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We consider a bidirectional ring of n processors, where processors are anony- 
mous, i.e., are indistinguishable. In this model it is known that “most” functions (in 
particular XOR and orientation) have worst case message complexity @(n’) for 
asynchronous computations, and O(n log n) for synchronous computations. The 
average case behavior is different; an algorithm that computes XOR asyn- 
chronously with O(nA) messages on the average is known. In this paper we give 
tight bounds on the average complexity of various problems. We show the follow- 
ing: 

l An asynchronous deterministic algorithm that computes any computable 
function with O(n log n) messages, on the average (improving the O(nfi) algo- 
rithm). A matching lower bound is proven for functions such as XOR and 
orientation. 

. An asynchronous probabilistic algorithm that computes any computable 
function with O(n log n) expected messages on any input, using one random bit 
per processor. A matching lower bound is proven. 

l A Monte-Carlo asynchronous algorithm that computes any computable 
function with O(n) expected messages on any input, using one random bit per 
processor, with fixed error probability E > 0. 

*A preliminary version of this paper appeared in “Proceedings, 3rd Aegean Workshop on 
Computing, Corfu, Greece, June/July 1988” 0. Reif, Ed.), pp. 329-338, Lecture Notes in 
Computer Science, Vol. 319, Springer-Verlag, New York/Berlin. 

‘Supported by ONR Contract No. NOO14-85-K-0168, by NSF Contract No. CCR-8611442, 
and by DARPA Contract No. NOOO14-83-K-0125. Part of this work was done while this 
author was at the Department of Computer Science, Tel-Aviv University, Israel. 

204 
0196-6774/91 $3.00 
Copyright 0 1991 by Academic Press, Inc. 
All rights of reproduction in any form resewed. 



BETTER COMPUTING ON THE ANONYMOUS RING 205 

l A synchronous algorithm that computes any computable function optimally 
in O(n) messages, on the average. 

l A synchronous probabilistic algorithm that computes any computable func- 
tion optimally in O(n) expected messages on any input, using one random bit per 
processor. 

l Lower bounds on the complexity of Monte-Carlo algorithms that always 
terminate. 0 1991 Academic Press, Inc. 

1. INTR~DU~ION 

We consider a distributed network of n processors, with a ring topology. 
Each processor is connected by a bidirectional communication channel to 
each of its two neighbors. The processors are indistinguishable from each 
other, and all execute the same algorithm (anonymous ring). In the 
asynchronous model of computation message transfer time is arbitrary (but 
always finite). In the synchronous model of computation message transfer 
time is fixed, and all processors are synchronized. These models have been 
studied by many authors. They allow us to understand the effect of 
symmetry on the complexity of distributed computations. 

Attiya, Snir, and Warmuth [5] showed that deterministic algorithms for 
many problems in the asynchronous anonymous model require at least 
Q(n*> messages to be sent in the worst case; synchronous algorithms 
require fi(n log n> messages in the worst case. Two examples are the 
problem of computing the XOR of binary input values, and the problem of 
orienting a ring. Syrotiuk and Pachl [19] showed that this bound does not 
hold for the average case, and that these problems can be solved asyn- 
chronously with O(n\/lT) messages on the average (their algorithm is 
stated for the problem of orientation, but can be applied also for XOR). 

Here we show that this result is not optimal. We prove the following 
results: 

The most general problem, of collecting the input values, can be solved 
in the asynchronous model by a deterministic algorithm using O(n log n> 
messages on the average; it can be solved by a probabilistic algorithm that 
uses O(n log n) expected number of messages, on any input, with one 
random bit at each processor. 

A matching fi(n log n> lower bound on the average complexity is shown 
for “nonlocal” problems, where the answer is not determined by a short 
substring of the inputs (in particular, for XOR and orientation). The lower 
bound makes use of the counting technique introduced by Bodlaender [7] 
for the average complexity of leader election. However, it is necessary to 
combine this technique with a method of “forcing” the transmission of 
messages, similar to those introduced in [51. The lower bounds hold for 
bidirectional rings, with no assumptions on the algorithms. The algorithms 
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may be nonuniform, i.e., may depend on the ring size, IZ. The- same 
Q(n log n) lower bound holds for asynchronous probabilistic algorithms. 
This lower bound was proven independently by Abrahamson, Alder, 
Higham, and Kirkpatrick [2, 131. 

The input collection problem is solved on synchronous rings by an 
algorithm that uses O(n) messages, on the average. A probabilistic algo- 
rithm solves the input collection problem with O(n) expected number of 
messages on any input, using one random bit per processor. 

These results have several interesting aspects. First, we show again that 
synchronous models are more powerful than asynchronous ones. Next, we 
provide an example where probabilistic methods provably reduce complex- 
ity; a surprising small amount of randomization is sufficient to achieve this 
result. Finally, we show that the “bad” inputs that force the use of n* 
(resp. it log n) messages for deterministic asynchronous (resp. syn- 
chronous) algorithms are rare; these are input configurations with large 
amounts of symmetry [51. 

The expected performance of probabilistic algorithms on a worst input 
is the same as the average case performance of deterministic algorithms, 
for input collection, and other “global” problems. This does not hold for 
all problems: We show that the AND function can be computed by a 
deterministic asynchronous algorithm with O(n) messages, on the average, 
whereas any asynchronous probabilistic algorithm that computes AND 
requires fi(n log n) messages, in the worst case. 

Finally, we examine the Monte-Carlo asynchronous algorithms. If a 
probability E of error is tolerated, than the input collection problem can 
be solved with O(n(l + loglog(2/e))) expected number of messages on 
any input, which is linear for constant E. This implies that a leader can be 
elected in a labeled asynchronous ring with O(n) messages, and small, 
constant error probability E. The algorithm is nonuniform, and depends on 
IZ, the ring size. Interestingly, a lower bound of a((1 - e>n log n) was 
proven by Pachl [15] for uniform leader election algorithms (algorithms 
that work on rigs of unknown size). Thus, there is a provable gap between 
uniform and nonuniform Monte-Carlo leader election algorithms. 

A Monte-Carlo distributed algorithm may fail by deadlocking, or it may 
fail by arriving at a wrong answer. If deadlock is prohibited, then we show 
that any asynchronous algorithm that computes AND with probability of 
error at most E uses R(n(log n - log log(2/(1 - ~1))) messages, in the 
worst case; this is fl(n log n) as long as E < 1 - 2-“. Thus, the reduction 
in message complexity for Monte-Carlo distributed algorithms is almost 
entirely due to the acceptance of some probability of deadlock. 

The rest of this paper is organized as follows: In Section 2 we present 
the model and some preliminary results. Section 3 is dedicated to algo- 
rithms, for both the synchronous and the synchronous models. In Section 4 
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the lower bounds, for both models, are presented. We conclude, in Section 
5, with discussion of the results. 

2. DEFINITIONS 

2.1. Deterministic Algorithms 

Consider a system of n indistinguishable (anonymous) processors ar- 
ranged on a bidirectional ring. We number the processors 1,. . . , n, for 
convenience; however, this numbering is external and is not available to 
the processors themselves. 

Every processor i has two distinct links to its neighbors, left(i) and 
right(i). In an oriented ring we have left(i) = i - 1, and right(i) = i + 1. 
In a general ring the notions of “left” and “right” at different processors 
need not be consistent. We denote by Oi the orientation of processor i: 
Oi = 1 if right(i) = i + 1 (positive orientation), and Oi = 0 if right(i) = 
i - 1 (negative orientation). The value of Oi is not available to processor 
i; however, a processor may test if its orientation agrees with the orienta- 
tion of its neighbors: 

Oi = Oleft(i) if right( left( i)) = i. 

If processors may send messages on both communication links then the 
ring is bidirectional; an oriented ring in which processors may send 
messages only on one link (say right) is unidirectional. 

An algorithm specifies the behavior of each processor, modeled as a 
state machine. The initial state of a processor is its input value. The state 
of a processor when in a halting state is its output value. In the asyn- 
chronous model processor transitions are message driven. A processor that 
is not in a halting state receives one message at a time; when it receives a 
message it possibly sends messages left and right and moves to a new state. 
Messages on a channel are delivered in the order they are sent, after an 
arbitrary (finite) delay. The first transition at each processor is initiated by 
a conceptual “start” message. In the synchronous model processor transi- 
tions are clock driven. At each cycle, a processor that is not in a halting 
state accepts messages sent by its neighbors at the previous cycle (if any), 
possibly send messages to its neighbors and moves to a new state. 

