והטכגיוו-מכון טכנולוגי ליקשד אל

 הפקולטה להנדסטת .חשמול הפקולטה למדעי המחשב ה 7 •TECHNION - Israel Instițute of Technology
Computer Science Department

[^0]
Abstract

In the area of communication-networks, many protocols have been suggested, and some are in practical use. In the case of networks whose topology. continuously changes, no protocol has been proved, since na formal ground rules have been suggested.

We present a mathematical model of such a network, by means of 7 axioms.

A protocol, BBP, for performing broadcast is presented and proved to be reliable, if the network behavior allows reliable 3 broadcast at all. We know oof no previous protocol which achieves this goal.

* Department of Electrical Engineering
** Department of Computer Science.

1. INTRODUCTION

1.1 The Model

Consider a store-and-forward computer communication network described by an undirected graph $G(N, L)$ where the nodes, N, represent computing units responsible for communication and the links, L, represent bidirectional noninterfering communication channels operating between them. Nodes connected by a link are said to be neighbours. Each node has unbounded processing and memory capabilities and is pre-programned to perform its part of the computation as well as to receive and send messages to neighbours. These actions are assumed to be performed in zero time. In a fixed topology network, each link in each direction has some finite positive delay, which may change with time arbitrarily, subject to the FIFO rule. In other words, each message sent by node i to node j arrives correctly withịn a finite undetermined time and all messages are received at j in the same order as they have been sent by i.

In the present paper we deal with networks of changing topology, where links may fail and recover again arbitrarily, but nodes never fail. The communication properties of the links of such networks are more complicated than those of fixed topology, and are described in Section 4.

1.2 The Problem

Broadcast is the delivery of copies of a message to all nodes in the communication network. Broadcast messages will be referred to as packets. The most impọrtant properties that any "good" broadcast protocol should possess are: reliability, low broadcast cost and low
delày. Completeness means that all the packets which are accepted at a node are accepted in the same order as they have been released by the source, without duplication or omission. Finiteness means that every packet is accepted at every node in finite time. Reliability is the combination of completeness and finiteness. The Broadcast Cost of a packet $B, B C_{B}$, is the number of times B traverses links of the network.

1.3 Existing Solutions

A survey of existing broadcast algorithms is given by Dalal and Metcalfe in $[4,5]$. They argue that the most practical broadcast protocol is the "Extended Reverse Path Forwarding" (ERPF). In this protocol, broadcast from a source s is performed along the Routing Structure of s (see Section 2.1) in the reverse direction, and thus no special trees need be maintained for broadcast. However, they show that broadcast in ERPF may not be reliable even if the network's topology is fixed. For the special case of constant topology network and the routing protocol of Merlin $\&$ Segall [2], an improved reliable version of ERPF was proposed in [6]. However, this method does not apply to other situations, i.e. changing topology or other routing protocols. In fact, none of the existing protocols achieve reliable broadcast in networks with changing topology, Moreover, no rigorous description of communication properties of such networks is known to us.

1.4 The Contents of this Paper

In Section 2 we present the Basic Broadcast Protocol (BBP). The input to $B B P$ is an arbitrary set of links on which broadcast must be
performed. The BBP operates in a network with arbitrarily changing topology where links may fail and recover infinitely many times. The communication properties of such links are axiomatized in Section 4 , (Similar assumptions are informally described by Sëgall [1].) No universal time measurement is assumed, i.e. each node has its own (independent) clock. The properties of BBP are rigorqusly proved in Section 5 using the axioms presented in Section 4. It is shown that BBP is always complete. Bounds on broadcast cost of BBP are given, The notion of "eventual connectivity" is defined for dynamic structures in Section 3. It is shown that if the input structure of the BBP is eventually connected, then the BBP is finite. Otherwise, no broadcast protocol can be finite.

Since a successful Routing Pratocol construct an eventually connected Routing Structure, its choice as an input to the BBP yields a reliable broadcast. Thus, ERPF can be made reliable even in networks with changing topology. It can be shown that other choices of the input yield improved versions of other known broadcast algorithms.
2. THE BASIC BROADCAST PROTOCOL (BBP)

2.1 The Routing Protocol and Routing Structure

A familiarity with the notions of Routing Protocol (RP) and Routing Structure (RS) is useful in order to understand the nature of the input to BBP. Let us describe briefly these notions. For. details, see $[2,3]$.

The purpose of RP is to deliver the single-source single-destination messages along "short" paths (in a sense of delay, global network cost, etc,). RP specifies, for every node $i \in N$, time t for this node and every possible destination $s \neq i$, the 'preferred neighbours' set $P_{i}^{s}[t]$. A message destined for s, arriving at node i at time t is forwarded by i to a node $j \in P_{i}^{S}[t]$. This process is repeated (at j) until the message eventually arrives at s. The set of directed links $P^{s}[t]=\left\{(i, j) i \in N\right.$ and $\left.j \in P_{i}^{s}[t]\right\}$ for fixed s, t is called the s -th Routing Structure (RS) at time t (sec Figure 1),

2.2 The Input to BBP

The input structure F^{s} is an arbitrary time-varying subset of the directed network's links. It is distributively updated by some external protocol which specifies for each node i $\in \mathbb{N}$, time t (at i) and each possible broadcast source $s \neq i$, the set of fathers $F_{i}^{s}[t]$, w.r.t. s. It contains the neighbours of i which are in charge of delivery of packets from the broadcast source s to i.

For example, this external protocol might be the RP, i.e. one may choose $F_{i}^{S}[t]=P_{j}^{S}[t]$ for each i, t, s, Then, BBP will penform reliable broadcast on the links of the s-th $R S$ and can be viewed as a reliable version of ERPF,

Note that the input does not inform node i to which neighbours it should deliver the packets of s, i.e. for which $k i \in F_{k}^{s}$ holds. The set $z_{i}^{s}[t]$ of nodes to which node i forwards packets (of s at time t) is called the set of sons of i (w.r.t.'s). It includes those nodes k for which $i \in F_{k}^{S}$ holds according to the (possibly, outdated) information i has. This information is obtained using special updating messages.

It is only reasqnable to assume that the set of times (at node if when F_{i} is changed contains no infinite convergent subsequence.

2.3 Preliminaries

We assume that the packets are all-different, so that duplicates can be detected. The basic idea of BBP is that every new packet arriving at a node is accepted, contpary to the operation of ERPF and its improved versions [6,7], where only packets arriving from the father are accepted. Reliability is achieved by introducing additional memory to the nodes. Before describing the protocol, let us explain our notations. The protocol is performed by all nodes i of the network, and each one performs the same node algorithm. The notation " $x_{i}^{S}[t]$ " means: "variable x kept at node i at moment t with respect to source $s^{\prime \prime}$. From here on, we assume that there exists a single broadcast source s, (i.e. broadcast processes from different sources do not interfere) and the superscript s will be omitted. We also omit "[t]" when the time in question is clear from the context. When we write: "node j sends message $M\left(x_{j}\right)$ to j at time 'T" it means that this message contains the value of $x_{j}[T]$. When this message arrives at i, it is stamped with the
identification j of the node it came from and has the format $M(j, x)$, where x is the value of $x_{j}[T]$.

