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ABSTRACT

In the area of communication-networks, many protocols have been
suggested, and some are in practical uSe. In the case of networks
whose topology. continuously changes, no protocol has been proved,
since na formal ground rules have been suggested.

We present a mathematical model of such a network, by means
of 7 axioms.

A protocol, BBP, for performing broadcast is presented and
proved to be reliable, if the network behavior allows\reliable

- -'j -
broadcast at all, We know of no previous protocol which achieves

this goal.

* Department of Electrical Engineering

** Department of Computer Science.
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1. INTRODUCTION

1.1 The Model

Consider a store-and-forward computer communication network
described by an undirected graph G(N,L) where the nodes, N, represent
computing units responsible for cémmunication and ‘the links, L, repres-
ent bidirectional noninterfering communication channels operating
between them. Nodes connected by a link are said to be neighbours.
Each node has unbounded procéssing and memory capabilities and is
pre-programmed to perform its part of the computation as well as to
receive and send messages to neighbours. These actions are assumed
to be performed in zero time. In a fixed topology network, each link
in each direction has some finite positive delay. which may change
with time arbitrarily, subject to the FIFO rule. In other words, each
message sent by node 1 to node j arrives correctly within a finite
undetermined time and all messages are received at j in the same
order as they have been sent by 1i.

In the present paper we deal with networks of changing topology,
where links may fail and recover again arbitrarily, but nodes never
fail. The communication properties of the links of such networks are
more complicated than those of fixed topology, and are described in

Section 4.

1.2 The Problem

Broadcast is the delivery of copies of a message to all nodes in
the communication network. Broadcast messages will be referred to as
packets. The most important properties that any '"good" broadcast

protocol should possess are: reliability, low broadcast cost and low
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deldy. Completeness means that all the packets which are accepted at

a node are accepted in the same order as they have been released by
the source, without duplication or omission. Finiteness means that
gvery packet is gccepted at every node in finite time. Reliability

is the combination of completeness and finiteness. The Broadcast Cost

of a packet B:ﬁBCh, is the number of times B traverses links of

the network.

1.3 Existing Solutions

A survey of existing broadcast algorithms is given by Dalal and
Metcalfe in [4,5]. They argue that the most practical broadcast
protocol is the "Extended Reverse Path Forwarding" (ERPF). In this
protocol, broadcast from a source s is performed along the Routing
Structure of s (see Section 2.1) in the reverse direqgtion, and thus
no special trees need be maintained for broadcast. However, they show
that broadcast in ERPF may not be reliable even if the network's
topology is fixed. For the special case of constant topology metwork
and the routing protocol of Merlin § Segall [2], an improved reliable
version of ERPF was proposed in [6]. However, this method does not
apply to other situations, i.e. changing topology or other routing
protocols. In fact, none of the existing protocqls achieve reliable

broadcast in networks with changing topology, Morecover, no rigorous

description of communication properties of such networks is known to us.

1.4 The Contents of this Paper

In Section 2 we present the Basic Broadcast Protocol (BBP). The

input to BBP is an arbitrary set of links on which broadcast must be

G . T
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performed. The BBP operates in a networK with arbjtrarily changing
topology where links may fajl and recover infinitely many times. The
communication propertigs of such links are axigmatized in Section 4,
(Similar ‘assumptions are informally described hy Segall [1].) No
universal time measurement is gssumed, i.e, each node has its own
(indepéndéht) clock, The properties df BBP are rigorqusly proved in
Section 5 using the axioms presented in Section 4, It is shown that
BBP is always complete. Bounds on broadcast cost of BBP are givepn,
The notion of "eventual connectivity' is defined for dynamic structures
in Section ¥. It is shown that if the ﬁnput structure of the BBP is
eventually connected, then -the BBP is finite. Otherwise, no broadcast
protocol can be finite.

Since a successful Routing Prqtocol cponstryct an eyentually
connected Routing Structure% jts choice as an ipput to the BBP yields
a reliable broadcast. Thus, ERPF can be made reliable even in networks
with changing topolpgy. It can be shown that other ¢hoices of the

input yield improved versions of other known broadgast algerithms.
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2. THE BASIC BROADCAST PROTQCOL (BBP)

2.1 The Routing Protocol and Routing Structure

A familiarity with the notions of Routing Protocol (RP) and
Routing Structure (RS) ‘is useful in order to understand the nature
of the jnput to BBP. Let us describe briefly these notions. For.
details, see [2,3].

The purpose of RP is to deliver the single-spurce single-destination
messages along "short" paths (in a sense of delay, global network cost,
etc,). RP specifies, for gevery node i € N, time t for this node
and every possible destihation s # i, the 'preferred neighbours’' set !
Pi[t]. A message destined for s, arriving at node 1 at time t
is forwarded by i to g node j € Pilt]. This progess is repeated
(at j) until the message eventually arrives at s. The set of divected
links P°[t] = {(i,j) 1 €N and j € p‘i‘[t]} for fixed s, t is

called the s-th Routing Structure (RS) at time t (see Figure 1),

2.2 The Input to BBP

The input structure F° is an arbitrary time-varyipg subset of

the directed network's links. It is distributively updated by some
external protocpl which specifies fpr each pode i € N, time t

(at i) and each possible broadcast source s # i, the set of fathers

Fi[t], w.r.t. s. It containg the neighbouyrs of i which are in
chayge of delivéry of packets from the broadcast source s to i.
For example, this external protocol might be the RP, i.e. ome
may choose Fz[tl = Pi[t] for each i, t, s, Then, BBP will penform
reliable broadcast on the links of the s-th RS and can he viewed

as a reliable version of ERPF,
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Note that the input does not inform node i to which neighbours

it should deliver the packets of s, i.e. for which k i € Fi holds.

