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Abstract. Emulators that translate algorithms from the shared-memory model to two different

message-passing models are presented. Both are achieved by implementing a wait-free, atomic,

single-writer multi-reader register in unreliable, asynchronous networks. The two message-passing

models considered are a complete network with processor fadures and an arbitrary network with

dynamic link failures.
These results make it possible to view the shared-memory model as a higher-level language for

designing algorithms in asynchronous distributed systems. Any wait-free algorithm based on
atomic, single-writer multi-reader registers can be automatically emulated in message-passing

systems, provided that at least a majority of the processors are not faulty and remain connected.
The overhead introduced by these emulations is polynomial in the number of processors in the
system.

Immediate new results are obtained by applying the emulators to known shared-memory

algorithms. These include, among others, protocols to solve the following problems in the

message-passing model in the presence of processor or link failures: multi-writer multi-reader

registers, concurrent time-stamp systems, l-exclusion, atomic snapshots, randomized consensus,

and implementation of data structures.
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1. Introduction

Two major interprocessor communication models in distributed systems have

attracted much attention and study: the shared-memoy model and the mess-

age-passing model. In the shared-memory model, n processors communicate

by writing and reading to shared registers. In the message-passing model, n

processors are located at the nodes of a network and communicate by sending

messages over communication links.

In both models, we consider asynchronous unreliable systems in which

failures may occur. In the shared-memory model, processors may fail by

stopping (and a slow processor cannot be distinguished from a failed processor).

In the message-passing model, failures may occur in either of two ways. In the

complete network model, processors may fail by stopping (without being de-

tected). In the arbitrary network model, links fail and recover dynamically,

possibly disconnecting the network for some periods.

The design of fault-tolerant algorithms in either of these models is a delicate

and error-prone task. However, this task is somewhat easier in shared-memory

systems, where processors enjoy a more global view of the system. A shared

register guarantees that once a processor reads a particular value, then, unless

the value of this register is changed by a write, every future read of this register

is always available, regardless of processor slow-down or failure. These proper-

ties permit us to ignore issues that must be addressed in message-passing

systems. For example, there are discrepancies in the local views of different

processors that are not necessarily determined by the relative order at which

processors execute their operations.

An interesting example is provided by the problem of achieving randomized

consensus. Several solutions for this problem exist in the message-passing

model, for example, Ben-Or [1983], Chor et al. [1985], and Dwork et al. [1986],

and in the shared-memory model, for example, Abrahamson [1988], Aspnes

and Herlihy [1990a], Attiya et al. [1989], and Chor et al. [1987]. However, the

algorithm of Aspnes and Herlihy [1990a] is the first to have polynomial

expected running time and still overcome an “omnipotent” adversary-one

that has access to the outcomes of local coin-flips. The difficulty of overcoming

messages’ asynchrony in the message-passing model made it hard to come up

with algorithms that tolerate such omnipotent adversary with polynomial

expected running time. I

LThe asynchronous message-passing algorithm of P. Feldman (personal communications) is
resilient to Byzantine faults, but requires private communication links and thus is not resilient to
an omnipotent adversary.
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This paper presents emulators of shared-memory systems in message-passing

systems (networks), in the presence of processor or link failures. Any wait-free

algorithm in the shared-memory model that is based on atomic, single-writer

multi-reader registers can be emulated in both message-passing models. The

overhead for the emulations is polynomial in the number of processors. The

complexity measures considered for each read or write operation are the

number of messages, the size of messages, the execution time, and the local

memory size.

Thus, shared-memory systems may serve as a “laboratory” for designing

resilient algorithms. Once a problem is solved in the shared-memory model, it

is automatically solved in the message-passing model, and only optimization

issues remain to be addressed.

Among the immediate new results obtained by applying the emulators to

existing shared-memory algorithms are network protocols that solve the follow-

ing problems in the presence of processor or link failures:

—Atomic, multi-writer multi-reader registers [Peterson and Burns 1987;

Vitanyi and Awerbuch 1986].

—Concurrent time-stamp systems [Dolev and Shavit 1989; Israeli and Li 1992].

—Variants of l-exclusion [Afek et al. 1990; Burns and Peterson 1989; Dolev et

al. 1988].

—Atomic snapshot scan [Afek et al. 1993; Anderson 1993].

—Randomized consensus [Aspnes and Herlihy 1990a; Attiya et al. 1984].~

—Implementation of data structures [Aspnes and Herlihy 1990b; Herlihy

1991].

First, we introduce the basic communication primitive that is used in our

algorithms. We then present an unbounded emulator (in messages and local

memory) for the complete network model that tolerates processor failures.

This implementation exposes some of the basic ideas underlying our construc-

tions. In addition, part of the correctness proof for this emulator carries over to

the other models. We then describe the modifications needed in order to

obtain the bounded emulator for the complete network in the presence of

processor failures. Finally, we modify this emulator to work in an arbitrary

network in the presence of link failures. We present two ways to do so. The

first modification is based on replacing each physical link of the complete

network with a “virtual viable link” using an end-to-end protocol [Afek and

Gafni 1988, 1991; Awerbuch et al. 1989]. The second modification results in a

more efficient emulation. It is based on implementing our communication
primitive as a diffusing computation using the resynchronization technique of

Afek and Gafni [1991]. In both cases, the emulator for dynamic networks is

bounded in the number and the size of messages, but not in the local memory

overhead.

