
Sequential Consistency versus Linearizability

(EXTENDED ABSTRACT)

Hagit Attiya* Jennifer L. Welcht

Department of Computer Science Department of Computer Science

The Technion University of North Carolina

Haifa 32000, Israel Chapel Hill, NC 27599-3175

Abstract

The power of two well-known consistency condi-

tions for shared memory multiprocessors, sequen-

tial consistency and linearizability, is compared.

The cost measure studied is the worst-case re-

sponse time in distributed implementations of vir-

tual shared memory supporting one of the two con-
ditions. The memory is assumed to consist of

read/write objects. The worst-case response time

is very sensitive to the assumptions that are made

about the timing information available to the sys-

tem. All the results in this paper assume that pr~

cesses have clocks that run at the same rate as

real time and that all message delays are in the

range [d – u, dj for some known constants u and d,

O < u < d. If processes have perfectly synchronized
clocks or if every message haa delay exactly d, then

there are linearizable implementations in which one

operation (either read or write) is performed in-

stantaneously and the response time of the other

operation is d. These upper bounds match exactly

*Email: hagit@cs. technion. ac. il. Part of this work

was performed while the author was at the Laboratory
for Computer Science, MIT, supported by ONR contract

NOO014-85-K-0168, by NSF grants CCR8611442 and CCR
8915206, and by DARPA contracts NOO014-89-.J-1986 and

NOO014-87-K-0825.
t Emfil: ~elch@c~ . ~nc . cd”. The work oft& author w=

supported in part by NSF grant CCR901O73O and an IBM

Faculty Development Award.

Permission to copy without fee all or part of this material is granted pro-

vided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

a lower bound for sequential consistency, proved by

Lipton and Sandberg, on the sum of the response

times of read and write operations. If clocks are not

perfectly synchronized and if message delays are

variable, i.e., u >0, then such a tradeoff cannot be

achieved by Iinearizable implementations: the re-

sponse time for both read and write operations is

at least Q(u). In contrast, we present sequentially

consistent implementations for this weaker timing

model in which one operation (either read or write)

is performed instantaneously, and the worst-case re-

sponse time of the other operation is O(d).

1 Introduction

A fundamental problem in concurrent computing is

how to provide programmers with a useful model

of logically shared data that can be accessed atom-

ically, without sacrificing performance. The model

must specify how the data can be accessed and

what guarantees are provided about the results.

Shared memory is an attractive paradigm for com-

munication among computing entities because it is

familiar from the uniprocessor case, it can be con-
sidered more high level than message passing, and

many of the classical solutions for synchronization

problems were developed for shared memory (e.g.,

mutual exclusion [13]).

This problem arises in many situations at dif-
ferent levels of abstraction. These situations in.

elude implementing a single shared variable out of

weaker shared variables, cache coherence, build-

ing multiprocessors (with both physical and dis-

tributed shared memory), and high-level applica-

tions for loosely-coupled distributed systems such

as distributed file systems and transaction systems.

@ 1991 ACM 089791438-4/91/0007/0304 $1.50

304

To enhance performance (e.g., response time,

availability, or fault-tolerance), many implements

tions employ multiple copies of the same logical

piece of shared data (caching). Also, multiple user

programs must be able to execute “concurrently,”

either with interleaved steps, or truly in parallel.
More complications arise because at some level,

each access to shared data has duration in time,

from its start to its end; it is not instantaneous.

Thus, the illusion of atomic operations on sin-

gle copies of objects must be supported by a con-
sistency mechanism. The consistency mechanism

guarantees that although operations may be exe-

cuted concurrently on various copies and have some

duration, they will appear to have executed atom-
ically, in some sequential order that is consistent

with the order seen at individual processes.1 When

this order must preserve the global (external) order-

ing of non-overlapping operations, this consistency

guarantee is called linearizability ([18]);2 otherwise,

the guarantee is called sequential consistency ([20]).

Obviously, linearizability implies sequential consis-

tency.

Sequential consistency and linearizability are
probably the two best-known consistency condi-
tions. As the definitions of these two conditions

are similar, it is important to study the relation-
ships between them. In this paper we present a

quantitative comparison of the cost to implement

sequential consistency and linearizability in a non-

bused distributed system. Distributed implement

tions are of great interest because of their ability to

scale up in size. The comparison is based on time

complexity — the inherent response time of the

best possible distributed implementation support-
ing each consistency condition. That is, we present

upper and lower bounds on the worst-case response

time for performing an operation on an object. We

concentrate on read/write objects.

We consider a collection of application programs

running concurrently and communicating via vir-

tual shared memory. The shared memory consists

of a collection of read/wriie objects. The applica

tion programs are running in a distributed system

consisting of a collection of nodes and a complete

1This condition is similar in flavor to the notion ofs eria/-

izability from database theory ([7, 271); however, serializabil-

ity applies to transactions which aggregate many operations.
‘Also called atomicity ([17, 21, 26]) in the case of

readiwrite objects.

communication network.3 The shared memory ab-

straction is implemented by a memory consistency

system (mcs), which uses local memory at the var-

ious nodes and some protocol executed by the mcs

processes (one at each node). (Nodes that are dedi-

cated storage are modeled by nullifying the applic-
ation process.) Fig. 1 illustrates a node, on which is

running an application process and an mcs process.

The application process sends calls to access shared

data to the mcs process; the mcs process returns

the responses to the application process, lpossibly

based on messages exchanged with mcs processes

on other nodes.