The set Z?[t] of nodes to which node i forwards packets (of s

at time t) is called the set of sons of 1 (w.r.t.'s). It inecludes

s
k

outdated) informgtion i has. This information is obtained using

those nodes k for which i € F; holds according to the (pessihly,

special updating messages. ,
It is only reasaqnable to assume that the set of times (at node i}

when Fi is’changed contains no infinite' convergent subsequence.

2.3 Preliminaries v

We assume that the packets are all- different, so that duplicates
can be detected. The basic idea of BBP is that every new packet
arriving at a node is accépted, contyary to the operation ¢of ERPF
and its improved versions [6,7], where dnly packets arriving from
the father are accepted, Reliability is achieved by introducing
additional memory to the nodes. ‘Before describing the protocol,

iet us explain our notations. The protocol is performed by all nodes

i of the network, and.each one perforins the same node algoyithm.
The notation “xi[t]” means: ''variable x kept at node i at
moment t with respect to source s". Fxrom here on, we assume¢ that

there exists a single broadcast source s, (i.e. broadgast progesses

from different sources do not interfere) and the superscript s will
be omitted. We also omit "[t]" when the time in questian is clear
from the context. When we write: '"node j sends message M(xj) to
j at time T" 'it means that this message contains the value of

xj[Tj, When this message arrives at i, it is stamped with the



identification j of the npde it came from.and has the format

M(j,x), where x is the value of xj[T].

2.4 Description of the BBP

Each node i 1is required to keep the following variahles;
1)'££§Ii;‘wheré'every_accepted packet is stored in the received
order, since the beginning of the. algorithm;
2) 194’ which keeps -count of the number of packets in LISTi;
3) lgiiil_ which is the estimate of ICj at node i, kept for every
neighbour j;
4) F, set of fathers of node i;
5) Z; set of sons of node i;

6) Ei set of neighbors of node i.

Now, we present formally the node algorithm. It specifies the
actions taken at node i for all pessible events, which are either
receipt of a message M(j,x) or change in F.

"For M{j,x)" means: 'whenever M(j,x) arrives at i, i perfomms the
following". Failure and recovery of a link (i,j) are represented

by receipt of FAIL(j) and WAKE(j) messages at node 1.

BBP-Algorithm for node i
F. For change in Fi:
1) if j becomes a new member of Fi then send DCE(ICi) to j
* 3 %*
/* j E€E ¥/
2) if k ceases to be a member of E., and k € Ei then send

——pr——

CNCL to k.

-
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For DCL(j,IC):
1) 2, <2, U {j}; /* recognize j as a son */
2) if ICi(j) <. IC then ICi(j) <~ IC; /* else leave ICi(j) unchanged */

3) while IC, (§) < IC;, do:

4) send to j the contents of LISTi(ICi(j) + 1);
5) IC; (3) « IGy(3) + 1 od

For B(j) /* a packet B arriving from j */

1) if B €'LISTi then /* B 1s new */

2) ICi - ICi + 1; -

3) put B in LISTi(ICi); /* acceptance */

4) if j €25, 16;(J) = 1¢; - 1 then IC; (§) « IC;;
3) for every k € Z;, 1C; (k) = IC; - 1 do

6) send B to-k, ICi(k) + ICi 23.

For CNCL(j)

1) 2, « &y - {j} [* drop j from the list of sops */

For WAKE(j)

1) E; < Ei U {j};

2) 1IC,(j) « 0 /* reset the variables */
For FAIL(j)

1) E; «E - {j}

2) Fi * Fi - {ik;

3) Zi < Zi - {j}.

-
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3. PROPERTIES OF BBP

¢ 3;} 1M?j°r Properties

We state now the properties of BBP, which hold for the most
general conditions, i,e, for arbitrary input structure
F and for a netwprk which suffers from an
arbityary .(maybe, infinite) sequence of topological ‘changes. These
properties are dedyced from the axioms presented in Section 4, We
first define the concept of ''eventual connectivity'.
= t . = .

Definit%ons Denote Fi = N tl'JZt_Fi[t"] and F = {Ii.j]lj € Fj}, angd
consider the digraph G(N;F). This graph contains the links

K (i,j) which are persistent in F, i.e., reappear after e¢ach deletign.

"~ F is said to be eventug)ly connected W,7.t, nede § if there exists

f a directed path from every node i to nodg s in the digraph G(N,F),
The protoco} is said "to perform hroadcast on links of F!' if for evgrﬁ
link (i,j) € F, the protocol, -at some time, Geases to propagate packets
from j to 1i.
Claim_} Broadcast is always complete.
9193?-2 Broadcast is fipite (and thus, reliable) iff the inpyt

strugture F is eventually conpgcted w.r.t, the broadecast source s.

Note: Accarding to the deFinition gbove, it can be-easily shown that
nQ protogol can perform reliable broadcast from s on the links of F
if F 1is not eventually connected w.r.t, S.

