
JOURNAL OF ALGORITHMS 12, 204-238 (1991)

Better Computing on the Anonymous Ring*

HAGIT A~TIYA+

Laboratory for Computer Science, MIT, Cambridge, Massachusetts 02139

AND

MARC SNIR

IBM T. J. Watson Research Center, Yorktown Heights, New York 10598

Received April 27, 1988; revised November 28, 1989

We consider a bidirectional ring of n processors, where processors are anony-
mous, i.e., are indistinguishable. In this model it is known that “most” functions (in
particular XOR and orientation) have worst case message complexity @(n’) for
asynchronous computations, and O(n log n) for synchronous computations. The
average case behavior is different; an algorithm that computes XOR asyn-
chronously with O(nA) messages on the average is known. In this paper we give
tight bounds on the average complexity of various problems. We show the follow-
ing:

l An asynchronous deterministic algorithm that computes any computable
function with O(n log n) messages, on the average (improving the O(nfi) algo-
rithm). A matching lower bound is proven for functions such as XOR and
orientation.

. An asynchronous probabilistic algorithm that computes any computable
function with O(n log n) expected messages on any input, using one random bit
per processor. A matching lower bound is proven.

l A Monte-Carlo asynchronous algorithm that computes any computable
function with O(n) expected messages on any input, using one random bit per
processor, with fixed error probability E > 0.

*A preliminary version of this paper appeared in “Proceedings, 3rd Aegean Workshop on
Computing, Corfu, Greece, June/July 1988” 0. Reif, Ed.), pp. 329-338, Lecture Notes in
Computer Science, Vol. 319, Springer-Verlag, New York/Berlin.

‘Supported by ONR Contract No. NOO14-85-K-0168, by NSF Contract No. CCR-8611442,
and by DARPA Contract No. NOOO14-83-K-0125. Part of this work was done while this
author was at the Department of Computer Science, Tel-Aviv University, Israel.

204
0196-6774/91 $3.00
Copyright 0 1991 by Academic Press, Inc.
All rights of reproduction in any form resewed.

BETTER COMPUTING ON THE ANONYMOUS RING 205

l A synchronous algorithm that computes any computable function optimally
in O(n) messages, on the average.

l A synchronous probabilistic algorithm that computes any computable func-
tion optimally in O(n) expected messages on any input, using one random bit per
processor.

l Lower bounds on the complexity of Monte-Carlo algorithms that always
terminate. 0 1991 Academic Press, Inc.

1. INTR~DU~ION

We consider a distributed network of n processors, with a ring topology.
Each processor is connected by a bidirectional communication channel to
each of its two neighbors. The processors are indistinguishable from each
other, and all execute the same algorithm (anonymous ring). In the
asynchronous model of computation message transfer time is arbitrary (but
always finite). In the synchronous model of computation message transfer
time is fixed, and all processors are synchronized. These models have been
studied by many authors. They allow us to understand the effect of
symmetry on the complexity of distributed computations.

Attiya, Snir, and Warmuth [5] showed that deterministic algorithms for
many problems in the asynchronous anonymous model require at least
Q(n*> messages to be sent in the worst case; synchronous algorithms
require fi(n log n> messages in the worst case. Two examples are the
problem of computing the XOR of binary input values, and the problem of
orienting a ring. Syrotiuk and Pachl [19] showed that this bound does not
hold for the average case, and that these problems can be solved asyn-
chronously with O(n\/lT) messages on the average (their algorithm is
stated for the problem of orientation, but can be applied also for XOR).

Here we show that this result is not optimal. We prove the following
results:

The most general problem, of collecting the input values, can be solved
in the asynchronous model by a deterministic algorithm using O(n log n>
messages on the average; it can be solved by a probabilistic algorithm that
uses O(n log n) expected number of messages, on any input, with one
random bit at each processor.

A matching fi(n log n> lower bound on the average complexity is shown
for “nonlocal” problems, where the answer is not determined by a short
substring of the inputs (in particular, for XOR and orientation). The lower
bound makes use of the counting technique introduced by Bodlaender [7]
for the average complexity of leader election. However, it is necessary to
combine this technique with a method of “forcing” the transmission of
messages, similar to those introduced in [51. The lower bounds hold for
bidirectional rings, with no assumptions on the algorithms. The algorithms

206 A’ITIYA AND SNIR

may be nonuniform, i.e., may depend on the ring size, IZ. The- same
Q(n log n) lower bound holds for asynchronous probabilistic algorithms.
This lower bound was proven independently by Abrahamson, Alder,
Higham, and Kirkpatrick [2, 131.

The input collection problem is solved on synchronous rings by an
algorithm that uses O(n) messages, on the average. A probabilistic algo-
rithm solves the input collection problem with O(n) expected number of
messages on any input, using one random bit per processor.

These results have several interesting aspects. First, we show again that
synchronous models are more powerful than asynchronous ones. Next, we
provide an example where probabilistic methods provably reduce complex-
ity; a surprising small amount of randomization is sufficient to achieve this
result. Finally, we show that the “bad” inputs that force the use of n*
(resp. it log n) messages for deterministic asynchronous (resp. syn-
chronous) algorithms are rare; these are input configurations with large
amounts of symmetry [51.

The expected performance of probabilistic algorithms on a worst input
is the same as the average case performance of deterministic algorithms,
for input collection, and other “global” problems. This does not hold for
all problems: We show that the AND function can be computed by a
deterministic asynchronous algorithm with O(n) messages, on the average,
whereas any asynchronous probabilistic algorithm that computes AND
requires fi(n log n) messages, in the worst case.

Finally, we examine the Monte-Carlo asynchronous algorithms. If a
probability E of error is tolerated, than the input collection problem can
be solved with O(n(l + loglog(2/e))) expected number of messages on
any input, which is linear for constant E. This implies that a leader can be
elected in a labeled asynchronous ring with O(n) messages, and small,
constant error probability E. The algorithm is nonuniform, and depends on
IZ, the ring size. Interestingly, a lower bound of a((1 - e>n log n) was
proven by Pachl [15] for uniform leader election algorithms (algorithms
that work on rigs of unknown size). Thus, there is a provable gap between
uniform and nonuniform Monte-Carlo leader election algorithms.

A Monte-Carlo distributed algorithm may fail by deadlocking, or it may
fail by arriving at a wrong answer. If deadlock is prohibited, then we show
that any asynchronous algorithm that computes AND with probability of
error at most E uses R(n(log n - log log(2/(1 - ~1))) messages, in the
worst case; this is fl(n log n) as long as E < 1 - 2-“. Thus, the reduction
in message complexity for Monte-Carlo distributed algorithms is almost
entirely due to the acceptance of some probability of deadlock.

The rest of this paper is organized as follows: In Section 2 we present
the model and some preliminary results. Section 3 is dedicated to algo-
rithms, for both the synchronous and the synchronous models. In Section 4

BETTER COMPUTING ON THE ANONYMOUS RING 207

the lower bounds, for both models, are presented. We conclude, in Section
5, with discussion of the results.

2. DEFINITIONS

2.1. Deterministic Algorithms

Consider a system of n indistinguishable (anonymous) processors ar-
ranged on a bidirectional ring. We number the processors 1,. . . , n, for
convenience; however, this numbering is external and is not available to
the processors themselves.

Every processor i has two distinct links to its neighbors, left(i) and
right(i). In an oriented ring we have left(i) = i - 1, and right(i) = i + 1.
In a general ring the notions of “left” and “right” at different processors
need not be consistent. We denote by Oi the orientation of processor i:
Oi = 1 if right(i) = i + 1 (positive orientation), and Oi = 0 if right(i) =
i - 1 (negative orientation). The value of Oi is not available to processor
i; however, a processor may test if its orientation agrees with the orienta-
tion of its neighbors:

Oi = Oleft(i) if right(left(i)) = i.

If processors may send messages on both communication links then the
ring is bidirectional; an oriented ring in which processors may send
messages only on one link (say right) is unidirectional.

An algorithm specifies the behavior of each processor, modeled as a
state machine. The initial state of a processor is its input value. The state
of a processor when in a halting state is its output value. In the asyn-
chronous model processor transitions are message driven. A processor that
is not in a halting state receives one message at a time; when it receives a
message it possibly sends messages left and right and moves to a new state.
Messages on a channel are delivered in the order they are sent, after an
arbitrary (finite) delay. The first transition at each processor is initiated by
a conceptual “start” message. In the synchronous model processor transi-
tions are clock driven. At each cycle, a processor that is not in a halting
state accepts messages sent by its neighbors at the previous cycle (if any),
possibly send messages to its neighbors and moves to a new state.