We consider computation problems where inputs are from a finite 
alphabet, often binary; an output function fi of all the inputs is computed 
at each processor. If the initial input on the ring is I,, . . . , Z,, then 
processor i halts with output fi(Z,, . . . , I,). We usually assume all proces- 
sors compute the same function; e.g., all processors compute the XOR of 
the input values. A special case is the problem of orientation: We are 
given a bidirectional ring, unoriented (with null inputs); a consistent 
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orientation is desired. Formally, each processor i computes a binary 
output fi, such that fi = fi iff Oi = 0,. 

It is impossible to solve certain problems (for example, XOR, orienta- 
tion, and more) if the number of processors on the ring, the size of the 
ring, is unknown [5]. Hence, we assume a nonuniform model where a 
distinct algorithm may be used for each ring size n; we denote such 
algorithm by the subscript n. 

The complexity of a synchronous algorithm &$ on input I, &(G$, I) is 
the number of messages sent in the computation of the algorithm on input 
I. The (worst case) complexity of an algorithm L$ 6&,<&$>, is maximum 
of 4(&&, I) over all inputs I; this is the maximum number of messages 
sent in any computation. The average complexity, YQ,,<&$> is the average 
of &<J& I) over all inputs. Asynchronous algorithms are nondeterminis- 
tic; the computation may depend on the order of message arrival. We 
represent this by a scheduler. After each transition the scheduler selects 
the next message to be received. The complexity of an asynchronous 
algorithm tin on input I, %<G$ I) is the number of messages sent in a 
computation of the algorithm on input I, against a worst scheduler. 
4&J&,>, and Y&,(J$~> are defined as above. 

2.2. Probabilistic Algorithms 

Deterministic algorithms are modeled by deterministic automata: in each 
state, and for each arriving message, there is a unique successor state. A 
probabilistic algorithm is modeled by a probabilistic automaton: for each 
state and incoming message there are several possible transitions, each 
associated with a probability. Transitions are independent. 

A probabilistic algorithm solves a problem with error E if for any input 
there is a probability 2 1 - E that all processors halt with a correct 
answer to the problem. In particular, an errorless probabilistic algorithm 
always delivers the right answer. Note that a probabilistic algorithm may 
fail in two ways: it may terminate and deliver a wrong answer, or it may 
deadlock in a situation where there are no outstanding messages, but some 
processor has not yet halted. 

The complexity of an asynchronous probabilistic algorithm J$~ on input 
I, Z(J$~, I), is the expected number of messages sent against a worst 
scheduler. The worst case complexity of a probabilistic algorithm, 
T&&G(~), and the average case complexity Z&J&), are defined accord- 
ingly. The definition for synchronous algorithms is obvious. 

2.3. Notation 

Define the k-neighborhood of processor i to be the concatenation of the 
input values and orientations of the processors at most k apart from 
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processor i, relative to the orientation of i. This neighborhood is defined 
by the string of length 2k + 1 (Oi+Zi+>, . . . , (Oi+kZj+k). Since the neigh- 
borhood is defined relative to the orientation of processor i, the string 
<aj+kzi+k)y * * * > (oii-kli-k) (i.e., the string obtained by reversing inputs 
and inversing all orientations) defines the same neighborhood (all indices 
are taken modulo n). 

The [n/2]-neighborhood of a processor contains information on the 
entire ring configuration, relative to the location and orientation of the 
processor; this is the mosr general inform&on about the ring a processor 
may acquire. For example, in a deterministic synchronous computation, 
the output of a processor depends only on its [n/2]-neighborhood. This 
implies that a function can be computed deterministically if and only if the 
output of processor i is a function of its ln/2]-neighborhood. Thus, the 
most general problem is that of computing for each processor its [n/2]- 
neighborhood. We call this the input collection problem. An algorithm that 
solves the input collection problem can be used to solve any problem that 
can be computed deterministically on a ring. We present such algorithm in 
the next section. 

We denote by la] the length of a string CT. We say that o appears 
cyclically in T if c+ is the prefix of some cyclic shift of T. For example, if i 
and j are two processors on a ring size n then the k-neighborhood of 
processor i appears cyclically in the [n/2]-neighborhood of processor j, 
for any k I [n/21. 

3. UPPER BOUNDS 

3.1. Asynchronous Input Collection Algorithm 

Syrotiuk and Pachl [19] presented a deterministic asynchronous algo- 
rithm, solving the orientation problem using O(n6) messages on the 
average. Here we show that their algorithm is not optimal, and that there 
exists a deterministic asynchronous input collection algorithm using 
O(n log n) messages, on the average. 

3.1.1. Informal Description 

For simplicity of description and analysis we first assume the ring to be 
unidirectional, and the input alphabet to be binary; the modifications 
required for the general case are described later. 

The input collection problem can be solved with O(n) messages once a 
Ieader has been elected on the ring: The leader initiates a message that 
circles the ring, first collecting all inputs, next distributing them to all 
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processors. We shall solve the input collection problem this way, first 
running a leader election process. 

It is not always possible to elect a unique leader on an anonymous ring; 
if the ring is symmetric; e.g., if all processors have the same initial state, 
then this symmetry cannot be broken by a deterministic algorithm [3]. 
However, it is not essential for our purposes that a unique leader be 
elected. The algorithm is still correct if several leaders are elected; each of 
the elected leaders will distribute the inputs independently. We shall 
exhibit a leader election algorithm that ends by electing a constant number 
of leaders, on the average. 

The leader election algorithm resembles the algorithm of Chang and 
Roberts [9]. This algorithm selects the processor with maximum id in a 
ring where processors have distinct ids. In this algorithm, each processor 
creates a message that travels around the ring, carrying its originator’s id, 
until it “meets” a processor with a larger id. In the worst case at most 
O(n*> messages are sent during the computation. However, a message 
carrying the kth largest id travels average distance n/k. Altogether, 
nH, = Oh log n) messages are sent on the average (ZZ, is the sum of the 
harmonic series with n elements). 

In our model processors are identical; before the leader election algo- 
rithm can be run, ids must be computed. We label each processor by the 
number of consecutive ones to its left. Not all processes end up with 
distinct labels; we show that the expected number of processors with 
maximum labels is constant, and that the distribution of labels to proces- 
sor still guarantees that the election process takes O(n log n) messages, on 
the average. 

Thus, the algorithm consists of three conceptual phases: 

1. Labeling. 
2. Leader electron. 

3. Input collection and distribution. 

The actual algorithm given below combines phases two and three together: 
Inputs are collected by the messages used for leader election. 

3.1.2. Co& for the Algorithm 

The algorithm uses the following variables (at each processor): 

INPUT-Input value of the processor. 
LABEL-Label created for this processor. 

A message sent by the algorithm at the first phase consists of the 
Boolean input of the processor that initiated the message. A message sent 
at the second phase of the algorithm consists of a pair (LABEZJEG), 
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Algorithm for processor i 
{ First phase - label creation } 
LABEL := 0; 
send INPUT to right; 
repeat forever 

receive L from left; 
LABEL := LABEL + L; 
if LABEL = n then break; 
if INPUT = 1 then send L to right; 
if L = 0 then break 

end; 

{ Second phase - leader election and input collection ) 
send (LABEL, INPUT) to right; 
repeat forever 

receive (L, SEG) from left; 
if ISEGl = n then 
begin 

send (L, shift(SEG)) to right; 
break 

end; 
if L 2 LABEL then 

send (L, SEG . INPUT) to right 
{ else message ie not forwarded } 

end. 

FIG. 1. Asynchronous input collection algorithm. 

where LABEL is the label of the processor that initiated the message, and 
SEG is a binary string obtained by concatenating the inputs on the ring 
segment traversed by the message. 

The algorithm is described in Fig. 1; u * 7 is the string obtained by 
concatenating u and r; shift(cr) is the function that shifts the string CJ 
cyclically one position to the right. 

