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Abstract: To enhartce performance on shared memory
multiprocessors, various techniques have been proposed to
reduce the latency of memory accesses, including pipelining
of accesses, out-of-order execution of accesses, and branch

prediction with speculative execution, These optimisations
however can complicate the user’s model of memory. Thn
paper attacks the problem of simplifying programming on
two fronts.

First, a general framework is presented for defining shared
memory consistency conditions that allows non-sequential
execution of memory accesses. The interface at which con-
ditions are defined is between the program and the system,
and is architecture-independent. The framework is used
to generalize four known consistency conditions-sequential
consistency, hybrid consistency, weak consistency, and re-
lease consistency-for non-sequential execution.

Second, several techniques are described for structuring
programs so that a shared memory that provides the weaker
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ABSTRACT)
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(and more efficient) condition of hybrid consistency appears
to guarantee the stronger (and more costly) condition of

sequential consistency. The benefit is that sequentially con-
sistent executions are easier to reason about. The first and

second techniques statically classify accesses based on their
type. This approach is extremely simple to use and leads
to a general methodology for writing efficient synchroniza-
tion code. The third technique is to avoid data races in the
program; th~ technique also works on a simple variant of
release consistent hardware, with an appropriate change to
the definition of data race.

1 Introduction

Overview: Intense interest is currently being focused

on shared memory multiprocessors in many disciplines

of computer science. The parallelism in multiproces-

sors offers the potential of greatly increased perfor-

mance, and shared memory is an attractive communi-

cation paradigm. Unfortunately, access to shared mem-

ory locations is a major bottleneck for the performance

of multiprocessors. The high latency of memory opera-

tions is due to the inter-processor communication delay,

which increases with the number of processors, and the

time to execute memory operations locally.

Many computer architecture techniques have been
developed to hide the latency of memory operations by
allowing operations to overlap. These techniques in-
cIude performing memory accesses in parallel, pipelin-
ing memory accesses, initiating accesses out of order,
and speculative execution 1. Specific instances include,
e.g., [1, 17, 24, 34, 35, 36, 37, 38]. Since all these tech-

niques deviate from the sequential order of memory ac-
cesses specified by the program, we call them “non-

sequentia~.

Non-sequential execution of memory accesses compli-

cates the user’s model of memory. A consistency con-

&ltion for shared memory specifies what guarantee~ are

provided about the values returned in the presence of

1Predict the outcome of future conditional branches and begin
memory accesses for the predicted branch.
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concurrent accesses. A variety of consistency conditions

have previously been propoeed for shared memory ar-

chitectures, e.g., [8, 7, 2, 3, 10, 16, 22, 20, 25, 27, 28].

In the presence of non-sequential execution, an obvi-

ous question is whether they can still be provided ef-

ficiently, or, if not, what guarantees are provided by

the optimized system. A further question is how to

program these optimized systems with new consistency

conditions in a safe and effective manner.

In this paper, we present a theoretical foundation

that allows programming to exploit non-sequential ex-

ecution of memory accesses on multiprocessors. Such

a foundation provides a common ground and inter-

face between researchers investigating multiprocessor

architectures, concurrent programming languages and

parallelizing compilers. We extend four known consi~

tency conditions to allow for non-sequential execution of

memory accesses. Our conditions are stated as proper-

ties of executions, not hardware implementations. We

then present and prove correct several techniques for

programming on optimized architectures so as to pro-

vide the illusion of sequential consistency, which is eas-

ier to reason about. For hybrid consistency, the first ap

preach is to label all writes (or all reads) as strong. The

second method, again for hybrid consistency, is to avoid

data races. An analogous result is shown for asymmet-

ric hybrid consistency, our attempt at a formalization

of release consistency.

Detailed Description: Our first contribution is a

framework for defining consistency conditions that is

general enough to allow non-sequential execution of

memory operations. (See Sec. 2.) This framework is

novel in combining the following two features. (1) The

interface at which conditions are specified in our model

is between the program and the system. This is the

interface used in [27, 25, 10] and the natural one to use

for specification to be independent of implementation.