We consider computation problems where inputs are from a finite
alphabet, often binary; an output function fi of all the inputs is computed
at each processor. If the initial input on the ring is I,, . . . , Z,, then
processor i halts with output fi(Z,, . . . , I,). We usually assume all proces-
sors compute the same function; e.g., all processors compute the XOR of
the input values. A special case is the problem of orientation: We are
given a bidirectional ring, unoriented (with null inputs); a consistent

208 ATIIYA AND SNIR

orientation is desired. Formally, each processor i computes a binary
output fi, such that fi = fi iff Oi = 0,.

It is impossible to solve certain problems (for example, XOR, orienta-
tion, and more) if the number of processors on the ring, the size of the
ring, is unknown [5]. Hence, we assume a nonuniform model where a
distinct algorithm may be used for each ring size n; we denote such
algorithm by the subscript n.

The complexity of a synchronous algorithm &$ on input I, &(G$, I) is
the number of messages sent in the computation of the algorithm on input
I. The (worst case) complexity of an algorithm L$ 6&,<&$>, is maximum
of 4(&&, I) over all inputs I; this is the maximum number of messages
sent in any computation. The average complexity, YQ,,<&$> is the average
of &<J& I) over all inputs. Asynchronous algorithms are nondeterminis-
tic; the computation may depend on the order of message arrival. We
represent this by a scheduler. After each transition the scheduler selects
the next message to be received. The complexity of an asynchronous
algorithm tin on input I, %<G$ I) is the number of messages sent in a
computation of the algorithm on input I, against a worst scheduler.
4&J&,>, and Y&,(J$~> are defined as above.

2.2. Probabilistic Algorithms

Deterministic algorithms are modeled by deterministic automata: in each
state, and for each arriving message, there is a unique successor state. A
probabilistic algorithm is modeled by a probabilistic automaton: for each
state and incoming message there are several possible transitions, each
associated with a probability. Transitions are independent.

A probabilistic algorithm solves a problem with error E if for any input
there is a probability 2 1 - E that all processors halt with a correct
answer to the problem. In particular, an errorless probabilistic algorithm
always delivers the right answer. Note that a probabilistic algorithm may
fail in two ways: it may terminate and deliver a wrong answer, or it may
deadlock in a situation where there are no outstanding messages, but some
processor has not yet halted.

The complexity of an asynchronous probabilistic algorithm J$~ on input
I, Z(J$~, I), is the expected number of messages sent against a worst
scheduler. The worst case complexity of a probabilistic algorithm,
T&&G(~), and the average case complexity Z&J&), are defined accord-
ingly. The definition for synchronous algorithms is obvious.

2.3. Notation

Define the k-neighborhood of processor i to be the concatenation of the
input values and orientations of the processors at most k apart from

BE’ITER COhIFWlTNG ON THE ANONYMOUS RING 209

processor i, relative to the orientation of i. This neighborhood is defined
by the string of length 2k + 1 (Oi+Zi+>, . . . , (Oi+kZj+k). Since the neigh-
borhood is defined relative to the orientation of processor i, the string
<aj+kzi+k)y * * * > (oii-kli-k) (i.e., the string obtained by reversing inputs
and inversing all orientations) defines the same neighborhood (all indices
are taken modulo n).

The [n/2]-neighborhood of a processor contains information on the
entire ring configuration, relative to the location and orientation of the
processor; this is the mosr general inform&on about the ring a processor
may acquire. For example, in a deterministic synchronous computation,
the output of a processor depends only on its [n/2]-neighborhood. This
implies that a function can be computed deterministically if and only if the
output of processor i is a function of its ln/2]-neighborhood. Thus, the
most general problem is that of computing for each processor its [n/2]-
neighborhood. We call this the input collection problem. An algorithm that
solves the input collection problem can be used to solve any problem that
can be computed deterministically on a ring. We present such algorithm in
the next section.

We denote by la] the length of a string CT. We say that o appears
cyclically in T if c+ is the prefix of some cyclic shift of T. For example, if i
and j are two processors on a ring size n then the k-neighborhood of
processor i appears cyclically in the [n/2]-neighborhood of processor j,
for any k I [n/21.

3. UPPER BOUNDS

3.1. Asynchronous Input Collection Algorithm

Syrotiuk and Pachl [19] presented a deterministic asynchronous algo-
rithm, solving the orientation problem using O(n6) messages on the
average. Here we show that their algorithm is not optimal, and that there
exists a deterministic asynchronous input collection algorithm using
O(n log n) messages, on the average.

3.1.1. Informal Description

For simplicity of description and analysis we first assume the ring to be
unidirectional, and the input alphabet to be binary; the modifications
required for the general case are described later.

The input collection problem can be solved with O(n) messages once a
Ieader has been elected on the ring: The leader initiates a message that
circles the ring, first collecting all inputs, next distributing them to all

210 Al-I-IYA AND SNIR

processors. We shall solve the input collection problem this way, first
running a leader election process.

It is not always possible to elect a unique leader on an anonymous ring;
if the ring is symmetric; e.g., if all processors have the same initial state,
then this symmetry cannot be broken by a deterministic algorithm [3].
However, it is not essential for our purposes that a unique leader be
elected. The algorithm is still correct if several leaders are elected; each of
the elected leaders will distribute the inputs independently. We shall
exhibit a leader election algorithm that ends by electing a constant number
of leaders, on the average.

The leader election algorithm resembles the algorithm of Chang and
Roberts [9]. This algorithm selects the processor with maximum id in a
ring where processors have distinct ids. In this algorithm, each processor
creates a message that travels around the ring, carrying its originator’s id,
until it “meets” a processor with a larger id. In the worst case at most
O(n*> messages are sent during the computation. However, a message
carrying the kth largest id travels average distance n/k. Altogether,
nH, = Oh log n) messages are sent on the average (ZZ, is the sum of the
harmonic series with n elements).

In our model processors are identical; before the leader election algo-
rithm can be run, ids must be computed. We label each processor by the
number of consecutive ones to its left. Not all processes end up with
distinct labels; we show that the expected number of processors with
maximum labels is constant, and that the distribution of labels to proces-
sor still guarantees that the election process takes O(n log n) messages, on
the average.

Thus, the algorithm consists of three conceptual phases:

1. Labeling.
2. Leader electron.

3. Input collection and distribution.

The actual algorithm given below combines phases two and three together:
Inputs are collected by the messages used for leader election.

3.1.2. Co& for the Algorithm

The algorithm uses the following variables (at each processor):

INPUT-Input value of the processor.
LABEL-Label created for this processor.

A message sent by the algorithm at the first phase consists of the
Boolean input of the processor that initiated the message. A message sent
at the second phase of the algorithm consists of a pair (LABEZJEG),

BEl-l-ER COMPUTING ON THE ANONYMOUS RING 211

Algorithm for processor i
{ First phase - label creation }
LABEL := 0;
send INPUT to right;
repeat forever

receive L from left;
LABEL := LABEL + L;
if LABEL = n then break;
if INPUT = 1 then send L to right;
if L = 0 then break

end;

{ Second phase - leader election and input collection)
send (LABEL, INPUT) to right;
repeat forever

receive (L, SEG) from left;
if ISEGl = n then
begin

send (L, shift(SEG)) to right;
break

end;
if L 2 LABEL then

send (L, SEG . INPUT) to right
{ else message ie not forwarded }

end.

FIG. 1. Asynchronous input collection algorithm.

where LABEL is the label of the processor that initiated the message, and
SEG is a binary string obtained by concatenating the inputs on the ring
segment traversed by the message.

The algorithm is described in Fig. 1; u * 7 is the string obtained by
concatenating u and r; shift(cr) is the function that shifts the string CJ
cyclically one position to the right.

3.1.3. Correctness

First phase. The following claim is easily proven, by induction on j: If
there are j ones to the left of a processor, followed by a zero, then this
processor will receive j one messages, followed by a zero message; the
final value of LABEL, is j. If the ring contains only ones then each
processor will send II one messages, receive n one messages, receive IZ one
messages, and halt with LABEL = n. Thus each processor exits the first
phase with LABEL being equal to the number of consecutive ones to the
left of the processor.

212 A’ITIYA AND SNIR

Second phase. We say that a message is full it if has a segment of
length IZ. It is easy to prove by induction that the successive messages sent
by a processor have segments of increasing length, up to length n. Let L,
be the maximum label. If a message (La, SEG), with ISEGI = j < IZ, is
sent to a processor, then this processor has not yet received a full message,
and has not halted; this processor receives the message and forwards it
with a segment of length j + 1. It follows that a message with label L, is
forwarded until it is full; this implies that at least one processor receives a
full message and halts. A processor halts after it forwards a full message;
hence if a processor halts then the next processor on the ring receives a
full message and halts, too. Thus, all processors halt.