2.4 Description of the BBP.

Each node. i is required to keep the following variables;

1) LIST $;$, where every, accepted packet is stored in the received order, since the beginning of the algorithm;
2) $\underset{\rightarrow}{I C}$, which keeps count of the number of packets in LIST ${ }_{i}$;
3) $I C_{i}(j)$ which is the estimate of $I C_{j}$ at node i, kept for every neighbour j;
4) F_{i} set of fathers of node i;
5) $\underset{-}{Z}$ set of sons of node i;
6) E_{i} set of neighbors of node i.

Now, we present formally the node algorithm. It specifies the actions taken at node i for all possible events, which are either receipt of a message $M(j, x)$ or change in F_{i}.
"For $M(j, x)$ " means: "whenever $M(j, x)$ arrives ati i, i performs the following". Failure and recovery of a link (i,j) are represented by receipt of $\operatorname{FAIL}(j)$ and $W A K E(j)$ messages at node i.

BBP-Algorithm for node i

F. For change in F_{i} :

1) if j beçomes a new member of F_{i} then send $\operatorname{DCL}\left(\mathrm{IC}_{i}\right)$ to j /* $j \in E_{i}^{*} /$
2) if k ceases to be a member of F_{i}, and $k \in E_{i}$ then send CNCL to k .
D. For $\operatorname{DCL}(\mathrm{j}, \mathrm{IC}):$
3) $z_{i} * z_{i} \cup\{j\} ; y^{*}$ recognizze j as a sọn */
4) if $I C_{i}(j)<I C$ then $I C_{i}(j) \leftarrow I C ; / *$ else leave $I C_{i}(j)$ unchanged */
5) while $I C_{i}(j)<I C_{i}$, do:
6) send to j the contents of $\operatorname{LIST}_{i}\left(I C_{i}(j)+1\right)$;
7) $\quad I C_{i}(j)+I C_{i}(j)+1 \underline{\text { od }}$
B. For $B(j) / *$ a packet B arriving from $j * /$
8) if $\mathrm{B} \notin$ LIST $_{\mathrm{i}}$ then /*, B ìs nèw */
9) $\quad \mathrm{IC}_{\mathrm{i}} \leftarrow \mathrm{IC}_{\mathrm{i}}+1$; ;
10) put B in $\operatorname{LIST}_{i}\left(\mathrm{IC}_{i}\right)$; /* acceptance */
11) \quad if $j \in Z_{i}, I C_{i}(j)=I C_{i}-1$ then $I C_{i}(j)+I C_{i}$;
12) for every $k \in Z_{i}, I C_{i}(k)=I C_{i}-1$ do
13) send B to $k, I C_{i}(k)+I C_{i}$ od.
C. For $\operatorname{CNCL}(j)$
14) $Z_{i} * \bar{z}_{i}-\{j\} / *$ drop j from the list of sons */
W. For WAKE (j)
15) $E_{i} \leftarrow E_{i} \cup\{j\}$;
16) $\mathrm{IC}_{\mathrm{i}}(\mathrm{j})+0$ /* reset the variables */

FL. For FAIL (j)

1) $E_{i}+E_{i}-\{j\} ;$
2) $F_{i}+F_{i}-\{j\}$;
3) $z_{i} \leqslant z_{i}-\{j\}$.

3. PROPERTIES OF BBP

3.1 Major Properties

We state now the properties of BBP_{2} which hold for the most general conditions, i,e, for arbitrary input structure F and for a network which suffers from an arbitrary (maybe, infinite) sequence of topological ohanges. These properties are deduced from the axioms presented in Section 4; We first define the concept of "eventual' connectivity". Definitions Denote $\bar{F}_{i}=n^{t}{\underset{t}{ }{ }^{\prime} \geq t} F_{i}\left[t^{t}\right]$ and $\bar{F}=\left\{(i, j) \mid j \in \bar{F}_{i}\right\}$, and consider the digraph $G(N, \bar{F})$. This graph contajns the links (i,j) which are persistent in F, i.e., reappear after each deletion. F is said to be eventually connected w,r.t, node s if there exists a directed path from every node i to node s in the digraph $G(N, \bar{F})$. The protocol is said "to perform broadcast on links of Fl' if for every link (i,j) $\ddagger \overline{\mathrm{F}}$, the protocol, at some time, ceases to propagate packets from j to i.

Claim $1 \quad$ Broadcast is always complete.
Claim_ 2 Broadcast is finite (and thus, reliable) iff the input structure F is eventually connected w.r.t, the broadcast source s.

Note: According to the definition above, it can be easily shown that no protocol cean perform reliable broadicast from s on the links of G if F is not eventually connected w.f.t. s.

Definitions: Let $B C_{B}, V_{B}, E_{B}$ be the number of times packet B traverses the network's links, the number of nodes which accept B, an upper bound on the number of undirected links between nodes which accept B, respectively. Also, let $2 D$ denote an upper bound on
the roundtrip delay of a link and let $\frac{1}{\lambda}$ be a lower bound on the time between two nontrivial changes in F_{i} (of the kind $F_{j}+F_{j} \cup\{j\}$, j $\neq \mathrm{i}$).

Claim 3: Broadcast cost in BBP satisfies:
(a) $\mathrm{BC}_{\mathrm{B}} \leqslant 2 \mathrm{E}_{\mathrm{B}}-\left(\mathrm{V}_{\mathrm{B}}-1\right)$
(b) If $\left|F_{i}[t]\right| \leqslant 1$ for all $i \in N$ and all t, then $B C_{B} \leqslant \min \left\{2 E_{B}-\left(V_{B}-1\right),\left(V_{B}-1\right)(2+2 D \lambda)^{*}\right\}$.
(c) If F converges to a (constant) spanning tree, then $B C_{B}=|N|-1$ holds for all B released after such a convergence (${ }^{\prime} N \mid=$ total number of nodes).

3.2 Additional Interpretation

Observe that a structure F is eventually connected w.r.t. node s af for every start node and time it is possible to reach node s eventually by means of the following Ideal Routing process:

1) At time t, move from i to $j \in F_{i}[t]$ in zero time.
2) Upon arrival at intermediate node, wait there for undefinite time and then perform 1),

The Routing Protocol (see Section 2.1) delivers the messages to. destination by means of the following Actual Routing process:
(1) At time t, hove from i to $j \in F_{i}[t]$ in time equal to the delay of the link (i, j) (at time t).
(2) Upon arrival at intermediate node i, wait until the set P_{i}^{s} is nonempty and then perform 1).

Clearly, the Actual Routing can be simulated by the Ideal Routing by waiting at the intermediate node for the time equal to the delay of the incoming link.

Let us define a Routing Protocol to be reliable if the Actual Routing process delivers each message in finite time to its destination s. By the above argument, the s-th Routing Structure used by this Routing Protocol must be eventually connected w.r.t. s. Thus; using the $s-t h$ Routing Structure as the input to the BBP, i.e. choosing $F_{i}[t] \leftrightarrow P_{i}^{S}[t]$ for all i; t we achieve the reliable broadcast.

Corollary. If the input to the BBP is the s-th Rouṭing Structure, then if the Routing to s is reliable then the Broadcast from s is reliable. Thus, BBP can be viewed as a reduction from the problem of Broadcast to the problem of Routing.

