
Bounded Polynomial Randomized Consensus
(PRELIMINARY VERSION)

Hagit Attiya* Danny Dolevt Nir Shad

Abstract

In [A&3], Abrahamson presented a solution to the
randomized consensus problem of Chor, Israeli
and Li [CIL87], without assuming the existence of
an atomic coin flip operation. This elegant algo-
rithm uses unbounded memory, and has expected
exponential running time. In [AH89], Aspens and
Herlihy provide a breakthrough polynomial-time
algorithm. However, it too is based on the use
of unbounded memory. In this paper, we present
a solution to the randomized consensus problem,
that is bounded in space and runs in polynomial
expected time.

1 Introduction

The Consensus Problem in shared memory en-
vironment is that of providing an algorithm, by

‘MIT Laboratory for Computer Science, supported
by NSF contract no CCR8611442, by ONR contract no
NOOl4-85-K-0168, and by DARPA contract no NOOOlP
83-K-0125

t IBM Almaden Research Center and Hebrew Univer-
sity, Jerusalem.

JHebrew University, Jerusalem. Supported by an Is-
raeli Communications Ministry Award. Currently visit-
ing the TDS group at MIT, supported by NSF contract
no CC&8611442, by ONR contract no N0014-85-K-0168,
by DARPA contract no N0001483-K-0125, and a special
grant from IBM.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

0 1989 ACM O-89791-326-4/89/0008/0281 $1.50

which n processes, running asynchronously and
communicating via shared memory, can agree on
a value. Loosely speaking, the algorithm should
have the following properties:

1.

2.

3.

Consistency : No two processes decide on dif-
ferent values;

Validity: If all processes have the same ini-
tial value, then processes decide on that
value.

W&-freeness : Each process is guaranteed
to decide after a finite number of steps, in-
dependently of other processes.

In a shared memory in which only atomic read
and write operations are allowed there is no de-
terministic solution to the problem. This result
was directly proved by [AG88, CIL87, LA871 and
implicitly can be deduced from [DDS87, FLP85].
Herlihy [H88] presents a comprehensive study of
the problem, and of its implications on the con-
struction of many synchronization primitives.

A randomized solution to the consensus prob-
lem is one in which, rather than being guaranteed,
it is only ezpecled that the number of steps until
a process decides is finite, that is, property (3)
above is replaced by:

3. Finite expected waiting: The expected num-
ber of steps until a process decides is finite.

Such an algorithm, provides a basis for construct-
ing novel universal synchronization primitives,
such as the fetch and cons of [H88], or the sticky
bits of [P89].

281

Chor, Israeli, and Li [CIL87] were the first to
provide a time-efficient randomized solution to
the problem, using bounded size memory. Their
solution was based on the availability of a pow-
erful atomic coin flip operation. In [A88], Abrai
hamson presented a first solution not assuming
the existence of such an operation. However,
this elegant algorithm uses unbounded memory,
and has exponential expected running time. The
question was thus raised:

Does there exist an algorithm that is
polynomial in running time and bounded
in memory size?

An exponential time algorithm can be derived
from that of [A881 (see [ADS89]) using a transfor-
mation based on the concurrent time stamp sys-
tem techniques of [DS89]. Aspens and Herlihy
(in [AH88]) p rovide a breakthrough algorithm
that runs in polynomial expected time. Unfor-
tunately, it is based on the use of unbounded size
memory in a “stronger” way than in [A88]. Since
for reasons presented in the sequel, there seems to
be no transformation of [AH881 to a bounded pro
tocol using concurrent time stamping techniques,
the above question remained unanswered.

In this paper, we present a solution to the
randomized consensus problem that both runs
in polynomial expected time and is bounded in
memory size.

The main reason for the simplicity in providing
an exponential time randomized consensus algo
rithm using bounded space, is that all one need
provide are actually the properties of consistency
and non-triviality. The wait-freeness, i.e. expo-
nential expected running time, is (though hard
to analyze) just the result of the exponentially
small probability that processes flipping indepen-
dent coins, will come up with the same value. To
provide the former two properties, one need only
create a locking mechanism that will provide ex-
clusion, before allowing processes to decide on
a value. Such unbounded locking mechanisms
are based on time stamping concurrent lock set-
ting events, a process that has been shown to be
modularly replaceable using bounded concurrent
time-stamp systems.

In order to obtain an algorithm that runs in
expected polynomial time, as [AH88], one must

limit the ability of the adversary to create non-
decision scenarios while processes try to lock for
values. A way of doing this is by basing a pro-
cess’ decision to attempt to Iock for a value, on a
function of more than just one independent local
coin toss, preferably on many coin tosses by all
processes. This exact idea is abstracted into the
notion of creating a shared global coin [CMS85].
Since attempts to lock for a value based on the
shared coin could still fail (because as shown in
[AH88], one cannot create a perfect coin) re-
peated global coin tosses are needed. When im-
plementing multiple coin tosses, one must re-
member that processes run at different paces, so
one should take care to a. prevent mixups be-
tween locations in memory used for new and old
coins, and b. provide independence among shared
coin flips (this means preventing processes in old
coin toss phases, from causing attempts of pro-
cesses in later coin tosses to fail). The algorithm
uses an unbounded strip of coins, where for each
toss a separate set of memory locations is al-
located; this allows to distinguish between coin
tosses, and thus to meet the above requirements.

Summing the above, in achieving polynomial
expected time, unboundedness is used, not to or-
der any two specific coin flipping events by the
relative times in which they occurred (a prop-
erty provided by concurrent time stamping), but
by how many coin flipping events is one process
trailing behind the other.