The correctness conditions are defined at the in-
terface between the application processes (written

by the user) and the mcs processes (supplied by the
system). Thus, the mcs must provide the proper

semantics when the values of the responses to calls

are considered, throughout the network.

It turns out that timing information available in

the model has a crucial impact on the time com-

plexity of implementing sequential consistency and

linearizability. We assume that on each node there

is a real-time clock readable by the mcs process at

that node, that runs at the same rate as real-time.

We assume that every message incurs a delay in the
interval [d — u, dl, for some known constants u and
d, O s u s d (u stands for uncertainty). If u = O,

then the message delays are constant.

If processes have perfectly synchronized clocks

and the message delays are constant, we show that

the sum of the worst-case response times for a read

operation and a write operation is at least d. The

result is proved for sequential consistency, and thus,

holds also for linearizability. (This formalizes and
strengthens a result of Lipton and Sandberg [23].)

We then show that this tradeoff is tight—it is pos-
sible to have the response time of only one of the

operations depend on the network’s latency. Specif-

ically, we present an algorithm in which a read

operation is performed instantaneously (locally),

while a write operation returns within time d; we

also present an algorithm in which the roles are

reversed. These algorithms achieve linearizabil-

it y, and hence, sequential consistency. (This upper
bound indicates that separating sequential consis-
tency from linearizability is not aa obvious as it may

seem.)

sThe ~~mption of a complete communication net-

work can be omitted and is made here only for clarity of
presentation.

305

node

I

—

7

Call
b

app. proc. mcs proc.

4

Response

send message
@

o
receive message

Figure 1: System Architecture

We then turn to the more realistic case of approx-
imately synchronized clocks and uncertain mes-

sage delays. We show that if linearizability is de-
sired, neither operation can be performed instan-
taneously, regardless of the response time for the

other operation. Specifically, we show that the
worst-case response time of a read operation must

be at least u/4 and the worst-case response time of

a write operation must be at least u/2. (Note that u

can be as big as d.) In contrast, we present sequen-

tially consistent implementations of read/write ob-

jects in which one operation (either read or write)

is performed instantaneously (locally), and the re-

sponse time of the other operation is O(d). Thus,
sequential consistency admits significantly more ef-

ficient implementations than linearizability, when

there are significantly more operations of one type

and under certain timing assumptions.

Our proofs make use of techniques from the the-

ory of distributed systems: The lower bounds for

implementations of Iinearizable objects are proved

using shifiing arguments, originally used in [24] for

clock synchronization problems. Our efficient im-

plement ations of sequential consistency use times-

tamps in a way that was inspired by the atomic

broadcast algorithm of [9].

Several papers have proposed sequentially consis-
tent implementations of read/write objects, which
were claimed to achieve a higher degree of concur-

rency (e.g., [2, 3, 6, 10, 14, 25, 29]). In particu-

lar, Afek, Brown, and Merritt ([3]) present a se-

quentially consistent implementation of read/write

objects, for systems where processes communicate

via a bus. A bus enforces global ordering on all

messages delivered to the processes; such a prop-

network

erty is not provided in a communication network.

None of these papers provides an analysis of the re-

sponse time of the implementations suggested (or

any other complexity measure). Furthermore, none
of these papers proves that similar improvements

cannot be achieved for linearizability. To the best

of our knowledge, this is the first time such a result

is shown.

This paper addresses a simplification of the prob-

lem of memory coherence in loosely-coupled multi-

processors ([6, 10, 8, 14,22, 25, 28, 29]). Our formal

model ignores several import ant practical issues,

e.g., limit ations on the size of local memory stor-
age, net work topology, clock drift and “hot-spot s“.

Since our lower bounds are proved in a very strong

model, they clearly hold for more practical systems.

We believe our algorithms can be adapted to work

in more realistic systems.

2 Correctness Conditions

We begin with an informal description of the sys-
tem model. A memory consistency system (mcs)

consists of a collection of processes, one on each

node of a distributed system.

Process p interacts with the application pr~
gram using call events ReadP(X) and WriteP(X, v)

for all objects X and value v, and response

events Ret urnP (X, v) (for Read) and AckP (X) (for

Write). It communicates with other processes us-
ing message-send and message-receive events. It

sets timers for itself (to go off at some future clock

time) and responds to them using timer-set and

306

timer events. The process is modeled as an au-

tomaton with states and a transition function that

takes as input the current state, clock time, and

a call or message-receive or timer event, and pro-

duces a new state, a set of response events, a set of

message-send events, and a set of timer-set events.
A history of a process describes what steps (i.e.,
applications of the transition function) the process

takes at what real times; it must satisfy certain

natural ‘iconsistenc y“ conditions.

An execution of a set of processes is a set of his-

tories, one for each process, satisfying the follow-

ing two conditions: (1) A timer is received by p at

clock time ‘1’ if and only if p has previously set a

timer for T. (2) There is a one-to-one correspon-

dence between the messages sent by p to q and the

messages received by q from p, for any processes

p and q. we use the message correspondence to

define the delay of any message in an execution to

be the real time of receipt minus the real time of

sending. (The network is not explicitly modeled,

although the constraints on executions imply that

the network reliably delivers all messages sent.) An

execution is admissible if the delay of every message

is in the range [d — u, dl, for fixed nonnegative inte-

gers d and u, u ~ d, and for every p, at any time at
most one call at p is pending (i.e., lacking a match-

ing subsequent response).