3.1.3. Correctness 

First phase. The following claim is easily proven, by induction on j: If 
there are j ones to the left of a processor, followed by a zero, then this 
processor will receive j one messages, followed by a zero message; the 
final value of LABEL, is j. If the ring contains only ones then each 
processor will send II one messages, receive n one messages, receive IZ one 
messages, and halt with LABEL = n. Thus each processor exits the first 
phase with LABEL being equal to the number of consecutive ones to the 
left of the processor. 
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Second phase. We say that a message is full it if has a segment of 
length IZ. It is easy to prove by induction that the successive messages sent 
by a processor have segments of increasing length, up to length n. Let L, 
be the maximum label. If a message (La, SEG), with ISEGI = j < IZ, is 
sent to a processor, then this processor has not yet received a full message, 
and has not halted; this processor receives the message and forwards it 
with a segment of length j + 1. It follows that a message with label L, is 
forwarded until it is full; this implies that at least one processor receives a 
full message and halts. A processor halts after it forwards a full message; 
hence if a processor halts then the next processor on the ring receives a 
full message and halts, too. Thus, all processors halt. 

When processor i receives a full message (L,SEG) then SEG is the 
concatenation of the inputs at processors i, i + 1,. . . , IZ, 1,. . . , i - 1. This 
holds true when a message returns to the processor that initiated it, and 
stays true at later processors, since SEG is shifted. 

If the ring is bidirectional and unoriented, one runs two versions of the 
algorithm in parallel, one in each direction. In addition to its input, a 
processor also depends to a collection message a bit that indicates what 
port the message is sent from. A processor halts after it has received and 
forwarded a full message in each direction. It is still the case that each 
processor i receives a message describing the ring configuration, i.e., the 
input and orientation of every processor, relative to the location and 
orientation of processor i. The average message complexity of the algo- 
rithm at most doubles. 

3.1.4. Extensions 

If the input alphabet has size s > 2, then we use a fixed encoding to 
assign a binary value to each letter (e.g., assume that that alphabet is 
0.l . . * , s - 11, then the ith letter of the alphabet is assigned value i mod 2). 
These binary values are used in the first phase of the algorithm to 
generate labels; in the second phase, the entire input is transferred. Note 
that if s is odd then zero and one are not equally likely to appear: A 
binary value of zero occurs with probability [s/21/s, and a value of one 
occurs with probability [s/21/s. 

If the problem has no binary inputs, such as for orientation, then one 
can use the relative orientation of the processors to create binary values. 
We set INPUT to one if the two neighbors of processor i have distinct 
orientations, to zero otherwise; i.e., 

INPUT, = Oi_1 Q Oi+l. 

We have 

Oi+I = INPUT @ Oipl, i=2 ,...,n - 1, 
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so that 

where (Y = 1 if i is odd, (Y = 2 if i is even. Fix the values of 0, and 0,; 
the last identities define a one-to-one correspondence between the 
values of O,, . . . , 0, and the values of INPUT,, . . . , INPUT,,-,. Thus, if 
each orientation is equally likely to occur, then the tuple INPUT,, . . . , IN- 
PUT’-, is equally likely to assume each of the 2”-* possible values. By 
symmetry, this holds true for any n - 2 consecutive locations. 

Note, however, that not every binary configuration is obtained. An 
orientation cannot be distinguished from its mirror image by a distributed 
computation, so that the 2” orientations can map into at most 2”-’ input 
configurations. In fact, if n is odd then only configurations with an even 
number of ones are created, each with probability 2”- ‘; if n is even, then 
only a configuration with an even number of ones at the odd-numbered 
processors, and an even number of ones at the even-numbered processors, 
are created. 

The algorithm described above does not “clean up” the ring: Messages 
not received may be left on the ring; this can be avoided while increasing 
the message complexity by at most a constant factor. Each “winning” 
message in the election algorithm performs one more full circle; all 
processors can count the number of winners. A processor halts at the next 
round after it has received that many input collection messages. 

3.15 The Average Number of Messages 

We shall use in our analysis the following combinatorial result. 

THEOREM 3.1. Let o = ul, . . . , uk be a binary string. Let x1, x2, . . . be 
a sequence of independent binary random variables, that are one with 
probability p and zero with probability q = 1 - p. Let W(a) be the waiting 
time until the pattern cr occurs in the sequence x1, x2, . . . : 

W(u) = min{i : xiek+r = ui,. . . , xi = uk}. 

Let pi be the probability of a match on the ith letter of the pattern u: pi = p 
if ai = 1, pi = q if ai = 0. Then 

E(W(u)) I ; + 
1 1 

~ . ..+ + 
I)k-1Pk P1 .‘. Pk’ 

Equality obtained only when u = Ok or u = lk. In the former case we obtain 

E(W(Ok)) = 5, 
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and in the latter case, 

@V(P)) = J-$. 

proof. Define the following discrete process, with k + 1 states 
SO,. . . ) Sk. The initial state is so = So. If si-i = S’-’ and xi = a, then 
si = S’; otherwise si = So. This process corresponds to a pattern matching 
algorithm that searches for the pattern (+ in the string xi, x2,. . . , without 
backtracking. If a mismatch occurs, then pattern matching restarts at the 
next position in the string, with the first letter of the pattern. State Sk is 
reached only if an occurrence of the string u is found: If si = Sk then 
xi = u&xi-l = f,k-I,..., Xi-k+1 = (+I. Let wi be the expected waiting 
time until state S’ is reached for the first time. Then 

E(W((T)) 2 wk. 

The process just defined is a Markov process; when in state S’- ’ a 
transition to state S’ occurs with probability pi, and a transition to state So 
occurs with probability 1 - pi. The waiting times fulfill the following 
equations: 

wo = 0; 

wi = Wiel + 1 + (1 -p&vi, i= 1,2 ,***, k. 

The equations are rewritten as 

w. = 0; 

wi-l + 1 
wi = 

Pi ’ 
i= 1,2 ,---7 k. 

We obtain the solution 

1 
WI=--, 

PI 

1 +P1 
w* = - 

PIP2 

1 1 1 
=-+ ~ . ..+ + 

I)k pk-1Pk PI -” Pk 
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Assume that u1 # ui, for some 1 < i I k. Then the nonbacktracking 
pattern matching process will fail to detect an occurrence of the pattern u 
in the string 

- 
a, *** ui-luiuz -” a, = u1 **’ ui-lu,u, “* a,. 

This implies a strict inequality E(W(u)) < wk. conversely, the nonback- 
tracking pattern matching process detects all occurrences of a pattern Ok 
or lk, and equality EW(u)) = wk holds. (If a 0 is found while searching 
for the pattern lk, then search for the full pattern should start anew from 
the next position in the string.) Substituting pi = p we obtain that 

E(W(1”)) = z$I -$ = 1 -pk 
(1 - P)Pk - 

The result for E(W(ok)) is obtained by substituting pi = q. q 

Note that W(lk> is the waiting time for k consecutive successes in a 
sequence of Bernoulli trials. A derivation of the expectation of this waiting 
time can be found in [12, XIII. 7, Eq. (7.711. Let r = min(p, q). Then, 
since pi 2 r, 

We thus obtain 

COROLLARY 3.2. For any pattern u of Zength k, 

If p < 3 then the pattern lk is the (unique) “worst case” pattern, with 
maximal waiting time; if p > +, then Ok is the unique worst case pattern. 

We shall analyze the algorithms under assumptions that subsume the 
various modifications introduced at the end of the last section. We assume 
that INPUT,, . . . , ZNPF? are O-l valued random variables; INPUT has 
value one with probability p, where 5 5 p I f, and value zero with 
probability q = 1 - p; and any n - 2 consecutive random variables IN- 
PUTJNPUl-i,l,. . . , INPUq-, are independent. The assumption about p 
covers the case of non-binary alphabet, while the independence assump- 
tion allows us to treat the orientation problem. 

First phase. A message initiated in the first phase is forwarded until it 
encounters a zero on the ring, or until it has done a full circle, if there are 
no zeros on the ring. Thus, the expected distance traversed by such 
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message is bounded by 

E(W(O)lW(O) I n - 2) . PR[W(O) I n - 21 + n * Pr[W(O) > n - 21 

I E(W(0)) + 1 

1 
=-+1 

4 

I 3. 
Since exactly n messages are initiated in the first phase, it follows that the 
expected number of messages transmitted in this phase is I 3n. 