We consider systems that are completely asynchronous since this enables us

to isolate the study from any model-dependent synchronization assumptions.

Although many “real” shared-memory systems are at least partially syn-

2Thls result also follows from the transformation of Bar-Noy and Dolev [1989].
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chronous, asynchrony allows us to provide an abstract treatment of systems in

which different processors have different priorities.

We believe that bounded solutions are important, although in reality, 20-bit

counters will not wrap around and thus will suffice for all practical purposes.

The reason is because bounded solutions are much more resilient —traditional

protocols fail if an error occurs and cause counters to grow without limit. An

algorithm designed to handle bounded counters will be able to recover from

such a situation and resume normal operation.

Wait-free protocols in shared-memory systems enable a processor to com-

plete any operation regardless of the speed of other processors. In message-

passing systems, it can be shown, following the proof in Attiya et al. [1989], that

for many problems requiring global coordination, there is no solution that can

prevail over a “strong” adversa~—an adversary that can stop a majority of the

processors or disconnect large portions of the network. Such an adversary can

cause two groups of fewer than a majority of the processors to operate

separately by suspending all the messages from one group to the other. For

many global coordination problems, this leads to contradicting and inconsistent

operations by the two groups. As mentioned in Attiya et al. [1989], similar

arguments show that processors cannot halt after deciding. Thus, in our

emulators, a processor that is disconnected (permanently) from a majority of

the processors is considered faulty and is blocked.3 A wait-free algorithm will

run correctly under our emulators if at least a majority of the processors are

non-faulty, and are connected to each other. Our solutions do not depend on

connection with a specific majority at any time. Moreover, it might be that at

no time does there exist a full connection to any party. The only condition is

that messages will eventually reach some majority that will acknowledge them.

Although the difficult construction is the solution in the complete network

with bounded-size messages, the unbounded construction is not straightfor-

ward. In both cases, to avoid problems resulting from processors having old

values, we attach time-stamps to the values written by the writer. In the

unbounded construction, the time-stamps are the integer numbers. In the

bounded construction, we use a nontrivial method to let the writer keep track

of old time-stamps that are still in the system. This allows us to employ a

bounded sequential time-stamp system [Israeli and Li 1993].

Some of the previous research on dynamic networks (e.g., Afek et al. [1987]

and Finn [1979]) assumed a “grace period” during which the network stabilizes

for a long enough time in order to guarantee correctness. Our results do not

rely on the existence of such a period, and follow the approach taken in, for

example, Afek and Gafni [1988, 1991], Awerbuch et al. [1989], and Vishkin

[1983].
There are two related studies on the relationships between shared-memory

and message-passing systems. Bar-Noy and Dolev [1989] provide translations

between protocols in the shared-memory and the message-passing models.

These translations apply only to protocols that use a restricted form of

communication. Chor and Moscovici [1989] present a hierarchy of resilience
for problems in shared-memory systems and complete networks. They show

that for some problems, the wait-free shared-memory model is not equivalent

3Such a processor will not be able to terminate its operation but will never produce erroneous
results.
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to the complete network model, where up to half of the processors may fail.

This results, however, assumes that processors halt after deciding.

The rest of this paper is organized as follows: In Section 2, we describe the

various models considered. In Section 3, we introduce the communication

primitive. In Section 4, we present an unbounded implementation for the

complete network model in the presence of processor failures. In Section 5, we

present the modifications needed in order to obtain the bounded implementa-

tion for the complete network model in the presence of processor failures. In

Section 6, we modify this emulator to work in an arbitrary network in the

presence of link failures. We conclude, in Section 7, with a discussion of the

results and some directions for future research.

2. Preliminaries

In this section, we discuss the models addressed in this paper. Our definitions

follow Lamport [1986] for shared-memory systems, Fischer et al. [1985] for

complete networks with processor failures, and Awerbuch et al. [1989] for

arbitrary networks with link failures. In all models we consider, a system

consists of n independent and asynchronous processors, numbered 1, ..., n.

Each processor i is a (possibly infinite) state machine, with a unique initial

state, and a transition function.

2.1. MESSAGE-PASSING SYSTEMS. In a message-passing system, processors

communicate by sending messages (taken from some alphabet .4’) to each

other. Processors are located at the nodes of a network (which we do not

model explicitly) and can send messages only to their direct neighbors.

We model computations of the system as sequences of steps. Each step is

either a message delile~ step, representing the delivery of a message to a

processor, or a computation step of a single processor.

In each message delivery step, a single message is placed in the incoming

buffer of the processor. Formally, a message delive~ step is a pair (i, m),

where m ● .%. In each indivisible computation step, a processor receives all

messages delivered to it since its last computation step, performs some local

computation and sends some messages, and possibly changes its local state.