4. PROPERTIES OF A LINK

Here, we define precisely the communjcation properties of a link (i, j) in presence of topological changes. These properties we secured by the underlying link - protocal. Less formal assumptions were presented by Segall [1]. We postulate 5 properties A1, A2, A3, A4, A5, A6, A7 and start with their informal description.

Al says that messages can be sent and received over the link only in some "operating intervals". A2 says that when a link recovers, no messages can be in transit through it. A3 says that the messages sent in the same operating intervial obey the FIFO first in - first out) rule. A4 says that failures of a link are detected in finite time. A5 says that if link (i, j) is operating, there is a "fair chance" that a message sent by i to j wilf indeed arrive at j, i.e. there is a correspondence between the status of link (i, j) as seen at i and the actual capability of the link to deliver messages to j. Thus, if the link does not fail terminally and i "insists" on delivery of a message to j, it: wili eventually succeed, $A 6$ says that message trayelling in the network cannot return to its start. point before it was sent. A7 says that an unbounded seqquence of departure times cannoţ yield a bounded infinite sequence of afrival times.

The axioms refer to fạcts as viewed by node i:
Al) Operating intervals: At both ends (i, j) of the link the link protocol generates alternating sequences of WAKE and FAIL messages, which inform 'the recoveries and failures of the fink, From the point of view of node i the link (i, j) is said to be operating in the closed time interval between receiving WAKE(j) and FAIL(j) messages.

The above interval is called the operating interval (e.g. (t_{1}, t_{l}) of Figure 2). Node i çan send (receive) messages to (from) node j only when link (\mathfrak{i}, j) is operating. A message sent by i to j does not necessarily arrive at j.

A2) Communicating intervals: Two operating interyals π, ϕ at opposite sides i; j of the link are said to be communicating if it is possible for node i to send a message to node j at interval π. so that it will be received at j at interval ϕ or vice versa. We denote this relation by $\pi_{i} \sim \neq$. If interval ${ }^{-} 1$ preceeds interial π_{2}, we write $\pi_{1}<\pi_{2}$. It is postulated that $\left[\left(\pi_{1} \sim \phi_{1}\right) \wedge\left(\pi_{2} \sim \phi_{2}\right) \wedge\right.$ $\left.\left(\pi_{1}<\pi_{2}\right)\right] \supset\left(\phi_{1}<\phi_{2}\right)$ i.e. communication relation " \sim " is monotonous in time.

Exampié: In Figure 2, $\pi_{i} \sim \phi_{1}$, because messages M_{L}, M_{2} senţ by i at times $t_{A}, t_{B} \in \pi_{1}$, arrive at j at times (measured by j) $T_{A}, T_{B} \in \phi_{1}$. We conclude that $\pi_{1}+\phi_{0}, \phi_{2}+\tau_{0}, \phi_{1}+\pi_{0}, \pi_{2}+\phi_{0}$, etc. A3) FIFO: Suppose messages A, B are sert by node i to j during the same operating interval. If" A iss sent before B and B arrives at j, then A arrives tou and itş arrival țime preceeds that of B.

A4) Failures detection: Suppose that in response to a message N^{*} received by j from. i, j will send to i an "acknowledgement"! R. The existence of a constant $20>0$ (calied "bound on roundirip delay of a link") is assumed such that in at most 2 D timerunits after M is sent from i to j, i will receive either FAIL or R.

A5) Consider any unbounded sequence of times $s=\left\{t_{k}{ }_{k=1}^{\infty}\right.$, generared by an on-line algorithm operating at node i such that link (i, j) is operating at each t_{k}. For any such s, we assume existence of time $t_{m} \in s$ such that a message sent from i to j at t_{m} successfully arrives at j.

Comments: We require that s is generated by an on-line algorithm for the following reasons. Otherwise, we might deliberately choose s to be a set of times when link (i, j) is still operating, but is about to fail and no message sent at $t \in s$ from i will succeed in reaching j. If link (i, j) fails many times, then s might be an unbounded set and it seems that. $A 5$ is violated. However, this is not the case, because generation of such set s requires information about future failures of the link and thus s cannot be generated by an on-line algorithm. If there were a way to predict the link's failure in advance, the link's protocol should have used this information to declare a FAIL, message, to prevent the hopeless transmission of messages which cannot reach their destination.

Before proceeding further with additional axioms; a brief discus, sion is helpful. In a centralized algorithm, the statement that action A is performed before action B (or in short, A preceeds B) means that the execution of A may influepnce the execution of B but the outcome of B has no influence on A. Observe that for any A, B either A preceed's B or vice versa. In a distributed algorithm, it may happen that actions A, B are performed concurrently and therefore neither can influence the other. This happens when actions A, B are performed at different nodes and neither can communicate the outcome of its action to influence, the action of the other.

In the situation above, where no casuality connection exists between events A, B it is improper to say that "A is performed before $\mathrm{B}^{\prime \prime}$ or vịce versa. Also observe that different users of the network might have different time scales and rates (say in an interplanet or interstellar communication) so that no global time clock exists in
in the network, and a quantitative comparison of times at different nodes is impossible.

For these reasons, we wish to redefine the "before" relation, and will stick to thìs definition throughout this paper, unless otherwise stạted.

For actions performed in the same node, "before" relation is defined in the usual sense. Now, we define a new "before" relation and show that is is an extension of the usual "before" relation, in the sense that the new relation contains the old one.

Definition: Action A is said to be performed "before" action B if the outcome of A can reach the node which performs B before the execution of B.

We denote this by $t_{A}<t_{B}$, where t_{A}, t_{B} denote the times when actions A, B are performed, as measured in the respective nodes.

Observe that the "before" relation defined above is transitive. Also it constitutes an extension of the old "before" relation in the usual sense, defined for events happenning at the same node, because a node "delivers" messages to itself in zero time.

A6) The relation 'before" is irreflexive.
Discussion: If $t_{1}<t_{2}$ then $A 6$ implies that $t_{1} \neq t_{2}$. Also, by transitivity of "before" this implies that $t_{2} \leqslant t_{1}$.

The purpose of A6 is to preserve the usual sense of "before", -when times are compared in the same node. Let t_{1}, t_{2} be times of events in the same node. If $t_{1}<t_{2}$, in the new sense, then $t_{1}<t_{2}$ in the old sense too, but $t_{2} \leqslant t_{1}$ by the discussion above. Thus, the new "before", when restricted to times of events in one node yield the old "before" for that node.

A7) For any 2 infinite sequences of times $s=\left\{t_{k}\right\}_{k=1}^{\infty}$ and $S=\left\{T_{k}\right\}_{k=1}^{\infty}$, if $T_{k}<t_{k}$ for all k and S is unbounded then s is unbounded too.
5. FORMAL ANALYSIS OF BBD

Here, we prove formally the properties of BBP. In Sections B.1, B.2, B.3, we prove Claims $1,2,3$ (Completeness, Finiteness, Broadcast Cost) stated in Section 3. In B.1, we use only assumption A3, A6, A7. In B.2, B. 3 we use all the assumptions.

