
Renaming in an Asynchronous Environment

HAGIT ATTIYA, AMOTZ BAR-NOY, AND DANNY DOLEV

Hebrew University, Jerusalem, Israel

DAVID PELEG

Stanford University, Stanford, California

AND

RijDIGER REISCHUK

Technische Hochschule Darmstadt. W. Germany

Abstract. This paper is concerned with the solvability of the problem of processor renaming in unreliable,
completely asynchronous distributed systems. Fischer et al. prove in [S] that “nontrivial consensus”
cannot be attained in such systems, even when only a single, benign processor failure is possible. In
contrast, this paper shows that problems of processor renaming can be solved even in the presence of
up to t c n/2 faulty processors, contradicting the widely held belief that no nontrivial problem can be
solved in such a system. The problems deal with renaming processors so as to reduce the size of
the initial name space. When only uniqueness of the new names is required, we present a lower
bound of n + 1 on the size of the new name space, and a renaming algorithm that establishes an
upper bound on n + t. If the new names are required also to preserve the original order, a tight
bound of 2’(n - t + 1) - 1 is obtained.

Categories and Subject Descriptors: C.2.2 [Computer-Communication Networks]: Network protocols

General Terms: Algorithms, Reliability

Additional Key Words and Phrases: Asynchrony, asynchronous environment, lower bounds, processor
renaming, symmetry breaking, unreliable systems

1. introduction

The problem of reaching agreement in unreliable distributed systems has been the
subject of extensive research. In the fundamental paper [8], Fischer et al. prove
that deterministic processors cannot attain “nontrivial consensus” in any asyn-
chronous system in which processors may fail. Their result holds even when it is

Part of this work was done while A. Bar-Noy, D. Dolev, and D. Peleg were visiting the IBM Almaden
Research Center in San Jose, California. H. Attiya was supported by a doctoral fellowship from the
Liebniz Center. D. Peleg was supported in part by a Weizmann fellowship and by contract of the Office
of Naval Research NO00 14-85-C-073 1.
Authors’ current addresses: H. Attiya, Laboratory for Computer Science, Massachusetts Institute of
Technology, Cambridge, MA 02139; A. Bar-Noy, IBM T. J. Watson Research Center, P.O. Box 704,
Yorktown Heights, NY 10598; D. Dolev, IBM Almaden Research Center, 650 Harry Road, San Jose,
CA 95 120; D. Peleg, Department of Applied Mathematics, The Weizmann Institute, Rehovot 76100,
Israel; R. Reischuk, Technische Hochschule Darmstadt, West Germany.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.
0 1990 ACM 0004-541 l/90/0700-0524 $01.50

Journal of the Association for Computing Machinery, Vol. 37, No. 3, July 1990, pp. 524-548

Renaming in an Asynchronous Environment 525

guaranteed that at most one processor may fail, and even when this failure is a
benign failstop failure (i.e., a processor can fail only by stopping). This negative
result, and later stronger versions of it [6], created the widely held impression that
in the presence of faults one cannot expect to solve asynchronously any nontrivial
problem that requires participation and coordination of several processors. Atten-
tion turned to the design of probabilistic algorithms, thus relaxing the determinism
[3,4, 121, and to attaining consensus in semi-synchronous systems, thus restricting
the asynchrony [1, 71.

Contradicting this widely held belief, we show that there are nontrivial problems
that can be solved in unreliable asynchronous systems. These new results, along
with the observations of [9] and the recent results of [5] may well lead to the revival
of the original research trend, namely, exploring and charting the border between
the attainable and the unattainable in a completely asynchronous environment in
the presence of faults.

The problem we examine is processor renaming. The renaming problem can be
informally defined as follows. Each of the n processors initially has a (distinct)
name taken from an unbounded ordered domain. (Throughout we identify the
processors with their old names, and denote them by p, q, etc.) We want an
algorithm that allows each correct (nonfaulty) processor to choose (irreversibly) a
new name from a space of size N, so one of the following requirements hold:

(1) Uniqueness. Every two new names are distinct.
(2) Order-preserving. If p < q, then the new name of p is smaller than the new

name of q.

It is required that N does not depend on the original names, but only on n and
on an upper bound t on number of possible faults. Naturally, we are interested in
having an algorithm requiring the smallest possible N.

We refer to the version of the problem requiring the first property as the
uniqueness problem, and to the version with the second property as the order-
preserving problem. (Note that since the original names of processors are distinct,
the order-preserving condition implies the uniqueness property.)

There are several reasons for studying this particular problem. The basic difi-
culties in solving the renaming problem are overcoming uncertainties and breaking
symmetries. Both difficulties are inherent in many distributed problems. Intuitively,
the reason one can solve the renaming problem is the room left for maneuvering;
a “dead” or “seemingly dead” processor can affect two reserved names, while the
rest of the processors share the others. In the consensus problem we do not have
that, and every single processor may affect the result in some runs of the algorithm.

One motivation for studying the renaming problem, is the fact that the complex-
ity (in both communication and time) of a distributed algorithm depends, some-
times, on the size of the name-space of the processors (cf. [111). Using shorter
names as processor identifiers in messages results in shorter messages and hence
smaller message complexity. In particular, replacing names taken from an un-
bounded domain by bounded-length names lets one to effectively bound the
message complexity of algorithms.