When processor i receives a full message (L,SEG) then SEG is the
concatenation of the inputs at processors i, i + 1,. . . , IZ, 1,. . . , i - 1. This
holds true when a message returns to the processor that initiated it, and
stays true at later processors, since SEG is shifted.

If the ring is bidirectional and unoriented, one runs two versions of the
algorithm in parallel, one in each direction. In addition to its input, a
processor also depends to a collection message a bit that indicates what
port the message is sent from. A processor halts after it has received and
forwarded a full message in each direction. It is still the case that each
processor i receives a message describing the ring configuration, i.e., the
input and orientation of every processor, relative to the location and
orientation of processor i. The average message complexity of the algo-
rithm at most doubles.

3.1.4. Extensions

If the input alphabet has size s > 2, then we use a fixed encoding to
assign a binary value to each letter (e.g., assume that that alphabet is
0.l . . * , s - 11, then the ith letter of the alphabet is assigned value i mod 2).
These binary values are used in the first phase of the algorithm to
generate labels; in the second phase, the entire input is transferred. Note
that if s is odd then zero and one are not equally likely to appear: A
binary value of zero occurs with probability [s/21/s, and a value of one
occurs with probability [s/21/s.

If the problem has no binary inputs, such as for orientation, then one
can use the relative orientation of the processors to create binary values.
We set INPUT to one if the two neighbors of processor i have distinct
orientations, to zero otherwise; i.e.,

INPUT, = Oi_1 Q Oi+l.

We have

Oi+I = INPUT @ Oipl, i=2 ,...,n - 1,

BE’ZTER COMPUTING ON THE ANONYMOUS RING 213

so that

where (Y = 1 if i is odd, (Y = 2 if i is even. Fix the values of 0, and 0,;
the last identities define a one-to-one correspondence between the
values of O,, . . . , 0, and the values of INPUT,, . . . , INPUT,,-,. Thus, if
each orientation is equally likely to occur, then the tuple INPUT,, . . . , IN-
PUT’-, is equally likely to assume each of the 2”-* possible values. By
symmetry, this holds true for any n - 2 consecutive locations.

Note, however, that not every binary configuration is obtained. An
orientation cannot be distinguished from its mirror image by a distributed
computation, so that the 2” orientations can map into at most 2”-’ input
configurations. In fact, if n is odd then only configurations with an even
number of ones are created, each with probability 2”- ‘; if n is even, then
only a configuration with an even number of ones at the odd-numbered
processors, and an even number of ones at the even-numbered processors,
are created.

The algorithm described above does not “clean up” the ring: Messages
not received may be left on the ring; this can be avoided while increasing
the message complexity by at most a constant factor. Each “winning”
message in the election algorithm performs one more full circle; all
processors can count the number of winners. A processor halts at the next
round after it has received that many input collection messages.

3.15 The Average Number of Messages

We shall use in our analysis the following combinatorial result.

THEOREM 3.1. Let o = ul, . . . , uk be a binary string. Let x1, x2, . . . be
a sequence of independent binary random variables, that are one with
probability p and zero with probability q = 1 - p. Let W(a) be the waiting
time until the pattern cr occurs in the sequence x1, x2, . . . :

W(u) = min{i : xiek+r = ui,. . . , xi = uk}.

Let pi be the probability of a match on the ith letter of the pattern u: pi = p
if ai = 1, pi = q if ai = 0. Then

E(W(u)) I ; +
1 1

~ . ..+ +
I)k-1Pk P1 .‘. Pk’

Equality obtained only when u = Ok or u = lk. In the former case we obtain

E(W(Ok)) = 5,

214 A’ITIYA AND SNIR

and in the latter case,

@V(P)) = J-$.

proof. Define the following discrete process, with k + 1 states
SO,. . .) Sk. The initial state is so = So. If si-i = S’-’ and xi = a, then
si = S’; otherwise si = So. This process corresponds to a pattern matching
algorithm that searches for the pattern (+ in the string xi, x2,. . . , without
backtracking. If a mismatch occurs, then pattern matching restarts at the
next position in the string, with the first letter of the pattern. State Sk is
reached only if an occurrence of the string u is found: If si = Sk then
xi = u&xi-l = f,k-I,..., Xi-k+1 = (+I. Let wi be the expected waiting
time until state S’ is reached for the first time. Then

E(W((T)) 2 wk.

The process just defined is a Markov process; when in state S’- ’ a
transition to state S’ occurs with probability pi, and a transition to state So
occurs with probability 1 - pi. The waiting times fulfill the following
equations:

wo = 0;

wi = Wiel + 1 + (1 -p&vi, i= 1,2 ,***, k.

The equations are rewritten as

w. = 0;

wi-l + 1
wi =

Pi ’
i= 1,2 ,---7 k.

We obtain the solution

1
WI=--,

PI

1 +P1
w* = -

PIP2

1 1 1
=-+ ~ . ..+ +

I)k pk-1Pk PI -” Pk

BETTER COMPUTING ON THE ANONYMOUS RING 215

Assume that u1 # ui, for some 1 < i I k. Then the nonbacktracking
pattern matching process will fail to detect an occurrence of the pattern u
in the string

-
a, *** ui-luiuz -” a, = u1 **’ ui-lu,u, “* a,.

This implies a strict inequality E(W(u)) < wk. conversely, the nonback-
tracking pattern matching process detects all occurrences of a pattern Ok
or lk, and equality EW(u)) = wk holds. (If a 0 is found while searching
for the pattern lk, then search for the full pattern should start anew from
the next position in the string.) Substituting pi = p we obtain that

E(W(1”)) = z$I -$ = 1 -pk
(1 - P)Pk -

The result for E(W(ok)) is obtained by substituting pi = q. q

Note that W(lk> is the waiting time for k consecutive successes in a
sequence of Bernoulli trials. A derivation of the expectation of this waiting
time can be found in [12, XIII. 7, Eq. (7.711. Let r = min(p, q). Then,
since pi 2 r,

We thus obtain

COROLLARY 3.2. For any pattern u of Zength k,

If p < 3 then the pattern lk is the (unique) “worst case” pattern, with
maximal waiting time; if p > +, then Ok is the unique worst case pattern.

We shall analyze the algorithms under assumptions that subsume the
various modifications introduced at the end of the last section. We assume
that INPUT,, . . . , ZNPF? are O-l valued random variables; INPUT has
value one with probability p, where 5 5 p I f, and value zero with
probability q = 1 - p; and any n - 2 consecutive random variables IN-
PUTJNPUl-i,l,. . . , INPUq-, are independent. The assumption about p
covers the case of non-binary alphabet, while the independence assump-
tion allows us to treat the orientation problem.

First phase. A message initiated in the first phase is forwarded until it
encounters a zero on the ring, or until it has done a full circle, if there are
no zeros on the ring. Thus, the expected distance traversed by such

216 ATITYA AND SNIR

message is bounded by

E(W(O)lW(O) I n - 2) . PR[W(O) I n - 21 + n * Pr[W(O) > n - 21

I E(W(0)) + 1

1
=-+1

4

I 3.
Since exactly n messages are initiated in the first phase, it follows that the
expected number of messages transmitted in this phase is I 3n.

Second phase. Let LABEL, be the label created for processor i, and
let Xi be the number of times the message sent by processor i is
forwarded in this phase. Assume that LABEL, = k - 1. If k consecutive
ones occur at locations j - k, . . . , j - 1, then LABELi 2 k and processor
j does not forward the message initiated by processor i. A processor halts
after receiving a message of length n; hence, no message is forwarded
more than 2n - 1 times. It follows, by Lemma 3.1, that for 1 I k I
hi! (I/&

E(X,ILABEL, = k - 1) < E(W(lk)) + (2n - 1)

* PR[W(lk) r n - k - 21

E(Wlk))
s Jwwk)) + (2n - 1) n _ k _ 2

2n - 1

n-k-2

1 -pk
14-

wk ’

for n > 8. Summing up over all the values of LABEL,, we obtain that

‘og WPP
E(Xi) < C E(XilLABELi = k - 1) . PR[LABELi = k - l]

k=l

+ (2n - 1) * PR[LABEL, 2 logo,p, n]

‘og (l/P)”
5 C 4 . 9 * qpk-’ + (2n - 1) *p’“W,)n

k=l

4 2n - 1
< - log(l,p) n + ~

P n

<Slogn+2.

BETTER COMPUTING ON THE ANONYMOUS RING 217

Since exactly n messages are initiated at this phase, it follows that the
average number of messages transmitted is O(n log n).