Second phase. Let LABEL, be the label created for processor i, and 
let Xi be the number of times the message sent by processor i is 
forwarded in this phase. Assume that LABEL, = k - 1. If k consecutive 
ones occur at locations j - k, . . . , j - 1, then LABELi 2 k and processor 
j does not forward the message initiated by processor i. A processor halts 
after receiving a message of length n; hence, no message is forwarded 
more than 2n - 1 times. It follows, by Lemma 3.1, that for 1 I k I 
hi! (I/& 

E(X,ILABEL, = k - 1) < E(W(lk)) + (2n - 1) 

* PR[ W( lk) r n - k - 21 

E(Wlk)) 
s Jwwk)) + (2n - 1) n _ k _ 2 

2n - 1 

n-k-2 

1 -pk 
14- 

wk ’ 

for n > 8. Summing up over all the values of LABEL,, we obtain that 

‘og WPP 
E( Xi) < C E( XilLABELi = k - 1) . PR[ LABELi = k - l] 

k=l 

+ (2n - 1) * PR[ LABEL, 2 logo,p, n] 

‘og (l/P)” 
5 C 4 . 9 * qpk-’ + (2n - 1) *p’“W,)n 

k=l 

4 2n - 1 
< - log(l,p) n + ~ 

P n 

<Slogn+2. 



BETTER COMPUTING ON THE ANONYMOUS RING 217 

Since exactly n messages are initiated at this phase, it follows that the 
average number of messages transmitted is O(n log n). 

The last result implies, in particular, that the expected number of 
leaders selected in -this phase (defined as the number of messages that 
make a full circle) is O(log n). We show in Theorem 3.8, by a more 
accurate analysis, that this number is constant. 

We sum up the results of this section in the following theorem. 

THEOREM 3.3. For any n there exists a deterministic input collection 
algorithm IC,, that works on the asynchronous anonymous ring of size n, 
and has average complexity &&,(IC,) = U(n log n). 

3.2. AND and Other Problems 

The last theorem shows that any computable function can be computed 
with O(n log n> messages, on the average. In Section 4.2 we show that this 
result is optimal for problems such as XOR or orientation. For some other 
problems one can do better. 

THEOREM 3.4. For each n there is an asynchronous algorithm AND,, 
that computes the AND of n inputs on an anonymous ring of length n, with 
an average number of messages -Ga&4ND,) = O(n). 

.proof. Each processor starts by sending to its right and left a message 
with its input value, and count one. Afterwards, it forwards the messages it 
receives, incrementing their count. A processor halts with output zero 
after it has sent a zero message; it halts with output one if it receives back 
a one message with count n (i.e., a one message that made a full circle). It 
is easy to check that the algorithm computes AND correctly. The expected 
distance traversed by a message is I E(W(0)) = l/q I 2. Thus, the 
expected number of messages transmitted is linear. 0 

It is easy to see that this result is optimal (see Section 4.1). A similar 
algorithm can be used to compute any function whose value is determined 
by a small prefix. Let f: 2” --) Z be a shift invariant function. Let u be a 
string of length k that determines the value of f, i.e., f(a * T~) = f(a - ~~1, 
for any strings r1 and 72 of length n - k (the string 0 plays this role for 
the AND function). We have 

THEOREM 3.5. The junction f can be computed asynchronously on an 
oriented ring with O(n3k) messages, on the average. 

Proof Each processor starts by sending an “input collection” message 
to its right; afterwards, it forwards messages it receives. Messages carry the 
input values of the processors they traversed. A processor halts after it 
forwards a message containing the substring (+, or when it receives a 
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message of length n, that has made a full circle. In each case, the 
processor can compute the function value when it halts. 

The expected distance traversed by a message is equal to the expected 
waiting time for an occurrence of g in a random string. By Corollary 3.2, 

1 1 since gIp 5 T, 

3(3k - 1) 
E(W(a)) 4 E(W(lk)) I (llI$, 2 2 . 0 

A similar algorithm works for nonoriented rings (we require then that f 
be invariant under shifts and reversals; this is a necessary condition for f 
to be computable on nonoriented, anonymous rings [5]). The AND algo- 
rithm is a particular case, for k = 1. 

3.3. Asynchronous Probabilistic Algorithms 

The deterministic input collection algorithm can be easily modified to 
yield a probabilistic algorithm, that solves the input collection problem in 
O(n log n) expected number of messages, on any input: Select a random 
bit at each processor, and use this bit to build labels. The expected 
number of messages sent by this algorithm does not depend on the input, 
and equals the average number of messages sent by the input collection 
algorithm of Section 3.1. We obtain: 

THEOREM 3.6, For any n there exists an errorless probabilistic input 
collection algorithm PIC, for asynchronous rings of size n that uses on any 
input an expected number of messages zmax(PIC,> = U(n log n>. This algo- 
rithm uses a unique random bit at each processor. 

Thus, any solvable problem can be solved on an asynchronous anony- 
mous ring with O(n log n) expected messages, using a unique random bit 
at each processor. In Section 4.3 we show this result is optimal for 
problems such as AND, XOR, and orientation. On the other hand, if a 
positive error probability is tolerated, then the expected number of mes- 
sages can be reduced to O(n). 

THEOREM 3.7. For any n and E, such that 0 < E < 1 and n > 
16 ln(2/&) + 2, there exists an asynchronous probabilistic input collection 
algorithm EPIC,, E for rings of size n that has error probability I e and 
expected number of messages &,,(EPIC,, Ej I n(12 + 2 log log(2/&)) on 
any input. 

Proof We use the same input collection algorithm as in Section 3.1, 
with one change: Let p be the probability of occurrence of 1 on the ring 
(f I p I i). Only processors with labels 2 A log,,, (n - 2) participate in 
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the leader election and input collection phase; A = A(n, q, E) is a constant 
that will be defined later. As shown in Subsection 3.1.5, the expected 
number of messages sent in the first phase is I 3n. The algorithm 
succeeds if some processor participates. We have to show that the proba- 
bility that no processor participates is at most E, and that the expected 
number of messages sent in the second phase is s n(9 + 21oglog(2/~)). 

We first show that the probability that no processor participates is at 
most E. Let M = n - 2. Let 5 be the number of zeroes in the first m 
locations on the ring, and let m,, m2,. . . , m6. be the successive locations of 
these zeroes. Let X, = m, and Xi = mi - miml, for i = 2,. . . ,l. The 
label of processor mi is 2 Xi (the label of processor m, is equal to Xi, if 
i > 1). Thus, it is sufficient to show that, with probability 2 1 - E, 

maxX, > A log,,, m. 
lS1 

A random process with the same distribution can be defined as follows. 
Let W be the waiting time for a zero in a sequence of Bernoulli trials with 
probability p of one and probability q = (1 - p) of zero. Let W(l), WC’), . . . 
be a sequence of independent random variables, equidistributed as W. Let 

v=max j:CW(‘)Im 
1 

. 
isj 1 

Then W(l), . . . , WC”) are distributed as X,, . . . , X,. Moreover, v is dis- 
tributed as the number of zeroes in a sequence of m Bernoulli trials. We 
have 

PR max W@) > h log 
i<v 

l,p m 2 Pr 1 [ max Wci) > A logI,p m 
i smq/2 I 

Raghavan [18] derives the following estimate for the lower tail of a 
Bernoulli distribution, using Chernoff’s method [8]: 

PR[ v - mq < - ymq] < e-yzmq’2. (1) 

Taking y = i, since q 2 4, it follows that 

PR v < 7 < e-m‘J/8 < eern/16. 
[ I 
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Thus, since m > 161n(2/~), 

On the other hand, 

pR[ W(i) > A log,,, m] = ph’ogl/Pm = meA 

and 

PR max IV(‘) > A log VP m  
3 

= 1 - (1 - m-“)mq’2* 

15-G 

Choosing 

* = _ lo& - w2)2’mq) 

log m 
= -,,,,(l - (;,““‘), 

we have that 

(1 - m-“)mq’2 = ~/2, 

PR max W”) > A log 
l/P m  

I 

= 1 - E/2. 
isnap/ 

Thus, the probability that the algorithm succeeds is at least 1 - E. 
The expected number of messages sent in the second phase is estimated 

as in Section 3.1.5. Let x be the number of times the messages initiated 
by processor i is forwarded, then 

h31,, m 
E(K) < c E(~lLABEL, = k - 1) . Pr[ LABEL, = k - l] 

k=AlogI,,m 

+(2m + l)Pr[LM?ELi > log,,, m] 

k-1 + (2m + 1) * p’“gl/Pm by Lemma 3.1, 

(1 - h)log,,p m 2m + 1 
< +- 

P m 

< 3(1 - h)log m + 2.5. 

