. It is easy to show that the

resulting algorithm has communication complexity

O((E+V'S)-logV). Since the cxploration messages,

which account for the term FE above, arc sent in

255

parallel at each nodec, (and similarly for the spanning

trec algorithm), the time complexity is

O(MS:-logV). Note that this algorithm requires
knowledge of V; however, both ¥ and E can be easily
calculated with complexity O(E) in communication

and O(V) in time.

6. O(L-2VloeViogloV) AT GORITHM

We now modify the generalized coordinated
algorithm above, making it recursive. This
modification will be referred to as main algorithm.
Recall that the input to this algorithm is a set of
start nodes, or a cluster, and a spanning tree T of
the cluster which belongs entirely to the current
strip. In this algorithm, the strip is split into a set of
substrips, each with a common number of layers.
The algorithm proceeds in successive iterations,
each processing another substrip by calling the
bootstrap algorithm as a subroutine. The input to
this subroutine is a set of start nodes for the sub-
strip plus a structure for external coordination,
which is needed in order to trigger the execution of
the subroutine, to detect its termination and to syn-
chronize between internal iterations of the subrou-
tine. This structure consists of the BFS forest of the
preceding substrips plus the above tree T. The start
nodes of the present strip are the nodes on the final
layer of the BFS forest. (For the first substrip, this

sct of start nodcs is simply the cluster being used by

the main algorithm.)

The subroutine itsclf procecds in at most logV
internal iterations, cach involving, among the rest,
solving known-connectivity problem for substrips.
This problem will be solved by the same main algo-
rithm (instead of the generalized coordinated algo-

rithm, as before). Note that the main algorithm for

strips calls the algorithm for smaller substrips, i.e.
is performed recursively, decreasing the depth of
the strip as the recursion depth increases. At the
bottom level of recursion, the basic coordinated

multiple-source algorithm is used.

Let us now evaluate the complexity of the main
algorithm. Consider the processing of a strip of size
d with a known connectivity by the main algorithm
above. For convenience, we will consider here the
normalized complexities of the algorithm, denoted
by CE(d) and TN(d), which are upper bounds on the
number of messages sent per link of the strip and
the time spent per node of the strip, respectively.
Observe that the overall complexities of BFS algo-
rithm are C=E-CE(V) and T=V-TN(V). (W assume
the worst case, i.e. that the diameter of the network
is V.) We will provide here a recursive equation or
evaluating for CE(h); it turns out that TN(h)

satisfics the same equation and thus CE(h)=TN(h).

Let us denote by d; the depth of the strip being

processed at the i’s level of recursion,

V=d,> dy..> d,, where r is the maximum dcpth of
the recursion. The complexity at the bottom level is

CE(d,)=TN(d,)=0(d,). The algorithm processing

. . di . .
strips of depth d; consists of -d"— iterations, cach
i+l

processing substrips of size d;, and involving loga-
rithmic number of internal iterations. Each internal
iteration involves one call to the algorithm process-
ing strips of size d;,;, one call to a synchronization
procedure, and one call to the spanning tree algo-
rithm. Taking these factors into account yields the
formula:

following recursive

. d
CE(d,) =logV-[7"—l—+CE(d,+1)]. It turns out that
+]

TN(d) obeys the same recursive formula, and thus

256

CE(d)=TN(d).

Using dynamic programming, one can optimize
total the complexities of the resulting algorithm,
choosing properly the depth r of the recursion and
the numbers d;. Let us just mention that the
optimum solution for very sparse and very large net-
works has the form CE(V) =O(2‘/'.°3_”°‘—“7“—’7). Thus,
the total communication and time complexities of
the algorithm are bounded by O(E-ZVW) and

O(V-2V108V08loeY) respectively.

REFERENCES

[AG-84] B.Awerbuch and R.Gallager, "An
O(WS.1ogV+E) distributed BFS", pre-
print, November 1984.

B. Awerbuch, "An Efficient Network Syn-
chronization Protocol ", ACM Symposium
on Theory of Computing, April 1984,
Washington.

[A-84]

G. Frederickson, "A single source shor-
test path algorithm for a planar distri-
buted nctwork”, Proc. 2nd Symp. on
Theoretical Aspects of Computer Science
(Jan. 1985).

[G85]

[G-82] R.G. Gallager, "Distributed Minimum Hop
Algorithms”, M.LT. Technical Report,
LIDS-P-1175, January 1982.

[GHS-83] R.G. Gallager, P.A. Humblet and P.M
Spira, "A Distributed Algorithm for
Minimum Weight Spanning Trees", ACM
Trans. on Program. Lang. & Systems,
Vol. 5, pp. 66-77, January 1983.