It is important to notice that in an asynchronous environment processors should
be careful about dropping their old names and starting to use the new ones. This
is especially important in cases where names are used for (continuous) identifica-
tion. In such cases, there are several points that need to be taken care of. To begin
with, there should be clear distinction between old and new names (say, by using
a different field length for names), to prevent the possibility of confusing the old

526 ATTIYA ET AL.

name of one processor with the new name of another. Secondly, even after a
processor p has decided a new name x and sent all other processors messages
announcing x, it cannot start signing its messages to another processor q by x until
it receives from q an acknowledgment for the announcement message. Luckily,
this is guaranteed to happen within finite time after renaming, if both are nonfaulty,
and practically will happen by the next communication between them. A third
requirement is that all processors must keep in memory both the old and the new
names of all processors, and may erase the old name of a processor p only after
observing that all other processors already know of the new name (which, of course,
may never happen). Hence, renaming may not necessarily reduce memory space
requirements. Note, however, that assuming a FIFO ordering on the arrival of
messages is sufficient to eliminate this difficulty and enable processors to drop (and
forget) their old names immediately after announcing their new choice.

Sometimes, names serve a more restricted function than identification. For
instance, processors may use their names only as “tags” for marking their presence
(say, in some priority queue). Other processors do not need to know exactly which
processor has placed the tag, if they know it is not their own. For such applications,
a processor may start using its new name as a tag immediately after deciding it,
without having to make sure that other processors are aware of the change. (Note
that for such applications, the renaming algorithm does need to ensure that no two
processors select the same new name, and also that new names are distinct from
the old ones.)

In fact, this type of application can be carried even farther. The methods
developed here for the renaming problem can be combined with the idea of using
processors’ names as tags to yield a fault-tolerant critical section management
algorithm. Suppose that the system contains some k copies of a global resource
(say printers). One would like to have an algorithm managing the access of
processors to the resource, with at most one processor using a copy at a time,
according to some safety and fairness rules. This can be done by introducing
“permits” numbered 1 to k. A processor has to get hold of a permit to enter the
critical section and use the appropriate resource. The problem of managing the
circulation of the permits can be viewed as a “repetitive” variant of the renaming
problem in which processors decide new names (or equivalently, obtain permits),
use the resource and then release their permits, and so on. This approach to the
fault-tolerant critical section problem is presented and developed further in [2].

To summarize, the inherent complexity of the renaming problem and the
methods used in obtaining the algorithms are basic and are useful both in their
own right and in attacking other problems in asynchronous message passing
environment. Throughout the rest of the paper, we concentrate only on the initial
stage of selecting the new names and deciding them, and ignore the issue of possible
applications or the question of how old names are dropped and replaced by new
ones.

Note that the original names of the participating processors are not known to all
processors in advance. Otherwise, there exists a trivial solution: Assuming the old
names are p1 c p2 < . . . < pn, let pi choose i as its new name. This meets both
requirements with N = n. We further assume that once a processor decides on a
name, it will not change it. Otherwise, one can again present a trivial solution:
Each processor selects its ordinal number among the original names known to it
as a new name. Later, the processor changes its choice in the appropriate way
whenever it learns of an original name previously unknown to it. To rule out the

Renaming in an Asynchronous Environment 527

trivial solution of hardcoding new processors’ names into the algorithm, we assume
that the algorithm executed by a processor depends only on its original name.

For the uniqueness problem, our algorithm yields new names from a space of
size n + t. A lower bound of n + 1 is proven. The proof generalizes to a class of
coordination problems. For the order-preserving problem, we get a new name
space of size 2’(n - t + 1) - 1, with a tightly matching lower bound.

We remark that a simple probabilistic version of our algorithm yields names
from a space of size n, which is clearly optimal (we omit any further description or
analysis since this is done by standard methods). The gap between our bounds for
deterministic algorithms is still an open question. To narrow this gap, a better
understanding of the effect of multiple faults is required.

The rest of the paper is organized as follows. In Section 2, we give a formal
description of the model. The lower bounds for the uniqueness problem, for the
order-preserving problem, and for the relation between n and t appear in Sections
3, 4, and 5, respectively. A simple but inefficient algorithm for the uniqueness
problem is described in Section 6, and serves to demonstrate some of the ideas
behind our later algorithms. The two algorithms for the uniqueness problem and
the order-preserving problem are described in Sections 7 and 8, respectively.

2. The Computation Model

The definitions follow the ones introduced in [6] and [8] with slight modifications.
For convenience of presentation we number the processors pI, . . . , p,,. To avoid
trivial solutions to the renaming problem, this numbering is external and is
unknown to the processors themselves. The names by which the processors identify
themselves are considered to be part of their inputs. (We sometimes, especially in
the upper bounds, ignore this distinction and refer by pi both to the ith processor
and to its original name.)

Let I be a set of input values, and D a set of decision (output) values. Assume
that processors have special input and decision registers, and that decision registers
are write-once and are initialized with a “*” (meaning that a decision has not yet
been made). An input vector Z = (i,, . . . , i,) E I” is an assignment of some input
values i,, . . . , i, E J to the input registers of the processors pl, . . . , pn, respectively.
A decision vector D = (d,, . . . , d,) is the concatenation of the values d,, . . . , d,
E D U (*) stored in the decision registers of the processors pI , . . . , p,,, respectively.
A decision vector d, extends another decision vector d, if some coordinates that
contain “*” in fi, contain values from D in bZ.

A coordination problem + is a mapping from I” to subsets of D”, defining the
permitted decisions for any input vector. If a problem maps some input vector to
the empty set, then this is not a legal input vector for that problem. Denote by 9
the set of legal input vectors, that is, 1 E I” is in Y if and only if +(I) # 0. In
the renaming problem, for example, I is the set of natural numbers, while D =
II,..-, N) for some bound N, and X the set of legal input vectors, includes those
vectors in I” in which all numbers are distinct. Denote by G the set of all vectors
in D” in which no decision value appears twice. The uniqueness problem maps
any legal input vector to the set 5 Similarly, the order-preserving problem
maps any legal input vector 1 to the set of vectors in $ that have the same order
pattern as 1. (In both cases, all illegal input vectors are mapped to the empty set.)