The last result implies, in particular, that the expected number of
leaders selected in -this phase (defined as the number of messages that
make a full circle) is O(log n). We show in Theorem 3.8, by a more
accurate analysis, that this number is constant.

We sum up the results of this section in the following theorem.

THEOREM 3.3. For any n there exists a deterministic input collection
algorithm IC,, that works on the asynchronous anonymous ring of size n,
and has average complexity &&,(IC,) = U(n log n).

3.2. AND and Other Problems

The last theorem shows that any computable function can be computed
with O(n log n> messages, on the average. In Section 4.2 we show that this
result is optimal for problems such as XOR or orientation. For some other
problems one can do better.

THEOREM 3.4. For each n there is an asynchronous algorithm AND,,
that computes the AND of n inputs on an anonymous ring of length n, with
an average number of messages -Ga&4ND,) = O(n).

.proof. Each processor starts by sending to its right and left a message
with its input value, and count one. Afterwards, it forwards the messages it
receives, incrementing their count. A processor halts with output zero
after it has sent a zero message; it halts with output one if it receives back
a one message with count n (i.e., a one message that made a full circle). It
is easy to check that the algorithm computes AND correctly. The expected
distance traversed by a message is I E(W(0)) = l/q I 2. Thus, the
expected number of messages transmitted is linear. 0

It is easy to see that this result is optimal (see Section 4.1). A similar
algorithm can be used to compute any function whose value is determined
by a small prefix. Let f: 2” --) Z be a shift invariant function. Let u be a
string of length k that determines the value of f, i.e., f(a * T~) = f(a - ~~1,
for any strings r1 and 72 of length n - k (the string 0 plays this role for
the AND function). We have

THEOREM 3.5. The junction f can be computed asynchronously on an
oriented ring with O(n3k) messages, on the average.

Proof Each processor starts by sending an “input collection” message
to its right; afterwards, it forwards messages it receives. Messages carry the
input values of the processors they traversed. A processor halts after it
forwards a message containing the substring (+, or when it receives a

218 Al-l-IYA AND SNIR

message of length n, that has made a full circle. In each case, the
processor can compute the function value when it halts.

The expected distance traversed by a message is equal to the expected
waiting time for an occurrence of g in a random string. By Corollary 3.2,

1 1 since gIp 5 T,

3(3k - 1)
E(W(a)) 4 E(W(lk)) I (llI$, 2 2 . 0

A similar algorithm works for nonoriented rings (we require then that f
be invariant under shifts and reversals; this is a necessary condition for f
to be computable on nonoriented, anonymous rings [5]). The AND algo-
rithm is a particular case, for k = 1.

3.3. Asynchronous Probabilistic Algorithms

The deterministic input collection algorithm can be easily modified to
yield a probabilistic algorithm, that solves the input collection problem in
O(n log n) expected number of messages, on any input: Select a random
bit at each processor, and use this bit to build labels. The expected
number of messages sent by this algorithm does not depend on the input,
and equals the average number of messages sent by the input collection
algorithm of Section 3.1. We obtain:

THEOREM 3.6, For any n there exists an errorless probabilistic input
collection algorithm PIC, for asynchronous rings of size n that uses on any
input an expected number of messages zmax(PIC,> = U(n log n>. This algo-
rithm uses a unique random bit at each processor.

Thus, any solvable problem can be solved on an asynchronous anony-
mous ring with O(n log n) expected messages, using a unique random bit
at each processor. In Section 4.3 we show this result is optimal for
problems such as AND, XOR, and orientation. On the other hand, if a
positive error probability is tolerated, then the expected number of mes-
sages can be reduced to O(n).

THEOREM 3.7. For any n and E, such that 0 < E < 1 and n >
16 ln(2/&) + 2, there exists an asynchronous probabilistic input collection
algorithm EPIC,, E for rings of size n that has error probability I e and
expected number of messages &,,(EPIC,, Ej I n(12 + 2 log log(2/&)) on
any input.

Proof We use the same input collection algorithm as in Section 3.1,
with one change: Let p be the probability of occurrence of 1 on the ring
(f I p I i). Only processors with labels 2 A log,,, (n - 2) participate in

BETl-JSR COMPUTING ON THE ANONYMOUS RING 219

the leader election and input collection phase; A = A(n, q, E) is a constant
that will be defined later. As shown in Subsection 3.1.5, the expected
number of messages sent in the first phase is I 3n. The algorithm
succeeds if some processor participates. We have to show that the proba-
bility that no processor participates is at most E, and that the expected
number of messages sent in the second phase is s n(9 + 21oglog(2/~)).

We first show that the probability that no processor participates is at
most E. Let M = n - 2. Let 5 be the number of zeroes in the first m
locations on the ring, and let m,, m2,. . . , m6. be the successive locations of
these zeroes. Let X, = m, and Xi = mi - miml, for i = 2,. . . ,l. The
label of processor mi is 2 Xi (the label of processor m, is equal to Xi, if
i > 1). Thus, it is sufficient to show that, with probability 2 1 - E,

maxX, > A log,,, m.
lS1

A random process with the same distribution can be defined as follows.
Let W be the waiting time for a zero in a sequence of Bernoulli trials with
probability p of one and probability q = (1 - p) of zero. Let W(l), WC’), . . .
be a sequence of independent random variables, equidistributed as W. Let

v=max j:CW(‘)Im
1

.
isj 1

Then W(l), . . . , WC”) are distributed as X,, . . . , X,. Moreover, v is dis-
tributed as the number of zeroes in a sequence of m Bernoulli trials. We
have

PR max W@) > h log
i<v

l,p m 2 Pr 1 [max Wci) > A logI,p m
i smq/2 I

Raghavan [18] derives the following estimate for the lower tail of a
Bernoulli distribution, using Chernoff’s method [8]:

PR[v - mq < - ymq] < e-yzmq’2. (1)

Taking y = i, since q 2 4, it follows that

PR v < 7 < e-m‘J/8 < eern/16.
[I

220 A’ITIYA AND SNlR

Thus, since m > 161n(2/~),

On the other hand,

pR[W(i) > A log,,, m] = ph’ogl/Pm = meA

and

PR max IV(‘) > A log VP m
3

= 1 - (1 - m-“)mq’2*

15-G

Choosing

* = _ lo& - w2)2’mq)

log m
= -,,,,(l - (;,““‘),

we have that

(1 - m-“)mq’2 = ~/2,

PR max W”) > A log
l/P m

I

= 1 - E/2.
isnap/

Thus, the probability that the algorithm succeeds is at least 1 - E.
The expected number of messages sent in the second phase is estimated

as in Section 3.1.5. Let x be the number of times the messages initiated
by processor i is forwarded, then

h31,, m
E(K) < c E(~lLABEL, = k - 1) . Pr[LABEL, = k - l]

k=AlogI,,m

+(2m + l)Pr[LM?ELi > log,,, m]

k-1 + (2m + 1) * p’“gl/Pm by Lemma 3.1,

(1 - h)log,,p m 2m + 1
< +-

P m

< 3(1 - h)log m + 2.5.

We have

m-* = 1 - (E/2)2/mps

BEmER COMPUTING ON THE ANONYMOUS RING 221

Note that for x > 1,

1 - l/x < In x.

Substituting x = (2/~)~/“~, we obtain

Thus,

E(Y;:) < 3(1 - h)log m + 2.5

< 3 log (2 In 2 I + 2.5
P 6

< 9 + 3 log log(2/E).

3.4. Synchronous Algorithms-Input Collection

The asynchronous input collection had three phases;

1. labeling;

2. leader election; and

3. input collection and distribution.

The first phase requires a linear number of messages, on the average. A
more accurate analysis of the leader election process shows that a constant
number of leaders are elected on the average; hence, the third phase
takes, too, a linear number of messages, on the average. It is only the
second, the leader election phase, that requires fi(n log n) messages.
However, this phase can be avoided altogether in the synchronous model:
We divide the input collection and distribution phase into n + 1 sub-
spaces; at subspace i, which takes 2n cycles, only processors with label
n + 1 - i collect and distribute inputs. The algorithm stops as soon as a
subspace with active processors occurs. Thus, only leaders collect and
distribute inputs.

3.4.1. Code for the Algorithm

We describe the algorithm for unidirectional, oriented rings, with binary
inputs. The algorithm is extended to nonoriented rings, and used to solve
the orientation problem, as in the asynchronous case. The algorithm is
described in Fig. 2.