Every object is sssumed to have a serial specijl-

cation (cf. [18]) defining a set of operations, which

are ordered pairs of call and response events, and a

set of operation sequences, which are the allowable

sequences of operations on that object. In the case

of a read/write object, the ordered pair of events

[ReadP(X), ReturnP (X, v)] forms an operation for
any p, X, and v, as does [WriteP(X, v), AckP (X)].

The set of operation sequences consists of all se-

quences in which every read operation returns the

value of the latest preceding write operation (the

usual read/write semantics). A sequence r of op-

erations for a collection of processes and objects is

legal if, for each object X, the restriction of r to

operations of X is in the serial specification of X.

Given an execution a, let ops(~) be the sequence of

call and response events appearing in u in real-time

order, breaking ties by ordering all response events

before any call event and then using process ids.

Our formal definitions of sequential consistency
and linearizabilit y follow. These definitions imply

that every call gets an eventual response and that
calls and responses alternate at each process.

Definition 2.1 (Sequential consistency) An

execution u is sequentially consistent if there exists

a legal sequence r of operations such that, ,for each

process p, the restriction of ops(a) to operations of

p is equal to the restriction of T to operations of p.

Definition 2.2 (Linearizability) An ezecwtion

u is linearizable if there exists a legal sequence r

of operations such that, for each process p, the re-

stn”ction of ops(u) to operations of p is equal to

the restriction of T to operations of p, and further-

more, whenever the response for operation Opl pre-

cedes the call for operation op2 in ops(u), then Opl

precedes op2 in T.

An mcs is a sequentially consistent implementa-
tion of a set of objects if any admissible execution of

the mcs is sequentially consistent; similarly, an mcs

is a linearizable implementation of a set of objects if

any admissible execution of the mcs is sequentially

consistent.

We measure the eficiency of an implementation

by the worst-case response time for any opera-

tion on the object. Given a particular mcs and a

read/write object X implemented by it, we denote

by IW(X) I the maximum time taken by a write op-
eration on X and by Ill(X) I the maximum time

taken by a read operation on X, in any admissible

execution. Denote by IWI the maximum of IW(X) 1,

and by Il?l the maximum of IR(X) 1,over all objects

X implemented by the mcs.

3 Perfect Clocks

We start by considering the case in which pro-
cesses have perfectly synchronized (perfect) clocks
and message delay is constant and known.4 We first

show that the sum of the worst-case response times

of read and write operations is at lesst d, even in

this strong model, and even under sequential con-

sistency. This is a formalization of a result of Lip-
ton and Sandberg ([23]) making precise the timing

assumptions made on the system. We then show

that the lower bound is tight for this model by de-

scribing two algorithms that match the lower bound

exactly: In the first algorithm, reads are performed

instant aneously, while the worst-case response time

4 we ~em=k that the assumption that PrOcesses have

perfect clocks and that message delays are constant (and
known) are equivalent.

307

for a write is d. In the second algorithm, writes are
performed instantaneously, while the worst-case re-

sponse time for a read is d. The algorithms actually

implement linearizability, which is a stronger con-

dition than sequential consistency.

3.1 Lower Bound for Sequential

Consistency

We start with a formal proof of a theorem presented
in [23, Theorem 1]. We show that the result holds

even in highly synchronous systems, in which pro-

cesses have perfect clocks and message delays are

constant and known. Perfect clocks are modeled
by lettingCp(t)= t for all p. The constant mes-

sage delay is modeled by letting u = O; d is known

(and can be used by the mcs).

Theorem 3.1 (Lipton and Sandberg) For any

memory-consistency system that is a sequentially

consistent implementation of two readiwrite objects

X and Y, IVVI + IRI ~ d.

Proof: Let p and q be two processes that access X

and Y. We prove that either IIV(X)[+ ll?(Y)l z d

or IW(Y)I + IR(X)I ~ d. Assume by way of con-

tradiction that there exists a sequentially consis-

tent implementation of X and Y for which both

IW(X)I + ll?(Y)l < d and IFV(Y)I + II?(X)I < d.

Without loss of generality, assume that O is the ini-
tial value of both X and Y.

By the specification of Y, there is some admissi-

ble execution al such that OpS(CYl) is

WriteP(X, 1) AckP(X) ReadP(Y) ReturnP (Y, O)

and WriteP(X, 1) occurs at real time O and

ReadP(Y) occurs immediately after AckP(X). By

assumption, the real time at the end of al is less

than d. Thus no message is received at any node

during al.

By the specification of X, there is some admissi-

ble execution CYzsuch that ops(c12) is

Write~(Y, 1) Ackq (Y) ReadQ(X) Return~(X, O)

and Writ eg(Y, 1) occurs at real time O and

Readg(X) occurs immediately after Ack~(Y). By

assumption, the real time at the end of a2 is less

than d. Thus no message is received at any node
during cr2.

Since no message is ever received in al and crz,

the execution a obtained from al by replacing q’s

history with q’s history in az is admissible. Then

ops(cx) consists of the operations [WriteP (X, 1),

AckP(X)] followed by [ReadP(Y), ReturnP(Y, O)],
and [Writeq(Y, 1), Ackg(Y)] followed by [Read~(x),

Returng (X, O)].