We have 

m-* = 1 - (E/2)2/mps 
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Note that for x > 1, 

1 - l/x < In x. 

Substituting x = (2/~)~/“~, we obtain 

Thus, 

E( Y;:) < 3(1 - h)log m + 2.5 

< 3 log ( 2 In 2 I + 2.5 
P 6 

< 9 + 3 log log( 2/E). 

3.4. Synchronous Algorithms-Input Collection 

The asynchronous input collection had three phases; 

1. labeling; 

2. leader election; and 

3. input collection and distribution. 

The first phase requires a linear number of messages, on the average. A 
more accurate analysis of the leader election process shows that a constant 
number of leaders are elected on the average; hence, the third phase 
takes, too, a linear number of messages, on the average. It is only the 
second, the leader election phase, that requires fi(n log n) messages. 
However, this phase can be avoided altogether in the synchronous model: 
We divide the input collection and distribution phase into n + 1 sub- 
spaces; at subspace i, which takes 2n cycles, only processors with label 
n + 1 - i collect and distribute inputs. The algorithm stops as soon as a 
subspace with active processors occurs. Thus, only leaders collect and 
distribute inputs. 

3.4.1. Code for the Algorithm 

We describe the algorithm for unidirectional, oriented rings, with binary 
inputs. The algorithm is extended to nonoriented rings, and used to solve 
the orientation problem, as in the asynchronous case. The algorithm is 
described in Fig. 2. 
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Algorithm for processor i 
{ First Phase } 
LABEL := 0; 
if INPUT = 1 then send message to right; 
for j := 1 to n do 

if received message from left then 
begin 

LABEL := LABEL + 1; 
if INPUT = 1 then send message to right 

end; 

{ Second Phsee } 
for i := n downto 0 do begin 

if LABEL = i then aend INPUT to right; 
for j := 1 to 2~ - 1 do 

if received message M then 
if Ih-iI < n then send INPUT - M to right 
else begin {IMI = n } 

send shift(M) to right; 
halt 

end 
end. 

FIG. 2. Synchronous input collection algorithm. 

3.4.2. Analysis 

The correctness of the algorithm is now obvious. The total number of 
cycles used by it is at most 2n*. We shall show now that the expected 
number of messages sent is linear. The first phase is essentially identical to 
the first phase of the asynchronous input collection algorithm; the ex- 
pected number of messages sent is O(n). 

A message is forwarded in the second phase at most 2n - 1 times; we 
have to show that the expected number of messages initiated in this phase 
is constant. In order to do so we need the following lemma. 

LEMMA 3.8. Consider n independent sequences of Bernoulli trials, each 
with probability p for one (and probability q = 1 - p for zero). Let W(j), i = 
1 ,‘.., n be the waiting time for the first zero in sequence i. Let M,, be the 
number of sequences where the waiting time is maximum, i.e., 

Then 

M n = i . WC’) = ma w(j) 
I( . 1 sjsn 

E(wJ 5 l/P* 
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Proof. Rabin proves in [17] that Pr[M, > 11 < f , for p = 0.5; we use a 
similar technique to bound the expectation, for any p. 

Assume k ones occur in the first round (this happens with probability 
n 

0 kq n-kpk). If k = 0 then M,, = n; otherwise k sequences continue to 
wait for zero. This implies the recurrence relation 

E(it!f,) = ,tif + f: (“k)q”-*p’E( &)a 
k=l 

We have E(M,) = 1, so that the above formula simplifies to 

E(“~) = w” + w”-‘P + kc2 (;)q”-‘p’E(&) 

= &f-l + kk2 ( ;2k)q”-kpkE( itfk) 

Thus, 

E(M,) = mf-' "-kpkE(Mk) /(l -$2"). 

Assume, by induction, that EW,) I l/g, for 1 < i < n, then 

n-kpk /( 1 - p”) 

P nq”-‘+ 
( 

$(l - q” - w-‘p -P”> /Cl -P") 
1 

1 4” =-- 
P PC1 -P”) 

1 
< -. cl 

P 

In order to cover the various extensions to the algorithm, me assume, as 
in the proof of Lemma 3.1, that INPUT,, . . . , INPUT, are O-l valued 
random variables; that INPUTi has value one with probability p, where 
5 s p s i, and value zero with probability q = 1 - p; and that any n - 2 
consecutive random variables ZNPWi, ZNPUTi+l,. . . , INPUTi-, are inde- 
pendent. As in the asynchronous case, the assumption about p allows us 
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to cover the case of non-binary alphabet, while the independence assump- 
tion allows us to treat the orientation problem. 

The total number of messages initiated in the second phase is at most n. 
The probability that the ring contains only ones is 2-“. This case con- 
tributes n2-” = O(1) to the expected number of messages initiated. Oth- 
erwise, the expected number of messages initiated equals the expected 
number of maximal length strings of consecutive ones. Let rn = n - 2. Let 
5 be the number of zeroes in locations 1,. . . , m on the ring; let 
ml, m2,. . . , ml be the location of these zeroes; let Xi = m, and Xi = 
m, - rniel, i = 2,. . . ,l. Let 

It is sufficient, for our purposes, to show that E(Maw) = O(1). The 
problem can be restated as follows. Define IV”‘, WC2’, . . . to be a se- 
quence of independent, identically distributed random variables; WCi) is 
distributed as the waiting time for a zero in a sequence of Bernoulli trials 
with probability p for one (and probability q = 1 - p for zero). Let 

> 
. 

Let 

Mk= j:W(j)= 
II 

qxx w(j) 
)I 

. 

Then the random variable M,, has the same distribution as Max. 
To estimate the expectation of M, we show that v is highly likely to be 

in an interval of size 2fi log m around qm. Let w  be the maximal value 
of WC’), for 1 I i I qm - 6 log m. We show that it is highly likely that 
the value of W@) equals or exceeds w  at most a constant number of times 
in the interval for qm - 6 log m < i < qm + & log m. This implies 
that it is highly likely that M,, the number of maxima in the range 
1 5 i I v is larger by at most a constant term than Mm4- F,og m, the 
number of maxima in the fixed range 1 s i I mq - & log m. We can 
then use Lemma 3.8 to show that the expected number of such maxima is 
constant. 

Let (Y be a constant in the range $ < (Y < 1; let c be a constant integer, 
to be defined later. Define the following events: 

A,=[qm--~logm<v<qm+~logm]; 

A2 = [m~j,,,- filog,Wci) > a log,,, ml; 
A, = [lG:qm - ~logm <i <qm + Glogm 

and Wci) > a log,,, m)l I c]. 
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Let A = A, n A, n A,. If A occurs then at most c values of Wti), for 
qm - 61 log m < i I V, equal or exceed the maximal value of W@), 
for i in the range 1 5 i I qm - 6 log m. Thus, if A occurs, then M, < 
M qm _ F ,Og m + c. Since M, I n, it follows that 

E(K) 5 E(Mqm-lli;r,ogm) + c + 41 - PWl). 

BY h=a 3.8, HM,, - Flog m ) I l/p 5 3. We shall be proving that 

PR[Ai] 2 1 - ;, for i = 1,2,3. 

This implies that Pr[A] 2 1 - 3/m and 

E( M,) I 3 + n * -& + c = O(1). 

The random variable v is distributed as the number of zeroes in a 
sequence of m independent trials, each with probability of success p. We 
use the Chernoff type estimate from 141 to bound the probability of the 
distribution tail. We have ([4, Proposition 2.4(b)], see also [ll, p. 1711, 

PR[v - qm 2 yqm] I e-qmy2/3, for75 1. 