Formally, a computation step of processor i is a tuple ( i,s,s’, M), where s and

s‘ are the old and new states of i (respectively), and M cA’ x {1, ..., n} is the

set of messages sent by processor i. The set M specifies a set of send ezlents

that occur in a computation step. A message m is delivered to processor i when

the step (i, m) happens; the message is receil~ed by i when i takes a computa-

tion step following the delivery of that message.
An execution is an infinite sequence of steps satisfying the following condi-

tions:

(1) the old state in the first computation step of processor i is i’s initial state,

(2) the old state of each subsequent computation step of processor i s the new
state of the previous step,

(3) the new state of any computation step of processor i is obtained by
applying the transition function of i to the old state and the messages

delivered since the last computation step, and

(4) there is a one-to-one mapping from delivery steps to corresponding send
events (with the same message).
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The network is not explicitly modeled; however, the last condition guarantees

that messages are not duplicated or corrupted. The network is allowed to not

deliver some messages or to deliver them out of order.

In the complete network model, we assume that the network formed by the

communication links is complete, and that processors might be faulty. A faulty

processor simply stops operating. More formally, processor i is rtonfatdty in an

execution if the execution contains an infinite number of computation steps by

i and all messages it sends are eventually delivered; otherwise, it is faulty. Note

that messages will be delivered to a faulty processor, even after it stops taking

steps.

In dynamic networks, communication links might become non-operational. A

link is nonoperational, if, starting from some message and on, it does not

deliver any further messages to the other endpoint. More precisely, if a specific

message is not delivered, then all messages sent after it, will not be delivered.

For those messages, the delay is considered to be infinite. Otherwise, the link is

operational.4 Processor i is connected to a processor j if there is a path of

operational links between them; otherwise, i is disconnected from j. A proces-

sor that is disconnected from [n/21 processors or more is faulty.

2.2. ATOMIC REGISTERS. An axiomatic definition of an atomic register can

be found in Lamport [1986]. The definition presented here is an equivalent one

(see [Lamport 1986, Proposition 3]) that is simpler to use. An atomic, single-

writer multi-reader register is an abstract data structure. Each register is ac-

cessed by two procedures, writeW( u) that is executed only by some specific

processor w, called the writer, and read,(~)) that may be executed by any

processor r, 1 s r s n, called a reader. We can associate computation steps

with calling and returning from these procedures in a natural way. An opera-

tion precedes another if it returns before the other operation is called. Two

operations are concurrent if neither of them precedes the other.

The values returned by these procedures, when applied to the same register,

must satisfy the following two properties: 5

(1) 13very read operation returns either the value written by the most recent
preceding write operation (the initial value if there is no such write) or a

value written by a write operation that is concurrent with this read

operation.

(2) If a read operation ~1 reads a value from a write operation XI, and a read

operation @z reads a value from a write operation Wz and f%l precedes

Wz, then ‘2ZZ does not precede W1.

2.3. COMPLEXITY MEASURES. The complexity measures we consider are the

following:

(1) The number of messages sent in an execution of a write or read operation,

(2) the size of the messages,

4This model is called the ~-delay-model in Afek et al. [1987] and Afek and Gafni [1988]. Afek and
Gafni [1988] point out that the standard model of dynamic mesage-passing systems, where
communication links alternate between periods of being operational and non-operational, can be
reduced to this model.
5We concentrate on the implementation of a single register; multiple copies of the emulator can
be used to implement any finite number of registers.
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(3) the time it takes to execute a write or read operation, under the assump-

tion that any message is either received within one time unit, or never at all

(cf. Awerbuch [1987]),

(4) the amount of the local memory used by a processor.

For all these measures, we are interested in the worst-case complexity.

3. Procedure communicate

In this section, we present the basic primitive used for communication in our

algorithms, called communicate. This primitive operates in complete networks.

It enables a processor to send a message and get acknowledgments (possibly

carrying some information) from a majority of the processors.

Because of possible processors’ failures, a processor cannot wait for acknowl-

edgments from all the other processors or from any particular processor.

However, at least a majority of the processors will not fail and thus a processor

can wait to get acknowledgments from them. Notice that processors want to

communicate with any majority of the processors, not necessarily the same

majority each time. A processor uses the primitive to broadcast a message (M)

to all the processors and then to collect a corresponding ( ACK ) message from

a majority of them. In some cases, information will be added to the ( ACK )

messages.

For simplicity, we assume that each edge (i, j) is composed of two distinct

“virtual” directed edges (i, j) and (j, i). The communication on (i, j ) is

independent of the communication on (j, i).

Procedure communicate uses a simple ping-pong mechanism. This mecha-

nism ensures FIFO communication on each directed link in the network, and

guarantees that at any time only one message is in transit on each link.

Informally, this is achieved by the following rule: i sends the first message on

(i, j) and then i and j alternate turns in sending further messages and

acknowledgments on (i, j ).

More precisely, the ping-pong on the directed edge (i, j ) is managed by

processor i. Processor i maintains a vector turn of length n, with an entry for

each processor, that can get the values here or there. If turn(j) = here, then it

is i’s turn on (i, j ) and only then i may send a message to j. If turn(j) = there,

then either i’s message is in transit, j’s acknowledgment is in transit, or j

received i’s message and has not replied yet (it might be that j failed). Initially,

turn(j) = here. Hereafter, we assume that the vector turn is updated automati-

cally by the send and receive operations.b For simplicity, a processor also sends
each message to itself and responds with the appropriate acknowledgment.