(2) The framework allows for arbitrary optimizations by

the system, including especially non-sequential execu-

tion of memory accesses. The framework is then used

to extend four known consistency conditions for con-

sequential execution. Our extensions have two pleas-

ing properties: (1) The conditions are defined for all

programs, not just programs that satisfy certain condi-

tions. (2) We give a formal yet intuitive treatment of

explicit control instructions, which are crucial for ex-

pressing the flow of control in a program and in analyz-

ing its correctness on non-sequential implementations.

Our framework assumes a system consisting of a col-
lection of nodes. At each node there is an apphcation

program, a memory consistency system (mcs) process,

and a run-time system. (See Fig. 1.) An application

program contains instructions to access shared memory

❑app.

pgm. Call
+ mcs

Response process

run-time 4
system

Figure 1: A node

and conditional branch instruct ions, The mcs processes

at all the nodes collectively implement the shared ob-

jects that are manipulated by the application programs.

The run-time system executes the shared memory in-

structions by interacting with the local mcs process; it

bases its decisions as to which instructions to execute

on the application program at that node. (We abuse

the term run-time system and use it to refer to the

combination of the functionalist y of a compiler, which

sees the whole program, and a conventional run-time

system, which makes decisions dynamically based on

partial knowledge.)

A straightforward run-time system would simply sub-

mit operations to the mcs one at a time in the order

specified by the program. In order to achieve various

optimizations however, the run-time system might sub-

mit operations out of order, might have multiple opera-

tions pending at a time, and might anticipate branches

(sometimes incorrectly). We are not interested in the

specific algorithm used by the run-time system. (That

is another very interesting problem, beyond the scope

of this paper.) Instead, our goal is to model the run-

time system sufficiently abstractly so that any of a

large number of specific run-time systems can fit into

this framework. Obviously the run-time system cannot

do just anything—the optimizations that it performs

should be transparent to the application program. The

condition we require of a correct run-time system is

that there exists a way (after the fact) to take at least

some of the operations performed by the run-time sys-

tem and order them to be consistent with some “se-

quential execution” of the program. (Some of the op-
eration perfarmed by the run-time sydem might end

up not being used, for inst ante if they resulted from

an incorrect prediction about a branch. These opera-

tions can be ignored in determining whether there is

a corresponding sequential execution.) We emphasize

that the order in which operations appear to execute is

what is important, not the order in which they actuaiiy

execute.

Our framework incorporates rollback and compensat-
ing operations in an implicit manner. In particular, we
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allow the run-time system to communicate with the mcs

in order to perform other operations on the data, not

requested by the application programs, but necessary

for restoring the state of the shared variables due to in-

correct predictions, for example. These operations are

ignored when the subset of operations consistent with

a sequential execution is taken.

Given this framework, we generalize four known con-

sistency conditions-sequential consistency, weak con-

sistency, hybrid consistency, and release consistency.

(See Sec. 3.)

Our second contribution addresses the issue of writ-

ing programs for hybrid consistency and formally prov-

ing their correctness. Hybm”d consistency is an efficient

and expressive consistency condition [10]; it unifies and

generalizes several other consistency conditions appear-

ing in the literature [2, 12, 16]. Memory access oper-

ations are classified as either strong or weak. A global

ordering is imposed on strong operations at different

processes, but not much is guaranteed about the order-

ing of weak operations at different processes, except for

what is implied by their interleaving with the strong

operations.

Unfortunately, it is more difficult to program mem-

ories that support hybrid consistency than to program

memories that support sequential consistency, since the

guarantees provided by the former are weaker than

those provided by the latter. A way to cope with this

problem is to develop rules and transformations for exe-

cuting programs that were written for sequentially con-

sistent memories on hybrid consistent memories. The

benefit is that sequentially consistent executions are

easier to reason about while hybrid consistency can be

implemented more efficiently. We present two different

approaches for turning programs written for sequential

consistency into programs that work for hybrid consis-

tency. We believe that these techniques are a first step

in developing automatic optimization techniques for the

compilation and execution of parallel programs.

The first approach we present is based on statically

labeling specific accesses as strong, according to their

type. (See Sec. 4.) We derive two specific techniques

from this approach. First, we prove that programs in

which all writes are strong run on hybrid consistent

shared memory implementations as if they were sequen-

tially consistent. We then show how this result can be

used to produce efficient synchronization code based on

mutual exclusion. Our second static technique for

programming with hybrid consistency is symmetric to

the first: We show that, under certain assumptions,

programs in which all reads are strong run on hybrid

consistent shared memory implementations as if they

were sequentially consistent.