By assumption, a is sequentially consis-

tent. Thus there is a legal operation se-

quence T consisting of the operations [WriteP (X, 1),

AckP(X)] followed by [ReadP(Y), ReturnP(Y, O)],

and [Write~ (Y, 1), Ack~(Y)] followed by [Readq(X),

Returng (X, O)]. Since T is a sequence of operations,

either the read of X follows the write of X, or the

read of Y follows the write of Y. But each possi-

bility violates the serial specification of either X or

Y, contradicting r being legal. ■

3.2 Upper Bounds for Linearizabil-

it y

In this section we show that the tradeoff indicated

by Theorem 3.1 is inherent, and that a sequentially

consistent implementation may choose which op-

eration to slow down. More precisely, we present

an algorithm in which a read operation is instanta-

neous (local) while a write operation returns within

time d; we also present an algorithm in which the

roles are reversed. These algorithms actually en-
sure the stronger condition of linearizability. They

assume that clocks are perfect and message delays

are constant.

Informally, the algorithm for fast reads and slow

writes works as follows. Each process keeps a

copy of all objects in its local memory. When a

ReadP (X) occurs, p reads the value v of X in its lo-

cal memory and immediately does a ReturnP (X, v).

When a WriteP(X, v) occurs, p sends “write(X, v)”

messages to all other processes. Then p waits d

time units, after which it changes the value of X to

v in its local memory and does an Ackp (X). When-

ever a process receives a ‘(write(X, v)” message, it

changes the value of X to w in its local memory. (If

it receives several at the same time, it “breaks ties”

using sender ids, that is, it writes the value in the

message from the process with the largest id and

ignores the rest of the messages.) Clearly the time

for every read is O and the time for every write is

d, and IWI + 1121= d.

308

Theorem 3.2 The algorithm just described imple-

ments Iinearizability.

The proof, which is omitted from this extended

abstract, proceeds by explicitly constructing, for

ever y admissible execution, a legal operation se-

quence sat isfying the necessary conditions. In cre-

ating the operation sequence, each operation in the

execution is serialized to occur at the time of its

response.

The algorithm for slow reads and fast writes is

similar to the previous one. Each process keeps
a copy of all objects in its local memory. When

a ReadP (X) occurs, p waits d time units, after

which it reads the value v of X in its local mem-

ory and immediately does a ReturnP (X, v). When

a WriteP(X, v) occurs, p sends “write(X, v)” mes-

sages to all other processes (including a dummy

message to itself which is delayed d time units) and
does an Ack immediately. Whenever a process re-

ceives a “write(X, v)” message, it changes the value

of X to w in its local memory. Ties are resolved as

in the previous algorithm. Clearly the time for ev-

ery read is d and the time for every write is O, and

Iw[+ IRI = d.

Theorem 3.3 The algorithm just described imple-

ments linearizability.

The proof is the same as the proof of Theorem 3.2

except that each operation is serialized to occur at

the time it is called.

4 Imperfect Clocks

Obviously, the assumptions of the previous section
are unrealistically strong. In this section we relax

them, and assume a system in which clocks run

at the same rate as real time but are not initially

synchronized, and in which message delays are in

the range [d – u, dl for some u >0.

Under these assumptions, the lower bound of

Theorem 3.1 still holds, but the algorithms of Theo-

rems 3.2 and 3.3 do not work. We start by showing

that for linearizability this is not a coincidence-in

any linearizable implementation of a read/write ob-

ject the worst-case response time of both read and

write operations must depend on u, the message
delay uncertainty. We then show that this is not

the case for sequential consistency by presenting

two algorithms, one in which reads are performed

instantaneously while the worst-case response time

for a write is O(d), and another in which the roles

are reversed. These algorithms match (within con-

stant factors) the lower bound of Theorem 3.1.

4.1 Lower Bounds for Linearizability

We now show that, under reasonable assumptions

about the pattern of sharing, in any linearizable im-

plementation of an object, the worst-case time for

a read is u/4 and the worst-case time for a write is

u/2. The proofs of these lower bounds use the tech-

nique of shifting. Shifting is used to change the tim-

ing and the ordering of events in the system while

preserving the local views of the processes. It was

originally introduced in [24] to prove lower bounds

on the precision achieved by clock synchronization
algorithms. Here we describe the technique and its

properties informally.

Given an execution with a certain set of clocks,

if process p’s history is changed so that the real

times at which the events occur are shifted by some

amount s and if p’s clock is shifted by the same

amount, then the result is another execution in

which every process still “sees” the same events

happening at the same real time. The intuition is

that the changes in the real times at which events

happen at p cannot be detected by p because its

clock has changed by a corresponding amount. It

is possible to quantify the resulting changes to mes-

sage delays in the new execution: the delay of any

message to p is s less, the delay of any message

from p is s more, and the delay of any message not

involving p has the same delay as in the original

execution.

Theorem 4.1 Assume X is a read/write object

with at least two readers. Then any linearizable

implementation of X must have IR(X)I ~ ~.

Proofi Let p and q be two processes that read

X and r be a process that writes X. Assume in

contradiction that there is an implementation with

IR(X)I < ~. Without loss of generality, assume

that the initial value of X is O. The idea of the

proof is to consider an execution in which p reads

O from X, then q and p alternate reading X while

r writes 1 to X, and then q reads 1 from X. Thus
there exists a read RI, say by p, that returns O

309

and is immediately followed by a read R2 by q that
returns 1. If q is shifted earlier by u/2, then in

the resulting execution RZ precedes RI. Since R2

returns the new value 1 and R1 returns the old value

O, this contradicts linearizability.

Let k = [WI. By the specification of X,
there is an admissible execution cr, in which all mes-

sage delays are d — ~, consisting of the following

operations (see Fig. 2(a)):

●

●

●

●

●

●

At time ~, r does a Writer (X, 1).