An algorithm is a system of n (n 2 2) processors P = 1 pI, . . . , p,J, modeled as
infinite-state machines with state set 2. To denote the initial value of the input

528 ATTIYA ET AL.

register, we assume that the set of input values Z is mapped on the set of initial
states in Z. Each processor starts in an initial state, and follows a deterministic
algorithm involving receiving and sending messages. The messages are drawn from
an infinite set M. Each processor has a message buffer, holding the messages that
have been sent to it but not yet received. Each buffer is modeled as an unordered
set of messages, and is assumed to be initially empty. A message is sent to a
processor by adding it to its message buffer.

A configuration consists of the state of every processor and the contents of every
message buffer. In an initial configuration, every processor is in an initial state,
and every message buffer is empty. An event is a pair (p, m) where p E P and
m E M U (I), where I denotes “no message.” An event (p, m) is applicable to a
configuration C if p’s message buffer contains the message m. Applying the event
e = (p, m) means that p receives the message by m (by removing it from its message
buffer), carries out local computations, changes its state and sends messages (as
specified by the algorithm) in a single atomic step. In particular, the event (p, I)
in which p is active but receives no message is always applicable. (This corresponds
to the situation in which all messages sent to p, that is, placed in p’s buffer, are still
“in transit” and have not arrived yet.)

A run of the algorithm is finite (possibly empty) or infinite sequence of events.
The underlying schedule of a run R is the sequence of processors of the events in
R. The run R is applicable to a configuration C if the events in it can be applied
in turn starting from C. If R is finite, the resulting configuration is denoted (C, R)
and is said to be reachable from C. A configuration is legal if it is reachable from
an initial configuration. (In particular, any initial configuration is legal.) A config-
uration has decision value 6 if the decision registers of the processors form the
decision vector d. We say that a decision vector d is reachable from a configuration
C if there exists a configuration C ’ reachable from C with decision value 6.

There are no restrictions on the order in which processors take steps or the order
in which messages are received, except that each nonfaulty processor takes an
infinite number of steps during any infinite run, and every message sent to a
nonfaulty processor should eventually be delivered. More formally, for 0 5 t 5
n - 1, an infinite run R is said to be t-admissible if it is applicable to a legal
configuration C = (i, T), where i is an initial configuration and T a run, and if
there is a set P’ of size at least n - t with the property that every processor in P’
appears infinitely often in the underlying schedule of R, and receives all messages
sent to it in T . R. The maximal such P’ is denoted NF(R), and it is the set of
nonfaulty processors in R.

An algorithm is a t-resilient algorithm for solving a coordination problem @ if
for any legal input vector i, and for any t-admissible run R from 1, there exists a
finite prefix R ’ of R in which all processors in NF(R) decide, and moreover, for
every finite prefix R” of R, the decision value of (1, R “) can be extended to a vector
in G(i). Notice that since processors fail only by stopping, and since processors
cannot distinguish a failed processor from a very slow processor, we cannot
“declare” a processor that did not participate in a finite run to be faulty. Hence,
the decisions made by any of the processors should be extendible by decisions of
the slow processors.

When proving the lower bounds it is convenient to model the situation by an
“adversary” that has the power to control the order of execution of processors’
steps, to manipulate the arrival of messages and to distribute the input names. The
notion of a run incorporates these aspects. However, for clarity of presentation we
sometimes prefer to divide the adversarial powers among three “players’‘-the

Renaming in an Asynchronous Environment 529

“scheduler,” the “postmaster” and the “distributor.” The scheduler determines the
underlying schedule of the run, that is, decides which processor will be active in
each step. The postmaster controls the policy of message delivery, that is, decides
which of the messages currently in the active processor’s buffer (if any) is to be
received at that step. The distributor creates the input vector. The adversaries may
coordinate their decisions, which are done dynamically. In these terms, an algo-
rithm solves a given problem in a completely asynchronous system if it correctly
solves the problem for arbitrary scheduler, postmaster and distributor that generate
a t-admissible run.

Our lower-bound proofs use mainly post policies of the following structure. For
some set P’ c P,] P’) L n - t, the postmaster delivers all messages sent among
processors in P’ whenever possible (subject to the scheduler policy) and in the right
order, while suspending all messages sent to and from processors in P - P’. We
refer to this policy as an immediate post policy for P’. (In proving our lower
bounds, we sometimes apply such a policy to set P’ that is only a subset of the
nonfaulty processors, but in each such case we may apply the policy only for a
finite number of steps, since using it forever constitutes a violation of the “fairness”
rule requiring all correct processors to eventually receive their mail.)

To reflect the fact that processors’ numbering is external, that is, that the
renaming protocol can depend only on processors’ initial names, we make the
following assumption on the algorithms we consider:

Anonymity Assumption. Let 7r be a permutation of { 1, . . . , nl, let J and J’ be
two initial conligurations, such that for any 1 5 i 5 n processor pi in J and processor
pTci) in J’ are in the same state. Let R be a run applicable to J and let r(R) be the
run with the permutation 7r applied to the underlying schedule of R, then pi in
(J, R) and p=(i) in (J’, r(R)) are in the same state.

3. The n + 1 Lower Bound

The lemmas given in this section all concern t-resilient algorithms and their runs
and describe some of their basic properties. Throughout this section, we assume
that t 2 1 and n 2 2. The first lemma implies some commutativity of schedules,
and was proved in [8]. From the deterministic nature of the algorithm and the
asynchronous nature of the system it follows that if the events in two finite runs
do not “interact” (in a sense to be made precise by the lemma), then the order in
which they are applied does not matter.