B. 1 Completeness

To simplify the proofs, we shall modify the original version of BBP, which will be referred to as BBP1, and the modified version will be referred to as BBP2. We prove that BBP2 is complete and equivalent to BBPI.

Let the packets be numbered in the order which the source releases them. We denote the counter-number of packet B by IC(B). In BBP2 it is assumed that every packet B contains IC(B). The procedure which handles an arriving packet is now modified in BBP2 as follows:
B. For $B(j) \quad \gamma^{*}$ a packet B arriving from j"/

1) If $I C(B)>I C_{i}$, then $/ *{ }^{*}$ is new */
2) $\quad I C_{i}+I C(B)$
3) put B in $\operatorname{LIST}_{\mathfrak{j}}\left(\right.$ IC $\left._{\mathfrak{i}}\right)$ /* acceptance */
4) \quad if $j \in Z_{i}, I C_{i}(j)<I C_{i}$, then $I C_{i}(j)+I C_{i}$
5) for every $k \in Z_{i}: I C_{i}(k)<I C_{i}$ do
6) \quad send B to $k, I C_{i}(k) \leftarrow I C_{i}$.

Now, we prove that BBP2 is complete, We need first some preliminary results.

Por the sake of brevity let us introduce the following convention: By "condition P "holds at time t^{f} " we mean that there exists an $E>0$ such that for every time t^{\prime} in the open interval ($t, t+\epsilon$) the condition P holds. Similarly, t^{-}is defined.

In the following proofs we shall denote the line labeled x of algoritihm BBP2 by $\langle x>$.

Lemma B. 1.1
(a) $I C_{i}[t]$ is nondecreasing with t.
(b) $I C_{i}(j)[t]$ is nondecreasing with t while link (i, j) operates,
(c) If a packet B is accepted by node i at t, (i.e. <B3> is performed) then $I C\left[\mathrm{t}^{+}\right]=I C(B)$.
(d) If a packet ' B arrives at node $\underset{1}{ }$ at then for all t ' $>t$ $\mathrm{IC}_{i}\left[\mathrm{t}^{\prime}\right] \geqslant \mathrm{IC}\left(\mathrm{B}^{\prime}\right)$.
(द) The on 7 y location in which B is ever stored in LIST is IC (B).
(f) If a packet B is sent from i to j at t; then $I C_{i}(j)\left[t^{+}\right]=I C(B)$.
(g) If at time t, node i daes not perform any action of BBP^{2} and $j \in Z_{i}[t]$ then $I C_{i}(j)[t] \geqslant I C_{i}[t]$.

Proof of Lemma B. 1:1
The proof of the above claims, one by one, is straightforward.
For each claim we indicate the lines of BBP2 and the previous claims which imply it.
(a) \langle B1 $\rangle,<$ B2 \rangle.
(b) <W2>, <D2>, <D5>, <B4>, <B5>, <B6>.
(c) $\langle\mathrm{B} 1>, \leqslant \mathrm{B} 2>$.
(d) $\langle\mathrm{B} 1\rangle$, 〈 B 2$\rangle$, (a).
(e) <B2>, <B3>
(f) <D4>, <D5>, <B2>, <B6>,
(g) <D3>, <D5>, <B4>, <B5>, <B6>, <FL3>, <W2>:
(EAIL preceds WAKE and therefore on $\operatorname{WAKE}(j), j \notin z_{i}$.)

> Q.E.D.

Lemma B. 1.2

As long as completeness of BBP2 is maintained at node i, it actually performs the actions of BBP1, i.e.
(a) In $\langle B 1\rangle$, $I C(B)>I C_{i}$ impliès $I C(B)=I C_{i}+1$ and thus in $\langle B 2\rangle, I C_{i}+I C_{i}+I$ is performed.
(b) In <B4> and <B5>, $I C_{i}(k)<I C_{i}$ implies $I C_{i}(k)=I C_{i}-1$ for all sons $k \in Z_{i}$, and thus in $\langle B 4\rangle$ and $\langle B 6\rangle I C_{i}(k)+I C_{i}(k)+1$ is performed.

Proof:

(a) follows from the definition of completeness.
(b) follows from (a) and Lemma B.1.1 (g).
Q.E.D.

Theorem B. 1.1
Suppose a message M is sent from j at time T and arrives at i at time t. Then:
(a) $I C_{j}(i) \cdot\left[T^{-}\right] \leqslant I C_{i}\left[t^{-}\right]$
(b) $I C_{j}(i)\left[T^{+}\right] \leqslant \cdot I C_{i}\left[t^{*}\right]$.

Proof of Theorem B.1.1

If M is not a broadcast packet, then the variables mentioned in, the theorem do not change at times T, t (respectively) and thus (a) is equivalent to (b). Othervise (M is a broadcast packet), then (b) halds by Lemma B.1.f $[(\mathrm{d}),(\mathrm{f})]$, because $\mathrm{IC}_{\mathrm{i}}\left[\mathrm{t}^{+}\right] \geqslant \mathrm{IC}(\mathrm{M})=\mathrm{IC} \mathrm{j}_{\mathrm{j}}(\mathrm{i})\left[\mathrm{T}^{+}\right]$.

Thus, it is sufficient to prove (a). Let us denote $x=I C_{j}(i)\left[T^{-}\right]$ and prove that $x \leqslant I C_{i}\left[t^{-}\right]$. Denote by T_{1} the last time before T when $I C_{j}(i) \& x$ was performed: If $x=0$, the claim is trivial. Assume $x>0$. At time T_{1} the link (i, j) operates, and at time T it operates too. It could not havg failed and waked in between, since in <W2> $I C_{j}(i) \leftarrow 0$ is performed.

At ' Γ_{1}, one of the following events could happen:
(1) j receives $\operatorname{DCL}(i, x)$ with $\left.x>I C_{j}(i)\left[T_{1}\right](<1) 2>\right)$
(2) B is accepted at j from i and $i_{i} \in Z_{j}\left[T_{]}\right], X_{j}(i)\left[T_{l}\right]<x$ (<B4>)
(5) B is sent from, j to i ($\langle\mathrm{D} 4\rangle,\langle B 6\rangle$).

In cases (1), (2) denote by t_{0} the time when node i sent the above DCL or B, respectively. Clicarly, $t>T>T_{1}>t_{0}$ and by transitivity, $t>t_{0}$. Thus, $t^{+}>t_{o}$ and by B.1.l(a) $I C_{i}\left[t^{-}\right] \geqslant I C_{i}\left[t_{0}\right] \geqslant I C(B)=x$. In case (3), by $A 3$, applied to B and M, B arrives at i at time $t_{1}<t$. Thus, $t_{1}<t^{-}$. By Lemma B. 1,1 [(a), (d)] $I C_{i}\left[t^{-}\right] \geqslant I C_{i}\left[t_{1}^{+}\right] \geqslant I C(B)=x$.
Q.E.D.

Lemma B. 1.3
For any event A which happens, at least once, at various nòdes of the network, it is possible to find a time t when A happens for the first time in the network in the following sense; For any node n and time $t^{\prime}, t^{\prime}<t$, A has not happensed at n until t^{\prime}.