Between times f and (4k + 1) . ~, r does an

Ackr(X). (By definition of k, (4k + 1) .$ z

~ + ItV(X) 1, and thus r’s write operation is
guaranteed to finish in this interval.)

At time 2i. ~, p does a ReadP(X), O < i < 2k.

Between times 2i . ~ and (2i+l) . ~, pdoes a

ReturnP(X, v2i), O S i < 2k.

At time (2i -t- 1) . ~, q does a Readq(X), O <
i s 2k.

Between times (2i + 1) . % and (2i + 2) “ ?, !l

does a Returng(X, Wzi+l),-O s i S 2k.

Thus in ops(cr), p’s read of vo Precedes r’s writ%

q’s read of v4k+l follows r’s write, no two read op-

erations overlap, and the order of the values read
from X is wo, vl, Vz, ~4L-+1. By linearizabil-

ity, VO = O and v4k+l = 1. Thus there exists j,

O s j < 4k, such that vj = O and vj+l = 1. With-

out loss of generality, assume that j is even, so that

vj is the result of a read by p.

Define ~ = shift(a, q, ~). I.e., we shift q earlier

by:. (See Fig. 2(b).) The result is admissible since

the message delays to q become d – u, the message

delays from q become d, and the remaining message

delays are unchanged.

As a result of the shifting, we have reordered read
operations with respect to each other at p and q.

Specifically, in ops(fl), the order of the values read
from X is vI, vo, v3, v2, v~+lt vj, Thus in

,6 we now have vj+l = 1 being read before vj = O,

which violates linearizability.

Theorem 4.2 If X is a read/write object with at

least two writers, then any linearizable implement-

ation of X must have IW(X)I > ~.

The proof uses techniques similar to the proof of
Theorem 4.1. It constructs an execution in which,

if write operations are too short, linearizability can

be violated by appropriately shifting histories.

The assumptions about the number of readers

and writers made in Theorems 4.1 and 4.2 are cru-

cial to the results, since it can be shown that the

algorithms from Theorems 3.2 and 3.3 are correct

if there is only one reader and one writer.

4.2 Upper Bounds for Sequential

Consistency

Inspecting the algorithm for fast reads (Theo-

rem 3.2) reveals that the key point of its correctness

is the fact that write updates are handled by all

processes in the same order and at the same time.

In order to guarantee sequential consistency, it suf-

fices for processes to update their local copies in
the same order (not necessarily at the same time).

A simple way to achieve this property is for a cen-

tralized controller to collect update messages and

broadcast them. This idea can be developed into

two algorithms, one in which each read operation

is performed instantaneously and the response time

for write is O(d), and another where the roles are

reversed. We now present algorithms that are fully

distributed and do not rely on a centralized con-

troller. These algorithms use atomic broadcast to

guarantee that all messages are delivered at the
same order at all processes. Our algorithms are
inspired by the atomic broadcast algorithm of Bir-

man and Joseph [9].5

We start with an informal description of the algo-

rithm for fast reads (time O) and slow writes (times

at most 6d). Each process keeps a local copy of ev-

ery object, a counter, and a set of updates that it is
waiting to make to its local copies. A read returns

the value of the local copy immediately. When a

write comes in to p, p requests “candidate” time%

tamps from all processes for this write. When a pro-

cess q receives a request for a candidate t imest amp,

it increments its counter and sets the timestamp to
be the pair (counter, id). q sends this timestamp

to p and also keeps a copy of the update marked

as unready. Once p receives candidate timestamps

from everyone, it chooses the maximum as the final

timestamp for that write and sends it to everyone.

5Birnmn and Joseph credit Skeen for the original idea,

which is based on two-phase commit.

310

process q

process p

process T

Time

Read(X, VI) Read(X, V4k+I)

I I ~+

Read(X, VO) Read(X, VZ) Read(X, v4k)

t t I I I

Write(X, 1)

I I

.

(a) The execution a.

Read(X, VI) Read(X, 03)
process q l_l I I

Read(X, tJO) Read(X, v2) Read(X, Vqk)
process p I 4 I I t I

Write(X, 1)
process T t I

Time —; o ~ ~
4 2

.

(b) The execution ~.

Figure2: Executions used intheproof of Theorem 4.1.

palso sets atimerto gooff4dtimelater,6 when it

can be sure that every process has received the final

timestamp and updated its local copy. When the

timer goes off, p Acks the write. When g receives a

final timestamp, it updates the timestamp for that

write, marks it as ready, and sorts all the pending

updates by timest amp. Then it does the updates

in order of increasing timestamps until hitting an

unready update. q also updates its counter to be at

least as large as the counter in the final timestamp

just received.

The algorithm uses the following data types:

timestamp — (integer, id) (break ties with proces-

sor ids);

write — record with fields:

Q+k

obj : name of an object (object to be written),

val : value of obj (value to be written),

uid : timestamp (unique id of this write

request, assigned by initiator),

ts : timestamp (candidate or final),

ready : boolean (have final timestamp?),

canals : set of timestamp (candidate

timestamps, only used by initiator).