In [AH88], in addition to the above use of un-
bounded memory, the weak shared coin flip con-
struction requires that each coin location in the
unbounded strip be in itself unbounded. Finally,
their use of a random walk to create the shared
coin is based on a snapshot view of memory. The
implementation of this snapshot operation also
uses unbounded counters.

The main contribution of our paper is an im-
plementation that achieves the properties of the
coin strip using bounded memory. It is based on
a technique for maintaining a “shrunken” version
of the strip, effectively pulling together processes
that opened a gap between one another. In addi-
tion, it is shown how to perform the random walk
using only bounded coin locations. Finally, our
algorithm is based on the availability of a mem-
ory primitive, on which a snapshot scan can be
performed. We show how to implement such a

282

primitive boundedly.

The rest of the paper is organized as follows.
In Section 2 a scannable memory primitive is de-
fined and constructed. In Section 3 a bounded
memory implementation of a weak shared coin
is presented. In Section 4 the implementation of
the coin strip is presented. We introduce a to-
ken game capturing the properties of the strip.
A shrunken version of the game is shown to pro-
vide the same properties, and is then translated
into a game on a weighted graph. Finally, a con-
current implementation of the game on the graph
is presented. Section 5 shows how bounded size
strips of coins can be manipulated based on the
concurrent graph game. All the unbounded con-
structs of the [AH@] type algorithm presented in
Section 5, are then replaced by the bounded ones,
providing the desired solution. In Section 6, an
outline of the correctness proof of the algorithm
is presented. Due to lack of space, some of the
proofs are .omitted.

2 Snapshot Scanning

2.1 Definitions

A Scannable Memory V.is an abstract data type
shared among n concurrent and completely asyn-
chronous processes. There are two operations
that any process can execute on V, a write oper-
ation and a scan operation. As discussed below,
it is not assumed that these operations are nec-
essarily waitfree [H88, AG88].

Assume that each process’ program consists,
among other, of the above two operations, whose
execution generates a sequence of elementary op-
eration executions, totally ordered by the pre-
cedes relation (of [L86a, LSSc] denoted “ - “>.
The following

is an example of such a sequence by process i,
where Wpl denotes process i’s J$” execution of a i
write ,operation, and SpJ .the kc* execution of a
scan operation (the superscript [Jc] is used for no-
tation, and is not visible to the processes), One

should bear in mind that the asynchronous na-
ture of the operations allows situations where
a scan overlaps many consecutive write opera-
tions of other processes. Also, several consecutive
scans could possibly be overlapped by a single
write operation,

Let --* be the can ujBecS relation of [L86a,
L86c]. A global time model’ of operation exe-
cutions is assumed (see [L86a, BSS]). The follow-
ing definition attempts to capture the notion that
a possible effect of one operation on the shared
memory (such as the writing of a value), existed
at a point in global time where the other was
being executed.

Definition 2.1. A write operation execution

wi[“l potentially coexists with another operation

execution Or (0 stands for either a scan or

write) if Wi ‘I --* Of1 and there does not exist

0 w,(“‘l such that Wf“] - W,[“‘] - Of”.

With each write
valve &“I written I
operation returns
{p . . ., ,,~nly

operation execution Wp’, a
into V is associated. A scan
a view, a set of values 6 =

The following requirement is made to sssure that
the snapshot view v’ returned by ,.S’f’ is a mean-
ingful one, namely, returning the values of write
events immediately before or concurrent with the
scan, and not just any possible set of values.

Pl regularity: For any value uy’ in U of Sj[“‘,

Wpl potentially coexisted with Sri.

The above eliminates uninteresting trivial so-
lutions and introduces a measure of liveness into
the system. More importantly, it implies that
the behavior of the scannable memory is as if
it consists of disjoint registers, one per process,
which the designated process can write, and all
can read. This is very different from the behav-
ior of multi reader multi writer atomic registers,
where the latest write of any process erases the
values written by others.

‘Implying that for any two operation executions,
a - b orb --* a.

21nitializetion and safety are similar to Azioms BO-3
for single-writer atomic registers [L86b]

283

Though a scan as above is sufficient for many
applications, one is interested in a scan that re-
turns an “instantaneous” view of memory, that
is, having the following stronger property:

P2 snapshot: For any two values VP’ and vi*]

inCofSf1, Wfil potentially coexisted wih
WFI, or Wi[“’ potentially coexisted with

W,[(il, or both.

Though PI-2 return values that could have been
returned by an instantaneous scan, they do not
imply that scan operations of all processes are
serializable. Moreover, they do not imply that
later scans will obtain later snapshot views. The
following property is therefore added, to formal-
ize, together with PI-2, the idea that all scans
are serializable.

P3 scan seriulizability: Let Si[“] and S,[“” be any

pair of scans. Let ui[o’] and y!nZ1, i E (l..n},
denote the corresponding values returned by
the two scans. Then either for every i E
(l..n}, oi 5 u:, or for every i E (l..n}, o: <
aj.

For the purposes of the applications in this pa-
per, it is not required that both scan and wtite
operations be waitfree [H88, AG88]. Since every
process’ execution sequence will be an alternating
sequence of scan followed by write, it will actu-
ally suffice that in any infinite system execution,
there exists a new write operation infinitely of-
ten. In the full paper, a formal treatment of this
property is provided.