222 A-ITIYA AND SNIR

Algorithm for processor i
{ First Phase }
LABEL := 0;
if INPUT = 1 then send message to right;
for j := 1 to n do

if received message from left then
begin

LABEL := LABEL + 1;
if INPUT = 1 then send message to right

end;

{ Second Phsee }
for i := n downto 0 do begin

if LABEL = i then aend INPUT to right;
for j := 1 to 2~ - 1 do

if received message M then
if Ih-iI < n then send INPUT - M to right
else begin {IMI = n }

send shift(M) to right;
halt

end
end.

FIG. 2. Synchronous input collection algorithm.

3.4.2. Analysis

The correctness of the algorithm is now obvious. The total number of
cycles used by it is at most 2n*. We shall show now that the expected
number of messages sent is linear. The first phase is essentially identical to
the first phase of the asynchronous input collection algorithm; the ex-
pected number of messages sent is O(n).

A message is forwarded in the second phase at most 2n - 1 times; we
have to show that the expected number of messages initiated in this phase
is constant. In order to do so we need the following lemma.

LEMMA 3.8. Consider n independent sequences of Bernoulli trials, each
with probability p for one (and probability q = 1 - p for zero). Let W(j), i =
1 ,‘.., n be the waiting time for the first zero in sequence i. Let M,, be the
number of sequences where the waiting time is maximum, i.e.,

Then

M n = i . WC’) = ma w(j)
I(. 1 sjsn

E(wJ 5 l/P*

BETTBR COMPUTING ON THE ANONYMOUS RING 223

Proof. Rabin proves in [17] that Pr[M, > 11 < f , for p = 0.5; we use a
similar technique to bound the expectation, for any p.

Assume k ones occur in the first round (this happens with probability
n

0 kq n-kpk). If k = 0 then M,, = n; otherwise k sequences continue to
wait for zero. This implies the recurrence relation

E(it!f,) = ,tif + f: (“k)q”-*p’E(&)a
k=l

We have E(M,) = 1, so that the above formula simplifies to

E(“~) = w” + w”-‘P + kc2 (;)q”-‘p’E(&)

= &f-l + kk2 (;2k)q”-kpkE(itfk)

Thus,

E(M,) = mf-' "-kpkE(Mk) /(l -$2").

Assume, by induction, that EW,) I l/g, for 1 < i < n, then

n-kpk /(1 - p”)

P nq”-‘+
(

$(l - q” - w-‘p -P”> /Cl -P")
1

1 4” =--
P PC1 -P”)

1
< -. cl

P

In order to cover the various extensions to the algorithm, me assume, as
in the proof of Lemma 3.1, that INPUT,, . . . , INPUT, are O-l valued
random variables; that INPUTi has value one with probability p, where
5 s p s i, and value zero with probability q = 1 - p; and that any n - 2
consecutive random variables ZNPWi, ZNPUTi+l,. . . , INPUTi-, are inde-
pendent. As in the asynchronous case, the assumption about p allows us

224 A’ITIYA AND SNIR

to cover the case of non-binary alphabet, while the independence assump-
tion allows us to treat the orientation problem.

The total number of messages initiated in the second phase is at most n.
The probability that the ring contains only ones is 2-“. This case con-
tributes n2-” = O(1) to the expected number of messages initiated. Oth-
erwise, the expected number of messages initiated equals the expected
number of maximal length strings of consecutive ones. Let rn = n - 2. Let
5 be the number of zeroes in locations 1,. . . , m on the ring; let
ml, m2,. . . , ml be the location of these zeroes; let Xi = m, and Xi =
m, - rniel, i = 2,. . . ,l. Let

It is sufficient, for our purposes, to show that E(Maw) = O(1). The
problem can be restated as follows. Define IV”‘, WC2’, . . . to be a se-
quence of independent, identically distributed random variables; WCi) is
distributed as the waiting time for a zero in a sequence of Bernoulli trials
with probability p for one (and probability q = 1 - p for zero). Let

>
.

Let

Mk= j:W(j)=
II

qxx w(j)
)I

.

Then the random variable M,, has the same distribution as Max.
To estimate the expectation of M, we show that v is highly likely to be

in an interval of size 2fi log m around qm. Let w be the maximal value
of WC’), for 1 I i I qm - 6 log m. We show that it is highly likely that
the value of W@) equals or exceeds w at most a constant number of times
in the interval for qm - 6 log m < i < qm + & log m. This implies
that it is highly likely that M,, the number of maxima in the range
1 5 i I v is larger by at most a constant term than Mm4- F,og m, the
number of maxima in the fixed range 1 s i I mq - & log m. We can
then use Lemma 3.8 to show that the expected number of such maxima is
constant.

Let (Y be a constant in the range $ < (Y < 1; let c be a constant integer,
to be defined later. Define the following events:

A,=[qm--~logm<v<qm+~logm];

A2 = [m~j,,,- filog,Wci) > a log,,, ml;
A, = [lG:qm - ~logm <i <qm + Glogm

and Wci) > a log,,, m)l I c].

BETI-ER COMPUTING ON THE ANONYMOUS RING 225

Let A = A, n A, n A,. If A occurs then at most c values of Wti), for
qm - 61 log m < i I V, equal or exceed the maximal value of W@),
for i in the range 1 5 i I qm - 6 log m. Thus, if A occurs, then M, <
M qm _ F ,Og m + c. Since M, I n, it follows that

E(K) 5 E(Mqm-lli;r,ogm) + c + 41 - PWl).

BY h=a 3.8, HM,, - Flog m) I l/p 5 3. We shall be proving that

PR[Ai] 2 1 - ;, for i = 1,2,3.

This implies that Pr[A] 2 1 - 3/m and

E(M,) I 3 + n * -& + c = O(1).

The random variable v is distributed as the number of zeroes in a
sequence of m independent trials, each with probability of success p. We
use the Chernoff type estimate from 141 to bound the probability of the
distribution tail. We have ([4, Proposition 2.4(b)], see also [ll, p. 1711,

PR[v - qm 2 yqm] I e-qmy2/3, for75 1.

Setting y = (log m>/(q&) we obtain that

PR[IJ > qm + 6 log m] I e-‘og2m/3q < 1/2m,

for sufficiently large m. For the lower tail we use the estimate given in Eq.
(1). For y = (log m)/(q&), as selected before, we obtain

PR[u < qm - 6 log m] < e-Log2m/2q < 1/2m,

for sufficiently large m. Thus, Pr[xrl < l/m. We have

PR[Wu) > a log,,, m] = pa’ogl/pm = l/m”.

Thus,
qm-@logm

m/2

5 (e
-l,m” qm/2

1 7

226 AIITIYA AND SNIR

since 1 - x < ewx (for x > 01,

=e -(q/2)m’-=

< l/m

for sufficiently large m, since 1 - (Y > 0.
The probability that the event [IV(‘) > (Y log,,, m] occurs exactly k

times in the range qm - & log m < i < qm + 6 log m is equal to

(2G$m)($)k(1

It follows that

PI+&] = zc(21i;;;$m)(;)*(I - fji@lqmla

Since cr > 3, for sufficiently large m, 26 log m * m-” < 1, so that the
terms in the sum are decreasing. Thus, we can use the first term to
estimate the sum.

5 (2&G log m - c) (2~:Ogm)(-!..-)c(~ _ -!-)2fi'ogm~c

I 24% log m -
(26 log m)’ 1

.-
C! ma’

2 c+l

=-
C!

. m(1/2-a)c+1/2 . logc+l m

1

< -3
m

for sufficiently large m, provided that (i - cy>c + i < - 1, i.e., c > 3/(2cy
- 1). We take

3

c= 2lX-1 i I - +l.

We have proven

THEOREM 3.9. For each n there exists a deterministic synchronous input
collection algon’thm SIC,, for rings of size n that has average message
complexity -f&,(SIC,> = O(n).

BETTER COMPUTING ON THE ANONYMOUS RING 227

We can modify the deterministic input collection algorithm to obtain a
probabilistic input collection algorithm that has average message complex-
ity O(n): Select a random bit at each processor, and use these bits to
create labels in the first phase. Run the second phase as before. The
expected number of messages sent does not depend on the input, and
equals the average number of messages sent by the deterministic algo-
rithm. We obtain

THEOREM 3.10. For each n there exists an errorless probabilistic syn-
chronous input collection algorithm PSIC, for rings of size n that uses a
unique random bit per processor, and has expected message complexity on
any input -Z&(PSIC,) = O(n).

4. LOWER BOUNDS

As shown in the next subsection, linear lower bounds are easily derived
for nontrivial distributed computations. This implies that the linear syn-
chronous algorithms are optimal. We next derive an a(n log n) lower
bound on the average complexity of deterministic asynchronous algorithms
for “global” problems, such as XOR and orientation. The lower bound
makes use of a counting technique introduced by Bodlaender [7, Sect.
2.3.51, together with an adversary technique from [5].