LEMMA 3.1 [8]. Let C be a legal configuration and let RI and R2 be runs
applicable to C such that the set of processors occurring in the run R, is disjoint
from the set of processors in R2. Let C, = (C, R,) and C, = (C, RI), then R, is
applicable to C2, Rz is applicable to C,, and (C,, Rz) = (G, RI).

The next simple lemma is the key to our proofs. Let p E P, two legal conligura-
tions C, , C, are called p-apart if there exist two legal configurations C {, Ci that
differ in at most p’s state, and two runs RI, R2 in which only p takes steps, such
that Cj = (Cj , Rj), for j = ! , 2.

LEMMA 3.2. Let C, and C, be any two legal configurations that are pi-apart.
Then there are decision values d, and & reachable from C1 and CZ, respectively,
that differ in at most the ith coordinate.

PROOF. By definition Cj = (Cl, Rj), for j = 1, 2, C;, C; differ in at most pi’s
state, and only pi take steps in Rj, j = 1, 2. Let R be some infinite run in which pi

530 ATTIYA ET AL.

takes no steps, with an immediate post policy for P - (pi]. Apply this run to CI
and to C,. Since R, . R is a l-admissible run of a t-resilient algorithm, and
by hypothesis t 2 1, there is a finite prefix R’ of R in which all processors in
NF(R) = P - (pi) decide in (C,, R ‘). Since no messages from pi arrive during
this run, the states of all processors in NF(R) are the same in (C,, R”) and
(C,, R”), for any finite prefix R” of R. In particular, the states of all processors in
NF(R) are the same in (C,, R’) and (C2, R’); hence, all processors in NF(R) decide
in (C,, R’).

Now consider two t-admissible runs T, and Tz of the algorithm from
(C, , R ‘) and from (C,, R ‘), respectively, with the property that in q, j = 1, 2: all
processors (including pi) take steps infinitely often and all messages sent are
received. Since the algorithm is t-resilient, in both runs pi decides. Denote the
decision vectors thus reached by d, and D2. Since processors in P - (pi) cannot
change their decision, and have the same decisions in both configurations (C, , R ‘)
and (C2, R’), B1 and fi2 differ in at most the ith coordinate. Cl

This lemma can be generalized by replacing pi with any set F c P,] F I 5 t (and
the proof is similar).

Two vectors ? and % (of equal length) are called adjacent if they differ in at most
one coordinate. Given a set Z? of vectors, this adjacency relation induces a graph
structure whose vertices are the vectors in 8, with an edge between two vertices iff
the corresponding vectors are adjacent. Denote this graph by F(E).

Look at some configuration C, and let 9(C) be the set of decision vectors
reachable from C (by a certain algorithm). A legal configuration C is called
indecisive (for a particular algorithm) if the graph .Y(B(@) is disconnected (i.e.,
contains more than one connected component). The following is a generalization
of Lemma 3 from [8].

LEMMA 3.3. Let C be a legal indecisive configuration of a t-resilient algorithm,
and let e = (p, m) be an event applicable to C. Then there is some finite run R such
that (C, R . e) is legal and indecisive.

PROOF. Look at all the configurations reachable from C by finite runs that do
not include e. Since messages can be delayed, e can be applied to all of these
configurations.

Assume, by way of contradiction, that all legal configurations of the form
(C, R . e) are decisive (i.e., all the decision vectors reachable from them are
connected). Since% is indecisive, there are decision vectors in at least two different
connected components that are reachable from C. Without loss of generality, there
are configurations E, and E2 reachable from C such that (Ei, e) is legal and has
decision vectors in the ith connected component. In particular, the decision vectors
reachable from E, are disjoint from the decision vectors reachable from Ez.

Using standard techniques (as in the proof of Lemma 3 in [S]), it can be shown
that there are two configurations E, and EZ, reachable from C, with the above
properties, and such that one is obtained in a single step from the other, that is,
EZ = (E,, e’), where e’ = (p’, m’).

Case 1, p # p’. By Lemma 3.1, (Ez, e) = ((E,, e’), e) = (E,, e’ f e) =
(E, , e . e’), which contradicts the assumption that decision vectors from separate
connected components are reached from each configuration.

Case 2, p = p’. Then (E,, e) and (E2, e) = (E,, e’ . e) are p-apart. By
Lemma 3.2, there are decision vectors reachable from both, that are adjacent (differ

Renaming in an Asynchronous Environment 531

in p’s decision only). Since neither (E, , e) nor (E2, e) is indecisive, all the decision
vectors reachable from both are connected, that is, belong to the same connected
component. This contradicts the way E, and E2 were selected.) 0

Recall that the set 9(i) is the set of the decision values that are reachable by a
particular algorithm when starting from an initial legal configuration i, and denote
by g(9) the_ union of &9(i) over i E 3 An algorithm is splitting if there exist two
legal inputs I,, Z2 that are connected in F(Y), and two decision vectors D; E 9(ii),
such that D, is not connected with D2 in Z?@(Y)), that is, the algorithm maps
connected initial configurations to disconnected decision vectors. Using the tech-
niques of [8], we have the following lemma.

LEMMA 3.4. For any l-resilient splitting algorithm that solves a coordination
problem, there exists an initial legal indecisive configuration.