The second general approach for programming with

hybrid consistency is to run data-rac~free programs.

(See Sec. 5.) (This is analogous to the work of

[2, 3, 22, 21].) A data race occurs when two accesses

to the same location occur, at least one is a write, and

there is no synchronization between them. Data races

in a program are considered bad practice: They add to

the uncertainty of concurrent programs, beyond what

is already implied by the fact that different processes

may run at different rates and memory accesses may

have variable duration. (Some debuggers even regard

data races as bugs in the program.) Methods have been

developed to detect and report data races, also called
access anomalies; e.g., [5, 13, 14, 15, 29, 32, 33]. It

is reasonable to assume that data-race-free programs

account for a substantial portion of all concurrent pro-

grams. We formally prove that data-race-free programs

run on hybrid consistent shared memory implementa-

tions as if they were sequentially consistent.

Although many parallel programs are expected to be

data-race-free, we cannot ignore the drawbacks of these

programs. Proving that a program is data-race-free,

even for restricted cases, is NP-hard [31]. Also, it is
sometimes difficult to find the exact location of the data

race in the program [32]. Our static methods provide

an alternative and show that it is not necessary to make

a program data-race-free in order to guarantee correct

operation. These methods are especially well-suited to

applications in which reads greatly outnumber writes

(or vice versa).

A variant of hybrid consistency that distinguishes be-

tween release and acquire operations has been proposed

(e.g., [3, 21, 22, 20]). Informally, release and acquire

operations are strong operations, but their effect is not

symmetric—a release operation orders all weak opera-

tions by the same process that precede it, while an ac-

quire operation orders all weak operations by the same

process that follow it. Although recent research [19, 39]

suggests that the benefits from this further classifica-

tion are somewhat limited (when compared to hybrid

consistency), in order to demonstrate the flexibility of

our framework, and for compatibility with recent trends

in the architecture community, we show in Sec. 6 that

“asymmetric” data-race-free programs run on asym-

metric hybrid consistent memory implementations as

if they were sequential y consistent.

Sec. 7 compares our results with related work. We

conclude with a discussion of the results in Sec. 8. Due

to space limitations, many details are omitted; they

may be found in [9].

2 Framework

System Components: Each application program

consists of a sequence of instructions, each with a
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unique label. There are two types of instructions,

(shared) memory instructions and control instructions.

A memory instruction specifies an access to a shared

object. A control instruction consists of a condition

(a boolean function of the process’ local state) and a

branch (jump to the instruction with the given label).

The memory consistency system (ma) implements

the shared objects that are manipulated by the appli-

cation programs. It consists of a process at each node

as well as possibly other hardware. Every object is *

sumed to have a sen”al specification (cf. [25]) defining

a set of (memory) operations, which are ordered pairs

of calls and responses, and a set of (memory) operation

sequences, which are the allowable sequences of opera-

tions on that object. The interface to the mcs consists

of calls (or invocations) and responses on particular ob-

jects.

The run-time system takesas input the application

program and executes instructions on the mcsz. It con-

sists of a process at each node. An operation is a specific

instance of an execution of an instruction. A memory

operation consists of two parts, a call (to the mcs) and a

matching response (from the mcs). A control operation

consists of an evaluation of its condition. A control op

eration is represented by the result (true or false) of the

evaluation. Thus the run-time system must keep track

of the local state of the application process in order to

do the evaluation.

An event is a call, a response, or a control opera-

tion (condition evaluation). A run (of the run-time
system) is a sequence of events such that there is a
correspondence between calls and responsea (matching
object and process) and each response follows its corre-
sponding call.

Sequential Executions: The memory operations in

a run are obtained by matching up corresponding call

and response events; each control operation is itself an

event. We are interested in picking out a subset of the

operations in a run, finding an ordering of those oper-

ations, and seeing what properties that ordering satis-

fies. To that end, we next define several properties on

sequences of operations. The two main properties are

satisfying the serial specifications of the ohjectg (called
“legal” ) and being consistent with a sequential execu-

tion of the program (called “admissible”).