The state of each process consists of the following

variables:

count : integer, initially O (generates successive in-

tegers for creating timestamps);

updates : set of write, initially empty (set of up-

dates waiting to be made to local copies);

6The algorithm can be made completely asynchronous by pending-write : name of an object (write is pend-
replacing the timer with explicit acknowledgements; this will
increase the time complexity of a write to 7d.

ing on this object);

311

ReadP(X):

generate ReturnP (X, v),

where v is the value of p’s copy of X

WriteP(X, v):

count := count + 1

pending-write := X

add (X, v,(count ,p),(count ,p) ,false,{(count ,p)})

to updates

send REQ-TS(X, v,(count,p)) to all processes

(except self)

receive REQ-TS(X, v, u) from q:

count := count + 1

add (X, v, u,(count,p),false,o) to updates

send CAND-TS(X, v, u,(count,p)) to q

receive CAND-TS(X, v, u, 1’) from q:

let E be the entry in updates with

E.obj = X, E.val = v, and E.uid = u

add T to E.cands

if lE.candsl = n then

send MAX-TS(X, v, u, max(E.cands))

to all processes (including self)

set timer for current time +4d

endif

receive MAX-TS(X, v, u, (i, r)) from q:

let E be the entry in updates with

E.obj = X, E.val = v, and E.uid = u

count := max(count ,i)

E.ts := (i, r)

E.ready := true

while E’, element in updates with smallest ts,

is ready do

write E’ .val to local copy of E’ .obj

remove E’ from updates

endwhile

TimerP:

generate AckP (pending-write)

Figure 3: The transition function.

copy of every object X, initially equal to its initial

value.

Each process also knows n, the total number of pro-

cesses, and d, the maximum message delay. The

transition function of process p appears in Fig. 3.

We first sketch the proof. To show sequential

consistency, we must demonstrate, for any admissi-

ble execution u, a sequential order for all operations

in a such that the order at each process is pre-

served and each read returns the value of the latest

write. The operations are ordered by first ordering

all writes in final timest amp order, and then plac-

ing each read, say on object X at process p, after

the latest of (1) the previous operation for p, and

(2) the write that generated the latest update to p’s

copy of X preceding the read’s return. The result-

ing sequence respects the order at each process by

construction and because of the way timestamps

are assigned. Showing that the sequence satisfies

the specification of read-write objects depends on

two facts: (1) that updates are done at each pro-

cess in final timestamp order, and (2) that if a read

operation follows a write operation at any process

p, then p reads its local copy for the read after it

updates its local copy for the write.

Lemma 4.3 Let n be any admissible execution of

the algorithm. Then every write operation in u is

given a unique final tzmestamp.

Lemma 4.4 Let n be any admissible execution of

the algorithm. Then the final timestamps assigned

to write operations in o form a total order.

Lemma 4.5 Let u be any admissible execution of

the algorithm. Then for any process p, p‘s local

copies of the objects take on all the values contained

in writes and the updates are done in timestamp

order.

Proof: The final timestamp order of the writes

in u is uniquely defined, by Lemmas 4.3 and 4.4.

Clearly every write is eventually assigned a final

timest amp, which is at least as large as all its can-

didate timestamps.

First we show that the update associated with

every write is made at every process. Consider

the set of writes whose updates are not made at

all processes; let W be the write in this set with

the smallest final timestamp and let p be a pro-

cess where W’s update is not made. Let t be the

time when p receives W’s final timestamp. Since

p increments count to be at least as large as the

count in W’s final timest amp, every write that is

added to p’s updates set subsequent 1y has a times-

tamp larger than W’s. Let W’ be any write in p’s

312

updates set at time t whose timestamp is less than

W’s. If W’ is not ready, then eventually it will be.

If W”s final timestamp is greater than W’s, then it

cannot block W’s update at p. If W“s final times-

tamp is less than W’s, then by the choice of W,

its update is eventually done at p, after which it

does not block W’s update at p. Thus eventually

nothing prevents W’s update from being made at

P.

Now we show that at each process p, updates are

made in final timest amp order. Suppose in contra-

diction that the final timestamp of write WI is less

than the final timestamp of write W2, but p per-

forms W2’S update before WI ‘s. When p performs

W2’s update, it cannot yet have an entry for WI,

because otherwise it would either block (if WI was

not ready) or perform WI’s update before W2 ‘s.

But then p’s candidate timestamp for WI would be

greater than W2’s final timestamp, since p’s count is

increased when MAX-TS is received, implying that

WI’s final timestamp is greater than W2 ‘s. ■

Lemma 4.6 Let u be any admissible execution of

the algorithm and p be any process. If WI precedes

W2 in ops(u)lp’, then the jinal ttmestamp of WI is

less than the final timestamp of W2.

Lemma 4.7 Let u be any admissible execw?ion of

the algorithm and p be any process. If read R of

object Y follows write W to object X in OPS(U) 1P,

then R‘s read of p‘s local copy of Y follows W‘s

write of p‘s local copy of X.

Theorem 4.8 This algorithm ensures sequential

consistency with IRI = O and IWI = 6d.

Proof: (Sketch) Clearly the time for any read is

O. The time for any write is the time for the REQ-

TS messages to be received, the subsequent CAND-

TS messages to be received, and the 4d timeout to

expire, which is at most 6d.

We now show sequential consistency. Fix some

admissible execution u. We define a legal sequence

of operations r , such that for every process p,

ops(m) Ip = ~lp. In ~, we order the writes in a

by final timestamps. To insert the reads, we pro-

ceed in order from the beginning of a. [ReadP(X),

ReturnP (X, v)] goes immediately after the latest

7ops(u) Ip is the restriction of ops(o) to the operations of

P.

of (1) the previous operation for p (eitlher read

or write, on any object), and (2) the write that

spawned the latest update to p’s local copy of

X preceding the generation of the ReturnP (X, v).