Proof:

For those nodes n where A happens at least once, denote by $t(n)$ the first time when it happenned at n. Now, pick any such node
n_{1}. Either $t\left(n_{1}\right)$ satisfies the requirement of the lemma or there exists a node n_{2} with $t\left(n_{2}\right)<t\left(n_{1}\right)$.

Applying repeatedly the avove construdtion, we will eventually stop after a finite number of steps, finding the required nbde and time. The fact that the above pfocess indeed stops and cantot continue infinitely is proved as follows.

Suppose that there exists an infinite sequence of times $t\left(n_{1}\right)>t\left(n_{2}\right)>t\left(n_{3}\right)>\ldots$. The network is finite and the refore there exist integers $m<k$ such that $n_{m}=n_{k}$. Thus, both $t\left(n_{m}\right)=t\left(n_{k}\right)$ and $t\left(n_{m}\right)>t\left(n_{k}\right)$; hoid. A contradiction tó $A 6$. Q.E.D.

Theoretn B. 1.2
Broadcast in BBP. 1 and BBP? is always complete.
Proof: It suffices to show, by Lemma, B.1.2, that in BBP2 completeness is never violated. Assume the contrary, and consider a node i ahd time t when completeness is Violated for the first time in the network in the sense of Lemma B.1.3; Thus at time t, a "gap" is created in LIST_{i}, i.e. node i receives (and therefore accepts) some packet B with $I C(B)>I C_{i}\left[t^{-}\right]+1$.

Suppose B was sent by node j at time $T, T<t$. By our assumption, completeness was maintained at j until T, and the desired conträdition follows:
$I C(B)=I C_{j}(i)\left[T^{+}\right]=I C_{j}(i)\left[T^{-}\right]+1 \leqslant I C_{i}\left[t^{-}\right]+1$.
The above relations (from left to rịght) follow from Lemma B.l.i(f), Lemma B.1.2(b), Theorem B.1.1(a).
Q.E.D.

B. 2 Finiteness

Definitions:

Denote by V_{1}^{*} the set of nodes which accept every packet B in finite time and by V_{l}^{F} the set of nodes i such that there exists a difected path from ito s in $G(N, \bar{F})$,

Observe that broadcast is finite iff $V_{1}^{*}=N . \quad$ By definition qf Section 3.1 F. ìs eventually connectẹd W.F. \ddagger, s iff $V_{1}^{F}=N$. Ouf purpose is to shaw that $V_{1}^{*}=V_{1}^{F}$ for the BBR. Analogously to the definition above, one çan define \bar{x}, the set of persistent links of x, for any structure $\left\{(i, j) \mid j \in x_{i}\right\}$ induced by sets $x_{i}[t]$ defined for all i, t. Also, define $v_{2}^{*}=N-V_{1}^{*}$. $V_{2}^{\dot{\mathrm{F}}}=N_{r} V_{1}^{\dot{F}}$. Saying that link (i, j) operates after t, we mean that it - never fails after t.
Lemmà B. 2.1
For any structure $x,(i, j) \in \bar{x}$ if and onjy if one of the following conditions holds:
(a). therfe exists t_{Q} such that $j \in x_{i}[t]$ for all $t \geqslant t_{q}$,
(b) there exist's an unbounded sequence of times $s=\left\{t_{k}\right\}$, such that
j jpins x_{i} at eqach t_{k}.
Proof; It is eqasy to see that if (i,j) $\ddagger \bar{x}$, then neithen (a) nor (b) can hold.

Suppose that ($\dot{f}, j) \in \bar{x}$. If the set $s=\left\{t \mid x_{i} \leqslant x_{i} \cup\{j\}\right.$ at $\left.t\right\}$ is unbounded, then (b) holds, Otherwise, any upper bound t_{0} $\left(t_{Q}>t\right.$ fòp all $\left.t \in s\right)$ must satisfy (a).

Lema B.2.2

Suppose that link (k, r) operates after time t_{k}^{0}. Then there exist times t_{k}^{*} at node k and t_{r}^{*} at node r such that:
(a) Links (k, r) and (r, k) operate after times t_{k}^{*}, t_{r}^{*} respectively, and $t_{k}^{*} \leqslant t_{k}^{0}$.
(b) Each message sent by k to r after t_{k}^{*} successfully arrives at r after t_{r}^{*}.
(c) Each message received by k from r after $\hat{\epsilon}_{k}^{*}$ was sent by r after T_{r}^{*}.
Proof: Pick any unbounded set $S_{k}=\left\{t_{k}^{\mathfrak{j}}\right\}$ of times at node k such that $t_{k}^{i}>t_{k}^{0}$, and send at time t_{k}^{i} (an imaginary) message M^{i} from k to r. By A4, each M^{i} arrives successfully at r at some time t_{r}^{i}, and by $A 2$ these times belong to the same operating interval. By A7, the set $S_{r}=\left\{t_{r}^{i}\right\}$ is unbaunded.

Now, denote by π, ϕ the operating intervals at nodes k, r containing sets S_{k}, S_{r} and by $\stackrel{t}{4}_{*}^{*},{ }^{*}{ }_{r}^{*}$ the start times of these intervals respectively (which exist because, by $A i$, the intervals are closed).

The intervals π, ϕ contain unbounded sequences of times S_{k}, S_{r} and thus are infinite; i,e. links (k, r) and (r, k) operate after times t_{k}^{*} and t_{v}^{*} respectively. Also, t_{k}^{*} is the start time of π and thus $t_{k}^{*} \leqslant t_{k}^{o}$, proving (a).

By A4, messages sent by k to r after t_{k}^{*} successfully arrive at r. Observe that by construction, π and ϕ are communicating intervals. By $A 2$, messages sent by k at $t \in \pi$ can reach r only at $T \in \phi$ and vice versa, proving (b), (c).

Lemma B. 2.3
Suppose that a sequence of times $s=\left\{t_{k}\right\}_{k=1}^{\infty}$ satisfies the requirements of $A 5$. Then, it contains an unbounded subsequence $s^{\prime}=\left\{t_{k_{m}{ }_{m=1}}\right\}^{\infty}$ such that for each m a message sent from i at t_{k} successfully arrives at j.

Proof: By A5, such subsequence s^{\prime} contains at least one member t^{1}. The truncation s_{1} of s, defined as $s_{1}=\left\{t \mid t \in s, t>t^{1}+1\right\}$ still satisfies the condition of $A 5$, and thus s^{\prime} contains some member $t^{2} \in s_{1} ; t_{2}>t_{1}+1$. Repeatedly continuing with the above argument, we see that s^{\prime} is unbounded.
Q.E.D.

Theorem B. 2.1

$$
(j, i) \in \bar{F} \quad i f f \quad(i, j) \in \bar{Z} .
$$

Proof of Theorem B.2.1 By Lemma B.2.1, it is sufficient to prove the two following claims.

Claim_ \quad There exists time t_{0} at i such that $j \in F_{i}[t]$ holds for all $t \geqslant t_{0}$ if and only if there exists time T_{0} at j such that $i \in Z_{j}[T]$ for all $T \geqslant T_{0}$.