A sequence r of operations is legal if for each object

z, rlz, the subsequence of ~ consisting of exactly the

operations involving z, is in the serial specification of

2 The --t~~ system md mcs may & communicate con-

cerning issues such ss rollback and compensating operations, nec-

essary to implement certain optirnizationa. This cmnrmmication
can also be modeled with calls and respon-.

The notion of a sequential execution of the program

is formalized with the notion of a flow control sequence

for a process pi. Given process pi’s program, a flow con-

trol sequence, fcsi, is a sequence of operations defined

inductively as an execution of pi’s program in which

every instruction finishes executing before the next one

begins. (See the full paper for a more formal defini-

tion.) We denote by ~ the total order imposed by

f csi. A sequence T of memory operations is fully f csi-

admissible if the ordering of operations by pi in r agrees

with fcsi and does not end unless the program termi-

nates. A sequence r of memory operations is partially

fcsi-admissible if so far, the ordering implied by the

flow control sequence is obeyed by T, but it is not nec-

essarily completed yet. A sequence T of memory opera-

tions is fully (resp., partially) admissible with respect to

a set of flow control sequences {~cs; }~=1, one for each

pi, if it is fully (resp., partially) f cs~-admissible for all

i.

A sequence of memory operations is a sequential ex-

ecution if it is legal and fully admissible (with respect

to some set of flow control sequences).

Claim 2.1 Any legal partially admissible sequence of

memory operations is a prejiz of a sequential execution

and vice versa.

Weak and Strong Operations: It is possible to

mark some instructions in a program as strong, all other

instructions are weak. An instance of a strong instruc-

tion is a strong operation and an instance of a weak

instruction is a weak operation. In the sequel, Opi de-

notes an operation, weak or strong, invoked by pi. Su-

perscripts, e.g., op~, opt, . . .. distinguish between opera-

tions invoked by the same process but do not imply any

ordering of the operations. More explicitly, ri (z, v) de-

notes a read operation invoked by process p; returning
value v from variable Z, and ~i(~, v) denotes a write

operation invoked by process pi writing v to x.

Control Operations and the Influence Relation:

To capture the effect of control operations, we define a

partial order ~, called the control order, on operations
.e

in a flow control sequence fcs~: op~ d op~ if there

exists a control operation op~ such that opt ‘~ op~ %

Op: .

We now formalize the notion of one operation influ-

encing another, which relies on the control order. Let

~ be a sequence of memory operations and for each pi,

let coi be a partial order on the operations that is con-

sistent with r. An operation opf directly influences an

operation op~ in r (with respect to the coi ‘s), if one of
the following holds:
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1.

2.

OP~% op~ and op~ is a read. (Note that 1 = m in
this cese.) That is, op~ is a read operation which
could affect the execution of opt through a control
operation.

Op: = r~(y, v), op} = WI(V, v), op} ~ op~ and
there do=” not exi& WP(Y; u) “such-that u # v and

T T
wJ(y, v) — %(Y, ~) — rm(y, v). 3 That is,

op~ is a read of the value written by op} and there

is no intervening write of a different value.

The infZuence relation is the transitive closure of di-

rect influence.

The following lemma captures the intuition that if

read operation op~ = rl(z, v) does not influence opera-

tion op~, then op~ would have been generated even if

op~ had read a different value than v.

Lemma 2.2 Let T be a sequence of memory operations

that is partially admissible with respect to a set of flow
control sequences {f csj }~=1. Let operation op~ in T be

a read T1(z, v) that does not influence any operation in

r. Let rt be the result of taking r and changing op~ to be

rl(z, w) for some w # v. Then T1 is partially admissible

for some set of fiow control sequences { fcs~ }~=1.

3 The Consistency Conditions

In this section, we define three consistency conditions

that generalize previously known ones for the con-

sequential case; a fourth condition is presented in Sec.

6. The reason they are generalizations is that in non-

optimized systems, where operations at each process

are invoked in program order and only one operation

may be pending at a time, fcsi is simply the sequence

of operations in the order they were invoked.