(Break ties using process ids.)

We must show ops(o) Ip = rlp for all processes

p. Two reads are ordered correctly by definition of

T. Two writes are ordered correctly by Lemma 4.6.

The interesting csse is when a read R precedes write

W, in ops(u) lp. Suppose in contradiction that R

comes after W in r. Then in a there is some read

R’ = [ReadP(X), ReturnP (X, v)] and some write

W’ = [Write~(X, v), Ackg (X)] such that (1) R’ oc-

curs before R in a, (2) the final timestamp of W’

is greater than the final timestamp of W, and (3)

W’ spawns the latest update to p’s copy of X that

precedes R”s read. But W’ must have already re-

ceived its final t imest amp before R”s read occurs,

which means before W starts. But then the times-

tamp of W would be greater than the timestamp

of W’, which is a contradiction.

To show T is legal, first note that for every read

R of X by p, the write W, whose update to p’s local

copy of X provides the value returned, follows R.

Lemmas 4.5 and 4.7 and the definition of r can be

used to prove that no other write falls between W

and R in T. 9

Theorem 4.1 implies that this algorithm does not

guarantee linearizability. We can also explicitly

construct an admissible execution that violates lin-

earizability as follows. The initial value of X is O.

Process p writes 1 to X. The final timestamp for

the write is sent at time t.It arrives at process r at

time t and at process q at time t+ d. Meanwhile,

r performs a read at time t and gets the new value

1, while q performs a read at time t+ d/2 and gets

the old value O. No permutation of these operations

can both conform to the read/write specification

and preserve the relative real-time orderings of all

non-overlapping operations.

We now discuss the algorithm that ensures se-

quential consistency with fast writes (time O) and

slow reads (time at most 3d). (Its detailed code and

proof of correctness are omitted from this abstract.)

This algorithm is similar to the previous algorithm.

When a Read(X) comes into p, ifp has no updates

(to any object, not just X) that it initiated waiting

to be made, then it Returns the current value of

its copy of X. Otherwise, it marks the waiting up-

date (that it initiated) with the largest tirnestamp

313

and Returns once this update is made. When a

Write(X) comes in to p, it is handled very simi-

larly to the other algorithm; however, it is Acked

immediately. Since a process p may be handling

several writes at a time, it is important that q re-

spond to timestamp requests from p in the correct

orders Effectively, the algorithm pipelines write

updates generated at the same process. We have:

Theorem 4.9 The algorithm just described imple-

ments sequential consistency with IRI = 3d and

Iwl = o.

The structure of the proof is the same as for the

previous algorithm, while making concession to the

fact that the writes are acknowledged immediately

and that reads are sometimes delayed.

Theorem 4.2 implies that this algorithm does not

guarantee linearizability. It is also not difficult to

construct an explicit scenario.

5 Conclusions and Further Re-

search

The impact of the correctness guarantee on the ef-

ficiency of supporting it was studied under various

timing assumptions. Although we still do not have

a complete picture of this problem, our results in-

dicate that supporting sequential consistency can

be more cost-effective than supporting linearizabil-

ity, for read/write objects and under certain tim-

ing assumptions. Two other conclusions can be

drawn from our results: First, perfect clocks ad-

mit more efficient implement ations, and thus it

may be worthwhile to provide such clocks. Sec-

ond, knowing in advance the sharing patterns of

the object (i.e., how many processes read it and

how many processes write it) results in faster imple-

ment at ions. Thus, the mcs can benefit from having

the application program (the user) supply “hints”

about the sharing patterns of the object.

Our work leaves open many interesting ques-

tions. Obviously, it is desirable to narrow the

gaps between our upper and lower bounds. It will

be interesting to understand how practical issues

such as local memory size and clock drift influence

8For simplicity, we assume FIFO channels, but this as-
sumption can be removed if sequence numbers are employed.

the bounds. We have studied only read/write ob-

jects, although our definitions can be extended in

a straightforward way to apply to other data ob-

jects. It will be very interesting to obtain bounds

on the response time of implementing other objects,

e.g., FIFO Queues and Test-and-Set registers, un-

der sequential consistency and linearizability. Pre-

liminary results in this direction appear in [5]. The

cost measure we have chosen to analyze is response

time, but there are other interesting measures, in-

cluding throughput and network congestion.

The problem that we have studied is closely re-

lated to the problem of designing cache consistency

schemes in which some sort of global ordering must

be imposed on the operations ([10, 11, 12, 16, 20]).

Our results show that making the definitions of

these orderings more precise is important since

seemingly minor differences in the definitions result

in significant differences in the inherent etliciency of

implementing them. Recently, several non-global

conditions that are weaker than sequential con-

sistency have been suggested, e.g., weak ordering

([15, 8, l]), pipelined memory ([23]), slow memory

([19]), causal memory ([4]), loosely coherent mem-

ory ([6]), and the definitions in [12] and [28]. It

would be interesting to investigate the inherent ef-

ficiency of supporting these consistency guarantees.

In order to do so, crisp and precise definitions of

these conditions are needed.

It is clear that efficiency, in general, and response

time, in particular, are not the only criteria for eval-

uating consistency guarantees. In particular, the

ease of designing, verifying, programming, and de-

bugging algorithms using such shared memories is

very import ant.