) Definitions: Let BCB? VB’ EB be the number of times packet B
traverses the network's links, the nywber of nodes which accept B,

v an upper bound on the pumber of undirected links between nodes whigh

accept B, respectively. Also, let 2D denote an upper bound on

b un

TR V.
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the rouhdtrip delay of a link and let %— be a lower bound on the
time betweep two non-trivial changes in F; (of the kind Fy« FjU {j1,
j#1i).
91919 3: Broadcast cost in BBP satisfies:
(éJ BCB < ZEB ~ (VB-l)
(b) If |FiLt]|§él for all i € N and all t, then
BCB <§m1nf2EB - QVB-l), (VB~1)(2 + 2DA) 1.
{e) I1f F converges to a (constant) spanning tree, then BCB = |N|-1

holds for all B released after such a convergence ({Nl = total

number of nodes).

3.2 Additiopal Interpretation

Observe that a structure F 1is eventually comnected w.r.t. node s
iff for eveyy start node and time it is possible to reach node s
eventyally by means of the following Ideal Routing process:
1) At time t, move'from i to j € Fi[t] in zer¢ time.
2) Upon arrival at intermediate node, wait there for undefinite

time and then'pgrform 1),

The Routing Protogol (see Section 2.1) delivers the messages to-
destination by means of the following Actual Routing process:
(1) At time t, nove from i to j € Fi[f] in time equal to the
delay of the link (i,j) (at time t).
(2) Upon arrival at intermediate node i, wait until the set P:

is non-empty and. then perform 1),

Clearly, the Actual Routing can be simulated by the Ideal Routing
by waiting at the intermediate node for the time equal to the delay

of the incoming link.
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Let us define a Routing Protocol to be meliable if the Actual

Routing process delivers each message in finite gime to jts desting-

tion s. By:the above argument, the s-th Routing Structure used

by*thiS.Routing Protocol must be éventuaIly qonnected w.r,.t. s,
Thus, using thé s-th Routing Structure as the input to the BBP, i.e.
choosing Fi[t] + Pi[tﬂ for all i, t we achieve the reliable

broadcast,

Corollary. If the input to the BBP is the s-th Routing Structure,

then if the.Royting to s 1i$ reliable then the Broadcast from s is
religble,. Thus, BBP can be viewed as a reduction from the prablen

of Broadcast to the problem of Routipg.

- ¥

S
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4. PROPERTIES OF A LINK

Here, we define precisely the communjication properties of a link
(¥,j) in presence of topological changes. These properties we secured
by the underlying link - protocal. Less forma) assupptions were
presented by Segall {1]. We postulate S properties Al, A2, A3, A4,
A5, A6, A7 -and start with their informal description.

Al says that messages can be sent and received aver the link only
in some "operating intervals". AZ says that when a link recovers,
no messages can be in transit through it. A3¥ says that the messages
sent in the same operating interval obey the FIFO (first in - first
out) rule. A4 says that failures of a link are detected ip finite
timg. A5 says that if link (i,j) is operating, there is a 'fair
chance" that a message sent by i to j wil] indeed arrive at j,
i.e. there is a correspondence between the status of link (1,3) as
seen at i and the actual capability of the link to deliver messages
to j. Thus, if the link does not fajl terminally and i '"ipsists"
on delivery pf a message to j, it:will eventually succeed., A6 says
that message trayelling in the network cannot return to its start-
paoint before it was sent. ‘A7 says that an unbounded sequence of
departyre times cannot, yieig a baungded infinite sequence of arrival
times.

The axioms refer to factg as viewed by node 1i:

Al) Opergting intervals: At both ends (i,j) of the link the link -
protocol generates alternating sequences of WAKE and FAIL messages,
which inform ‘the recovevies and failures of the link, From the point
of view of node i the link (i,j) is said to be oEerating in the

closed time interval between receiving WAKE(j) and FAIL(j) messages.
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The above interval is called the operatipg interval (e.g- (tltti) of
Figure 2). Node i Tan $end (receive) messages to (from) npde j
only when link (i,j) is operating. A message sent by i to j does

not necgessarily arrive at j.

A2) Communicating iptervals® Two  operating interyals =, ¢ at

apposite sides 1i; j of the. link are said to be communicating if it

is possible for node 1 to send a message to node j at interval w,
so that it will be received at j at interval ¢ or vice versa.

We denote this relation by m~ ¢. If interval ™1 preceeds interval

we write w, < 7. It is postulated that [(n1 ~0) A (T, ~ ¢2) A

Ty
(Wl <r)] o (¢l < ¢,) i.e. communication relation '~" is monqtonaus
in time.

Examg}gﬁ In Figyre 2, 7, ~ ¢ , because messages M, M, sent by i

- - P

at times t,,t, € T arrive at 3 at <«times (measured by i)

A’"B

TA’TB € ¢b‘ We conclude that ™ + ¢O. ¢2 A'vo, ¢1 + or T 4 9, OtC.
A3) FIFQ: Suppose messages A, B are sent by node 1 to j during
the same pperating interval. If A is sent, hefore B and B arrives

at j, then A arrives too and its arrival time preceeds that pf B.

A4) Failures detection: Suppose ‘that in response to a message M

regeived by j from- i, j will send to 1 an "acknowledgement' R,
The existence of a constant 20 > 0 (calied "bound on roundtrip delay

of a 1ink") is assumed such that in at most 2D time~units after M is

sent from 1 to j, i will rscéive either FAIL or R.