Sequential consistency [27] is a strong consistency

condition stating that there exists a sequential exe-

cution that is consistent with the way the actual run

appears to every process. Providing sequential consis-

tency in messagebased systems requires the response

time of some operations to depend on the end-t~end

message delay [28, 11].

Definition 3.1 (Sequential consistency) A run R

is sequentially consistent if there exists a subset S of

the memory operations in R, a set { fcsi }~=1 of flow

control sequences, and a legal permutation r of S such

that r is fully admissible with respect to {f csi }~=1.

3;
OPi OPIme~ Opi p=ed- OPj in the sequence T.

Weak consistency [28, 10] does not impose any global
ordering on operations. It maybe implemented very ef-
ficiently, and despite its weakness, there is a large class
of programs for which it is sufficiently expressive. It
requires that there exist a subset of the memory oper-
ations in the run and a set of flow control sequences
such that for each process, there is a legal permuta-
tion of those operations that is consistent with both the
process’ flow control sequence and every other process’
control order.

Definition 3.2 (Weak consistency) A run R is

weakly consistent if there exists a subset S of the mem-

ory operations in R, a set of flow control sequences

{fcsi}~=l, one for each pit such that for each pi, there
ezists a legal permutation ri of S with the following

properties.

1. Ti is fuiiy f csi -admissible.

2. If op~ ~ op~, then op~ ~ op~, for any j.

Hybrid consistency [10] is intermediate between se-

quential and weak consistency; it combines the expres-

siveness of the former and the efficiency of the latter.

Hybrid consistency distinguishes between two types of

operations-strong and weak. It states that there must

be a subset of the memory operations in the run, a total

order on the strong operations among them, and a set

of flow control sequences satisfying the following. For

each process, there is a legal permutation of the oper-

ations in the subset that is consistent with four orders:

the process’ flow control sequence, every process’ con-

trol order, the total order on the strong operations, and

the relative order of every pair of strong and weak oper-

ations by another process in that process’ flow control

sequence. Furthermore, all accesses of the same process

to the same location will be viewed by all the processes

in the same order. It is possible to implement hybrid

consistency in such a way that weak operations are ex-

tremely fast [10].

Definition 3.3 (Hybrid consistency) A run R is

hybrid consistent if there exists a subset S of the mem-

ory operations in R, a set of flow control sequences

{f cs~};=l Y and a pe~utation P of the strong operations
in S such ihat for each process pi, there exists a legal

permutation ri of S with the following properties:

1. ri is fully f cs~-admissible.

2. If op~ ~ op~, then op~ ~ op~, for anv j.

8. If Op: ~ Op: and at least one is strong, then
v,

Op: — op~, for any j.
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~. If Op; ~ op~ (implying both are strong), then

Op; & op~, for any j and k.

5. If opt ‘S op~ and op~ and op~ access the same

location, then op~ ~ op~, for any j.

The full paper includes an illustration of the prob-

lems (namely, circular dependencies) that can occur if

the second property is not included. The fifth property

states that all operations on the same object by the

same process pj are viewed by every other process in

the same order as they are viewed by pj. This prop-

erty does not appear in the original definition of hybrid

consistency [10]. However, it is necessary in order for

some of our results to hold, as is shown in the full pa-

per. Evidence suggests it is a reasonable assumption,

since some previous authors make the even stronger as-

sumption that all processes view all operations on the

same object, no matter which process invoked them, in

the same order.4

4 Static Approach

In this section we discuss techniques for writing pro-

grams for hybrid consistent shared memories that are

based on statically classifying accesses depending on

whether they are reads or writes..

In the full paper we prove the correctness of our first

static technique:

Theorem 4.1 Every hybrid consistent run of a pro-

gram in which all writes are strong and all reads are

weak is sequentially consistent.