PROOF. Assume to the contrary that for any initial legal configuration i,
.Y(@)) is connected. By the splitting property there exist two initial configurations
i and j such that 9(i) and 9(j) contain elements from two different connected
components. By induction on the distance between 9 and / in k?(9), it can be
shown that there are two adjacent initial configurations i, and i2 with this property.
Let p be the processor in which i, and iz differ. i, and i2 are p-apart, and hence,
by Lemma 3.2, there exist two adjacent decision vectors, Bi and a2 reachable from
i, and i, (respectively). Since F(S(i,)) is connected D, is in this connected
component, and in the same way d, is connected to all vectors in 9(i,). However,
fil and 6’2 are adjacent, hence all vectors in 9(i,) are connected to all vectors in
9(i,) (in Z7(9(Y))); a contradiction. 0

LEMMA 3.5. There is no 1 -resilient splitting algorithm for solving a coordination
problem in a completely asynchronous system.

PROOF. The proof follows the technique introduced in [8] (and appearing in
Section 3 of [6]). Using Lemma 3.3 and 3.4, we construct an infinite O-admissible
run in which all configurations are indecisive, as follows: Let B, be an initial
indecisive configuration, whose existence is guaranteed by Lemma 3.4. Usually, if
B, is indecisive, let p = pi, where i = (jmod n), and let m be the oldest message in
p’s buffer (not yet delivered). Apply Lemma 3.3 to Bj and e = (p, m), and denote
by B,,, the resulting indecisive configuration. The resulting run is O-admissible and
contains only indecisive configurations.

In a O-admissible run, all processors should eventually decide. This means that
there is a configuration reachable after some finite prefix of the run that has only
one possible decision vector. This implies that following configurations cannot be
indecisive. A contradiction. 0

Similar results, for the case of distinguishable processors, were proved by Moran
and Wolfstahl [lo] and by Taubenfeld [131. Note that in our model distinct
processors could be modeled by appending i to processor pi’s input.

In the renaming problem with N = n, there are no connected decision vectors.
This implies that for proving that any algorithm is splitting it suffices to show it
must reach at least two decision vectors. This is done in the proof of the next
lemma.

LEMMA 3.6. Any algorithm that solves the renaming problem with N = n is a
splitting algorithm.

532 ATTIYA ET AL.

PROOF. Let s?’ be some renaming algorithm and assume to the contrary that in
all runs of S/ only one decision vector is reached. Therefore, each processor always
decides the same value. Assume pi always decides xi, in all possible runs. By the
anonymity assumption, we can permute the inputs between pi and pj, for any j,
1 5 j 5 n, which implies that X, = Xi. It follows that all XiS are identical, thus
violating the uniqueness requirement. 0

THEOREM 3.7. There is no l-resilient algorithm for solving the uniqueness
problem with N = n in a completely asynchronous system.

The remainder of this section deals with coordination problems in general and
is not essential to the results in the rest of the paper.

As before, @(i) is the set of all decision vectors that are possible when starting
from an initial configuration f. Notice that an algorithm for solving + need not
reach all the decision vectors in a(i). However, the set of decision vectors reachable
in all runs of a particular algorithm solving a problem should cover $J in the
foll+owing sense: A set 8 C D” covers a coordination problem Q if for any i E 3
@(I) fl 8 # 0. A cover B is a minimal cover for @ if no proper subset of it
covers a. Note that the set of decision vectors reachable in all runs of an algorithm
solving + must include a minimal cover for a.

Theorem 3.7 can be proved for a class of nontrivial coordination problems. A
coordination problem + is nontrivial if no minimal cover of it is a singleton, that
is, every algorithm for solving cf, must reach at least two decision vectors. A
coordination problem @ is called splitting ifF(8) is disconnected for every minimal
cover 8 of a, every algorithm for solving @ must reach decision vectors in at least
two connected components. The details of the proofs below are omitted, because
of being almost identical to those above.

LEMMA 3.8. Any algorithm for solving a splitting coordination problem is
splitting.

LEMMA 3.9. There is no I-resilient algorithm for solving a splitting coordination
problem in a completely asynchronous system.

A problem is called a complete coordination problem if the decisions of any
n - 1 processors define uniquely the decision of the nth processor. Thus, we have
the following simple observation.

Observat_ion. -Let + be a complete coordination problem and let fi,, d, E a(f)
such that D, # Dz. Then they differ in at least two coordinates.

It follows that no two (different) decision vectors are adjacent. This immediately
implies that any nontrivial complete coordination problem is splitting, and thus by
Lemma 3.9.

COROLLARY 3.10. There is no I-resilient algorithm for solving a nontrivial
complete coordination problem in a completely asynchronous system.

4. The Order-Preserving Lower Bound
In this section we prove that every t-resilient algorithm for solving the order-
preserving problem requires N 2 2’(n - t + 1) - 1. The proof goes through
even with a mild form of asynchrony: processors may operate in lock-step
synchrony, and messages are delivered immediately, but processors do not start syn-
chronously. Intuitively, we exploit this behavior by looking at runs that activate pi

Renaming in an Asynchronous Environment 533

(forn-t+ 1 (isn)onlyafterpr,..., pi-1 have already decided. This policy
forces these “early waking” processors to keep enough “space” between their new
names because the processors that will wake up later might have names that fall
between any two of them.

For convenience, we assume in this proof that the original name space is
unbounded; however, the lower bound presented holds even if the name space is
bounded, provided that its size is sufficiently large.

For any schedule u, denote by ui the concatenation of j copies of c (for some
integer i).

For the sake of this lower bound, we assume the immediate post policy in all
runs.

More formally, for any k, 0 I k 5 t, define Yk to be the collection of all schedules
g with the properties that only the processors pl, . . . , Z&k appear in CT and each
of these processors appears infinitely often. Define J$ to be all the input vectors
(4, a,) where for every i and j, 1 5 i < j I n - k, 2k < 1 ai - aj 1 and
2k C ai.