A5) Consider anv unbounded sequence of times s = {tk}:_l, gensrated
by an on-line algorithm operating at node i such that link (i,j)

is operating at each tk. For any such s, we assume existence of

time to € s such that a message sent from i1 to j at t

successfully arrives at  j-
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Comments: We require that s is generated by an on=line algorithm
for the following reasons. Otherwise, we might deliberately choose s
to be a set of times when link (i,j) is still operating, but is about
to fail and no message sent at t € s from i will sueceed in reach-
ing j. If lipk (i,j) fails many times, then s might be an unbounded
set and it seems that A5 is violated. However, this is npt the case,
because generation of such set s requires information about future
failures of the link and thus s canﬁgt be generated by an on-line
algorithm. If there were a way to predict the link's failure in
advance, the link's protocol should have used this infermation to
declare a FAIL message, to prevent the hopeless transmissibn of
messages which cannot reach their destination. ‘

Before proceeding further with additional axjoms; a brief discus-
sion is helpful. In a centralized algor{thm. the statement that
action A 1is performed before action B (or in sho¥t, A preceedsﬁB)
means that the execution of A may influence the execution of B but
the outcome of B has no influemce on A. Observe that for any A, B
either A preceeds B or vice versa. In a distributed algorithm, it
may happen that actions A, B are performed concurrently and therefore
neither can influence the other. This happens when actions A, B are
performed at diffefent nodes and neither ‘can communicate the outcome
of its action to ipfluence,the action of'%he other.

In the situation above, where no casuality -connection exists
between events A, B it is improper to say that "A is performed
before B" or vice versa. Also observe ‘that different users of the netwark
might have different time scales and rates (say in an interplanet or

interstellar communication) so that no global time clock exjsts in
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in the network, and a quantitative comparison of times at different
nodes ‘is impossible.

For these reasons, we wish to redefine the '"before" relation,
and will stick to this definition throughout this paper, upless
otherwise stated.

For actions .performed in the same node, 'before" relé}ion is
defined in the usual sense. Now, we define a new '‘before" relation
and show that is is an extension of the usual '"before" relation, in

the sense that the new relation contains the old one.

Definition: Action A is said to be performed 'before' action B
if the oytcome of A can rea¢h the node which performs B before the
execution of B.

where

We denote this by t t, denote the times

A<ty far g

when actions A, B are performed, as measyred in the respecdtiye nodes.
Observe. that the '"before" relation defined above is transitive.

Also it constitutes an extension of the o0ld '"before'" relation

in the usual sense, defined for events happenning at the same nqde,

because a node '"'delivers' messages to itself in zero time.

A6) The relation '"before'" is irreflexive.

———

Disgussion: If tl < t2 then A6 implies that t1 # tz. Also,
by transitivity of '"before" this implies that t, % t-

The purpose of A6 is to preserve the usual sense of '"hefore'",
-when times are <éompared in the same node. Let tl’ t2 be times
of events in the same node. If t1 < %2, in the new sense, then
t; <t in the old sense too, but t, 23 t by the discussion

aboye. Thus, the new 'before", when restricted to times of events

in one node yield the old '"before" for that node.
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A7)

S =1{T, }

- 15 -

For gny 2 infinite sequences of times
[}

Kx=1’ 1f Tk < tk for all kX and S

is unbounded too.

s = {tk}k=1 and

is unbounded then

S

(3]
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5. FORMAL ANALYSIS OF BBP

Here, we prove formally the properties of BBP. In-Sections B.1,
B.2, B.3, we prove Claims 1,2,3 (Completeness, Finiteness, Broadcast
Cost) stated in Section 3. In B.l, we use only assumption A3, A6, A7.

In B.2, B.3 we use all the assumptions.

B. 1 Completeness

Ty

To simplify the proofs, we shall modify the original version of
BBP, which will be referred to as BBP1, and the modified version will
be referred to as BBP2. We prove that BBP2 is complete and equivalent
to BBPI.

Let the packets be numbered in the order which th¢ source releases

them. We denote @he;counter-number of packet B by IC(B). In BBP2

it is assymed that every packet B contains IC(B). The procedure which

handles an arriving packet is now modified in BBP2 as follows:

B. For B(j) /* a packet B arriving from j */
1) LE IG(B) > ICi’ then /* B is new */
2)  IC, « IC(B)
3) put B in LISTi(ICij /* agceptance */
4) if 5 € 2Z;, ICi(j) < IC;, then ICi(j)** e

5) for every k € Zia ICi(k) < ICi do

6) send B to k, ICi(kl «-ICi.

Now, we proye that' BBP2 is complete, We need first some prelimin-

ary resuylts.

'y
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Por the sake pf brevity let us introduce the following conven-
tion: By “condition P holds at time t*" we mean that there exists
an € > 0 such that for every time t' in the-open interval (t,t+ €)
the condition P holds. Similarly, t  is defined.

_In the following proofs we shall denote the line labeled x

of algorithm BBP2 by <x>.

Lemmg B.1.1

(a) ICi[t] is nondecreasing with t. )

(b) ICi(j}[t] is nondecreasing with t while link (i,3j) operates,

(c) lf_a packet B is accepted by node i at t, (i.e, <B3> is performed)
then IC[t"] = IC(B).

(d) 1f a packet ‘B arrives at npde i at t then for all t' >t
ICi[t‘] 2 IC(BY.

(g) The only logation in which B is ever stored in LISTi is IG(B).

(£) 1f a packet B is sent from i to j at t; then 1C, () [t"] = IC(B).

(g) If at time t, node i does not perform any dctipn of BBP2' and

j € Z,[t] then IC,(j).[t] 2 IC. [t].

Proof of Lemma §.1:1

The proof of the above claims, one by one, is straightforward.
For each claim we indicate the lines pf BBP2 and the previous claims
which imply it.
(a) <B1l>, <B2>.
(b) <W2», <D2>, <D5>, <B4>, <B5>, <B6>.
§¢) <Bl>, <B2>.
(d) <Bl>, <B2>, (a).