As multiprocessor systems become larger, dis-

tributed implementations of shared virtual memory

are becoming more common. (Truly shared memo-

ries, or even buses, cannot be used in systems with a

large number of processors.) Such implementations

and their evaluation relate issues concerning multi-

processor architecture, programming language de-

sign, software engineering, and the theory of con-

current systems. We hope our work contributes

toward a more solid ground for this interaction.

Acknowledgements: The authors thank Sarita

Adve, Roy Friedman, Mark Hill, and Rick Zucker

for helpful comments on an earlier version of this

paper.

314

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

S. Adve and M. Hill, “Weak Ordering—A New

Definition,” Proc. 17th ISCA, 1990, pp. 2-14.

S. Adve and M. Hill, “Implementing Sequen-

tial Consistency in Cache-Based Systems,” Proc.

ICPP, 1990.

Y. Afek, G. Brown, and M. Merritt. “A Lazy

Cache Algorithm,” Proc. Ist SPAA, 1989, pp. 209-

222.

M. Ahamad, P. Hutto, and R. John, Implementing

and Programming Causal Distributed Shared Mem-

ory, TR GIT-CC-90-49, Georgia Inst. of Tech., De-

cember 1990.

H. Attiya, “Implementing FIFO Queues and

Stacks,” in preparation.

J. Bennett, J. Carter, and W. Zwaenepoel,

“Munin: Distributed Shared Memory Based on

Type-Specific Memory Coherence,” Proc. %d

PPoPP, 1990, pp. 168-176.

P. Bernstein, V. Hadzilacos, and H. Goodman,

Concurrency Control and Recovery in Database

Systems, Addison-Wesley, Reading, MA, 1987.

R. Bisiani, A. Nowatzyk, and M. Ravishankar,

“Coherent Shared Memory on a Distributed Mem-

ory Machine,” Proc. ICPP, 1989, pp. 1-133-141.

K. Birman and T. Joseph, “Reliable Communica-

tion in the Presence of Failures,” TOCS, vol. 5, no.

1, pp. 47-76.

W. Brantley, K. McAuliffe, and J. Weiss, “RP3

Processor-Memory Element ,“ Proc. ICPP, 1985,

pp. 782-789.

L. M. Censier and P. Feautrier, “A New Solution

to Coherence Problems in Multicache Systems,”

IEEE Trans. on Computers, vol. C-27, no. 12, pp.

1112–1118.

W. W. Collier, “Architectures for Systems of Par-

allel Processes,” IBM TR 00.3253, Poughkeepsie,

NY, January 1984.

E. W. Dijkstra, “Hierarchical Ordering Of Sequen-

tial Processes,” Acts lnjormatica, 1971, pp. 115-

138.

M. Dubois and C. Scheurich, “Memory Access De-

pendencies in Shared-Memory Multiprocessors”,

IEEE Trans. on Sofiware Engineering, vol. 16, no.

6 (June 1990), pp. 660–673.

M. Dubois, C. Scheurich, and F. A. Briggs, ‘Mem-

ory Access Buffering in Multiprocessors, ” Proc.

13th ISCA, June 1986, pp. 434-442.

M. Dubois, C. Scheurich, and F. A. Briggs, “Syn-

chronization, Coherence and Event Ordering in

Multiprocessors,” IEEE Computer, vol. 21, no. 2,

pp. 9–21.

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

M. Herlihy, “Wait-Free Implementations of Con-

current Objects,” Proc. 7th PODC, 1988, PIP. 276-

290.

M. Herlihy and J. Wing, “Linearizability: A

Correctness Condition for Concurrent Objects,”

TOPLAS, vol. 12, no. 3, pp. 463-492.

P. Hutto and M. Ahamad, Slow Memory: Vl~eaken-

ing Consistency to Enhance Concurrency in Dis-

tributed Shared Memories, TR GIT-ICS-89/39,

Georgia Inst. of Tech., October 1989.

L, Lamport, “How to Make a Multiprocessor Com-

puter that Correctly Executes Multiprocess Pro-

grams,” IEEE Trans. on Computers, vol. C-28, no.

9, pp. 690-691.

L. Lamport, “On Interprocess Communication.

Parts I and II,” Distributed Computing, vol.. 1, no.

2 (1986), pp. 77-101.

K. Li and P. Hudak, “Memory Coherence in

Shared Virtual Memory Systems,” TOCS, vol. 7,

no. 4, pp. 321–359.

R. Lipton and J. Sandberg, PRAM: A Scalable

Shared Memory, TR CS-TR-180-88, Princeton

University, September 1988.

J. Lundelius and N. Lynch, “An Upper ancl Lower

Bound for Clock Synchronization,” Information

and Control, vol. 62, Nos. 2/3, pp. 190-204.

S. Min and J. Baer, “A Timestamp-Basedl Cache

Coherence Scheme,” Proc. ICPP, 1989, pp. I-23-

32.

J. Misra, “Axioms for Memory Access in Asyn-

chronous Hardware Systems,” TOPLA S, vol. 8,

no. 1, pp. 142–153.

C. Papadlmitriou, The Theory of Concurrency

Control, Computer Science Press, RockvillLe, MD,

1986.

U. Ramachandran, M. Ahamad, and M. ?{. Kha-

lidi, “Coherence of Distributed Shared Memory:

Unifying Synchronization and Data Transfer,”

Proc. ICPP, 1989, pp. 11-160-169.

C. Scheurich and M. Dubois, “Correct Memory

Operation of Cache-Based Multiprocessors,” Proc.

lAth ISCA, 1987, pp. 234–243.

315