C1aim 2: There exists an unbounded sequence $s=\left\{t_{k}\right\}_{k=1}^{\infty}$ of times when i performs $\vec{F}_{i} \leftarrow F_{i} U\{j\}$ if and only if there exists an unbounded sequence $S \neq\left\{T_{k}\right\}_{k=1}^{\infty}$ when j performs $Z_{j} * Z_{j} U\{i\}$. Proof of Claim 1: The "only if" part

Suppose that such time $\hat{\iota}_{Q}$ exists. The set of times when F_{i} changes contains no cluster points, as assumed in Section 3.1. Thus, there exists the time t_{1} when $F_{i}+F_{i} U\{j\}$ is performed for the last time. For all $t \geqslant t_{1}$, link (i,j) operates; because if link
(i, j) ever fails after t_{i} then $F_{i} \nleftarrow F_{i}-\{j\}$ (see <FL2>) would have been performed, in contradiction the the assumption that $\dot{j} \in F_{i}[t]$ for $t \geqslant t_{1}$.

Observe that at $t{ }_{1}$ the last DCL(i,:) has been sent by i to j, and no CNCL(i) is ever sent by i to j after t_{1}.

By Lemma B. 2.2 [(a),(b)] thịs DCL message successfully arrives at j at spme time T_{1}, after which the link (i, j) operates (i.e. $T_{1} \geqslant t_{j}^{*}$ in terpms of Lemma B.2.2). Moreover, no CNCL(i) can arrive to j after T_{1} by A2, A3. Thus, $i \in Z_{j}[T]$ for all $T \geqslant T_{1}$, implying i $\in \bar{z} \bar{j}^{\prime}$,

The "if" part
Suppose that such time T_{0} exists. The set S of departure times of $\operatorname{DCL}(i, \cdot)$ messages sent from i to j contains no cluster. points, as assumed in Section 3.1. By A7, the set of arrival times does not contain any cluster points either.

Thus, there exists à time T_{1} when $Z_{j} \leftarrow Z_{j} U\{i\}$ is performed for the last time.

For all. $T \geqslant T_{1}$, link (j, i) operates, because if link (j, i) ever fails after T_{1} then $Z_{j} \leftarrow Z_{j}-\{i\}$ (see $\leqslant F L 3>$) would have been performed in contradiction to the assumption that $i \in Z_{j}[T]$ for $\mathrm{T} \geqslant \mathrm{T}_{1}$.

Observe that at T_{1}, the last $\operatorname{DCL}(i$,$) is received by j$ and no CNCL(i) arrives at j after T_{1}.

By Lemma B.2.2 [(a), (c)] the above DCL is sent by i at such time t_{1}, after which link (i, j) operates i.e. $t_{1} \geqslant t_{i}^{*}$ in terms of Lemma B.2.2. Moreover, no CNCL(i) can be sent from i to j after t_{1}
by A2, A3. Thus, $j \in F_{i}[t]$ for all $t \geqslant t_{1}$, implying $j \in \bar{F}_{i}$.
Q.E.D.

Proof of Claim 2 The "only if" part
At each t_{k}, a $\operatorname{DCL}(i, \cdot)$ message is sent from.i to j. The set $s=\left\{t_{k}\right\}$ satisfies the condition of Lemma B. 2.3 and thus, there exists an infinite subsequence of $\operatorname{DCL}(i$,$) message which succeed in reaching$ j, whose departure times constitute an unbounded subsequence of s. By A7, the sequence S of their arrival times is unbounded and each arrival causes j to perform $z_{j}+z_{j} U\{i\}$. Thus, $i \in \bar{z}_{j}$. Q.E.D.

The "if" part:
At each T_{k}, a DCL (i, \cdot) message is received by j from i. Denote by t_{K} the time when this message was sent from i. Clearly, $F_{i}+F_{i} \cup\{j\}$ was set at t_{k}, and $s=\left\{t_{k}\right\}$ is infinite set of times which, by assumption of Section 3.1, contains no cluster points. But then s is necessarily unbounded and thus $j \in \bar{F}_{i}$. Q.E.D.

Q.E.D. for Theorem B.2.1

Theorem B. 2.2

If $(j, i) \in \bar{z}$ then every packet B accepted at j at time T_{B} is also accepted by i at some finite time t_{B}. In particular, $j \in V_{1}^{*}$, implies $i \in V_{1}^{*}$.

Proof of Theorem B.2.2
(j,i) $\epsilon \overline{\mathrm{z}}$ if $\mathrm{i} \in \overline{\mathrm{Z}}_{\mathrm{j}}$ and thus there exists a sequence of times $S=\left\{T_{k}\right\}_{k=1}^{\infty}$ satisfying the premise of A5 such that $i \in Z_{j}\left[T_{k}\right]$. Clearly, T_{k} can be chosen so that at every moment T_{k}, j does not perform any action of BBP (this follows from the fact that the
line (i, j) operates at T_{k}^{+}) and that $T_{k}>T_{B}$, (because the truncation S_{1} of the set $\left\{T_{k}\right\}$ to $T_{k}>T_{\vec{B}}$, still satisfies the premise of A5). Suppose that for every k we send (an imaginary) message M_{k} at time T_{k} : By A5, there exists a message M_{q}. which arrives at i at some time t_{q}, Then, B is accepted at i before t_{q} because: $I C_{i}\left[t_{q}\right] \geqslant I C_{j}(i)\left[T_{q}\right] \geqslant I C_{j}\left[T_{q}\right] \geqslant I C_{j}\left[T_{B}^{+}\right] \geqslant \operatorname{IC}(B)$.

The abovë inequalities are implied by (from left to right):
Theorem B.1.1, Lemma B.1.1 (g), Lemma B.1.1 (b), Lemma B.1,1 (c).
Q.E.D.

Theorem B. 2.3
In $\operatorname{BBP}, \mathrm{v}_{1}^{\mathrm{F}}=\mathrm{V}_{1}^{*}$.
Proof: Is is sufficient to prove the 2 following claims:
C1aim_1: $\quad \dot{V}_{1}^{\mathrm{F}} \subset \mathrm{V}_{1}^{*}$.
Calim_2: $\quad v_{1}^{*} \subset v_{1}^{F}$.

Proof of Claim l: Proceeds by induction on the length d_{j} of the shortest directed path in $G(V, \bar{F})$ from a node $j \in V_{i}^{F}$ to the node s.

Here the induction step is the Theorem B. 2.2 and the induction basis is the obvious claim: "s $\in \mathrm{V}_{1}^{*}$ ".

Q:E.D.
Proof of Claim 2: By definition of V_{1}^{F} and V_{2}^{F}, for any i $\in V_{2}^{F}$, $j \in V_{1}^{F}$, holds $j \notin \bar{F}_{i}$ (otherwise, $i \in V_{1}^{F}$). By Theorem B.2.1, $i \notin \bar{z}_{j}$, and thus there exissts time $T(j, i)$ such that after it $i \notin Z_{j}$ holds and thus j will not forward any packet to i.

Now, consider the packet B such that

$$
I C(B)=\max \left\{I C_{j}[T(j, i)] \mid i \in V_{2}^{F} j \in V_{1}^{F}\right\}
$$

Clearly, no packet B^{\prime} with $I C\left(B^{\prime}\right)>\operatorname{IC}(B)$ çan be forwarded to nodes of v_{2}^{F} by the nodes of v_{1}^{F}. But $s \in v_{1}^{F}$ and thus for any $i \in \cdot V_{2}^{F}$,
node i never accepts such a packet B^{\prime} and therefore $i \in V_{2}^{*}$. This implies that $V_{1}^{*} \subset V_{1}^{F}$.