(e) <B2>, <B3»>
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(£) <D4>, <D5>, <p2>, <B6>,

(g) <D3>, <D5>, <B4>, <B5>, <B6>, <FL3>, <W2>.

(FAIL preceds WAKE and therefore on WAKE(j), j € Zi.)

Q.E.D,

Lemma B.1.2

As long as completeness of BBP2 is maintained ét node‘i, it

actually performs the actions of BBPl, i.e.

(a) In <Bl>, IC(B) > IC, impliés IC(B)= IC; + 1 and thus in
<B2>, ICi “ ICi + 1 is performed.

(b) In <B4> and <B5>, ICi(k) < ICi implies ICi(k) = IC; - 1 for
all sons k € Zi’ nd thus in <B4> and <B6> Ici(k) + ICi(k) +1

is performed.

Proof:

(a) follows from the. definition of completeness.

(b) follows from (a) and Lemma B.1.1l (g).
Q.E.D.

Theorem B.1.1

Suppose a message M 1is sent from j at time T and arrives
at i at time t. Then:-
(a) IC, (L¥[T7] < 1IC,[t7]

() 1c(4) [T°] <1, [¢7].

Proof of Theorem B.1.1

If M 1is not a broadcast packet, then the variables mentioned
in the theorem do not change at times T, t (respectively) and thus

(a) is equivalent to (b). Otherwise (M is a broadcast packet), then

(b) holds by Lemma B.1.} [(d),(£)], because IC, [t*] > Ic(M) = 1C5(4) IT'7.



p—- e s sam ribae 3 2 5 .

ot

A7)

w!

319-

Thus, it is sufficient to prove (a). Let us denote x = ICj(i)[T']

.and prove that x <;Ici[t']. Denote by '[‘1 the last time before T when

ICj(i)4-x was performed: If x = 0, the claim is trivial. Assume x > 0.
At time T1 the link (i,j) operates, and at time T it operates too.
1t could not have failed and waked in between, sincc in <W2>
IC].(i) « 0 is performed.
At Tl’ one of the following events could happen:
(1) j receives DCL(i,x) with x > ICj(i)ITl] (<D2>)
(2) B is accepted at j from i and 1§ € Zj[T]], jcj(i)[Tl] < X
(<B4>)

(3) B is sent from .j to i (<D4>, <B6>).

¢

In cases (1), (2) dencte by to the time when node i sent

the above DCL or B, respectively. Clcarly, t>T> T > t, and

1
by transitivity, t > to. Thus, t > t, and by B,l.1(a)

"= =
IC,[t7] = IC, [t ] = IC(B) = x.
In case (3), by A3, applied to B and My, B arrives at i at time
t; < t. Thus, t, < t”. By Lemma B.1.1 [(a), (d)]

Ic.[t7] = IC.[t]] >1IC(B) = x.
* 1l Q.E.D.

Lemma B.1.3
For any event A which happens, at least once, at various nodes
of the network, it is possible to find a time t when A happens

for the first time in the network in the following sense: For any

npde n and time t', t' < t, A has not happenred at n unti] t'.

Proof:
For those nodes n where A happens at least onge, denote by

t(n) the first time when it happenned at n. Now, pick any such node
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n Either t(n,) satisfies the requirement of the lemma ot thete

1
éxists a node n, Wwith t(né) g t(nl).

Applying repeatedly the avove cottstrudtioh, we:will eventually
stop- after a finite number of steps, finding the required hbde dnd
time. The fact thdat the above proces$ indeed stops and cdnfibt
continue infinitely is proved 3s,follows.

Suppose that there exists an infinite sequetice of times

t(ﬁl) 5 t(nz) > t(ﬂs) >... . The network is finite and ‘therefore
there exist integers m < k suc¢h that n = n . Thus, both

tin)) = t(ny) and t(n) > t(n), hold. A contiadiction to A6.

Q.E.D.

Theorem B.1.2

Broadcast in BBP1 and BBP2 is alway’s compléte.

Proof: It suffices to show, by Lemma. B.1.2, that in BBP2 cofipleténess
is hever violated. Assume the contrary, and consider 4 node i ahd
time t when ctdmpleteness is violdted for the first time in thé net-
work in the sense of Letma B.1.3, Thus, at time t, a '"gap" is
creatéd in LISTi, i.e. node i receives (and thetrefore accepts) Some
packet B with IC(B) > Ici[t'] + 1.

Suppose B wa$ sent by node ji at time T, T < t. By out
assumption, completeness was maintained at j until T, and the
desired contrddition folloWs:

IC(B) = IC,(i) [T*] = 1C, () [17] + 1< 1¢[e7] + L,

The above relations (from left to right) follow from Lémma B.1.1(f),
Lemma B.1.2(b), Theorem B.1.1(a].
Q.E.D.
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R.2 Finiteness
LE e epete

Definitions:
W
: u .
Denote by V, the set of nogfes which accept every pagket B in

fipite time and by Vi the set of nodes 1 sugh that therg exists

a directed path from i to s in GN,F),
, *
Ohserve that broadcast is finite iff~v;l = N. By definitien
of Seotign 3.1 F. js eventually connected w.r,§, s iff Y? #N.
*

Our pyrpose is to shaw that V1 = VF for the BBR,

1
Analagoysly tp the fdefinjtion above, ong ¢an define X, the set gf
persistent links of x, for an; structure {(i,j)fj'€ xi} induced by

*

*
sets x,[t] defiped for all i, t. Also, defipe vy, = NV,

kil F . s
sz= N-V,. Saying that link (i,j) operates after t, we mean that
it -pever fails after t.