Setting y = (log m>/(q&) we obtain that 

PR[IJ > qm + 6 log m] I e-‘og2m/3q < 1/2m, 

for sufficiently large m. For the lower tail we use the estimate given in Eq. 
(1). For y = (log m)/(q&), as selected before, we obtain 

PR[u < qm - 6 log m] < e-Log2m/2q < 1/2m, 

for sufficiently large m. Thus, Pr[xrl < l/m. We have 

PR[ Wu) > a log,,, m] = pa’ogl/pm = l/m”. 

Thus, 
qm-@logm 

m/2 

5 (e 
-l,m” qm/2 

1 7 
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since 1 - x < ewx (for x > 01, 

=e -(q/2)m’-= 

< l/m 

for sufficiently large m, since 1 - (Y > 0. 
The probability that the event [IV(‘) > (Y log,,, m] occurs exactly k 

times in the range qm - & log m < i < qm + 6 log m is equal to 

( 2G$m)($)k(1 

It follows that 

PI+&] = zc( 21i;;;$m)( ;)*(I - fji@lqmla 

Since cr > 3, for sufficiently large m, 26 log m * m-” < 1, so that the 
terms in the sum are decreasing. Thus, we can use the first term to 
estimate the sum. 

5 (2&G log m - c) (2~:Ogm)(-!..-)c(~ _ -!-)2fi'ogm~c 

I 24% log m - 
(26 log m)’ 1 

.- 
C! ma’ 

2 c+l 

=- 
C! 

. m(1/2-a)c+1/2 . logc+l m 

1 

< -3 
m 

for sufficiently large m, provided that (i - cy>c + i < - 1, i.e., c > 3/(2cy 
- 1). We take 

3 

c= 2lX-1 i I - +l. 

We have proven 

THEOREM 3.9. For each n there exists a deterministic synchronous input 
collection algon’thm SIC,, for rings of size n that has average message 
complexity -f&,(SIC,> = O(n). 
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We can modify the deterministic input collection algorithm to obtain a 
probabilistic input collection algorithm that has average message complex- 
ity O(n): Select a random bit at each processor, and use these bits to 
create labels in the first phase. Run the second phase as before. The 
expected number of messages sent does not depend on the input, and 
equals the average number of messages sent by the deterministic algo- 
rithm. We obtain 

THEOREM 3.10. For each n there exists an errorless probabilistic syn- 
chronous input collection algorithm PSIC, for rings of size n that uses a 
unique random bit per processor, and has expected message complexity on 
any input -Z&(PSIC,) = O(n). 

4. LOWER BOUNDS 

As shown in the next subsection, linear lower bounds are easily derived 
for nontrivial distributed computations. This implies that the linear syn- 
chronous algorithms are optimal. We next derive an a(n log n) lower 
bound on the average complexity of deterministic asynchronous algorithms 
for “global” problems, such as XOR and orientation. The lower bound 
makes use of a counting technique introduced by Bodlaender [7, Sect. 
2.3.51, together with an adversary technique from [5]. 

A probabilistic algorithm that makes only fair coin tosses, and has a 
fixed bound on the number of coin tosses, can be viewed as a process 
whereby each processor first selects a random binary string of fixed length, 
next runs a deterministic algorithm which uses both the original input and 
the random string as input. We first show that an arbitrary probabilistic 
algorithm can be transformed in an algorithm of the above form (with a 
fixed number of coin tosses), with a small change in error probability and 
message complexity. We can then derive lower bounds on the (worst case) 
complexity of probabilistic algorithms from bounds on the (average) com- 
plexity of deterministic algorithms. 

4.1. Synchronous Algorithms 

It is easy to see that a deterministic algorithm that computes a noncon- 
stant function must use at least n/2 messages on the average; indeed, 
either processors with input zero send messages before they receive any, 
or processors with input one do so. In either case n/2 messages are sent, 
on the average, on the first cycle. Let f be a nonconstant Boolean 
function, and assume that f(crI, . . . , a,,- 1, 0) # f(ul, . . . , a;, _ 1, 1). Then, to 
compute f correctly, each processor i, 1 5 i s n - 1, has to receive a 
message either in the computation with input pi,. . . , a,- i, 0, or in the 
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computation with input (pi, . . . , an _ i, 1 (otherwise it will halt with the same 
output in both computations). An errorless probabilistic algorithm that 
computes f sends at least (n - 1)/2 messages on one of these two inputs. 
Thus, the synchronous upper bounds are optimal, up to a constant factor. 

4.2. Deterministic Asynchronous Algorithms 

Lower bounds for asynchronous computations are proven using as 
adversary a suitable scheduler. We use a simple synchronizing scheduler 
that keeps the computation as symmetric as possible. This scheduler 
delivers messages in cycles. All processors start the execution at cycle one; 
all messages sent at cycle i are received at cycle i + 1. 

LEMMA 4.1. Under the synchronizing scheduler, the state of a processor 
after i cycles depends only on its i-neighborhood. 

If the algorithm is deterministic then each value of the neighborhood 
determines a unique state for the processor. In a probabilistic algorithm 
then the neighborhood determines the probability distribution for the 
processor state. 

DEFINITION 4.1. A function f defined on 2” is m-global if, for any 
string (+ of length lgl < m, there exist two strings pi and T* such that 
lril = 1~~1 = n, u appears cyclically both in pi and in r2, and f(T1) # 

f(Q). 
The function f is m-global if its value cannot be determined from the 

values of < m consecutive inputs. The XOR function is n-global; its value 
can not be determined from the value of less than n inputs. If f is an 
m-global function computed on a ring, then the value of f can not be 
determined from the value of a ([m/2J - l&neighborhood. More gener- 
ally, we say that a computation problem is m-global if on any initial input, 
the output at a processor cannot be determined from the value of a 
([m/2] - l&neighborhood. We have 

LEMMA 4.2. The orientation problem is (n/2)-global. 

ProoJ Consider an input configuration (i.e., a sequence of orienta- 
tions) O,, . . . , 0,; let m < n/2, and consider an initial configuration 
o,, . . . ) o,i7,, . . . , q, 1,. . .) 1. In this configuration processors [m/21 and 
13m/21 have the same (m/4)-neighborhoods. However, they have distinct 
orientations and, hence, different outputs. It follows that the output of 
processor [m/21 is not determined by its (m/4)-neighborhood. The same 
argument works for any processor. q 

The proof of the following lemma is immediate from the definition of 
the synchronizing adversary. 
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LEMMA 4.3. Consider a computation of an algorithm under the synchro- 
nizing scheduler. Zf no message is sent in that computation at cycle i, then no 
transition occurs, and no message is sent at any cycle j, for j > i. 

COROLLARY 4.4. Let JZ& be an asynchronous algorithm that solves an 
m-global problem on rings of size n. Consider a computation of tin under 
the synchronizing scheduler. Then a message is sent by some processor at 
each cycle i, for i = 1, . . . , [m/Z]. 

Proof. If no message is sent at cycle i, then, by Lemma 4.3, no further 
messages are sent, and no state transitions occur; the output of each 
processor is its state at cycle i + 1, which is determined by its (i + l)- 
neighborhood (by Lemma 4.1). This implies that i + 1 > [m/Z]. 0 

Let JZ$ be an algorithm for rings of size n. Let S,&&,) be the set of 
k-neighborhoods that cause a message to be generated by the processor 
with that neighborhood at the kth cycle, when the algorithm JX$ is 
executed with the synchronizing scheduler. 

Our proof uses a counting argument similar to that used by Bodlaender 
[7, Sect. 2.3.51 to show that the sets S,(&Q are large. However, since rings 
are bidirectional, the set of neighborhoods initiating a message is not 
closed under the prefix operation (as in the corresponding multisets in [7 
or 161). Thus, a more delicate counting argument is needed. 

THEOREM 4.5. Let tin be an asynchronous deterministic algorithm that 
solves an m-global problem on rings of size n. Let u be a string of length k 
that describes the configuration of k successive processors on a ring, where 
k/n and k < m; let r be an integer such that 2r + 1 I k. Then S,(&Q 
contains a string u’ which appears cyclically in u. 