2.2 Bounded Implementation of
Scannable Memory

The implementation is based on the use of
single-writer-multi-reader and two-writer-two-
reader atomic registers. The scannable mem-
ory V will consist of n single-writer-multi-reader
atomic registers Vi, i E {l..n}, each Vi written
by process i and read by all. In addition, for ev-
ery pair of processes i and j, a pair of two-writer-
two-reader atomic registers Aij and Aji are main-
tained 3. Bounded constructions of such registers

3To save in the complexity of constructingmulti writer
registers, the UTPJWS technique of [DGSSS] can be used.

from weaker primitives are shown in [B187, L86b,
IL88 BP87, N87, SAG87, LV88, DS89]. Register
Aij is used by i to inform j that it has updated
vi, and by j to mark that it has read K. To
simplify the proofs (and only for this purpose),
an alternating bit field is assumed to be added
to each register &, such that two values written
in consecutive writes by the same process, always
differ.

The main idea behind the implementation of
the scan and write operations is as follows. A
value of 1 in register Aji denotes an “arrow”
pointing from j to i, a value of 0 denotes an arrow
from i to j. To scan the memory, a process i will
direct all arrows Aji towards other processes, per-
form a collecting of values followed by a collecting
of arrows, and repeat these two collections again.
If the values have not changed and no arrow has
been redirected towards it, process i has collected
a snapshot in its second read of every register. ’
To write a value, a process j directs the arrows
Aji towards any possibly-scanning process, noti-
fying that it has started a write, then writes the
value. The following are the write and scan pro-
cedures of a process i, where we use the notation
j E (l..n} - (i} to denote that indexing is per-
formed in some arbitrary order.

procedure write (value);
begin

for j E {l..n} - (i} do Aij := 1 od;

K := value;
end write;

Assume that a process, during the execution of
the scan operation, has seen no arrows redirected,
and both values being the same. It can thus de-
duce that no process whose corresponding value it
returns, could have performed its following write,
completely before any of the other writes whose
values it returns. The reason is that if that were
the case, the writing process would have turned
the arrow and the scan would have gone through
another round.

function scan
begin

‘The two phases of value-collecting are also used to
simplify the proofs.

284

L: for j E {l..n} - {i} do Aji := 0 od;
for j E {l..n} - {i} do Vlb] := l$ od;
for j E (l..n) - {i} do VZL] := Vj od;
for j E {l..n} - {i} do Alj] := Aji od;
if (3j)(Ab] = 1 V Vlfj] # VZ/,j])

then goto L fi;
return V2;

end scan;

Though the write operation is waitfree, the scan
operation is of course not, because scans may re-
peatedly be forced to return to line L. However,
scans do not wait for other scans, and the above
can only happen on account of repeated execution
of new write operations by some process. Thus, it
can be proven that the implementation provides
the type of progress described in the previous sec-
tion.

The following is the main core of the proofs of
properties Pi-3. The notation rIpI for ex-
ample, will denote the first read in scan operation
execution S,l” of register Kj-

Lemma 2.1. Fur any value VP’ in 5 of SF’,

W,tl potentially coexisted with Sr’.

Proof Assume by way of contradiction that the
claim does not hold. There must thus exist some
value up1 in 5 of Sj[b], such that +4J’,‘“1 --+ Sj[*l)

or (3Wb’l)(W[a] - W.[“‘] - SFbl). By the I i

assumption of global time,

plies Sj[“l - W,t”l,

’ 7(Wp1 t--b Si[“l) im-

which by atomic register ax-

iom B4 of [LSGc], it cannot be that up1 was re-
turned. Thus, the second condition must hold,
which by the scan algorithm implies

wi[“‘(vi) - wE”“(lq - r23vi)

where vi[“’ was returned in r2j[6’(l4), a contradic-
tion to atomic register axiom B4 of [L86c]. n

This implies Pl, the following proves P2 is met.

Lemma 2.2. For any two values VP’ and vF1 in

‘zi *f sp , Wpl potentially coexisted with WY’ or

WjIbl potentially coexisted with Wi[“] or both.

Proof Assume by way of contradiction that the
claim does not hold. There must thus exist two
values v.[“] and v lb1 in ‘zi of SF1 , such that neither

WFI, ,h Wkl ’ , potentially coexisted with the
other. W.l.o.i, it must be that

(+Q’I)(WPl -c wy --c wp’). I I

By the scan algorithm wf’(Ajk) -+ rf’(K).

Since viral and not vp’l ‘was returned in r!](K),

ftv;) - t$‘l(&). Because Wi[a’] - Wj[b’ ,
must

of”’ + wF’(Ajk) ---c wp(Q). AISO,tk’

cause vF1 was returned in rFI(Vj), it is must be

the case that w!*‘(Q) - r!“(Q). Again by the

scan algorithm: t#$) - rf’(Ajh). From the
above, by the transitivity of - , it follows that

wF’(Ajk) ---c w/‘(Ajk) _ Ti”‘(Ajk).

Since in wj[“‘(Ajk) a value of 0 was written, this
ICI value must have been read in rk (Aja), a contra-

diction to the termination condition of the scan
algorithm. n

Using similar arguments the next two lemmas
prove P.9. The following lemma establishes that
in the two reads of any scan operation execution,
the value written in the exact same write is re-
turned.

Lemma 2.3. In an~ylscan operation execution

$1, for any value vi* in $4, $1 1 was read in

both ~11~ and ~2!*.