B. 3 Broadcast Cost

Theorem B' 3.1

In BBP, for every packet B and nodes $i, j \in V$ the following hold:
(a) Packet B cannot arrive from node j at node i more than once.
(b) If B is accepted at j from i, then B is never sent back to i.
(c) $\mathrm{BC}_{\mathrm{B}} \leqslant 2 \mathrm{E}_{\mathrm{B}}-\left(\mathrm{V}_{\mathrm{B}}-1\right)$ with notations of Claim 3 (Section 4) where $B C_{B}^{\prime}, V_{B}, E_{B}$ are as defined in Section 3.

Lemma B.3.1
Suppose that for some time T_{1} and nodes j, i holds:
(*) for all $T_{3}>T_{1}$, $i \in Z_{j}\left[T_{3}\right]$ implies $I C_{j}(i)\left[T_{3}\right] \geqslant \operatorname{IC}(B)$, then B is never sent from j to i after T_{1}.

Proof of Lemma. B.3.1

Assume B is sent from j to i at time T. Thus $i \in z_{j}[T]$. Also, by lines <D5>, <B6> of $B B P, \mathrm{IC}_{\mathrm{j}}(\mathrm{j})$: is incremented by 1 at time T, and by Lemma B.1.1(f) $I C_{j}(i)\left[T^{+}\right]=I C(B)$. Thus, $I C_{j}(i)\left[T^{-}\right]=I C(B)-1$. By. (*) $\mathrm{T} \leqslant \mathrm{T}_{1}$, and our claim follows.
G.E.D.

Proof of (a): Consider the first arrival of packet B at node i from node j. Suppose that this copy of B was sent by j at time T_{1} and arrived at i at time t_{1}. It suffices to prove that the premise. of Lemma B.3.1 holds for T_{1}, i, j.

Assume T_{3} satisfies $T_{3}>T_{1}$ and $i \in Z_{j}\left[T_{3}\right]$. If link (j, i) operates during the interval $\left[\mathrm{T}_{1}, \mathrm{~T}_{3}\right]$ then
$I C_{j}(\mathrm{i})\left[\mathrm{T}_{3}\right] \geqslant \mathrm{IC}_{\mathrm{j}}(\mathrm{i})\left[\mathrm{T}_{1}\right]=\mathrm{IC}(\mathrm{B})$ holds by Lemma B.1.1 [(b), (f)] and we are done. Otherwise, during the interval $\left[\mathrm{T}_{1}, \mathrm{~T}_{3}\right]$ the link (j, i) fails and then recovers at least once.

Consider the last $D=\operatorname{DCL}(i, I C)$ message, which has axrived at j before T_{3}. Suppose it was sent from i at t_{2} and arrived at j at $T_{2}, T_{2}<T_{3}$. Since at T_{3} i $\in Z_{j}$ and after FAIL(i) i $\notin Z_{j}$, the link (i, j) must not have failed during the interval $\left[T_{2}, T_{3}\right]$, i.e. it operates during this interval. Therefore, $T_{1}<T_{2}<T_{3}$ must hold (see Figure 3a). Suppose that the times mentioned above belong to the following operating intervals: $T_{1} \in \psi_{1}, T_{2}, T_{3} \in \psi_{2},{ }_{1} \in \pi_{1}$, $t_{2} \in \pi_{2}$. Then $\pi_{1} \sim \psi_{1}, \pi_{2} \sim \psi_{2}, \psi_{1}<\psi_{2}$. By A2, $\pi_{1}<\pi_{2}$ and thus $t_{1}<t_{2}$. Then one can deduce that:
$\mathrm{IC}_{\mathrm{j}}(\mathrm{i})^{\prime}\left[\mathrm{T}_{3}\right] \geqslant \mathrm{IC}_{\mathrm{j}}(\mathrm{i})\left[\mathrm{T}_{2}\right] \geqslant \mathrm{IC}=\mathrm{IC}_{\mathrm{i}}\left[\mathrm{t}_{2}\right] \geqslant \mathrm{IC}_{\mathrm{i}}\left[\mathrm{t}_{1}^{+}\right] \geqslant \operatorname{IC}(B)$. The above relations (from left to right) follow from; Lemma B.1.1(b), <Ḍ2>, <F1>, Lemma B.1.1(a), Lemma B.1.1(d). Thus, one can apply Lemma B.3.1;
Q.E.D. for (a).

Proof of (b): Suppose that B was sent by i at t_{1} and accepted by j at T_{1}. Clearly, B had not been known at j before T_{1} and therefore could not have been sent from j before T_{1}. It suffices to show that the premise of Lemma $B, 3.1$ holds for T_{1}, j, i.

Pick any time T_{3} with $T_{3}>T_{1}$ and $i \in Z_{j}\left[T_{3}\right]$ and find times T_{2}, t_{2} and $D=\operatorname{DCL}(i, I C)$, the last declared message as in the proof of (a). Thus, during the interval $\left[T_{2}, T_{3}\right] \quad i \in Z_{j}$ and link (j, i) operates. Now, two cases are treated separately:

1) $\mathrm{T}_{2} \leqslant \mathrm{~T}_{1}$ (see Figure 3b.1)

Since link (j, i) operates at interval $\left(\mathrm{T}_{2}, \mathrm{~T}_{3}\right)$, it also operates during interval $\left(T_{1}, T_{3}\right)$. Then,
$\mathrm{IC}_{\mathrm{j}}(\mathrm{i})\left[\mathrm{T}_{3}\right] \geqslant \mathrm{IC}_{\mathrm{j}}(\mathrm{i})\left[\mathrm{T}_{1}^{+}\right] \geqslant I \mathrm{C}_{\mathrm{j}}\left[\mathrm{T}_{1}^{+}\right] \geqslant \mathrm{IC}(\mathrm{B})$. The above relations follow (from left to right) by the Claims (b), (g), (d) of Lemma B.1.1. This completes the proof, in this case,
2) $\mathrm{T}_{2}>\mathrm{T}_{1}$ (see Figure 3 b .2). Then by A2, A3, $t_{1}<t_{2}$ holds and thus $I C_{j}(\mathrm{i})\left[\mathrm{T}_{3}\right] \geqslant I C_{\mathrm{j}}(\mathrm{i})\left[\mathrm{T}_{2}^{+}\right] \geqslant \mathrm{IC}=\mathrm{IC}_{\mathrm{i}}\left[\mathrm{t}_{2}\right] \geqslant \mathrm{IC} \mathrm{i}_{\mathrm{i}}\left[\mathrm{t}_{1}^{+}\right] \geqslant \mathrm{IC}(\mathrm{B})$, by reasotis as in the proof of (a), This completes the proof of the second case and of part (b) of Theorem B.3.1

Proof of (c): Note that V_{B} is the number of nodes which accept B and E_{B} is the number of possible undirected links which connect them. The packet B can traverse each such link (i, j) at most once in each direction, (by (a)) and for every node i there exists at least one link (i, k) through which B iss never sent back (by (b)). This completes the proof of part (c) of Theorem B, 3, 1, and of the theorem itself.
Q.E.D.