Ligpna B.2.1

For apy strueture X, (i,j) € X if apd only if one of the

. felioping conditigns holds:

(3). ‘there exists ¢ such that j € xi[tq for all ;,tq*
(b) there gxists an unbounded sequence of times s = {1, }, such that
j Jeins x, at each £ -

Proof; [t is gasy télﬁee that if (i,j) € X, then neithgnqtq) nor
(b) <¢an held.

Suppose that (i,j) € X. If the set s = {t]xi «x; UV {j}at ¢}
is unbounded, then Ebl holds, Othgrwise, any uppey bound t
(tQ >t for all t¢€ %) must satisfy (a).

Q.E.D.
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Leyma B.2.2
Suppose that link (k,r) operates after time ti‘:. Then there

* *
exist times t, at node: k and t, st node r such that:

* *
(a) Links (k,r) and (r,k) operate after times t,» t, Tespectively,
*< 0
and tk \~tk .
®
(b) Each message sent by k to r after tk successfully arrives

*®
at r after tr.

*
(c) Each message received by k from r after tk was sent by r

*
after Tr' .
Proof: Pick any unbounded set Sk = {ti} of times at node k

such that ti > t; , and send at time ti (an imaginary) message Mi
from k to r. By A4, each M* arrives successfully at r at some
time ti, and by A2 these times belong to the same operating interval.
By A7, the set Sr = {fi} is unbgqunded.,

Now, denote by w, ¢ the operating intervals at nodes k, ¢
containing sets Sk’ Sr and by y;, t: the start times of these
intervals respectively (which exist because, by Al, the intervals
are closed).

The intervals w, ¢ contain unbounded sequences of times Sk’

Sr and thus are infinjte; i,e. links (k,r) and (r,k) operate after

* * *
times tk and tr respectively. Also, tk is the start time of =

and thus t; < ti, proving (a).

By A4, messages sent by k to T after t; successfully arrive
at r. Observe that by constructign, m and ¢ are communicating
intervals. By A2, messages sent by k at t &€ w can reach r only

at T € ¢ and vice versa, proving (b), (c).

Q.E.D,
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Lemma B.2.3
Suppose that a sequence of times s = {tk}k=1 satisfies the
requirements of A5. Then, it contains an unbounded subsequence

s' = {tk ¥ such that for each m a message sent from i at t,
m m=1 m

successfully arrives at j.

Proof; By A5, such subsequence s' contains at least one member
tl, The truncation sl,of s, defined as Sy = {t|t €s, t> t1+1}
stil] satisfies the condition of A5, and thus s' contains some

member t2 € Sy3 t2'> t1+1. Repeatedly continuing with the

above argument, we see that s' 1is unbounded.

Q.E.D.
Theorem B{?.l
(j,1) € F iff (i,j) € Z.
Proof of Theorem B.2.1 By Lemma B.2.1, it is sufficient to prove

the two following claims.

Claim 1: There exists time t

Claim 1: o at i such that j € Fi[t] holds

for all t B'to if-and bnly if there exists time To at j.- such

that 1 € Zj[T] for all T >=To.

Claim -2: There exists an unbounded sequence s = {tk}:=1 of

times when i performs Fi «F {j} if and only if there exists

an unbounded sequence S = {Tk}:=1 when j performs Zj « Zj u {i}.

i

Proof of Claim 1: The "only if" part

Suppose that such time tQ exists. The set of times when Fi
changes contains no cluster points, as assumed in Section 3.1. Thus,
there exists the time t1 when Fi + Fi U {j} is performed for the
last time. For all t >Lt1, link (i,j) operates; because if link
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(1,j) ever fails after t; then F, «F, — {j} (see <FL2>) would
have been performed, in. contradiction to the assuymption that

!'t >
JeFi[t] for t ty

Observe that .at t, the last DCL(i,:) has been sent by i to

1

j, and no CNCL{(i) is ever sent by i to j after ty-

By Lemma B.2.2 [(a),(b)] this DCL message successfully arrives

at j at some time Tl’ after which the link (i,j) operates (i.e.

L
Tl >=tj ih terms of Lemma B.f.Z). Moreover, n¢o CNCL(i) can arrive

to j after T, by A2, A3. Thus, i € Zj[TI for all T=T

1 1’
implying i € Zj,

Q.E.D,

The "if" part

Sugpose that such time To‘ exists. The set S of departure
times of DCL(iJ-) messages sent from i to j contains no cluster .

points, as assumed in Section 3.1. By A7, the set of arrival times

-does not contain any cluster points -either.

Thus, there, exists a time¢ T, when. Zj~+ Zj U {i} is performed

1

for the lgéz.timq.

For all. 1‘221&, Liﬁk (j,i) operates,, because if link (j,i) ever
fails after Tl then ‘Zj + Zj — {i} (see <FL3>) would have been
performed in' contradiction to the assumption that i € Zj[T] for

T.2=T1.

Observe that at T., the last DCL(i, ) is received by j and no

1]

CNGL(i) arrives at j after Tl'

By Lemma B.2.2 [(a),(c)] the above DCL is sent by i at such

*

time t) after which link (i,)) operates 1i.e. t 2=ti in terms of

Lemma B.2.2. Moreover, na CNCL(i) can be sent from i to j after tl

A
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by A2, A3. Thus, j € F;[t] for all t >tl, implying j € 1'=i.