Proof Assume by way of contradiction that the
above does not hold. Since the values read in
r$l and r2F1 must be the same, and two con-
secutive writes have different toggle bit values, it
must be that for up”’ and v,[“l returned in rlkl
and r2t1 respectively, there must exist a write

operation execution W,[o’] such that

@“I - W (4 - I,@4
i i

In a manner similar to that of the former proof,
by the ordering of reads of Ail: and K, it must be
that

wFl(Aik) + rlk lC’(IQ

- wi[“‘(lq 4 wi[“l(Aik)

285

- w?‘(K) - r2F1(K) - rj=](A;k).

This implies that the value of 0 written in
wp](A.) Ik must have been read in rt[“](A+k), a con-
tradiction to the scans termination condition. n

Lemma 2.4. LeZ S,[e’ and $‘I be any pair of

scans. Let vi[oil and vp:l,,i E {l..n}, denote the
corresponding values returned by the two scans.
Then either for every i E {1.-n}, ai < a:, or for
every i E (l..n}, ai < ai.

Proof Assume by way of contradiction that the
claim does not hold. There myst thus ex,ist valu:s
$1 and v !*I in 5~~I and v Ia J and vr I in E[C 1
such that A < a’ and) b > b’.’

Lemma 2.3 implies that the value returned in
both reads of a scan operation execution is of the
same write operation. In the scan operation exe-

VI cution of y, Since in rl, VI (Vi), Vi was returned,

wf”“(&) - rlF”(K). Since in r2:‘](&), VP]

was not returned, r2, ‘“‘](vj) - W/~(V)). By tie
order of reads in a scan it thus follows that

up”(vi) - #I(&)

- T2F”(Vj) - tU~‘(Vj)s

By similar arguments, regarding the scan opers-
tion execution of 2,

Wf’(Vj) - rlk’(Vj)

- T2JqIq - Wir”‘J(Vj).

By transitivity, the combination of these two se-
quences of operation executions contradicts the
antisymmetry property of the partial order - .
a

3 A Bounded Implementation of a
Shared Coin

The implementation of the weak shared coin is
based on the random walk technique of [AH88].
For lack of space we explain only the modification
allowing to bound the size of the counters used to
implement the coin. The main idea of the modi-
fication used is rather straightforward. The coin
implemented by the random walk is weak, that

is, involves a small probability that processes will
disagree on the coin’s outcome. Thus, one can al-
low a process to always decide heads in case its
counter overflows, as long as the probability of
this event can be absorbed into the probability
of processes disagreeing on the outcome.

Let E =< Cl , . . . , c, > be an array of coun-
ters implementing a shared coin. Each counter
ci has values in the range {-(m + l)..(m + l)},
written by its corresponding process i. Let
walk-value (i?) = Ci’==,” ci. The following are thus
the functions of process i, for determining if the
random walk has led to a coin value, and for per-
forming a step in the random walk by process i.

function coin-value(E);
begin

1: if ci 4 {-mm} then
return heads fi;

2: if walk-value(E) > 6 . n then
return heads

3: elseif walk-value(E) < -6. n then
return tails

4: else return undecided fi fi;
end coin-v&e;

procedure walk-step;
begin

if jiip = heads then ci := ci + 1
else Ci := Ci - 1 fi;

end walkAtep;

Lemma 3.1 (Aspnes and Herlihy). The
probability that two processes will disagree on the
coins outcome is (6 - 1)/(2S).

Lemma 3.2 (Aspnes and Herlihy). The
ezpected number of steps until the coin is decided
is (6 + 1)G2.

Look at a random walk starting from 0 with
barriers at b and -b, consisting of the steps:

&,~a,... bi E (--l,+l} for all i.

The following is a bound on the probability that
after m steps, none of the barriers was crossed.
Define

Sm =Prob I?&, <_b I 1 i=l

Clearly, the desired probability is bounded from
above by Sm. Thus,

286

Lemma 3.3. Let 7n = (f(b)b)‘, for some func-
tion f, then there exists a constant C, such that
Sm 5 $$ (proof ommited).

Based on the above, one can prove that by
choosing m to be large enough, the probability
that the adversary can force processes to disagree
because of the deterministic choice of heads in
case of counter overflow, is negligible, as formal-
ized by the following lemma:

Lemma 3.4. There exists a constant C such that
the probability that in the random walk generated
by a sequence of executions of the algorithm on a
given coin E,

Prob [\cil 2 m] 5
C.6.n

fi’

4 The Rounds Strip

In this section a method is shown for replacing
the unbounded strip of round locations required
by the algorithm of [AHM], by a bounded con-
struct. The important observation is that this
algorithm utilizes the rounds strip in a very re-
stricted way. Informally

Observation 1. There exists a constant K such
that at any poinl in the computation:

I. The actions performed by any process are
not aflected by values of processes that are
strictly more than K rounds behind it.

2. If a process performs round r, and cannot
decide, then there is a disagreement about
the value of the shared coin of round r - K.
This implies that when this process proceeds
to round r + 1, it can withdraw its contri-
bution to the coin of round r - K, without
aflecting the performance of the algorithm.

Thus, a complete picture of the rounds in which
processors are located is not necessary; rather, it
suffices to maintain a “compressed” description of
the distances between these round numbers, and
to save processes’ contributions to the K latest
coins that were flipped. The following subsec-
tions present the data structure used to maintain
these distances concurrently.

In the next subsection, a simple game is pre-
sented in order to make precise the notion of
“compression” mentioned above. Then, in Sec-
tion 4.2, we show how to store and play this game
using a directed weighted graph. In order to sim-
plify the presentation this game is sequential. In
Section 4.3, a data structure that implements the
game on the graph is defined, as well as the pro-
cedures for playing the game on this graph con-
currently.