Theorem 4.1 is very useful for designing and proving

correctness of programs which rely on hybrid consis-

tency. A simple way to use it is to take a program

which is designed for sequential consistency, label each

write as a strong write and each read as a weak read,

and run it on a hybrid consistent memory. However,

there is even a more efficient way to employ the above

theorem. If the program has explicit synchronization

code dedicated to coordinating memory access opera-

tions, while the rest of the code ignorea synchronization

4In [2, 21, 22], a total order on all the writes to the same 1-
cation is aasumed. In addition, it is aesurned that a value read
from a specific location can be uniquely identified with a write
operation. Thus, aU the processes view all the writes to the same
location in the same order. Since a value read fkom a specific
location can be uniquely identified with a write operation, each
read is viewed by all the processes to be between the same writes
to that location. These two assumptions imply that all the pro-
cesses view all the operations on the same object in the same
order.

issues, then it is possible to apply Theorem 4.1 only to

the synchronization code, and label all other memory

accesses as weak. We demonstrate this method for mu-

tual exclusion in the full paper. Given a mutual ex-

clusion algorithm designed for sequentially consistent

memories, we produce a modified algorithm by labeling

all the writes in the synchronization part of the code as

strong, while all other operations are labeled as weak.

We prove that the modified algorithm guarantees mu-

tual exclusion (in a strong sense) on hybrid consistent

memories.

In the full paper we prove the correctness of our sec-

ond static technique:

Theorem 4.2 Every hybrid consistent run of a pro-

gram in which all reads are strong and all writes are

weak is sequentially consistent.

The proof of this theorem relies on the following as-

sumptions about the run: (a) every value written to

the same object is unique, and (b) every value written

is returned by some read. We show by specific counter-

examples in the full paper that both these assumptions

are necessary to prove this result. The unique writes

assumption is often made for proving properties about

various consistency conditions [23, 30]; it is sometimes

regarded as being merely technical, made in favor of

simplicity and having no effect of the correctness of

the claims. Our counter-example indicates that this as-

sumpt ion is not merely technical, and that special care

should be taken whenever it is made.

5 Data-Race-Free Programs

In this section we prove that data-race-free programs

behave on hybrid consistent memory implementations

as if they were sequentially consistent. Hybrid consis-

tency is a weaker condition than sequential consistency,

and can be implemented more efficiently [28, 11, 10].

Clearly, having data-race-free programs behave on hy-

brid consistent memory implementations as if they were

sequentially consistent is a desirable property, since

many concurrent programs attempt to be data-race-
free,

Let op~ and op~ be two operations appearing in some

sequence of memory operations a. Then

0 op~ =% op~ if both op~ and op~ are strong opera-
a

tions and op} — Op; .
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The relation happens before, denoted by =!%, is the

transitive closure of the union of% and %.

Two memory accesses conflict if they both access the

same memory location and at least one of them is a

write. A data race occurs in a sequence of memory

operations when two conflicting memory accesses are

not ordered by the happens before relation.

Definition 5.1 A program is data-racefree if none of

its sequential executions contains a data race.

In the full paper, we prove:

Theorem 5.1 Every hybrid consistent run of a data-

race-free program is sequentially consistent.

To prove this result, we consider a legal sequence of

memory operations Ti, as guaranteed for some process

pi in the definition of hybrid consistency, that is mini-

mal with respect to the number of switched operations

(operations by the same process pj whose order in ~i

is not consistent with pj’s flow control sequence). We

show that if ri is not fully admissible (i.e., a sequential

execution), then there exists a prefix of a sequential ex-

ecution of the program that contains a data race. If

q is not fully admissible, it must contain at least one

pair of switched operations. We locate the “first” pair

of switched operations in Ti, such that no other pair of

switched operations is ordered between them. Because

Ti is minimal we know this pair was switched to pre-

serve legality. This fact is used to show that there is a

data race between some pair of operations that precedes

this switched pair. Our main problem is to place these

two operations (and the data race between them) in a

legal and partially admissible sequence. This is done

by taking the two operations and the operations that

influence them and ordering them as in Ti, and adding

any operations necessary to preserve the flow control *

quences of all processes. The key point to prove about

the resulting sequence is its legality. In doing so, we

either change the value that a read returns (and invoke

Lemma 2.2), or, if this does not help, we show that

there is a data race earlier in the sequence. Thus we

have constructed a prefix of a sequential execution with
a data race, which is a contradiction.

6 Asymmetric Condition

In this section we present a (relatively minor) modifi-
cation of the definition of hybrid consistency that dis-

tinguishes between release and acquire operations. We

then modify the definition of a data race to accom-

modate this distinction. We conclude by proving that

asymmetric data-race-free programs behave on asym-
metric hybrid consistent memory implementations as if
they were sequentially consistent.