Theorem B.3.2

If $\left|F_{i}[t]\right| \leqslant 1$ for all i, t then $\mathrm{BC}_{\mathrm{B}} \leqslant(N-1)(2+2 D \lambda)$
(with $N, 2 D, \lambda$ as defined in Section 3).
Proof: It is sufficient to show that for every node i and packet B, i can receive at most $2+2 \mathrm{D} \lambda$ copies of B. Suppose that exactly r copies, B^{1}, \ldots, B^{r}, of a packet B have arrived at node i. We have to show that $r \leqslant 2+2 \mathrm{D} \lambda$,

For $m=1, \ldots r$, suppose that B^{m} was sent to i by a node $k_{m}, k_{m} \neq \dot{i}$, at time T_{B}^{m} and arrived at i at time t_{B}^{m}. Consider
the last message $D^{m}=\operatorname{DCL}\left(i, I C^{m}\right)$ which arrived at k_{m} from i before T_{B}^{m}. Denote by t_{D}^{m}, T_{D}^{m} the times of its departure from i and its arrival at k_{m}, respectively. Rearrange, if necessary, the indices $m=1, \ldots . r$ so that the sequence $t_{D}^{1}, t_{D}^{2} \ldots t_{D}^{r}$ is increasing. Observe that $t_{D}^{r}<t_{B}^{n}$ for ail n, because $I C_{i}\left[t_{D}^{r}\right]=I C^{r} \leqslant I C_{k_{r}}(i)\left[T_{D}^{r^{+}}\right] \leqslant I C_{k_{r}}(i)\left[T_{B}^{r^{-}}\right]=I C(B)-1<I C(B) \leqslant I C_{i}\left[t_{B}^{n^{+}}\right]$:

Since during the interval $\left[t_{D}^{2}, t_{D}^{r}\right]$ at mast $l^{\prime}+\lambda\left(t_{D}^{r}-t_{D}^{2}\right) \quad D C L$ messages can be sent from i (by definition of λ),

$$
r \leqslant f+\left(1+\lambda\left(t_{D}^{r}-t_{D}^{2}\right)\right)
$$

By the inequality proven above, $t_{D^{s}}^{r}<t_{B}^{1}$. Thus

$$
r \leqslant 2+\lambda\left(t_{B}^{1}-t_{D}^{2}\right),
$$

and it remains to show that $t_{B}^{1}-t_{D}^{2} \leqslant 2 D$.
Let $j=k_{1}$. Observe that by the definition of T_{D}^{1}, during the interval $\left(T_{D}^{1}, T_{B}^{1}\right)$ the link (j, i) operates, and by $A 2$ the link (i, j) operates during the interval $\left(t_{D}^{1}, t_{B}^{1}\right)$. If link (i, j) ever fails at interval ($\left.t_{D}^{1}, t_{D}^{2}+2 D\right)$ then we are done, becau'se $t_{B}^{l}<t_{D}^{2}+2 D$ holds. Otherwise, link (i, j) operates during ($t_{D}^{1}, t_{D}^{2}+2 D$) and, by our assumption that $\left|F_{i}[t]\right| \leqslant 1$, node i must have sent a $\operatorname{CNCL}(\mathrm{i})$ message to j at some time $t_{c}^{1}, t_{D}^{1}<t_{c}^{1} \leqslant t_{D}^{2}$ (when $F_{i}+F_{i}-\{j\}$ was performed).

Let us așsume that if an when CNCL(i) arrives at j, a confirmation message $\mathrm{CC}(\mathrm{j})$ iș sent immediately bàck to i. Since no failure of link (\mathfrak{i}, j) occurs during ($t_{c}^{1}, t_{c}^{l}+2 D$), one deduces from $A 4$ that both CNCL(i) and CC(j) arrive successfully at j and i, respectively. Denote the times of their arrivals by T_{c}^{1} and $t_{c c}^{1}$. Also, $t_{c c}^{1}<t_{c}^{1}+2 D$.

Clearly, B^{1} was sent from j to i during the interval $\left(T_{D}^{1}, T_{C}^{l}\right)$. $B y A 2$, link (j, i) operates in this interval. By $A 3, B^{1}$ arrives at i before $\operatorname{CC}(j)$, i.e., before $t_{c c}^{1}$. Thus,

$$
t_{B}^{1}-t_{D}^{2} \leqslant t_{c c}^{1}-t_{D}^{2}<t_{c}^{1}+2 D-t_{D}^{2} \leqslant 2 D .
$$

Corollary:

If $\left|F_{i}[t]\right| \leqslant 1$ holds for all i, then
$\mathrm{BC}_{\mathrm{B}} \leqslant \min \left\{2 \mathrm{E}_{\mathrm{B}}-\left(\mathrm{V}_{\mathrm{B}}-\mathrm{l}\right),(\mathrm{N}-1)(2 \mathrm{D} \lambda+2)\right\}$.
The corollary follows from Theorems B.3.1 and B.3.2.

ACTKNQWLEDGEMENT

The authors would like to thank Prof. A. Segall for proposing the subject and his valuable help during the earlier stages of this research.

REFERENCES

[1] A. Segall: "Distributed Network Protocolş". EE Pub. No,414, July 1981. (To appear in IEEE Trans. on Inf, Theory, January 1983).
[2] P. Merlin and A, Segall: "Failsafe-Distributed Rquting Protocol", IEEE Trans. on Comm., VoI. COM=27; pp, 12801288, September 1979,
[3] E. Gafni and D,P. Bertsekas: 'Distributed Algorithms for Generating Liqop-Free Routes in Networks with Frequently Changing Topology", IEEE Trans, on Comm., Vod, COM-29., pp. 11-18, January 1981,
[4] Y.K, Dalal and R, Metcalfe: "Reverse Path Forwarding of Broadcast Packets", CASM; Vol. 21, No.12, pp. 1040-1048, December $\$ 978$.
[5] Y.K. Dalal: "Broadcast Protocols, in Packet-Switched Computer Networks", Ph.D. Thesis, Stanford University, April 1977, DŚL Tech. Report 128.
[6] Á, Segall and B. Awerbuch: "A Reliable Broadcast Protocol". (Ta appear in IEEE Trans. on Corim.)
[7] Bi Awerbuch: l'Reliable Broadcast Algorithm", M.Sc. Thesis, EE Dept., Technion, Haifa, Israel, August 1981 (in Hebrew),

Figure 1 - Routing structure for s.

$$
\begin{aligned}
& P^{s}=\left\{\left(i, P_{i}^{s}\right)\right\}=\{(c, a),(d, b),(a, i),(b, i),(i, k),(k, s)\} \\
& \left\{e . g \cdot R_{i}^{s}=k\right) .
\end{aligned}
$$

Figure 2 - Link's Operation

(3b.1)

(3b.2)

Figure 3: Timing diagram for probing bound on Broadcasst Cost:

[^0]: A FORMAL APPROACH TO COMMUNICATION-NETWORK PROTQCOL; BROADCAST, AS A CASE STUDY

 by
Baruch Awerbuch* and Shimon Evẹn **

 Technical Report \#284
 -4.
 June 1983