The main problem is how to maintain the rele-
vant values using bounded space, given that pro-
cesses are asynchronous. For example, it could
be that process will start flipping a coin in a
round r when round r is maximal, and during its
coin flipping other processes will move to higher
rounds, that are an unbounded number of coin
flips ahead.

4.1 The Game

Imagine the changes to the processes’ round num-
bers as a game played on the natural numbers
(viewed as an infinite ordered set of points):

Each processor controls a token, placed at a
specific point, initially 0. Denote by pi the loca-
tion of i’s token. Each processor can perform the
step move-tokeni that places its token at place
ri + 1. The game is a (possibly infinite) sequence
of the form move,tokeni,, move-tokeni, . . .

At any stage of the game, the collection of
tokens’ positions forms a multi-set of integers,
S= {rl , . . . , r,,}. Let a be the ordering permuta-
tion of S, i.e., S = (rx(l) 5 ~~(2) < . . . _< r,cn)}.
Let K be some fixed constant. We now intr+
duce two transformations, that, when applied to
the set S, produce a “compressed” representation
of it, without losing important information.

Shrinking. One is interested in the exact dis-
tance between two token if and only if, the dis-
tance between them is less than K. The goal
of the first transformation is to “shrink” gaps of
length strictly larger than K, to be of size K.
Informally, shrink&S) is a new set S’, in which
r*(,.,) remams’in its current position, while any
two consecutive tokens (r%(i) and r,(i+l)) that
are more than K apart, become K apart, while

287

the distance between tokens that are less than K
apart, remain unchanged.

Formally, let S = (~~(1) _< . . . 5 r,~,,}. Let
9UPi = ‘m(i) - Tr(i+l), for 1 5 i < n, and define
shrinks = {r&1) _< . . . < r&,,}, (for some
parameter K) inductively as follows:

(1) C(l) = PI(l).

(2) Assume we have defined r:.:(i), then

+i+l) =
I

'i(i) +K if gapi > K

'L(i) + QaPi otherwise

Intuitively, any “gap” in the sequence, whose
length is strictly larger than K, is “shrunk” to be
of length exactly K.

The shrunken token game is conducted by ex-
ecuting a shrinkK on the set of token places
after each move,tokeni, step, before the next
move-tokeni,,, step.

Norma&q+ It is easy to see that after apply-
ing shrinkK to any set S, the distance between
the maximal element and the minimal element is
at most K-n. To compress the values even further
they are normalized, so that all values remain in
a bounded range.

The ordering permutation of S’ = shrink&S)
is still ?r. The transformation normalizeK(S’)
maps each element ri E S’ to (ri - r,(,)) + Ken.
That is, the maximal token(s) is positioned at
K * n, and the rest of the tokens are move be-
hind it while maintaining the distances between
tokens. Notice that for any set S, all the val-
ues in normaZire~(shrink~(S)) are in the range
[O..K+n].

The normalized shrunken game, is conducted
by applying shrinkK and then nOrmdi%eK to
the set of token places after each move-tokeni,
step, before the next move-token;,+, step.

An important property preserved by the nor-
malized shrunken game is:

Non-Passive Shrinking. For any two token
positions ri and rj in a state of the game,
s.t. 0 < ri - rj < K, if for later token posi-
tions, 2 and ri, we have r:-rj = (ri-rj)-1,
then there is a move-tokeni between the two
states.

4.2 Representation as a Finite Graph

Given a state S of the above game, we define
its distance graph G(S), as follows: G is a di-
rected weighted graph with nodes V = {1.-n},
corresponding to tokens, one per process, edges
E = {(i, j) 1 rj < ri} indicating relative order of
token locations, and weights w(i, j), defined for
any (i, j) E E as

u(i,j) = ;- rj if ri - rj 5 K
otherwise.

The following properties of the distance graph G,
are implied from the definition of the normalized
shrunken token game:

1. For any i and j in V, at least one of (i, j) or
(j, i) is in E; both edges are in E if and only
if the weight of both is 0.

2. There is no positive cycle, that is, a cycle
including an edge (i, j) with w(i, j) > 0.

3.

4.

Let P(i, j) be the set of all directed simple
paths from i to j. For every path ‘p E P(i, j),
let W(cp) = CCu,vjEV w(zL, v). It follows from
the above properties that 0 5 W(p) 5 K-n.

For any two directed paths ‘p1 and cpz E
P(i,j), either W(cp,) = W((P~), or there ex-
ists an edge (u,v) E ‘p1 such that W(U,U) =
K.

5. For any i and j, such that P(i, j) # 8, define

dist(i, j) = $-&Tj) ww>)~~

and define ma%-paths (i, j) to be

{P E P(i, j> I W(P) = didi, dl

Then W(p) = rj - ri for every ‘p E
maz-paths (i, j).

Let inc (i, G) be defined as the following trans- . .

.

formation of graph G for a given t:

foralljfiinvdo
if (j, i) E G and

(3k)((j, i) E maqaths(k, i)) then
4, i) := w(j, i) - 1 fi;

if(i,j) E G and

288

0 <w(i, j) < K then

w(i, i) := to&j) + 1 fi;
ifw(j,i) < 0 then

od;

Claim 4.1. For a state S’ reached from state 5’
by Q token-moue of i in token game A, G(Y) =
inc (i, G(S)).