Q.E.D.

Proof of -Claim 2 The '"only if'" part

At each t,, a DCL(i,+) message is sent from.i to j. The set s:{tk}

K’

satisfies the condition of Lemma B.2.3 and thus, there e%ists

an infinite subsequence of DCL(i, ) message which succeed in reaching

j, whose departure times ‘constitute an unbounded subsequence of s.

By A7, the sequence S of their arrival times is unbounded and each

arrival causes j to perform Zj < Zj U {i}. Thus, i € Zj.
Q.E.D.

The "if" part:

At each T a DCL(i,+) message is received by j from i.

k,
Denote by tK the time when this messag¢ was sent from i. (learly,
F; « F, U {j} was set at t,, and s = {tk} is infinite set of

times which, by assumption of Section 3.1, contains no cluster points.

But then s is necessarily unbounded and thus j € F,. Q.E.D.

Q.E.D. for Theorem B.2.1

Theorem B.2.2
If (j,i) € Z then every packet B accepted at j at time Ty
is also accepted by i at some finite time tB' In particular,

*

j€ VI, implies 1 € V1

Proof of Theorem B.2.2

(j,i) € Z if i€ Zj and thus there exists a sequence of times

S = {T.} satisfying the premise of A5 such that i € Zj[Tk].

k’k=1

Clearly, Tk can be chosen so that at every moment Tk, j does not

perform any action of BBP (this follows from the fact that the
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line (i,j) operates 4t T;) and that Tk > TB’ (because the trunca-
tion S, of the set {Tk} to T, > TE’ still satisfies the premise
of A5). Suppose that for every k we send (an imaginary) message

Mk at time Tkg
at 1 at som¢ time tq‘ Then, B is accepted at i before tq because:

By A5, there exists a message Mq which arrives

IC.[t ] = IC.(i)[T ] = IC,[T.] = IC.[T] = IC(B).
j[tg] =16, () [1,] > I,[T.] > Ic, [T}] > JC(B)

The abové inequalities are implied by (from left to right):
Theorem B.1.1, Lemma B.1.1 (g), Lemma B.1.1 (b), Lemma B.1,1 (c).

Q.E.D.

Theorem B.2.3

8p, V& = v,
In BBP, Vl = Vl.

Proof: 1Is is sufficient to prove the 2 following claims:

Claim 1: V., cV

- - -

Calim 2: V.cv

% o
—

[ ™

Proof of 'Claim 17 Proceeds by induction on the length dj of the

shortest directed path in G(V,F) from a node j € Vi to the node s.
Here the induction step is the Theorem B.2.2 and the induction

*
basis is the obvious c¢laim: 's € Vi”. Q.E.D.

Proof of Claim 2: By definitiop of V. and Vg, for any 1 € Vg,

o]

—

j € VE, holds j € Fi (otherwise, i € V,). By Theorem B.2.1, i & Zj,
and thus there exists time T(j,i) such that after it 1 ¢ Zj holds
and thus j will not forward any packet to 1i.
Now, consider the packet B such that
1C(B) = max{1C;[T(3,1)][1 € Vi G EVIY.
Clearly, no packet B' with IC{B') > IC(B) gan be forwarded to nodes

F F

of V2 by the nodes of VE. But s € VE and thus for any 1 E‘VZ,
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*
node i never accepts such a packet B' and therefore i € V2.

*
This implies that v, € Vi.
Q.E.D.

B.3 Broadcast Cost v

Theorem B.3.1

In BBP, for every packet B and nodes i,j € V the fbllowing
Hbld:
(a) Packet B cannot arrive from node j at node i more than once.
(b If B is accepted 'at j from i, then B is never sent back to 1i.
(¢) BCp <§2EB—(VB-1) with notations o6f Claim 3 (Section 4) where

BCé, VB’ EB are as defined in Section 3.

Lemma B.3.1

Suppose that for some time T, and nodes j, i holds:

(*) for all T, > Tl’ 3] implies ch(i)[TS] = IC(B), then

B 1is never sent from j to i after T

i€z,[T
j
L

Proof of Lemma. B.3.1

Assume B is sent from j to i at time T. Thus i € Zj[T]. Also,
by lines <D5>, <B6> of BBP, ICj(j} is incremented by 1 at time T,
and by Lemma B.1.1(f) ch(i)[T*] = IC(B). Thus, IC;(i)[T"] = IC(B)-1.

By (*) T \’Tl, and our claim follows.

G.E.D.

Proof of (a): Consider the first arrival of packet B at node i

from node j. Suppose that this copy of B was sent by j at time T1

and arrived at i at time t It suffices to prove that the premise.

1
of Lemma B.3.1 holds for Tl’ i, j.

Assume T, satisfies T, > T, and i € Z.[T
3 3 1 j

operates during the interval [Tl’TS] then

). If link (j,i)
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ICj(i)[TS] > ICj(i)[Tl] = IC(B) holds by Lemma B.1.1 [(b), (f)]
and we are done. Otherwise, during the interval [Tl’TS] the link
(j,i) fails and then recovers at least ‘once.

Consider the last D = DCL(i,IC) message, which has arrived at j

befare T,. Suppose it was sent from i at t, and arrived at j

at TZ’ T2 < T3. Since at T3 i€ Zj and after FAIL(1) i ¢ Zj’

the link (i,j) must not have failed during the interval [TZ’TS]’ i.e.

it operates during this interval. Therefore, T, < T, <T; must hold

(see Figure 3a). Suppese that the times mentioned above belong to

the following operating intervals: T1 € wl’ TZ,'IZ3 € ¢2, t1-€ T

t2 € Tye Then T~ wl, ™, ~ wz, wl < wz. By A2, L < L and

thus tl < tz.