Procedure communicate gets as an input a message M and returns as an

output a vector info, of length n. The jth entry in this vector contains

information received with j’s acknowledgment (or L if no acknowledgment

was received from j). To control the sending of messages, the procedure
maintains a local vector status. The jth entry of this vector may obtain one of

the following values: notsent, meaning M was not sent to j (since turn(j) =

there); notack, meaning A4 was sent but not yet acknowledged by j; ack,

meaning &l was acknowledged by j. Additional local variables in Procedure

‘The details of how this is done are omitted from the code,
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Procedure communicate; info); (* for processori *)
#acks := O;
foralll<j<rtdo

status(~) ,= notsent ,

m~o(j) :=1 ;

foralll<j<ras.t. turra(j)= heredo

send (M) to j ;
status(]) := notack ,

repeat until #acks > ~c&]

upon receiving (m) from j:
if status(j) = notsent then
(* acknowledgmentof an old message*)

send (M) to j ;
status(j) := notack;

else if status(]) = notack then
status(j) := ack ;

info(j) := m ;

#acks .= #acks + 1,

end procedure communicate,

FIG. 1. Procedure communicate.

communicate are the vector turn and the integer counter, #acks that counts

the number of acknowledgments received so far.

The pseudo-code for this procedure appears in Figure 1. We note that

whenever this procedure is employed we also specify the information sent with

the acknowledgment for each message and the local computation triggered by

receiving a particular message.

The ping-pong mechanism guarantees the following two properties of the

communicate procedure. First, the acknowledgments stored in the output

vector info were indeed sent as acknowledgments to the message M, that is, at

least [(n + 1)/21 processors received the message M. Second, the number of

messages sent during each execution of the procedure is at most 2n. Also, it k

not hard to see that the procedure terminates under our assumptions. The next

lemma summarizes the properties and the complexity of Procedure

communicate.

LEMMA 3.1. The following all hold for each execution of Procedure communi-

cate by processor i with message (M):

(1) ~ i is connected to at least a majority of the processors, then the execution
terminates ajler at most two time units,

(2) at least [(n + 1)/21 processors receiue (M) and return the corresponding
acknowledgment,

(3) at most 2n messages are sent during this execution, and

(4) ~~ize of i’s local memoiy is O(n) times the size of the acknowledgments to

4. The Unbounded Implementation—Complete Network

Informally, in order to write a new value, the writer executes communicate to

send its new value to a majority of the processors. It completes the write
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operation only after receiving acknowledgments from a majority of the proces-

sors. The writer appends a label to every new value it writes. In the unbounded

implementation, this is an integer. For simplicity, we ignore the value itself and

identify it with its label.

In order to read a label, the reader sends a request to all processors and gets

in return the latest labels known to a majority of the processors (using

communicate). Then it adopts (returns) the maximal among them. Before

finishing the read operation, the reader announces the label it intends to adopt

to at least a majority of the processors (again by using communicate). Infor-

mally, this announcement is needed since, otherwise, it is possible for a read

operation to return the label of a write operation that is concurrent with it, and

for a later read operation to return an earlier label.

Processor i stores in its local memory a variable label,, holding the most

recent label of the register known to i. This label may be acquired either

during i’s read operations, from messages sent during other processors’ read

operations, or directly from the writer. In addition, i holds a vector of length n

named info, containing the most recent labels sent to i by other processors as

acknowledgments to i’s request message. Letting T“ denote the number of bits

needed to represent any label from the domain of all possible labels, we have:

PROPOSITION 4.1. The size of the local memory at each processor is O(nV).

In the implementation, there are two procedures: read for the readers, write

for the writer. In addition, we also specify acknowledgments to all types of

messages, as required by communicate. The algorithm uses six types of

messages, arranged in three pairs, each consisting of a message and a corre-

sponding acknowledgment.

(1) The pair of write messages.

(W, label): sent by the writer in order to write label in its register.

( ACK-W): the corresponding acknowledgment.

(2) The first pair of read messages.

(RI ): sent by the reader to request the recent label of the writer.

(label): the corresponding acknowledgment, contains the sender’s most

updated label of the register.

(3) The second pair of read messages.

( Rz, label): sent by the reader before terminating in order to announce

that it is going to return label as the label of the register.
( ACK-RZ ): the corresponding acknowledgment.

The second pair of read messages is used by the reader to announce to other

readers which label it is going to adopt. Clearly, we have:

PROPOSITION 4.2. The maximum size of a message is 0(2-).

A pseudo-code for the algorithm appears in Figure 2. The bottom part

instructs each processor how to acknowledge each message according to the

template in Figure 1 (as explained in Section 3). We use t~oid to say that the

information sent with the acknowledgments to a particular message is ignored.
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Procedure read,(label,); (* executedby processori and returns label, *)

communicate((ltl ), tnjo);

/abe/, .= maxlg~n{m~~(j) I ln~o(l) +1};

communicate((~z, label,), wtd),

end procedure readj ,

Procedure writeW;($ executed by the writer w *)
/ahs/Wm /abe/W+ 1, (* the new label of the register *)
communicate((W, /a&/W), uo2d);

end procedure write~;

(* acknowledgments sent by processor j *)

case received from w

( W, lahelw): label, = max{lahelW,l&l,) ;
send (A CK- W) to w;

case received from i
(R,): send (labelj ) to i;
(R9, label,): label, .= max{label,, label, } ;

send (,4 CK-R2) to i;

FIG. 2. The unbounded emulator.