A probabilistic algorithm that makes only fair coin tosses, and has a
fixed bound on the number of coin tosses, can be viewed as a process
whereby each processor first selects a random binary string of fixed length,
next runs a deterministic algorithm which uses both the original input and
the random string as input. We first show that an arbitrary probabilistic
algorithm can be transformed in an algorithm of the above form (with a
fixed number of coin tosses), with a small change in error probability and
message complexity. We can then derive lower bounds on the (worst case)
complexity of probabilistic algorithms from bounds on the (average) com-
plexity of deterministic algorithms.

4.1. Synchronous Algorithms

It is easy to see that a deterministic algorithm that computes a noncon-
stant function must use at least n/2 messages on the average; indeed,
either processors with input zero send messages before they receive any,
or processors with input one do so. In either case n/2 messages are sent,
on the average, on the first cycle. Let f be a nonconstant Boolean
function, and assume that f(crI, . . . , a,,- 1, 0) # f(ul, . . . , a;, _ 1, 1). Then, to
compute f correctly, each processor i, 1 5 i s n - 1, has to receive a
message either in the computation with input pi,. . . , a,- i, 0, or in the

228 ATTIYA AND SNIR

computation with input (pi, . . . , an _ i, 1 (otherwise it will halt with the same
output in both computations). An errorless probabilistic algorithm that
computes f sends at least (n - 1)/2 messages on one of these two inputs.
Thus, the synchronous upper bounds are optimal, up to a constant factor.

4.2. Deterministic Asynchronous Algorithms

Lower bounds for asynchronous computations are proven using as
adversary a suitable scheduler. We use a simple synchronizing scheduler
that keeps the computation as symmetric as possible. This scheduler
delivers messages in cycles. All processors start the execution at cycle one;
all messages sent at cycle i are received at cycle i + 1.

LEMMA 4.1. Under the synchronizing scheduler, the state of a processor
after i cycles depends only on its i-neighborhood.

If the algorithm is deterministic then each value of the neighborhood
determines a unique state for the processor. In a probabilistic algorithm
then the neighborhood determines the probability distribution for the
processor state.

DEFINITION 4.1. A function f defined on 2” is m-global if, for any
string (+ of length lgl < m, there exist two strings pi and T* such that
lril = 1~~1 = n, u appears cyclically both in pi and in r2, and f(T1) #

f(Q).
The function f is m-global if its value cannot be determined from the

values of < m consecutive inputs. The XOR function is n-global; its value
can not be determined from the value of less than n inputs. If f is an
m-global function computed on a ring, then the value of f can not be
determined from the value of a ([m/2J - l&neighborhood. More gener-
ally, we say that a computation problem is m-global if on any initial input,
the output at a processor cannot be determined from the value of a
([m/2] - l&neighborhood. We have

LEMMA 4.2. The orientation problem is (n/2)-global.

ProoJ Consider an input configuration (i.e., a sequence of orienta-
tions) O,, . . . , 0,; let m < n/2, and consider an initial configuration
o,, . . .) o,i7,, . . . , q, 1,. . .) 1. In this configuration processors [m/21 and
13m/21 have the same (m/4)-neighborhoods. However, they have distinct
orientations and, hence, different outputs. It follows that the output of
processor [m/21 is not determined by its (m/4)-neighborhood. The same
argument works for any processor. q

The proof of the following lemma is immediate from the definition of
the synchronizing adversary.

BEI-I-ER COMPUTING ON THE ANONYMOUS RING 229

LEMMA 4.3. Consider a computation of an algorithm under the synchro-
nizing scheduler. Zf no message is sent in that computation at cycle i, then no
transition occurs, and no message is sent at any cycle j, for j > i.

COROLLARY 4.4. Let JZ& be an asynchronous algorithm that solves an
m-global problem on rings of size n. Consider a computation of tin under
the synchronizing scheduler. Then a message is sent by some processor at
each cycle i, for i = 1, . . . , [m/Z].

Proof. If no message is sent at cycle i, then, by Lemma 4.3, no further
messages are sent, and no state transitions occur; the output of each
processor is its state at cycle i + 1, which is determined by its (i + l)-
neighborhood (by Lemma 4.1). This implies that i + 1 > [m/Z]. 0

Let JZ$ be an algorithm for rings of size n. Let S,&&,) be the set of
k-neighborhoods that cause a message to be generated by the processor
with that neighborhood at the kth cycle, when the algorithm JX$ is
executed with the synchronizing scheduler.

Our proof uses a counting argument similar to that used by Bodlaender
[7, Sect. 2.3.51 to show that the sets S,(&Q are large. However, since rings
are bidirectional, the set of neighborhoods initiating a message is not
closed under the prefix operation (as in the corresponding multisets in [7
or 161). Thus, a more delicate counting argument is needed.

THEOREM 4.5. Let tin be an asynchronous deterministic algorithm that
solves an m-global problem on rings of size n. Let u be a string of length k
that describes the configuration of k successive processors on a ring, where
k/n and k < m; let r be an integer such that 2r + 1 I k. Then S,(&Q
contains a string u’ which appears cyclically in u.

Proof Look at the configuration C = anlk. By Corollary 4.4, a mes-
sage is sent by some processor at each cycle r, r = 1,. . . , lk/Zj, of the
computation of J$~ on C under the synchronizing adversary. The r-
neighborhood of this processor is the required string. 0

COROLLARY 4.6. Let J$~, r, and k be as in the previous lemma. Lets be
the size of the input alphabet. Then

Proof. Each string of length 2r + 1 appears cyclically in at most
k~~-(~~+i) of the sk distinct strings of length k. The claim follows from the
previous lemma. 0

THEOREM 4.7. Let &n be an asynchronous deterministic algorithm
that solves an m-global problem on rings of size n. Let 1 = d, < d, <
d,< a-- < d, = n be the sequence of divisors of n, ordered in increasing

230

order. Then

A’ITIYA AND SNIR

Proof: Let u be a random input of length n. Let r be the r-neighbor-
hood of a fixed processor in u, where die r < 2r + 1 I di I m. According
to Corollary 4.6 (since there are s2r+1 strings of length 2r -k l),

Pr[r E S,(&,)J 2
(S 2r+1)/di 1

S2r+l = jjy’
1

Thus, the expected number of messages sent at cycle r on input (+ is
2 n/di, for 2r + 1 I di 5 m. The total expected number of messages is
obtained by summing

COROLLARY 4.8. Let n = 2k, then for any asynchronous a’etermkistic
algorithm &n solving an Cl(n)-globalproblem on rings of size n, dTawr<d~,> =
$2 log n - O(n).

proof. The numbers 2l, 22, . . . are all dividers of n. We obtain
log(m) 2i-1 _ 2i-2

<ver(ti) 2 n C 2i = in(log n + loge). q
i=l

Since XOR and orientation are n(n)-global, it follows:

COROLLARY 4.9. Let n = 2k, then for any asynchronous determin&ic
algorithm &m computing XOR or orientation on rings of size n, Cg,,,<d~>
= fn log n - O(n).

4.3. Probabilistic Algorithms

We assume henceforth that algorithms use a fixed, finite alphabet for
inputs, outputs, and messages (the size of the alphabet may depend on n,
the ring size). However, we do not restrict the number of processor states
to be finite. Also, probabilistic choices with infinitely many branches are
allowed. A probabilistic algorithm may execute finitely many steps, and yet
have infinitely many states, if infinitely branching probabilistic choices are
allowed. Also, a probabilistic algorithm may use finitely many states, have
finite (expected) complexity, and yet allow (with probability zero) for
infinite executions. We say that an algorithm is fiite if there is a fixed
upper bound on the number of processor states and on the number of

BETTER COMPUTING ON THE ANONYMOUS RING 231

transitions (this bound may depend on n). A probabilistic algorithm is
binary if all the transition probabilities are of the form p/24, for integer p
and q; each probabilistic choice can be made by tossing a fair coin a fried
number of times.

LEMMA 4.10. Let s& be a probabilistic asynchronous algorithm with
error probability E such that I?-@$> = c < 00. Then, for any 6 > 0, 5
can be replaced by a finite, binary probabilistic asynchronous algorithm &n
that has error probability I E + 6 and worst case complexity T??&&$ s
c + 6.

proof. We first take care that no processor execute more than a fiied
number L of transitions. We modify the algorithm so that after L
transitions a processor moves to a new “shutdown” state. A processor in
the shutdown state sends a shutdown message and halts in an arbitrary
state. Each processor, upon receiving a shutdown message, forwards the
message and halts in an arbitrary state. Since each transition is associated
with a message, the expected number of processors that execute L
transitions, and generate a shutdown message is no more than c/L; the
expected number of shutdown message transfers is at most nc/L.
The worst case complexity of the modified algorithm is at most c + nc/L.
The probability of error is at most E + c/L.