LEMMA 4.1. Let A be an algorithm for the order-preserving problem with the
new name space 1, . . . , N. For any 0 5 k I t, consider any u E pk and Z E yk and
suppose that x1, . . . , x,.-k are the new names chosen by pl, . . . , pn-k, WSpXtiVdy,
while running A with u on I. Then 1 xi - xj 1 > 2k - 1 for every i and j, 1 5 i # j 5
n-k.AZsoxj>2k-1and(N+1)-xi>2k-1forevery1~i~n-k.

PROOF. By induction on k. For k = 0 the claim follows from the requirement
that processors choose distinct names and since 2k - 1 = 0.

For the inductive step, assume the hypothesis is true for 0 I k < t, and assume
to the contrary that the claim does not hold for k + 1. To be more specific, assume
the existence of a schedule u E s+, and an input vector Z = (a,, . . . , a,,) E &+l
and a run R with u on I. For the new names xl, . . . , &-(k+I) of the processors
PI,..., &++I), respectively, obtained in this run, one of the following three cases
happens:

(1) Thereexistiandj, 1 li#jln-(k+ l),suchthat Ixi-xjl ~2~+‘- 1,or
(2) there exists i, 1 5 i 5 n - (k + I), such that Xi I 2k+’ - 1, or
(3) thereexistsi, 1 si<n-(k+ l),suchthat(N+ 1)-Xis2k+‘- 1.

By the definition of a t-resilient algorithm, there exists a prefix u’ of g such
that after applying u’ the processors pI, . . . , &.++l) decide on the new names
XI,. *. , xn-(k+l), respectively.

Suppose now that the first case, out of the three mentioned above, takes place
(the other two cases are similar). Moreover, assume that i and j are the indices so
1 xi - Xj 1 is minimal and Xj 5 x;. Let a” = u ’ . (pl, . . . , pn.+)m and let Z II =
(aI, . . . , an-(k+l), rbi - aj)/21, . . . , a,). Clearly, an E pk. The minimality of
I Xi - Xj I implies that there is no a,, 1 smrn-(k+ l),suchthatai<a,<a,;
therefore, a,,-& = [(a; + ai)/ is in the right distance from all the other. Thus, also
1” E -u;,.

Run algorithm A with the schedule u” on I” and let &..k be the name chosen
by p,,-k in this run. By the order-preserving condition, Xj < &-k C Xi. Since
xi - xj 5 2k+l - 1, either x,-k - Xj 5 2k - 1 or Xi - x,-k 5 2k - 1, COlltlXi-
dieting the inductive hypothesis. 0

Remark. We cannot prove Lemma 4.1 on any input vector, since if pi and pj
have original names a; and aj, that are close to each other they do not have to leave
a large gap between the new names they choose.

534 ATTIYA ET AL.

THEOREM 4.2. Every t-resilient algorithm for solving the order-preserving prob-
lemrequiresNr2’(n-t+ I)- 1.

PROOF. Apply Lemma 4.1 with k = t and assume without loss of generality
that al < a2 < . . . < a,+ Then

n-r
N + 1 = (N + 1 - .x,-~) + C (xi - Xi-i) + ~1 2 2’(n - t + I),

i=2

hence,

Nz 2’(n - t + 1) - 1. q

5. The n > 2t Lower Bound

In this section, we prove two impossibility results. First, we show that there is no
solution for either of the renaming problems if n I 2t. Then, we show that there is
no solution to these problems when 2 5 t if every processor stops after choosing a
new name.

THEOREM 5.1. For any N, N 2 n + 1, tf n 5 2t, then there is no t-resilient
algorithm for solving either of the renaming problems with a new name space of
size N in a completely asynchronous system.

PROOF. Assume to the contrary that yt 5 2t and there is an algorithm A that
solves any of the renaming problems using some new name space of size N. We
prove the claim by demonstrating the existence of some input vector that fails the
algorithm. Without loss of generality, assume that n = 2t.

Run algorithm A with the schedule u = (p, , . . . , pf)m, with any post policy, and
on all possible t-tuples of original names for these processors. Since y1 = 2t, the
definition of a t-resilient algorithm implies that for each such input I there is some
finite prefix cI of g in which the t operating processors choose distinct names. Since
the original name space is unbounded and N is fixed, there exist two disjoint sets
of processors’ names, say (a,, . . . , a,] and (b,, . . . , b,], such that pl decides the
same new name when running A with u on the inputs Z, = (a,, . . . , a,, . . .) and
Ib = (b,, . . . , bt, . . .). Let cr, (respectively, q,) be the finite prefix of G in which
processors with originals names Z, (respectively, Zb) decide, and let a6 be Ub where
pI is replaced by pr+, for 1 5 i 5 t.

Now run the algorithm on the input vector (a,, . . . , a,, bl, . . . , b,) with the
schedule C’ = co . crl and a post policy by which all messages sent between
the two groups of processors are delayed until the decision of all the processors.
By the anonymity assumption, for processor pI (respectively, pr+J the schedule ua
(respectively, ui) is indistinguishable from the subschedule u = ga . G;. Since the
post policy is legal they both choose the same name; a contradiction. 0

THEOREM 5.2. For any N 2 n + 1 and for any t 2 2, tf every processor is
required to stop running after deciding its new name, then there is no t-resilient
algorithm for solving either of the renaming problems with a new name space of
size N in a completely asynchronous system.

PROOF. As in the previous proof we assume, toward a contradiction, that there
exists an algorithm A solving the problem under the assumption of the theorem
and demonstrate the existence of some input vector that fails the algorithm.