Since communication is done only by communicate, Lemma 3.1 (part 1)

implies the following lemma.

LEMMA 4.3. Each execution of a read operation or a write operation

terminates.

The label contained in the first write message and the second read message

is called the label communicated by the communicate procedure execution.

The maximum label among the labels contained in the acknowledgments of the

first read message is called the label acknowledged by the communicate

procedure execution. The following lemma deals with the ordering of these

labels, and is the crux of the correctness proof.

LEMMA 4.4. Assume a communicate procedure execution %’1 communicated

x, and a communicate procedure execution ~z acknowledged y. Assume that $371

has completed before ~z has started. Then y k x.

PROOF. By Lemma 3.1 (part 2) and the code for acknowledgments, when %1

is completed at least a majority of the processors store a label that is greater or

equal to x. Similarly, by Lemma 3.1 (part 2), in %2 acknowledgments were

received from at least a majority of the processors. Thus, there must be at least

one processor, say i, that stored a label x; > x and acknowledged in $%Z.Since

y is maximal among the labels contained in the acknowledgments of %Z, it
follows that y > xi > x. ❑

A write operation completes only after its communicate procedure com-

pletes. By Lemma 4.4, every read operation that will start after the write
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operation completes will read a value with a greater than or equal timestamp.

Since any earlier write operation has a smaller timestamp, it follows that:

LEMMA 4.5. Assume a read operation, H, returns the label y. Then y is either

the label of the last write operation that was completed before @ started or it is the

label of a concurrent write operation.

In a similar manner, since a read operation completes only after its second

execution of communicate is completed, Lemma 4.4 implies the following

lemma.

LEMMA 4.6. Assume some read operation, WI, returns the label X, and that

another read operation, ~ ~, that started after ~1 completed, returns y. AIso,

assume that some write operation, Z;, wrote x and that another Write Operation,

%ff2, wrote y. Then 2221precedes Y%.

Since processors communicate only by using procedure communicate,

Lemma 3.1 (parts 3 and 4) implies the following complexity propositions.

PROPOSITION 4.7. At most 4n messages are sent during each execution of a

read operation. At most 2n messages are sent during each execution of a write

operation.

PROPOSITION 4.8. Each execution of a read operation takes at most 4 time

units. Each execution of a write operation takes at most 2 time units.

The next theorem summarizes the above discussion.

THEOREM 4.9. There exists an unbounded emulator of an atomic, single-writer

multi-reader register in a complete network, in the presence of at most [(n – 1)/2]

processor failures. Each execution of a read operation or a write operation

requires 0(n) messages and O(1) time.

5. The Bounded Implementation—Complete Network

5.1. INFORMAL DESCRIPTION. The only source of unboundedness in the

emulation described in Section 4 is the integer labels used by the writer. In

order to eliminate this, we use an idea that was employed previously in

Awerbuch et al. [1989] and Israeli and Li [1993]. The integer labels are

replaced by bounded sequential time-stamp system [Israeli and Li 1993], which is

a finite domain l%’ of label values together with a total order relation > .

Whenever the writer needs a new label it produces a new one, larger (with

respect to the ~ order) than all the labels that exist in the system. Thus,

instead of simply adding 1 to the label, as in the unbounded emulation, the
writer invokes a special procedure called LABEL. The input for this procedure

is a set of labels and the output is a new label that is greater than all the labels

in this set. This can be achieved by the constructions presented in Dolev and

Shavit [19871 and Israeli and Li [1993] for bounded sequential time-stamp

systems. In addition, the readers need a special function, called MAX, which

returns the maximum of two values according to the ordering ~ on labels.

Again, this can be achieved by the constructions of Dolev and Shavit [1987] and

Israeli and Li [1993].

The main difficulty in implementing this idea in the message-passing model

is in maintaining the set of labels existing in the system. Notice that in order to
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assure correctness, it is sufficient to guarantee that the set of labels that exist

in the system is contained in the input set of labels of Procedure IABEL.

To overcome this difficulty, the writer collects from other processors labels

that are still in the system—labels that they have for the writer’s label or the

most recent labels that they have sent to other processors. The set of labels

collected is then supplied to Procedure LABEL. The problem is that the writer

can only expect answers from a majority of the processors. Therefore, each

processor makes sure that this information is stored in the system, by sending it

to a majority of the processors. Thus, any majority of the processors would be

able to provide the writer with all the labels that are still in the system.

To this end, whenever a processor adopts a label as the maximum label of

the writer, it records this label and all the recent labels it has sent to other

processors. This is done by broadcasting a message including this information

and waiting for acknowledgments from a majority of the processors (using

communicate). A processor receiving a recording message stores it in its local

memory. In response to a query from the writer about labels, a processor sends

all the labels it has stored. This guarantees that labels do not get lost, as a

majority of the processors have stored them.

To avoid a chain reaction, where a recording message causes other recording

messages, processors ignore the labels carried by recording messages even if

their value is greater than the value they have for the writer’s label. In

addition, a separate ping-pong mechanism is used for each type of message,

and thus, for example, processor i may send a recording message to processor j

although j did not acknowledge a read message of i.