We next round transition probabilities to multiples of 1/2q, where q is
an integer to be defined later. This can be done so that no transition
probability is modified by more than 1/2q. Consider a fixed input I, and
schedule H. Assume that before rounding the algorithm executed with
probability a a sequence of transitions .7= T,, . . . , q, j < nL. Then, after
rounding, the algorithm executes the sequence F of transitions with
probability (Y’, where a(1 - 1/2q)j I a’ I (~(1 + l/2*)‘. Thus, the new
algorithm reaches a correct final state with probability at least (1 - E -
c/LX1 - l/2 1 , q L the expected total number of transitions is at most
(c + nc/LXl + l/2 q nL It follow that the error probability and the) .
expected complexity can be bounded by E + 6 and c + S, respectively, for
a suitable choice of q and L.

With the new algorithm each processor executes at most L transitions.
Each nonzero transition probability is 2 2-q. Thus, at most 2q distinct
states can be reached from any state. If there are m distinct initial states
(input values) then each processor can reach at most

m . i 24’ s my@+ 1)

i=l

distinct states. 0

232 A7TIYA AND SNIR

The transformation given in the last lemma maps an errorless proba-
bilistic algorithm into a finite, binary algorithm that has an arbitrarily
small, but nonzero error probability. However, if the original algorithm
always terminates (is deadlock-free) then the derived algorithm always
terminates.

Let J$~ be a finite, binary algorithm that always terminates. There is a
fixed upper bound on the number of probabilistic choices done by the
algorithm, and each can be replaced by a fixed number of coin tosses.
Therefore, we can replace an execution of .J$ by a computation whereby
each processor first chooses independently a random binary string of fixed
length q, next runs a deterministic algorithm JZ@ (with input set Z X
(0, lJq). The expected complexity of &n on an input a,, . . . , a, equals the
average complexity of J$~’ over all inputs a,~,, . . . , a,s,, si E IO, 1)“. If
tin has error probability E, then dnd yields the “correct” answer on a
fraction 2 1 - E of these inputs. Thus, we can obtain bounds on the
expected complexity of a probabilistic algorithm on one input from the
average complexity of a deterministic algorithm.

DEFINITION 4.2. A function f defined on 2” is m-global on input
u E C” if, for any string r of length 1~1 < m that appears cyclically in u,
there exists a string u’ E Z” such that T appears cyclically in u’ and
f(u) + fb’).

The function f is m-global on ~7 if its value cannot be determined from
the value of < m consecutive inputs, for the input assignment U. More
generally, we say that a computation problem is m-global on input u E Zn
if, on input u, the output at a processor cannot be determined from the
value of its (lm/2J - D-neighborhood.

A function that is m-global, is m-global on any input. Thus, the function
XOR is n-global on any input; the orientation problem is (n/2)-global on
any input. The AND function is n-global on the input configuration
1 , . . . , 1: The value of the AND function cannot be determined from the
values of m < IZ inputs, if these inputs happen to be all equal to one. Note
that any other input configuration contains at least one zero, which
determines the output value.

THEOREM 4.11. Let n = 2”. Let f be a Boolean function defined on
rings of size n that is a(n)-global on the input 1,. . . , 1. Let tin be a
probabilistic asynchronous algorithm that computes f with error E, and
always terminates. Then

-iTa;,,,, > $ log n - log log +&-
((ii &

- O(n).

BE’ITER COMPUTING ON THE ANONYMOUS RING 233

Proof By Lemma 4.10, it is sufficient to prove the claim in the case
where A$ is a finite, binary algorithm. Let tin’ be the deterministic
algorithm associated with G$, with input set IO, 11 x (0, llq. Let 2 = {O,llq.
Since the function f is R(n)-global there exists a constant c > 0 such that,
for sufficiently large II, cn consecutive inputs with value one do not
determine the value of f. Let k be an integer such that k/n and k s cn.
Let St E zk be the set of strings cr = pi,. . . , ffk such that a processor
with neighborhood l~i, . . . , la, halts after I [k/2] steps with output
zero, when the algorithm Mn,” is executed under the synchronizing sched-
uler. Let St be similarly defined, for output one, and let Sk = Sgk U Sf.
Let (Ye = lSk1/2kq be the fraction of strings of length k that are in Sk.
Then either l&I 2 ffk2qk-1, or IS,1 2 ak2qk-‘.

Assume that the former holds. Let a = a,, . . . , a, be an input, where
a1 = *** = UC” = 1, such that f(a) = 1. Then tin’ yields a wrong answer
on any input of the form ai(~i,. . . , a,,un, where pi,. . . 3 acn contains a
substring T E Sgk (some processor halts with output zero). The probability
that a randomly chosen string (pi, . . . , a,,, contains a substring from St is
at least.

Thus, we must have

1 - (1 - ak/2)cn’k-1 5 &,

which implies that

(Yk 5 2(1 - (1 - e)k’(cn-k)).

The same conclusion is drawn if IS,1 2 ~~~24~~‘.
Let u = 01,. . .) uk 4 Sk. Consider the execution of the algorithm tind

under the synchronizing scheduler, with input (la,, . . . ,l~,)“/~. Some
processor has not halted after [k/2] computation cycles, and the algorithm
always terminates. This implies that some message was sent at each of the
first [k/2] cycles. Define, as in Subsection 4.2, S,(Md> to be the set of
r-neighborhoods that cause a message to be sent at cycle r, when dnd is
executed under the synchronizing scheduler. If u = ui, . . . , a, E Sk, then
a string from S,(dnd) appears cyclically in u, for each r I tk - 1)/2. This
implies that, if 2r + 1 I k, then

lZk - PI
Is,(d:)l 2 k2q(k-2r-1) = (’ - at’

9w+ 1)

234 AlTlYA AND SNIR

Using the same argument as in the proof of Theorem 4.7, we obtain that
the average number of messages sent by the algorithm &I$’ on inputs of
the form lgr, . . . , la, is at least

logG3z)

c c

(1 - a,i)n n l”tbG

i=l 2’-‘<ks2’,kodd
2’

2 4 ,C (1 - a$)
I=1

2 a ‘032(1 _ 42’/h-2’) _ 1). (2)
t=l

Assume that

en log(4/3)

k s log(4/3) + log(l/(l - a)) = P*

Then

2(1 - E)k/cs-k - 1 2 f .

Thus, we can bound the sum in Eq. 2 by

The last theorem implies that a probabilistic algorithm that computes
the AND function, or the XOR function, on a ring of length n = 2”,
always terminates, and has error probability E, uses at least (n/8) * (log II
- loglog(2/(1 - E)) - O(1)) expected number of messages on the input
1 , . . . , 1. A similar argument shows that the lower bound holds for the
orientation problem. This implies that an errorless algorithm that solves
any of the problems AND, XOR, or orientation uses at least (n/8) * (log n
- O(1)) expected number of messages on a worst input.

The lower bound is fi(n log n), for error probability E < 1 - 2-An, A <
1. This is to be contrasted to the upper bound of O(n(1 + loglog(2/E)))
we obtained in Theorem 3.7, where deadlock was allowed. Thus, the
reduction in message complexity from O(n log n) to O(n) achieved by

BETIER COMPUTING ON THE ANONYMOUS RING 235

the Monte-Carlo algorithm of Theorem 3.7 is almost entirely due to the
acceptance of the possibility for deadlock. Indeed, that algorithm either
deadlocks, or yields the correct answer.

The lower bound of Theorem 4.11 is, essentially, optimal. Interestingly,
it is possible to compute any computable function with O(n) messages on
a ring of odd length n, with a probability of success n2-“, and no
deadlock. Let n = 2m + 1; in [6] it is shown that ring configurations of
the form (Ol)‘? can be recognized with O(n) messages by an asyn-
chronous algorithm. There are such ring configurations, and in each such
ring there are two “special” processors, where two consecutive ones occur.
This implies that two leaders can be elected on a ring of odd length n with
probability n2-“, by a finite asynchronous probabilistic algorithm that uses
O(n) messages, and never deadlocks. Such leaders can collect and dis-
tribute inputs using O(n) messages. It follows that we can run a finite
asynchronous, probabilistic input collection algorithm that never dead-
locks, succeeds with probability n2-“, and uses O(n) messages. Moran
and Warmuth [14] generalize this construction to strings of arbitrary size,
showing that a leader can be elected with probability n2-” using
Oh log* n) messages.