Proof Look at the configuration C = anlk. By Corollary 4.4, a mes- 
sage is sent by some processor at each cycle r, r = 1,. . . , lk/Zj, of the 
computation of J$~ on C under the synchronizing adversary. The r- 
neighborhood of this processor is the required string. 0 

COROLLARY 4.6. Let J$~, r, and k be as in the previous lemma. Lets be 
the size of the input alphabet. Then 

Proof. Each string of length 2r + 1 appears cyclically in at most 
k~~-(~~+i) of the sk distinct strings of length k. The claim follows from the 
previous lemma. 0 

THEOREM 4.7. Let &n be an asynchronous deterministic algorithm 
that solves an m-global problem on rings of size n. Let 1 = d, < d, < 
d,< a-- < d, = n be the sequence of divisors of n, ordered in increasing 
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Proof: Let u be a random input of length n. Let r be the r-neighbor- 
hood of a fixed processor in u, where die r < 2r + 1 I di I m. According 
to Corollary 4.6 (since there are s2r+1 strings of length 2r -k l), 

Pr[r E S,(&,)J 2 
(S 2r+1)/di 1 

S2r+l = jjy’ 
1 

Thus, the expected number of messages sent at cycle r on input (+ is 
2 n/di, for 2r + 1 I di 5 m. The total expected number of messages is 
obtained by summing 

COROLLARY 4.8. Let n = 2k, then for any asynchronous a’etermkistic 
algorithm &n solving an Cl(n)-globalproblem on rings of size n, dTawr<d~,> = 
$2 log n - O(n). 

proof. The numbers 2l, 22, . . . are all dividers of n. We obtain 
log(m) 2i-1 _ 2i-2 

<ver(ti) 2 n C 2i = in(log n + loge). q 
i=l 

Since XOR and orientation are n(n)-global, it follows: 

COROLLARY 4.9. Let n = 2k, then for any asynchronous determin&ic 
algorithm &m computing XOR or orientation on rings of size n, Cg,,,<d~> 
= fn log n - O(n). 

4.3. Probabilistic Algorithms 

We assume henceforth that algorithms use a fixed, finite alphabet for 
inputs, outputs, and messages (the size of the alphabet may depend on n, 
the ring size). However, we do not restrict the number of processor states 
to be finite. Also, probabilistic choices with infinitely many branches are 
allowed. A probabilistic algorithm may execute finitely many steps, and yet 
have infinitely many states, if infinitely branching probabilistic choices are 
allowed. Also, a probabilistic algorithm may use finitely many states, have 
finite (expected) complexity, and yet allow (with probability zero) for 
infinite executions. We say that an algorithm is fiite if there is a fixed 
upper bound on the number of processor states and on the number of 
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transitions (this bound may depend on n). A probabilistic algorithm is 
binary if all the transition probabilities are of the form p/24, for integer p 
and q; each probabilistic choice can be made by tossing a fair coin a fried 
number of times. 

LEMMA 4.10. Let s& be a probabilistic asynchronous algorithm with 
error probability E such that I?-@$> = c < 00. Then, for any 6 > 0, 5 
can be replaced by a finite, binary probabilistic asynchronous algorithm &n 
that has error probability I E + 6 and worst case complexity T??&&$ s 
c + 6. 

proof. We first take care that no processor execute more than a fiied 
number L of transitions. We modify the algorithm so that after L 
transitions a processor moves to a new “shutdown” state. A processor in 
the shutdown state sends a shutdown message and halts in an arbitrary 
state. Each processor, upon receiving a shutdown message, forwards the 
message and halts in an arbitrary state. Since each transition is associated 
with a message, the expected number of processors that execute L 
transitions, and generate a shutdown message is no more than c/L; the 
expected number of shutdown message transfers is at most nc/L. 
The worst case complexity of the modified algorithm is at most c + nc/L. 
The probability of error is at most E + c/L. 

We next round transition probabilities to multiples of 1/2q, where q is 
an integer to be defined later. This can be done so that no transition 
probability is modified by more than 1/2q. Consider a fixed input I, and 
schedule H. Assume that before rounding the algorithm executed with 
probability a a sequence of transitions .7= T,, . . . , q, j < nL. Then, after 
rounding, the algorithm executes the sequence F of transitions with 
probability (Y’, where a(1 - 1/2q)j I a’ I (~(1 + l/2*)‘. Thus, the new 
algorithm reaches a correct final state with probability at least (1 - E - 
c/LX1 - l/2 1 , q L the expected total number of transitions is at most 
(c + nc/LXl + l/2 q nL It follow that the error probability and the ) . 
expected complexity can be bounded by E + 6 and c + S, respectively, for 
a suitable choice of q and L. 

With the new algorithm each processor executes at most L transitions. 
Each nonzero transition probability is 2 2-q. Thus, at most 2q distinct 
states can be reached from any state. If there are m distinct initial states 
(input values) then each processor can reach at most 

m . i 24’ s my@+ 1) 

i=l 

distinct states. 0 
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The transformation given in the last lemma maps an errorless proba- 
bilistic algorithm into a finite, binary algorithm that has an arbitrarily 
small, but nonzero error probability. However, if the original algorithm 
always terminates (is deadlock-free) then the derived algorithm always 
terminates. 

Let J$~ be a finite, binary algorithm that always terminates. There is a 
fixed upper bound on the number of probabilistic choices done by the 
algorithm, and each can be replaced by a fixed number of coin tosses. 
Therefore, we can replace an execution of .J$ by a computation whereby 
each processor first chooses independently a random binary string of fixed 
length q, next runs a deterministic algorithm JZ@ (with input set Z X 
(0, lJq). The expected complexity of &n on an input a,, . . . , a, equals the 
average complexity of J$~’ over all inputs a,~,, . . . , a,s,, si E IO, 1)“. If 
tin has error probability E, then dnd yields the “correct” answer on a 
fraction 2 1 - E of these inputs. Thus, we can obtain bounds on the 
expected complexity of a probabilistic algorithm on one input from the 
average complexity of a deterministic algorithm. 

DEFINITION 4.2. A function f defined on 2” is m-global on input 
u E C” if, for any string r of length 1~1 < m that appears cyclically in u, 
there exists a string u’ E Z” such that T appears cyclically in u’ and 
f(u) + fb’). 

The function f is m-global on ~7 if its value cannot be determined from 
the value of < m consecutive inputs, for the input assignment U. More 
generally, we say that a computation problem is m-global on input u E Zn 
if, on input u, the output at a processor cannot be determined from the 
value of its (lm/2J - D-neighborhood. 

A function that is m-global, is m-global on any input. Thus, the function 
XOR is n-global on any input; the orientation problem is (n/2)-global on 
any input. The AND function is n-global on the input configuration 
1 , . . . , 1: The value of the AND function cannot be determined from the 
values of m < IZ inputs, if these inputs happen to be all equal to one. Note 
that any other input configuration contains at least one zero, which 
determines the output value. 

THEOREM 4.11. Let n = 2”. Let f be a Boolean function defined on 
rings of size n that is a(n)-global on the input 1,. . . , 1. Let tin be a 
probabilistic asynchronous algorithm that computes f with error E, and 
always terminates. Then 

-iTa;,,,, > $ log n - log log +&- 
( ( ii & 

- O(n). 
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Proof By Lemma 4.10, it is sufficient to prove the claim in the case 
where A$ is a finite, binary algorithm. Let tin’ be the deterministic 
algorithm associated with G$, with input set IO, 11 x (0, llq. Let 2 = {O,llq. 
Since the function f is R(n)-global there exists a constant c > 0 such that, 
for sufficiently large II, cn consecutive inputs with value one do not 
determine the value of f. Let k be an integer such that k/n and k s cn. 
Let St E zk be the set of strings cr = pi,. . . , ffk such that a processor 
with neighborhood l~i, . . . , la, halts after I [k/2] steps with output 
zero, when the algorithm Mn,” is executed under the synchronizing sched- 
uler. Let St be similarly defined, for output one, and let Sk = Sgk U Sf. 
Let (Ye = lSk1/2kq be the fraction of strings of length k that are in Sk. 
Then either l&I 2 ffk2qk-1, or IS,1 2 ak2qk-‘. 