5.2. DATA STRUCTURES AND MESSAGES. To implement the recording pro-

cess, each processor i maintains an n X n matrix L, of labels. The ith row

vector Li( i) is updated dynamically by i according to the messages i sends. The

jth row vector Li(j) is updated by the messages i receives from j during a
recording process initiated by j. Each entry, .L1( i, k), is composed of two fields:

sent and ack. The field Li(i, k).sent contains the last label i sent to k during

the second phase of a read operation and the field L,(i, k).ack is the last label

i sent to k as an acknowledgment to a read request of k. In particular, Li(i, i)

is the current maximum label of the writer known to i. The writer starts each

write operation by obtaining from a majority of the processors their most

updated values for the matrix L (using communicate). The union of the labels

that appear in its own matrix and these matrices is the input to Procedure

LABEL.
Procedures read and write use five pairs of messages and corresponding

acknowledgments.

(1) The first pair of write messages.

(WI ): sent by the writer at the beginning of its operation in order to

collect information about existing labels.

(L): the corresponding acknowledgment, L is the sender’s updated value

of the labels’ matrix.

(2) The second pair of write messages, ( J7$, label) and ( ACK-W.. ), the first

pair of read messages, (RI) and (label), and the second pair of read
messages, ( R ~, label ) and ( ACK-RZ ), are the same as the corresponding

messages in the unbounded algorithm.
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(3) The pair of recording messages.

( REC, L(i)): before adopting any new label for the register, processor i

sends L,(i) to other processors. The vector L,(i) contains

this new label and all the recent labels that i sent to other

processors.

( ACK-REC): the corresponding acknowledgment.

Let Z“ denote the number of bits needed to represent any label from & (i.e.,

7-= logl~l). Since the longest message is (L), we have,

PROPOSITION 5.2.1. The maximum size of a message is 0(n2 “ 7-).

Since the local memory of a reader contains one matrix and that of the

writer contains n matrices we have,

PROPOSITION 5.2.2. The size of the local memory of a reader is O(nz “ Y “). The

size of the local memo~ of a writer is O(n 3. Y‘ ).

5.3. THE ALGORITHM. The pseudo-code for the algorithm appears in Figure

3. The code for Procedure read and Procedure write and the acknowledgment

process are similar to the pseudo-code of the unbounded emulator (Figure 2).

The first part of Procedure recording and the update commands dynamically

update the vector L,(i).

Unlike a read or a write operation, a recording process is an event-driven

process. Several recording processes, initiated by messages of different proces-

sors, may be in progress at the same time. The following are the two rules that

govern concurrent recording processes. First, a recoding message is not com-

municated before the previous recording message was acknowledged by a

majority of the processors (this is achieved by the wait command in the code of

Procedure recording). Second, if multiple recordings are ready to begin at the

same computation step (perhaps after waiting), then they are combined into a

single recording for a vector L,(i) in which each component is taken to be the

maximum among the corresponding components of all the vectors in the

recording processes to be combined. These rules guarantee that at any time at

most one recording process is in progress per processor.

5.4. CORRECTNESS AND COMPLEXITY. Atomicity of the bounded emulator

follows from the same reasoning as in the unbounded case (Lemmas 4.5 and

4.6). The following lemma, Lemma 5.4.1 is the core of the correctness proof for
the bounded emulator—it assures that the writer always obtains a superset of

the labels that might be considered by some processor.

For this lemma, we need some definitions. A label x is liable in a system

state after some finite execution prefix if (1) for some processor i, the current

register’s label in i is x, or (2) for some processors i and j, a nonrecording

message containing x has been sent by i to j and is received in some execution

extending this prefix. More precisely, either Li(i, i) = x, Li(i, j). sent = x, or

L,(i, j).ack =x. In these cases, we say that processor i is responsible for label

x. Thus, by definition, a label is viable if and only if it has a processor that is

responsible for it. Intuitively, a viable label is or could be a candidate for the

current register’s label for some processor. A label x is recorded in some state
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Procedure read,(label,) ; (* executed by processori and returns label, *)
comMunicateR((~J), Znjc?);

. label, := MAX{ L,(i, i) , MAXI<j~”{mjO(~) I mjo(.i) #J-}};

if label, > L,(i, i) then recording,(label,) ,
communicate~((l?~,L,(z, t)), rJozd),

end procedure read, ;

Procedure write~; (* executed by the writer w *)
cOmmunicatew(( W~), L) ;
LW(W,w) := LABEL(UL) ; (* all the non-empty entries m L ‘)

communicate~(( WZ, LW(w, 70)), rJo2d) ;

end procedure writeW;

Procedure recording (label, ) ; (* executed by processor i *)

LL(i)i) := label, ;

wait until the previous call for recording, terminates ;

communicateREC( (REC, L,(t)), votd) ,

end procedure recording, ;

(* updates executed by processor i *)

upon sending label z to j in acknowledgementto j‘s RI message:

L*(i, j). ack := z’ ;

upon sending label z to j in i’s Rz message:

L,(z, ~).sent := z ;

(* acknowledgments sent by processor j *)

case received from w
(w,): send (Lj) to w;
( Wz, kbe/W): if Iabelw > Lj(j, j) then recordingj(/abe/W);

send (A CK- W2) to w ;

case received from i
(R,): send (Lj (J, J)) to i;

(RZ,labe/,): if label, > Lj (j, j) then recording (/abe[, ) ;

send (A CK-R2) to i;

(REC, L,(,)): Lj(i) := L,(i) ;

send (A CK-RE~ to i;

FIG. 3. The bounded emulator.

if it is stored either in the writer matrix or in the matrices of at least a majority

of the processors.