I (1Y[T;) > IC; (1) [T,] > IC = Ic, [t,] = ICi[tI;] > I1C(B).

Then ¢one can deduce that:

The above relations {(from left to right) follow from:
Lemma B.1.1(b), <D2>, <F1>, Lemma B.1.1(a), Lemma B.l1.1(d). Thus,

one can apply Lemma B.3.1;
Q.E.D. for (a).

Proof of (b): Suppose that B was sent by i at ty and accepted

by j at T,. Clearly, B had not been known at j before T, and

therefore could not have been sent from j before Tl. It suffices

to show that the.premise of Lemma B,3.1 holds for Tl’ j, 1.

Pick any time T, with T, > T. and i € Zj[T and find

3 3 1 3]
times T2, t2 and D = DCL(i,IC), the last declared message as in

the proof of (a). Thus, during the interval T i€ Zj and

2: T3]
link (j,i) operates. Now, two cases are treated separately:
n T, < T, (see Figure 3b.1)

Since link (j,i) operates at interval (TZ,TB),“it also operates

during interval (Tl’TS)‘ Then,
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i . (d 2 1C.[T,] < IC(B).
IC; (1) [Tg] > 16, (1) [T;] > 1C5(T7] > 1C(B)
The above relations follow {from left to right) by the Claims (b),

(g), (d) of Lemma B.1.1. This completes the proof, in this case,

2) T2 >-T1 (see Figure 3.2).
Then by A2, A3, t1~< t, holds and thus
. - . + +

ICJ. (1) [TS] & ICJ. (1) [Tz.] 2 1IC = ICi[tz] = ICi[tll 2 IC(B),
by reasofis as in the proof of (a)-

This tompletes the proof of the second case and of part (b) of

Theorem B.3.1

Proof of (c): Noté that VB is the number of nodes which accept B

and EB is the number of possible undirected links which connect
them. The packet B can traverse each such link (i,j) at mast once
in each direction, (by (a)) and for every node i there exists

at least one link (i,k) through which B 1is never sent back (by (b)),
This completes the proof -of part (c) of Theorem B,3,1, and of the

theorem itself.

Q.E.D.
Theorem B.3.2
If |'Fi[t]| <1 for all i, t then BCy, < (N-1)(2+2D})
(with N, 2D, x as defined in Section 3).
Proof: It is sufficient to show that for every node i and packet B,

i can receive -at ‘most 2+2D\ copies, of B. Suppose that exactly T

copies, Bl,..,,Br, of a packet B have arrived at node i. We have

to show that r < 2+2D),

For m=1,...r, suppose that B" was sent to i by a node

. . in
km’ km # i, at time T

B and arrived at i at time tg. Consider
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the last message D" = DCL(i,IC™) which arrived at k.~ from i

before Tg. Denote by tg R Tg the times of its departure from i

and its arrival at km, respectively. Rearrange, if necessary, the

2 T

indices m = 1,...r so that the sequence t;,tD cee tD is increasing.

Observe that t; < tg for ail n, because
+ +

IC [t]] = 1ct <m1ckr(i) [Ty 1 < ICkr(i) [T; ] = IC(B)-1 < IC(B) S IC; [tg 1.

Since during the interval [tg,tg] at mgst lix(t;—tg) DCL
messages can be sent from i (by definition of 1),
. S

r<] + (1+ALtD~tD)) .

By the inequality proven above, th < tl. Thus

D: B
r<2 o+ A(t;-tg),
and it remains to show that -té-tg=< 2D.
Let j = kl. Observe' that by the definition of Té, during the

interval (Té,Té) the link (j,i) operates, and by A2 the link (i,j)
operates during the jnterval (té,té). If link (i,j) ever fails at
interval (té,t§+2D) then we* are done, hecayse té < tg

Otherwise, link (i,j) operates during (t;,t§+2D) and, by our

+ 2D holds.

agsumption ‘that |Fi[t]| <1, node 1 must-have sent a CNCL(i)

. P 1 1 1 2 .
<
message to J at some time t ,tD <t = tD (when F. « F. — {J}

was performed).

Let us assume that if an when CNCL(i) arrives at j, a. confirma-
tion message CC(j) 1is sent immediately back to 1. Since no failure
of link (3,j) occurs during (ti,ti+2D); one deduces from A4 that both
CNGL(i) and CC(j) arrive successfully at j and i, respectively.
Denote the times of their arrivals by Ti and tic. Also,

1 1

tcc < tc + 2D.
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! was sent from j to i during the interval (T[I),Ti).

Clearly, B
By A2, link (j,i) operates in this interval. By A3, Bl arrives
at i before CC(j), i.e., before t. . Thus,

! 2 1 2 1 2
tB-tD<tcc-tD<tg+25 tD<ZD.

Q.E.D.

Lorollary:
If IFi[t]'I S 1 holds for all i, then

BC, < min{ZEB - (V, - 1), (N-1)(2Dx + 2)}.

B

The corollary fellows from Theorems ’B.S.l .and B.3.2.
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Eigure 1~ Routing structure for s.
p° = {(i,pj)}={<c,a>,(d,b),<a,i),(b,i>,<i,kz,<k,s>}

{e.g. Bi = k).
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