4.3 Implementation of the Graph

Property (1) of the distance graph implies that
the weights of all (undirected) edges suffice to
induce the directed graph structure. The weights
are maintained in a collection of ei[l..n] of edge
counters, one per each (undirected) edge (ei[d is
not used). Each pair ei b] and ej[i] of counters
in the range (0..3.K-l}, represents two pointers
(of i and j, respectively) to a cycle of size 3.K.
By incrementing the counter, a process moves its
pointer a in clockwise direction (all arithmetics
in this subsection is module 3.K).

Assume ei [j] - cj [q 5 ei [d - ei b] then the edge
is (i, j), and w(i, j) = ei b] - ej [Cl, and vice versa.
Thus, given two edge counters eib] and ej[CJ, the
existence of a given directed edge is determined
by the rule

(Cj) E G if (eibl - ejIzl) 1 (ej[2) - eliI>

and the weight w(i, j) of the edge (i, j) is (ci [i] -
cj[i]). Note that if eib] = ej[i], then we have
both edges, (i, j) and (j, i) with both weights
equal to 0. To keep the weight w(i, j) in the range
{O..K}, a process i does not increment cib] un-
less it is the trailing pointer, or it leads by less
than K.

Let make-graph be the procedure that, given
the collection of all edge counters, creates a graph
representation, as described above. The following
procedure is thus the (possibly concurrent) imple-
mentation of one increment move on the graph G.

function inc-graph(el[l..n]..e,[l..n]);
begin

G := make-graph(el[l..n]..e,[l..n]);
for j := 1 to n skip i do

if ((j, i) E G and

(3E)((j, i) E max+aths(k, i))) or
((i, j) E G and w(i, j) < K) then

eilil := eib] + 1 mod 3K
fi;

od;
end;

5 The Algorithm

Baaed on Observation 1 (Section d), if a pro-
cess advanced K rounds ahead of another, it can
erase its contribution to the trailing process’ coin.
A trailing process performing next-coin-value us-
ing that location will possibly see that process’
counter as 0, but this can only cause it to perform
an additional expected O(n2) steps (by Lemma
3.2), before advancing to the next round5.

The round field of any value wi consists of two
fields: coin and edge-counters. The coin field
is an array of coin counters Ci[&]j(Y E {0.X},
with an added current-coin pointer in the range
{0..K}6. These counters are used to maintain
the local parts of coins corresponding to the lat-
est K rounds executed by process i. The counter
to be used for the next coin of process i is d&
termined by the function next (current-co&), re-
turning current,coini mod (K + 1). The edge
counters field is an array of n edge counters as de-
scribed in Subsection 4.3. Initially all the above
are 0. The following is thus the bounded imple-
mentation of the coin flipping and round incre-
menting operations for process i.

function next-coin-vaZue(round);
begin

G := make_graph(et[l..n]..e,[l..n]);
E[i] := coi~[next(current,coi~)];
for j := 1 tonskip ido

if (j, i) E G and w(j, i) < K then
qj] := COifZj[(CU?YT?Zt-COinj-

w(j, i) + 1) mod (K + l)]
else Eli] := 0 fi od;

return coin-value (15);
end;

5Several modifications that will improve the expected
running time here and elsewhere in the algorithm are pos-
sible, but are not introduced for the sake of simplicity.

‘In the procedures below, all fields are first written
to a local variable, on which the write operation of the
scannable memory is then performed.

289

procedure jTip,~ezLcooin(round);
begin

wakstep (coin;[nezt (current-coin;)]);
end;

function inc(round);
begin

current,co+ := next (cumnicoin i);
coin j[next (current-coin i)] := 0;
inc,grapli(el[l..n] ,.., e,[l..nJ);

end;

In the above procedure, note that a process
prepares, when advancing to a new round, the
coin counter for flipping the coin in the next
round.

We assume that processors start with binary
initial values; however, the protocol can be ex-
tended to handle arbitrary initial values. Let K
be 2, the following is thus the consensus algo-
rithm for processor i, with initial value vi. Pro-
cess i is a leader if for all j # i, (i, j) is in G, that
is having ri equal to or dominating all other rj.
Process i agrees with process j, if both prefer the
same value v # 1.

write([pref: vi, round: inc(round)])
repeat forever
1: scan;
2: if all who disagree

trail by K and I’m a leader
then decide (prefi;

3: elseif leaders agree then
4: write([pref: v, round: inc(round)])
5: elseif pref# I then
6: write([pref: 1, round: round)

elseif next,coin,uaJue(round) =
undecided then

7: wtite (bref: I,
round: flip-next-coin (round)])

else
8: write (Ipref: next-coin-value (round),

round: inc (round)])
fifififi;

end;

6 Proof of Correctness

The following section outlines the proofs that the
algorithm has the properties of consistency, va-

lidity, and that it terminates in polynomial ex-
pected time. To simplify the proofs, the notion
of a virtual global round is introduced, support-
ing the illusion that a process has an unbounded
and monotonically non-decreasing round num-
ber, and that a unique shared coin is azsociated
with each round.

6.1 Virtual Global Rounds

The serializability property (PS) of scan opera-
tion executions, implies that there is some linear
ordering on the scan operation executions per-
formed by all processes. Throughout the proof,
let SjOl denote the ath scan in this ordering, if
the ath scan is performed by process j, denote it
by S!“‘. One scan operation execution is said
to bef later than another, if it is greater in this
ordering. In the consensus protocol processes al-
ternate between performing write and scan oper-
ations. This implies that between any two scans,
Sf”) and S+‘+ll, th ere is at most one write by
any process. Denote by war{“} the value of any
variable var that was read by Si”)*

With each process i, in the ath scan, a
vi&al global round is associated, denoted by ’
round(i, S(“l). The definition is by induction on
the ordering among scan operation executions.