Run algorithm A with the schedule u = (p, , . . . , P~-+)~, with any post policy
and on the input vector (a,, . . . , a,) for arbitrary a;, 1 I i 5 n. The definition of

Renaming in an Asynchronous Environment 535

a t-resilient algorithm implies that there is some finite prefix G’ of B in which the
n - t operating processors choose distinct names. Let u4 = c ’ . (q)-. Since the
original name space is unbounded and N is fixed, there exist two processor names
a and a’ so q decides the same new name when running algorithm A on the inputs
(al,. . . , an-!, a, . . . , a,) and (a,, . . . , a,.+, a’, . . . , a,,) with the schedule u4 and
with any post policy (actually, q is pnPt+,).

Now run algorithm A with the schedule gq4’ = u’ . (q, q’)“, with the post policy
that delays all messages sent between q and q’, and on the input vector (a,, . . . ,
an-,, a, a’, . . . , a,) (here, q and q’ are P,,-~+~ and J+.~+~). At the end of the
subschedule U’ of cg4, all the processors pl, . . . , pn-! stop running before knowing
about q and q’. Therefore, by the anonymity assumption, for processor q (respec-
tively, q’) the schedule c4 (respectively, u4,) is indistinguishable from the schedule
uq4’. Hence, they both choose the same name; a contradiction. Cl

Hence, in our algorithms we assume that 2t + 1 5 n and that every processor
continues to cooperate after it chooses its name, to help the others.

6. A Simple Uniqueness Algorithm
In this section we present a simple algorithm for the uniqueness problem, which
requires a name space of size N = (n - t/2)(t + 1). A later algorithm improves this
bound to n + t. Still, this algorithm illustrates some of the ideas used in the later
algorithms.

Throughout the algorithm, each processor p attempts to learn of as many initial
names as possible, keeping the initial names it does know of in a vector (i.e., an
ordered set) K As a rule, sets of (old or new) names are always taken to be ordered
in increasing order, and the rank of a name in a set of names refers to its position
in this order (with the smallest having rank 1). The rank of a processor in the
vector V is defined to be the rank of its name. These ranks play an important role
in all later algorithms.

Initially, V = {p]. Thereafter, processors continually exchange their sets, each
processor updating its own set as it learns of new initial names. Each processor also
maintains a counter c that is the number of processors that have claimed having
the same set V as itself.

Since t processors might be faulty, a processor cannot expect to get more than
n - t messages from different processors (including itself). Thus, after having
c = n - t identical messages (or sets V), it makes no sense to wait for more messages
(which might never arrive), and the processor should take some action. This
observation generalizes to every data structure the processors might try to “stablize”
by exchanging messages: one cannot expect to get more than n - t identical copies,
since at this stage there may exist a correct schedule in which no processor can add
any information to the others.

The above remarks lead us to define the basic notion of a stable vector. (Here
and in the sequel, we sometimes abuse terminology by using the term vector and
the notation V to refer to some specific value or content of the vector.)

Definition 6.1. Consider an algorithm A in which processors exchange (the
contents of) a vector V of a certain type. The vector V is stable with respect to a
processor p in a given run of A if p has received n - t - 1 messages containing
identical copies of F’. The vector V is stable if it is stable with respect to some
processor p.

536 ATTIYA ET AL.

Here and in later algorithms, we need a (partial) ordering on the vectors V,
reflecting the accumulation of knowledge in the processors. Intuitively, V > I”
means that V is more updated than V’. For this section, we simply take as our
partial order the containment relation on sets V (i.e, V > I/’ iff V 3 V’).

Definition 6.2. Consider an algorithm A in which processors exchange a vector
K We say that A is locally proper (with respect to the vector ordering) if, for every
run of A and for every processor p, the set of values of the vector V held by p
during the run is totally ordered.

In fact, in all cases considered here, the ordering on the vectors held by a
processor during a run corresponds directly to their order in time, that is, the value
of the vector I/ held by a processor at some point in time is no smaller than any
value of V held earlier by this processor.

LEMMA 6.1. For every algorithm A, if A is locally proper with respect to the
vector ordering, then in any run of A the set of stable vectors is totally ordered.

PROOF. Assuming I/ and V’ are two incomparable stable vectors obtained in
the same run. By definition I/ is stable with respect to some processor, so this
processor received copies of V’ from at least n - t distinct processors. the same
holds for I”. Since n 2 2t + 1, there is some processor p that sent both Vand V’.
Hence, p held both values in its vector at different stages of the run, which
contradicts the assumption that A is locally proper. 0

We now give a formal description of the algorithm.

The Simple Algorithm S /* for a processor p */
0. v/c (p].
1. /* sending a new set */

a. Send V to every other processor.
b. ct 1.

2. Wait until you receive a message I/‘.
a. If V’ C V then /*V’ contains old information */

got0 2.
b. If V’ - V # 0 then: /* V’ contains new information, update V and restart */

VC vu V’.
Goto 1.

c. If V = V’ then: /* an identical copy */
c-c+ 1.
If c < n - t then goto 2 else goto 3.

3. /* V is a stable vector-decide */
a. vclVI.
b. Let r be your rank in the vector V.
c. Choose your new name to be the pair (v, r).

4. /* echo stage - helping other processors */
Continue forever; whenever you receive a message V ‘:
a. V-VU V’.
b. Send V to every other processor.

To prove the correctness of the algorithm we first make the following direct
observation.

LEMMA 6.2. The algorithm S is locally proper with respect to the set ordering.

COROLLARY 6.3. In any run of’ the algorithm S, the collection of stable vectors
V is totally ordered.