We believe our definition of asymmetric hybrid con-
sistency captures a similar semantics to what is cap-
tured by the sufficient conditions presented by Adve
and Hill [3]. We believe it also captures the main ingre-
dients of the intended semantics of the Stanford Dssh
multiprocessor [20], as formalized in [22, 21]. Our def-
inition, like the definition in [22, 21], does not include
nsync operations.s See Section 7 for a discussion of
similar results that have been proved by others.

We assume it is possible to mark some strong instruc-
tions in a program as releases and some as acquires (an

operation can be both a release and an acquire, but this
is not necessary). An instance of a release instruction
is a release operation and an instance of an acquire in-

struction is an acquire operation. Furthermore, there

is a paim”ng (a binary relation) defined between release

operations and acquire operations. We denote by ropi

a release operation invoked by process pi and by aopi

an acquire.

The definition of an asymmetric hybrid consistent run

is the same as that of a hybrid consistent run, except

that properties 3 and 4 are replaced with:

3.

4.

If op~ ~~ opt, and either op~ is an acquire or op~
r,

is a release, then op~ — op~, for any j.

If rop~ E S and aop~ G S are paired, then

rop~ ~ aop~, for any j and k.

The third property distinguishes between the asymmet-

ric effects of acquire and release operations, while the

fourth property guarantees the ordering only for strong

operations that are paired.

In the full paper, we define a program to be asym-

metn”c data-race-free analogously to the definition of

data-racefree. The difference is that the =% relation

is replaced by the ~ relation, which only orders paired

release and acquire operations. The proof of the next

theorem follows the proof of Theorem 5.1 very closely.

Theorem 6.1 Every asymmetric hybrid consistent run

of an asymmetm”c data-race-free program is sequentially

consistent.

5More ~re&elY, IISWCS are handled exactly like sYncs (strong

operations) in [22, 21], a solution that works because of the strong
assumptions made in those papers, namely no pipelining of reads
[22] and unique sequence numbers on values written [21]. As we
pointed out in Section 4, these are significant assumptions.
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7 Related Work

Many existing formal treatments of memory consi~
tency conditions [25, 27, 10, 22] assume that mem-
ory operations are executed sequential y-one at a time
and in program order. Several recent papers proposed
formalisms to allow some non-sequential optimization
[2, 3,20,22, 21], and contain many similarities with our
work.

These formalisms may be partitioned into two cate-

gories: total consistency conditions and partial consie

tency conditions. Total consistency conditions define

the behavior of their implementations for all programs,

while partial consistency conditions merely require that

certain programs will behave as if the hardware is se-

quentially consistent. Thus, they are not defined for

programs that do not obey a specific condition, even if

these programs are sensible. The first category includes

release consistency [20, 22, 21], and the sufficient con-

ditions for implementing DRFO [2] and DRF1 [3]. The

second category includes DRFO [2], DRF1 [3], and PL-

programs [22, 21].

Our framework provides total consistency conditions.

In Section 4 of the full paper we give examples of pro-

grams that are neither DRFO, DRF1, PL-programs nor

data-race-free programs. Yet, these programs are cor-

rect and efficient under hybrid consistency. Hence, it

is interesting to have the consistency conditions be de

fined for any program.

The major feature distinguishing cmr approach is the

focus on the specification of the conditions in a way

that is machine-independent and high-level enough for

the programmer. This is the reason our definitions

are specified at the interface between the application

program and the system. (This is along the lines of

[27, 25, 10].) Other formalization of total consistency

conditions [2, 3, 4, 22, 21] focus on hardware implemen-

tations that can guarantee certain conditions efficiently.

Defining consistency conditions at the interface be-

tween the mcs and the interconnection network, as is

done in the definition of weak ordering [16], the defi-

nition of release consistency [21, 22, 20], the sufficient

conditions for DRFO [2] and the sufficient conditions

for DRF1 [3], hza two severe drawbacks. First, this
method leads to very detailed and complex definitions

and makes it almost impossible to reason directly with

the consistency conditions or to argue about the cor-

rectness of programs running on implementations of

these conditions (see also in [18, page 2]); in contrast,

our framework allows one to reason directly with the
consistency conditions.6 The second fault is that the

6see for =Xaple the &mt and formal proof of correctne=

for a program that solves the mutual exclusion problem, for any
hybrid consistent memory, in [10].

consistency conditions are then bound to the optimiza-

tion that are specifically mentioned by the definition.