Base case. For all i, round(i, S(l)) = 0.

Inductive step. Given round(i, S[“-‘I), let

ma2 = maxicfl..n) round(i, Sf”-l)),

old-leaders (SfaB1}) =
(j 1 round(i,Sf”‘l)) = muz},

and
new-leaders (Sfa)) =

(j 1 j E old-leaders (S io-1}) and
ej[l..n] fo1($ # cj[l..n] f”-l)(j)},

Based on the above definitions, define
round(i, Sf”l) as follows. If new-leaders (S fal) #
0, let j* E new-leaders (S I al) and define

round(i, S Cal) =
max+l i E new-Zeaders (S la,)
ma++1 - dist(i, j*) otherwise.

290

In case the set new,leaders(S(a)) = 0, let j* E
old-leaders (SIa)) and define

round& S’“)) = maz - dist(i, j’).

The above definition is simply that if one of the
leaders in the former scan operation execution
moved, all new processes are ordered relative to
it, and otherwise they are ordered relative to the
old leaders. Note that though the virtual global
round of a process might change even without
its performing an inc operation, it can only in-
crease, that is, the virtual global round is a non-
decreasing function.

In the following subsections, a round means a
virtual global round unless otherwise stated. A
process p is said to be in round r, starting from
the first scan operation execution in which it was
returned as being in r (determined by applying
the above definition), and in all later scan oper-
ation executions until it is returned as being in a
round P’ > r. A round is said to be among the K
largest (for some constant K) starting from the
earliest scan operation execution in which some
process is in this round and no other process is
in a round greater by K, and until the first later
scan operation execution for which there is a pro-
cess in a round greater by K.

6.2 Consistency and Validity

Though we have attempted to maintain the gen-
eral structure of the correctness and complex-
ity proofs for the unbounded implementation of
[AH88], by introducing virtual global rounds, the
differences between our rounds strip implementa-
tion and the infinite rounds strip used in [AH88],
force us to modify some of the statements, and
to change most of the proofs.

For simplicity, it is assumed that there are only
two possible input values, where c denotes the
value different from u, for v E (0, 1). A process
p prefers v in round r, if for some scan St51 it is
the case that round(p, S{“l) = F, and prefja) =
v. We have

Lemma 6.1. If process p prefers v in round r
and prefers G in round F’ > F, then some process
q # p preferred ii in round F" 2 r.

Proof (Sketch) By the algorithm, a process
changes its preference only by executing inc. Let
Si” be the scan performed by p before exe-
cuting this inc. This can occur only if some
other process, say q, had prefstal = 6, and
that in the graph returned in S,(=}, q has non-
negative distance from p- Since rounds are
monotonically non-decreasing, it is the case that
round(q S,‘“)) > round(p,Sp(“)) and the claim
follows. ’ - n

The above lemma and the code of the algo-
rithm implies the following two lemmas.

Lemma 6.2. If no process prefers B at round r
when round r is among the 2 largest rounds, then
no process prefers ti at any round r’ > F.

Lemma 6.3. If no process prefers tr at round r
when round r is among the 2 largest rounds, then
no process is busy in any round F' > r.

Lemma 6.4. If every process that completed
round r, when round F was among the 2 largest
rounds, preferred v in round r, then every non-
fat&y process decides v by round F + 1.

Lemma 6.4 implies validity, since if all pro-
cesses start with the same input value they all
prefer this value in round 1. Hence all processes
will halt at round 2.

Lemma 6.5. If any process decides in round F,
then no process will ever be in a round larger than
r+2.

The above lemma implies that all processes will
execute round r when it is among the 2 largest
rounds. We use this fact to prove that the algo-
rithm has the consistency property.

Lemma 6.6. If some process decides in round r
then all processes will decide on the same value
by round F + 1.

6.3 Expected Running Time

A process is said to have selected its preference
for round F deterministically, if it executed the

291

corresponding inc in line 6. Similarly, a proces-
sor is said to have selected its preference for round
r randomly, if it executed the corresponding inc
in line 10. The following lemma assures that ah
processors that select their preference determin-
istically, select the same value.

Lemma 6.7. If processes p and q determin-
istically selected v and v’, respectively, as their
preferences for round r, when r was among the 2
largest rounds, then v = G.

Hence, one may talk about the deterministic
value preferred in a certain round. The next
lemma shows that the scheduler is forced to de-
cide on the deterministic value of a round before
any process starts flipping a coin for that round.

Lemma 6.8. If p recess p is deterministic in
round r, and process q is randomized in round
r, then p wrote its preference for round r before
q started to perform flip-next-coin.

This lemma implies that decisions in different
rounds are independent events. Thus, the prob-
ability of deciding in any round is that of a se-
quence of independent Bernoulli trials, with suc-
cess probability e, for some constant e > 0 (this
follows from Lemmas 3.1 and 3.4). Hence the
expected number of rounds executed before the
algorithm terminates is constant. As each shared
coin is flipped in polynomial expected number of
steps (Lemma 3.2), the algorithm terminates in
a polynomial expected number of steps.

Acknowledgements. The authors wish to
thank Yehuda Afek and Michael Merritt for ob-
servations regarding scannable memory, made in
the course of ongoing research. Thanks are also
due to Roy Meshulam for helpful discussions.

References

IA881 K. Abrahamson, “On Achieving Consensus
Using a Shared Memory,” Proc. 7th ACM
Symp. on Principlea of Distributed Comput-
ing, 1988, pp. 291-302.