LEMMA 5.4.1. Euery uiable label is recorded.

PROOF. Assume x is a viable label and let i be some processor that is

responsible for x. Consider a simple path on which the label x has arrived at i,

that is, a sequence iO, il, ..., in, where iO is the writer and i~, = i. In this

sequence, for any 1, 1 <1 s m, processor il adopted x as a result of a message

from il_ ~.
The claim is proved by induction on m, the length of this path. The base

case, m = O, occurs when i is the writer. Then, the code of the update process

and Procedure write implies that x is stored in i’s matrix. Assume that m > 0

and that the induction hypothesis holds for m – 1 > 0. That is, if processor j is
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responsible for a viable label y and y has arrived at j via the sequence of

processors jO, jl, ..., ~~ -1 where ~0 is the writer, ~~ -1 = ~> and for every 1,
1 s 1 s m – 1 processor jl adopted y as a result of a message from jl. ~, then

label y is recorded.

We now prove the claim holds for m. Since processor i is responsible for x,

it follows that either L,(i, i) = x, Ll(j, j). serzt = x, or L,(i, j). ack = x. This

implies that L,(i, i) = x at some state in the execution prefix leading to this

state. Since L,(i, i) can be set to x only in a recording process, it follows that i

has invoked a recording process for x. There are two cases:

(1) Processor i has not finished the recording process for x. Let k = im _ ~. We

first show that .x G L~(k, i). If x arrives at i in an Rz message from k,

then, since i has not finished the recording process for x, i has not sent an

ACK-R2 to k. Clearly, k sets LJk, i).sent = x when sending ~ to i. The

claim follows since k will not send an R ~ message to i before receiving an

ACK-RZ message from i, and hence L~(k, i)..serzt =x. Otherwise, x arrives

at i in an ACK-RI from k. Since i has not finished the recording process

for x, i will not send another RI message. Clearly, k sets L~(k, i).ack = x

when sending x to i. The claim follows since k will not send an ACK-R1

message to i before receiving an RI message from i, and hence

Lk(k, i).ack =x.

In either case, x = L~(k, i) and hence k is responsible for x. The claim

follows from the induction hypothesis.

(2) Processor i has finished the recording process for x. Let k,, k2,...,

k ,[n + ~),21 be the processors that acknowledged the recording process either

for x or for some y ~ x. If L,(i, i) = x, then processors kl, k2, ..., k,,(. +l)jzl

have x in their copy of L(i, i). If LJi, i) = y ~ x, then either Li(z, j).sent
—– x, or L,(i, j).ack = x (for some processor j). Since x was sent by i to j

before the recording process for y started, it follwos that x ~ Li(i, j)

during the recording process for y. Thus, for any k E {kl,..., k,(. + ~),zl},

either L~(i, i) = x or x = L~(i, j). Consequently, a majority of the proces-

sors have x in their copy of L(i), and therefore, x is recorded. ❑

LEMMA 5.4.2. A label generated in the call to Procedure WBEL is greater than

any uiable label itl the system.

PROOF. The input of Procedure LABEL contains the labels that appear in

the matrix of the writer or in the matrices of a majority of the processors, that

is, all the recorded labels. By Lemma 5.4.1, it contains all the viable labels. The

lemma follows from the existence of bounded sequential time-stamp systems

[Israeli and Li 1993; Dolev and Shavit 19871. ❑

The next lemma shows, in particular, that in the bounded implementation,

processors do not reach a deadlock and terminate each operation they start.

LEMMA 5.4.3. Each execution of a read or write operation takes at most 12

time units.

PROOF. We describe a worst-case time scenario for a read operation. A

similar, but shorter, scenario for the write operation is omitted.

Recall that the maximum delay of a message is 1. Suppose processor i sent
an (RI) message at time t.By time t + 2, all the acknowledgments for this

message have arrived. Assume that as a result of the acknowledgments proces-
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sor i must start a recording process for some label x. It could be the case that

processor i cannot start this recording process immediately, since processor i

has started another recording process before time t + 2. However, this other

recording process will end no later than time t + 4. Thus, the recording

process for x would start no later than time t + 4 and would terminate no later

than time t + 6.

Hence, processor i sends an ( Rz, y ) message, for y > x, no later than time

t + 6. By time t + 7, at least a majority of the processors receive this message

and may need to start a recording process for y. Again, it is possible that they

cannot start the recording process for y immediately since another recording

process is in progress. However, like before, the recording of y would start no

later than time t + 9 and would terminate before time t + 11. Thus, these

processors can send the ( ACK – Rz ) message before time t + 11,and proces-

sor i gets these messages no later than time t + 12 and finishes its read

operation. ❑

The worst-case scenario for a read operation requires O(n2) messages, when

O(n) processors start recording in response to an Rz message. The worst-case

scenario for a write operation is similar. This implies the following proposition:

PROPOSITION 5.4.4. At most O(nz) messages are sent during each execution of

a read or a write operation.