In our framework, the hardware optimizations are not

part of the consistency condition, contributing to pro-

grams that are more portable and whose correctness is

independent of advances in technology.

The work of Adve and Hill deals formally with con-

sequential execution of memory operations, although

not explicitly. In particular, while the sufficient condi-

tion for DRF 1 [3, 4] includes a formal treatment of con-

trol, this condition is based on the notion of a read oper-

ation controlling a write operation by the same proces-

sor. This is an operational notion and it is not proven

that it captures all the possible ways one operation can

control another. In contrast, our approach is syntactic,

based on using the actual control instructions in the

program, and thus is safer. Most previous work on spec-

ifying consistency conditions has either totally ignored

control instructions [6, 10, 11, 27, 25] or has merely

made the intuitive informal requirement that unipro-

cessor control dependence are preserved [2, 20, 21, 22].

The work of Gibbons and Merritt [21] deals formally

and explicitly with pipelining of memory operations. In

their definition, the program is not explicitly modeled,

and it is not clear how the intended emantics of the

program is preserved. 1!In contrast, o r framework ex-

plicitly models the program and the }un-time system

executing it. Unlike our paper, their results do not
encompass arbitrary out-of-order or speculative execu-
tion of operations. Yet recent experiments [26, 39] have
shown that without speculative execution, significant
speedup due to parallelism cannot be achieved for pro-
grams with complex control flow. Thus it is important
to allow for it.

The approach of programming with hybrid consis-

tency by running data-race-free programs wss pio-

neered by Adve and Hill [2], where they focused on im-

plementations. We have applied this approach to the

programmer’s interface. Similar theorems have been
proved in other papers [2, 3, 22, 21], showing that dif-

ferent types of data-race-free programs can be executed

on more relsxed implementations of shared memory as

if they were sequential y consistent. In our opinion,

our result is the only one that combines full support

for non-sequential execution, a more natural interface
(namely that between the program and the mcs), with

being short and comprehensible while still rigorous. We

are not aware of any previous technique that, like our

static approach, allows labeling of operations without

considering all possible executions of the program.
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8 Discussion

As the demand for powerful computers grows faster

than the technology to develop new processors, the

need for highly parallel multiprocessors increases. How-

ever, in order to fully utilize such machines, conve

nient paradigms for writing concurrent programs must

be developed. These paradigms should allow the user

to enjoy the same simplistic model of the world as in

uniprocessors, without sacrificing the performance of

the whole system. These two goals are somewhat con-

tradictory. Recent results indicate that there is a trade-

off between the similarity of a distributed shared mem-

ory to real shared memory, and the efficiency of the

hardware.

In this paper we have tried to bridge over these two

contradictory goals. We presented a general framew-

ork which encompasses the functionalist y of the com-

piler and the run-time environment and models their

interaction with the memory consistency system. Our

framework allows the definition of known consistency

conditions to be combined with implementations that

exploit optimizations for reducing the latency of mem-

ory accesses. To the best of our knowledge, our defini-

tions are unique in modeling the whole program, rather

than just looking at the memory operations in isolation.

We also characterized requirements on programs that

guarantee that they will behave on hybrid consistent

memories as if they are sequentially consistent. This

allows programmers to reason about certain classes

of programs assuming sequential consistency, yet run

them on more efficient hardware.

This work is part of an on-going attempt to under-

stand consistency conditions and their implications on

programming, compiler design and architecture. Much

research is still needed before this goal can be met.

While more efficient, fault-tolerant algorithms for im-

plementing various consistency conditions still need to

be developed, our paper takes a complementary ap-
proach: it provides a clean and formal framework for
investigating systematic methods, rules and compiler
techniques to transform programs written for strong
consistency conditions into correct programs for weaker
consistency conditions.

Acknowledgements: We thank Kourosh Ghara-

chorloo for helpful comments on a previous version.
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