5. CONCLUDING REMARKS

We have shown in Theorem 3.5 that whenever there exists a string of
length less than log log n that determines the value of a function f, then f
can be computed in O(n log n) messages, on the average. On the other
hand, when the shortest such string has length cn, then the n log n lower
bound applies. This leaves an open gap between log log n and cn.

The algorithm presented in Theorem 3.7 can be used to find the
maximum in a labeled ring with error probability I E, in O(n) messages.
This would seem to contradict the a((1 - E>n log n) lower bound given by
Pachl [15] for this problem. However, our algorithm depends on n, the
ring size; the lower bound of Pa&l applies only to algorithms that do not
depend on n. Thus, our result in Theorem 3.7 together with the lower
bound of Pachl, show a provable gap in message complexity between
uniform distributed (probabilistic) algorithms and nonuniform ones.

Since input collection can be reduced to leader election, the lower
bound of Corollary 4.8 implies that any election algorithm that elects on
an asynchronous anonymous ring a constant average number of leaders
has message complexity a(n log n). The input collection algorithm can be
used to obtain matching upper bounds. Also, any Monte-Carlo algorithm
that does such election with probability at least 1 - E and always termi-
nates has message complexity n(n(log n - loglog(2/(1 - ~1))).

236 ATTIYA AND SNIR

The reduction technique from probabilistic algorithms to deterministic
ones is very simple, yet very powerful. For example, it is trivial to show,
using this method, that the 0(n log n) lower bound on the average
complexity of a deterministic asynchronous leader choosing algorithm [7,
10, 161 implies an CI(n log n) lower bound on the average complexity of an
errorless probabilistic asynchronous leader choosing algorithm.

The reduction of worst case analysis of probabilistic algorithms to
average case analysis of deterministic algorithms is similar to the analysis
used by Yao in [20]. Note, however, two important differences: We
consider only one probability distribution on inputs, namely that inputs
are equiprobable; and choices in a randomized algorithm are done inde-
pendently by each processor. This is the reason, for example, that the
average deterministic complexity of AND in the asynchronous model is
O(n), whereas the worst case complexity of a probabilistic asynchronous
algorithm is CI(n log n).

The bit complexity of the asynchronous input collection algorithm can
be improved by separating the leader election phase from the input
collection and distribution phase. We modify the leader election phase by
replacing the segment field of messages used in this phase by a counter
that encodes the length of the segment (the counter counts the number of
nodes traversed by the message). Each elected leader then sends a
message around the ring that first collects all input values, next distributes
them.

The labeling phase uses 12 messages of constant size, and each message
travels on the average a constant distance; the average bit complexity is
O(n). Input collection and distribution by one leader takes O(n2> bit
transfers (assuming binary inputs). The expected number of leaders partic-
ipating in this phase is constant, so that this phase has average bit
complexity O(n2). The expected distance traversed by a message in the
leader election phase is O(log n), so that the expected number of bit
transfers per message is O(log2 n); the average bit complexity of the
leader election phase is O(n log2 n). Thus, the algorithm uses O(n2) bit
transfers, on the average. Simple information transfer arguments show
that input collection requires fl(n2) bit transfers, on the average. Thus,
the modified algorithm has optimal average bit complexity. The number of
bit transfers is reduced to O(n log2 n) for functions such as XOR, orienta-
tion, SUM, etc., where it is sufficient to use messages of size O(log n) in
the input collection and distribution phase. Similarly, input collection can
be done probabilistically with O(n2) bit complexity, and XOR and orienta-
tion with O(n log2 n) bit complexity, in the worst case. [l] contains results
concerning the bit complexity of probabilistic algorithms for computing
various functions on the ring.

BETTER COMPUTING ON THE ANONYMOUS RING 237

Finally, note that the synchronizing scheduler we use to prove lower
bounds for asynchronous rings is very simple, and input independent; it
merely mimics a synchronous computation (compare with the complex
malicious scheduler used in [lo]). This scheduler keeps the computation as
symmetric as possible. Here, as in [51, the lower bounds reflect the cost of
breaking symmetry.

ACKNOWLEDGMENTS

The authors thank Michael Bettor, Larry Carter, Don Coppersmith, Rafi Hassin, Jan
Pachl, Prabhakar Raghavan, and Larry Stockmeyer for their useful suggestions. We also
thank the anonymous referees for their thorough work.

REFERENCES

1. K. ABRAHAMSON, A. ADLER, L. HIGHAM, AND D. KIRKPATRICK, Randomized function
evaluation on a ring, in “Proceedings, 2nd International Workshop on Distributed
Algorithms, Amsterdam, Netherlands, July 1987” (J. van Leeuwen, Ed.), pp. 324-331,
Lecture Notes in Computer Science, Vol. 312, Springer-Verlag, New York/Berlin, 1987.

2. K. Aa RAHAMSON, A. ADLER, L. HIGHAM, AND D. KIRKPATRICK, “Probabilistic Evaluation
of Common Function on Rings of Known Size,” Technical Report 88-15, Department of
Computer Science, University of British Columbia, Vancouver, BC, Canada, June 1988.

3. D. ANGLUIN, Local and global properties in networks of processors, in “Proceedings,
12th Annual ACM Symp. on Theory of Computing, 1980,” pp. 82-93.

4. D. ANGLUIN AND L. G. VALIANT, Fast probabilistic algorithms for Hamiltonian circuits
and matchings, J. Cornput. System Sci. 19 (19791, 155-193.

5. H. AITIYA, M. SNIR, AND M. WARMIJTH, Computing on the anonymous ring, J. Assoc.
Comput. Mach. 35, No. 4 (1988), 845-875.

6. H. AITIYA, M. SNIR, AND M. WARMUTH, “Computing on the Anonymous Ring,”
Technical Report UCSC-CRL-85-3, University of California Santa CNZ, Nov. 1985.

7. H. BODLAENDER, “Distributed Algorithms: Structure and Complexity,” Ph.D. thesis,
University of Utrecht, 1986.

8. H. CHERNOFF, A measure of asymptotic efficiency for tests of a hypothesis based on the
sum of observations, Ann. Math. Statist. 23 (19521, 493-509.

9. E. CHANG AND R. ROBERTS, An improved algorithm for decentralized extrema-finding in
circular configurations, Comm. ACM 22 (19791, 281-283.

10. P. DURIS AND 2. GALIL, Two lower bounds in asynchronous distributed computation, in
“Proceedings, 28th Annual IEEE Symposium on Foundations of Computer Science,
1987,” pp. 326-330.

11. P. ERDGS AND J. SPENCER, “Probabilistic Methods in Combinatorics,” Academic Press,
New York, 1974.

12. W. FELLER, “An Introduction to Probability Theory and Its Applications,” 3rd ed., Vol.
1, Wiley, New York, 1968.

13. L. HIGHAM, “Randomized Distributed Computing on Rings,” Ph.D. thesis, Department
of Computer Science, University of British Columbia, October 1988.

14. S. MORAN AND M. K. WARMTJTH, Gap theorems for distributed computation, in “Pro-
ceedings, 5th ACM Symposium on Principles of Distributed Computations, 1986,” pp.
141-150.

238 Al-l-IYA AND SNIR

15. J. PACHL, A lower bound for probabilistic distributed algorithm, J. Algoti0mr.r 8 (19871,
53-65.

16. J. PACHL, E. KORACH, AND D. ROTEM, A new technique for proving lower bounds for
distributed maximum-finding algorithms, J. Assoc. Compt. Much. 31(1984), pp. 905-918.

17. M. RABIN, N-process synchronization by 4 . log, N-valued shared variable, J. Compt.
System Sci. 25 (19821, 66-75.

18. P. RAGHAVAN, “Randomized Rounding and Discrete Ham-Sandwich Theorems: Prov-
ably Good Algorithms for Routing and Packing Problems,” Report UCB/CSD 87/312,
Computer Science Division, University of California Berkeley, July 1986.

19. V. SYROTIUK AND J. PACHL, Average complexity of a distributed orientation algorithm, in
“Proceedings, 2nd International Workshop on Distributed Algorithms, Amsterdam,
Netherlands, July 1987” (J. van Leeuwen, Ed.), pp. 332-336, Lecture Notes in Computer
Science, Vol. 312, Springer-Verlag, New York/Berlin, 1987.

20. A. C. YAO, Probabilistic computations: Toward a unified measure of complexity, in “18th
Annual Symposium on Foundations of Computer Science, 1977,” pp. 222-227.