The constructions of bounded sequential time-stamp system [Israeli and Li

1992; Dolev and Shavit 1987] imply that a label can be represented using O(n)

bits (i.e., IL7’I = 0(2”)). The next theorem summarizes the above discussion.

THEOREM 5.4.5. There exists a bounded emulator of an atomic, single-writer

multi-reader register in a complete network, in the presence of at most [(n – 1)/2]

processor failures. Each execution of a read operation or a write operation

requires 0(n2) messages each of size 0(n3), O(1) time, and 0(n4) local memory.

6. The Bounded Implementation—Arbitraiy Network

In an arbitrary network, a processor is considered faulty if it cannot communi-

cate with a majority of the processors, and a correctly functioning processor is

guaranteed to eventually be in the same connected component with a majority

of the processors. The first construction in this section is achieved by replacing

every send operation from i to j by an execution of an end-to-end protocol

between i and j. Several implementations of such a protocol are known (see

Afek and Gafni [1988, 1991]; and Awerbuch et al. [1991]). An end-to-end

protocol establishes traffic between i and j if there is eventually a path

between them. We assume that at most L(n – 1)/2] processors are faulty and

therefore, at least [(n + 1)/21 processors are connected to each other. Thus,

eventually, there will be a path between any nonfaulty processor and a majority

of the processors and the system behaves as in the case of complete network

with processor failures.
Note that there can be labels in a disconnected part of the system that will

not appear in the input of Procedure LABEL. However, these are not viable

labels because the end-to-end protocol will prevent processors from adopting

them as the writer’s label and hence correctness is preserved.
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The complexity claims in the next theorem are implied by the end-to-end

protocol of Afek and Gafni [19891.

THEOREM 6.1. There exists a bounded emulator of an atomic, single-writer

multi-reader register in an arbitrary network in the presence of link failures that do

not disconnect a majori~ of the processors. Each execution of a read operation or

a write operation requires 0(n5 ) messages, each of size 0( n3), and 0( n=) time.

Instead of implementing each virtual link separately, we can achieve im-

proved performance by implementing communicate directly. We make use of

the fact that Afek and Gafni [1991] show how to desynchronize any diffusing

computation, not only an end-to-end protocol.

More specifically, in a dijfusing computation [Dijkstra and Scholten 19801,

one node, the initiator, initiates the computation by sending messages to its

neighbors. Following the reception of a message, a node may send messages to

its neighbors. In this manner, the computation diffuses from the initiator.

Procedure communicate can be written as a diffusing computation. The

processor invoking Procedure communicate initiates the computation by send-

ing the message to its neighbors; these, in turn, propagate the message to their

neighbors. Acknowledgements are sent on the communication links that

spanned the computation. Since a nonfaulty processor is eventually connected

to at least [(n + 1)/21 processors, a nonfaulty processor will receive [(n + 1)/21

acknowledgments eventually.

The resulting implementation requires 0(n3) messages per invocation of

communicate. Thus, we have

THEOREM 6.2. There exists a bounded emulator of an atomic, single-writer

multi-reader register in an arbitrary network in the presence of link failures that do

not disconnect a majority of the processors. Each execution of a read operation or

a write operation requires O(nJ) messages, each of size 0(n3 ), and O(nl ) time.

Since the constructions of Afek and Gafni [1987; 1991] require unbounded

local space the local space overhead of the algorithm is unbounded.

7. Discussion and Further Research

We have presented emulators of atomic, single-writer multi-reader registers in

message-passing systems (networks), in the presence of processor or link

failures. In the complete network, in the presence of processor failures, each

operation to the register requires 0( n2 ) messages, each of size 0(n3), and

constant time. In an arbitrary network, in the presence of link failures, each
operation to the register requires 0( n4) messages, each of size 0(n3 ) and

0(n2) time.

It is interesting to improve the complexity of the emulations, in either of the

message-passing systems. Alternatively, it might be possible to prove lower

bounds on the cost of such emulations.

An interesting direction is to emulate stronger shared memory primitives in

message-passing systems in the presence of failures. Any primitive that can be

implemented from wait-free, atomic, single-writer multi-reader registers, can

also be implemented in message-passing systems using the emulators we have

presented. This includes wait-free, atomic, multi-writer multi-reader registers,

atomic snapshots, and many others. However, there are shared-memory data
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structures that cannot be implemented from wait-free, atomic, single-writer

multi-reader registers [Herlihy 1988]. Some of these primitives, such as Read-

Modi&Write, can be used to solve consensus [Herlihy 1988], and thus any

emulation of them in the presence of failures will imply a solution to consensus

in the presence of failures. It is known [Fischer et al. 1985] that consensus

cannot be solved in asynchronous systems even in the presence of one failure.

Thus, we need to strengthen the message-passing model in order to emulate

primitives such as Read-Modify-Write. Additional power can be added to the

message-passing model considered in this paper by failure detector mecha-

nisms or automatic acknowledgment mechanisms (cf. [Feldman and Nigam

1980]). We leave all of this as a subject for future work.
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