[AG88] J. H. Anderson, and M. G. Gauda, “The
Virtue of Patience: Concurrent Program-
ming With and Without Waiting,” unpub-
lished manuscript, Dept. of Computer Science,
Austin, Texas, Jan. 1988.

[AH881

[ADS891

PI871

[BP871

mw

[CMSSS]

pDS87]

PGS88]

[DS89]

FLPIS]

Wf381

J. Aspnes, and M. P. Herlihy, “Fast Random-
ized Consensus using Shared Memory,” sub-
mitted to publication.

H. Attiya, D. Dolev, and N. Shavit, “A
Bounded Probabilistic Shared-Memory Con-
sensus Algorithm,” unpublished manuscript.

S. Ben-David, “The Global Time Assumption
and Se-tics for Concurrent Systems,” Proc.
7th ACM Symp. on Principles of Distribuied
Computing, 1988, pp. 223-231.

B. Bloom, “Constructing two-writer atomic
registers,” Proc. 6th ACM Symp. on Princi-
ples of Distributed Computing, 1987, pp. 249
259.

J. E. Burns, and G. L. Peterson, “Constructing
Multi-Reader Atomic Vah~es from Non-Atomic
Values,” Proc. 6th ACM Symp. on Principles
of Distributed Computing, 1987, pp. 222-231.

B. Chor, A. Israeli, and M. Li, “On Processor
Coordination Using Asynchronous Hardware”,
Proc. 6th ACM Symp. ‘on Principles of Dis-
iribuied Computing, 1987, pp. 86-97.

B. Chor, M. Merritt and D. B. Shmoys, “Sim-
ple Constant-Time Consensus Protocols in Re-
alistic Failure Models,” Ptoe. 4th ACM Symp.
on Principles of Distributed Computing, 1985,
pp. 152-162.

D. Dolev, C. Dwork, and L. Stockmeyer, “On
the Minimal Synchronism Needed for Dis-
tributed Consensus,” J. ACM $4, 1987, pp.
77-97.

D. Dolev, E. Gafni, and N. Shavit, “Toward a
Non-Atomic Era: GExclusionas a Test Case,”
Proc. 20th Annual ACM Symp. on the Theory
of Computing, 1988.

D. Dolev, and N. Shavit, “Bounded Concur-
rent Time-Stamp Systems Are Constructible!”
Proc. 21th Annval ACM Symp. on Theory of
Computing, 1989, to appear.

M. J. Fischer, N. A. Lynch, and M. S. Pater-
son, “Impossibility of Distributed Consensus
with One Faulty Processor,” J. ACM 32,1985,
pp. 374382.

M. P. Herlihy, “WaitFree Implementations of
Concurrent Objects,” Proc. 7th ACM Symp.
on Pn’nciples of Distributed Compuiing, 1988,
pp. 276-290.

A. Israeli and M. Li, “Bounded Time Stamps,”
Proc. 28th Annual IEEE Symp. on Founda-
tions of Computer Science, 1987, pp. 371-382.

L. Lamport, “On Interprocess Communica-
tion. Part I: Basic Formalism,” Disiribvted
Computing 1, 2 1986, 77-85.

L. Lamport, “On Inter-process Communica-
tion. Part II: Algorithms,” Distributed Com-
pvting I, 2 1986, pp. 86101.

L. Lamport, “The Mutual Exclusion Problem.
Part I: A Theory of Interprocess Communica-
tion,“ J. ACM 33, 2 1986, pp. 313-326.

292

[L86d]

[LV88]

[LA871

IN871

F-31

[PB87]

P-91

k3331

[SAG871

[VAST]

L. Lamport, “The Mutual Exclusion Problem.
Part II: Statement and Solutions,“ J. ACM
SS, 2 1986, pp. 327-348.

M. Li, and P. Vitanyi, “Uniform Construc-
tion for Wait-Free Variables,” unpublished
manuscript, 1988.

M. G. Loui, and H. Abu-Amara, “Memory Re-
quirements for Agreement Among Unreliable
Asynchronous Processes”, Advancea in Com-
pufing Research, vol. 4, 1987, pp. 163-183.

R. Newman-Wolfe, “A Protocol for Wait-
free Atomic, Multi Reader Shared Variables,”
Proc, 6th ACM Symp. on Principlea of Dia-
tributed Computing, 1987, pp. 232-248.

G. L. Peterson, “Concurrent Reading While
Writing,” ACM TOPLAS 5, 1 1983, pp. 46
55.

G. L. Peterson, and J. E. Burns, “Concur-
rent Reading While Writing II : The Multi-
Writer Case,” Proc. 28th Annual IEEE Symp.
on Foundations of Computer Science, 1987,
pp. 383-392.

S. Plotkin, “Sticky Bits and the Universality
of Consensus,” to appear in Proc. 8th ACM
Symp. on Principles of Distributed Comput-
ing.

R. Schaffer, “On the Correctness of Atomic
Multi-Writer Registers,” MIT/LCS/TM-364,
June 1988.

A. K. Singh, J. H. Anderson and M. G.
Gouda, “The Elusive Atomic Register Revis-
ited,” Proc. 6th ACM Symp. on Principles of
Distributed Computing, 1987, pp 206-221.

P. Vitanyi, and B. Awerbuch, “Atomic Shared
Register Access by Asynchronous Hardware,”
Proc. 27th Annual IEEE Symp. OR Founda-
tions of Gomputer Science, 1986, pp. 233-243.

293