Assume that the former holds. Let a = a,, . . . , a, be an input, where 
a1 = *** = UC” = 1, such that f(a) = 1. Then tin’ yields a wrong answer 
on any input of the form ai(~i,. . . , a,,un, where pi,. . . 3 acn contains a 
substring T E Sgk (some processor halts with output zero). The probability 
that a randomly chosen string (pi, . . . , a,,, contains a substring from St is 
at least. 

Thus, we must have 

1 - (1 - ak/2)cn’k-1 5 &, 

which implies that 

(Yk 5 2(1 - (1 - e)k’(cn-k)). 

The same conclusion is drawn if IS,1 2 ~~~24~~‘. 
Let u = 01,. . . ) uk 4 Sk. Consider the execution of the algorithm tind 

under the synchronizing scheduler, with input (la,, . . . ,l~,)“/~. Some 
processor has not halted after [k/2] computation cycles, and the algorithm 
always terminates. This implies that some message was sent at each of the 
first [k/2] cycles. Define, as in Subsection 4.2, S,(Md> to be the set of 
r-neighborhoods that cause a message to be sent at cycle r, when dnd is 
executed under the synchronizing scheduler. If u = ui, . . . , a, E Sk, then 
a string from S,(dnd) appears cyclically in u, for each r I tk - 1)/2. This 
implies that, if 2r + 1 I k, then 

lZk - PI 
Is,(d:)l 2 k2q(k-2r-1) = (’ - at’ 

9w+ 1) 
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Using the same argument as in the proof of Theorem 4.7, we obtain that 
the average number of messages sent by the algorithm &I$’ on inputs of 
the form lgr, . . . , la, is at least 

logG3z) 

c c 

(1 - a,i)n n l”tbG 

i=l 2’-‘<ks2’,kodd 
2’ 

2 4 ,C (1 - a$) 
I=1 

2 a ‘032(1 _ 42’/h-2’) _ 1). (2) 
t=l 

Assume that 

en log( 4/3) 

k s log(4/3) + log(l/(l - a)) = P* 

Then 

2( 1 - E)k/cs-k - 1 2 f . 

Thus, we can bound the sum in Eq. 2 by 

The last theorem implies that a probabilistic algorithm that computes 
the AND function, or the XOR function, on a ring of length n = 2”, 
always terminates, and has error probability E, uses at least (n/8) * (log II 
- loglog(2/(1 - E)) - O(1)) expected number of messages on the input 
1 , . . . , 1. A similar argument shows that the lower bound holds for the 
orientation problem. This implies that an errorless algorithm that solves 
any of the problems AND, XOR, or orientation uses at least (n/8) * (log n 
- O(1)) expected number of messages on a worst input. 

The lower bound is fi(n log n), for error probability E < 1 - 2-An, A < 
1. This is to be contrasted to the upper bound of O(n(1 + loglog(2/E))) 
we obtained in Theorem 3.7, where deadlock was allowed. Thus, the 
reduction in message complexity from O(n log n) to O(n) achieved by 
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the Monte-Carlo algorithm of Theorem 3.7 is almost entirely due to the 
acceptance of the possibility for deadlock. Indeed, that algorithm either 
deadlocks, or yields the correct answer. 

The lower bound of Theorem 4.11 is, essentially, optimal. Interestingly, 
it is possible to compute any computable function with O(n) messages on 
a ring of odd length n, with a probability of success n2-“, and no 
deadlock. Let n = 2m + 1; in [6] it is shown that ring configurations of 
the form (Ol)‘? can be recognized with O(n) messages by an asyn- 
chronous algorithm. There are such ring configurations, and in each such 
ring there are two “special” processors, where two consecutive ones occur. 
This implies that two leaders can be elected on a ring of odd length n with 
probability n2-“, by a finite asynchronous probabilistic algorithm that uses 
O(n) messages, and never deadlocks. Such leaders can collect and dis- 
tribute inputs using O(n) messages. It follows that we can run a finite 
asynchronous, probabilistic input collection algorithm that never dead- 
locks, succeeds with probability n2-“, and uses O(n) messages. Moran 
and Warmuth [14] generalize this construction to strings of arbitrary size, 
showing that a leader can be elected with probability n2-” using 
Oh log* n) messages. 

5. CONCLUDING REMARKS 

We have shown in Theorem 3.5 that whenever there exists a string of 
length less than log log n that determines the value of a function f, then f 
can be computed in O(n log n) messages, on the average. On the other 
hand, when the shortest such string has length cn, then the n log n lower 
bound applies. This leaves an open gap between log log n and cn. 

The algorithm presented in Theorem 3.7 can be used to find the 
maximum in a labeled ring with error probability I E, in O(n) messages. 
This would seem to contradict the a((1 - E>n log n) lower bound given by 
Pachl [15] for this problem. However, our algorithm depends on n, the 
ring size; the lower bound of Pa&l applies only to algorithms that do not 
depend on n. Thus, our result in Theorem 3.7 together with the lower 
bound of Pachl, show a provable gap in message complexity between 
uniform distributed (probabilistic) algorithms and nonuniform ones. 

Since input collection can be reduced to leader election, the lower 
bound of Corollary 4.8 implies that any election algorithm that elects on 
an asynchronous anonymous ring a constant average number of leaders 
has message complexity a(n log n). The input collection algorithm can be 
used to obtain matching upper bounds. Also, any Monte-Carlo algorithm 
that does such election with probability at least 1 - E and always termi- 
nates has message complexity n(n(log n - loglog(2/(1 - ~1))). 
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The reduction technique from probabilistic algorithms to deterministic 
ones is very simple, yet very powerful. For example, it is trivial to show, 
using this method, that the 0(n log n) lower bound on the average 
complexity of a deterministic asynchronous leader choosing algorithm [7, 
10, 161 implies an CI(n log n) lower bound on the average complexity of an 
errorless probabilistic asynchronous leader choosing algorithm. 

The reduction of worst case analysis of probabilistic algorithms to 
average case analysis of deterministic algorithms is similar to the analysis 
used by Yao in [20]. Note, however, two important differences: We 
consider only one probability distribution on inputs, namely that inputs 
are equiprobable; and choices in a randomized algorithm are done inde- 
pendently by each processor. This is the reason, for example, that the 
average deterministic complexity of AND in the asynchronous model is 
O(n), whereas the worst case complexity of a probabilistic asynchronous 
algorithm is CI(n log n). 

The bit complexity of the asynchronous input collection algorithm can 
be improved by separating the leader election phase from the input 
collection and distribution phase. We modify the leader election phase by 
replacing the segment field of messages used in this phase by a counter 
that encodes the length of the segment (the counter counts the number of 
nodes traversed by the message). Each elected leader then sends a 
message around the ring that first collects all input values, next distributes 
them. 

The labeling phase uses 12 messages of constant size, and each message 
travels on the average a constant distance; the average bit complexity is 
O(n). Input collection and distribution by one leader takes O(n2> bit 
transfers (assuming binary inputs). The expected number of leaders partic- 
ipating in this phase is constant, so that this phase has average bit 
complexity O(n2). The expected distance traversed by a message in the 
leader election phase is O(log n), so that the expected number of bit 
transfers per message is O(log2 n); the average bit complexity of the 
leader election phase is O(n log2 n). Thus, the algorithm uses O(n2) bit 
transfers, on the average. Simple information transfer arguments show 
that input collection requires fl(n2) bit transfers, on the average. Thus, 
the modified algorithm has optimal average bit complexity. The number of 
bit transfers is reduced to O(n log2 n) for functions such as XOR, orienta- 
tion, SUM, etc., where it is sufficient to use messages of size O(log n) in 
the input collection and distribution phase. Similarly, input collection can 
be done probabilistically with O(n2) bit complexity, and XOR and orienta- 
tion with O(n log2 n) bit complexity, in the worst case. [l] contains results 
concerning the bit complexity of probabilistic algorithms for computing 
various functions on the ring. 
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Finally, note that the synchronizing scheduler we use to prove lower 
bounds for asynchronous rings is very simple, and input independent; it 
merely mimics a synchronous computation (compare with the complex 
malicious scheduler used in [lo]). This scheduler keeps the computation as 
symmetric as possible. Here, as in [51, the lower bounds reflect the cost of 
breaking symmetry. 
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