PROOF. Immediate from Lemmas 6.1 and 6.2. 0

Renaming in an Asynchronous Environment 537

COROLLARY 6.4. In any run of the algorithm S, tf V and V’ are stable sets of
the same size, then V = V’.

PROOF. If V # V’, then V and V’ are not comparable, contradicting
Corollary 6.3. 0

LEMMA 6.5. In every run of the algorithm S, each correct processor p eventually
obtains a stable set V.

PROOF. Given a nonfaulty processor p, there is a time 7 in which p sets its set
to V and never changes it again (since p can update its set at most n - 1 times).
This time 7 has the property that

(1) p does not receive the set V before (or p would have set its set to V sooner),
and

(2) any other set V’ that p receives throughout the run satisfies V’ G V (since V
is the final value of p’s set).

At this point, p sends the set V to all processors. For each nonfaulty processor
p’, let V’ be the value of the set ofp’ when p’ receives V from p. Processor p’ has
sent its set to p on the first time it set it to V’. Therefore, by property (2), V’ C V.
If V’ = V, then by property (1), V’ arrives after time 7. If V’ C V, then on
receiving V from p, p’ sets its set to V and sends it to p. In both cases, p eventually
gets a supporting copy for V from p’ after time T.

So after p sets its set to V, it receives n - t copies of V and leaves the loop at
Step 2. 0

LEMMA 6.6. In every run of the algorithm S, the names chosen by the processors
are distinct.

PROOF. Assume that processors p and q choose the names (v,,, r,) and (vq, r,),
respectively. If v, # v,, then the claim is immediate. Otherwise, the stable sets held
by p and q at the moment of decision were of the same size, and by Corollary 6.4
they are identical. Since both p and q are in that set and p # q, necessarily
r,#r,. 0

LEMMA 6.7. The number of dtfherent pairs (v, r), over all possible runs of the
algorithm S is N = (n - t/2)(t + 1).

PROOF. The first component, v, satisfies, n - t I v I n. For every possible v,
the second component may assume exactly v different values. This is because, in
Step 3 of the algorithm, a deciding processor p is always in the list V. Therefore,
the total number of possible pairs is

N= i v= n-; (t+l).
(1

0
y=?l--l

Note. We can define a mapping from the pairs (v, r) to the range [1, N]. Using
this mapping, the processors can choose their names to be integers in this range.

THEOREM 6.8. There is an algorithm for the uniqueness problem that uses the
names(l,..., (n - t/2)(t + 1)).

7. An Algorithm for the Uniqueness Problem

In this section we describe a more involved algorithm for the uniqueness problem
and prove its correctness.

538 ATTIYA ET AL.

7.1 OVERVIEW. Let us first give an outline of the algorithm. The new name
spaceis UNS= (1, y1 + t). As with the simple algorithm of Section 6, each
processor p maintains and constantly updates a vector V containing information
about the processors of which it knows, and a counter c of the number of processors
that have claimed having the same information.

The algorithm is based on the following general strategy. A processor is required
to reach a stable vector I’, and then to suggest a name based on I/. Then the
processor exchanges information once more with the other processors, until it
reaches a stable vector again. Now the processor has to review its suggestion, by
checking whether it is currently valid. If the new information validates the sugges-
tion, the processor now decides on its name. Otherwise (e.g., if the same name was
suggested by some other processor simultaneously), the processor has to make a
new suggestion and repeat the process.

7.2 VECTORS. The information maintained by processors during the execution
of the algorithm consists of vectors V/containing an entry for each known processor.
Each entry contains several components, including the following:

(1) p, the old name of the processor.
(2) xp, a new name suggested by p.
(3) Jp, a counter of the name suggestions made by p.
(4) bP, a “decision” bit, which is 1 if p already decided on a name and 0 otherwise.

Throughout the rest of the paper we use the following notations with respect to
vectors I/. Denote by UNDECZDED(V) the set of processors p for which bP = 0
in V (i.e., the processors that have not yet decided on a name). Let PROCS(V) be
the set of processors (old names) in V. Let FREE(V) be the set of new names from
UNS that do not appear as name suggestions in I’.

The number of entries in I/ (= 1 PROCS(I’) 1) is denoted by 1 VI. We use
p E V as a shorthand for p E PROCS(V), and similarly x E V says that x occurs
as a name suggestion in V.

The entries of each vector V are ordered internally by increasing order of the old
names p (i.e., this ordering determines the rank of the entry of p in I’). Initially,
the vector held by p contains only one entry, corresponding to p itself, with all
components except the first set to zero.

Again, the algorithm uses a partial ordering among the vectors themselves,
reflecting the extent to which the vectors are up-to-date. This ordering is defined
as follows:

Definition 7.1. For two vectors V, V’, we say that VI V’ iff, for every processor
p, p E I/ implies both p E I/’ and the value of Jp in V’ is no smaller than the
value of Jp in V.

Suppose that a processor holds the vector I’, and gets a processor V’ such that
V’ I I’. This means that there is some q E I/’ such that q 4 V or Jq in I’ is
smaller than in I/‘. In such a case, the processor can update its vector V based on
V’. This operation consists of including all entries from I/’ that are missing in V,
and replacing the x4, Jq, and bq components of entries in V for which V’ is more
recent (i.e., with larger J”).

7.3 THE ALGORITHM. We now give a formal description of the algorithm.

Renaming in an Asynchronous Environment 539

Algorithm A
/ * For a processor p. Counter c counts the number of identical copies of Vp gets. */

0. Construct an initial V with a single entry, for p, setting xp, JP, bP = 0.
1. /* sending a new vector */

a. Send V to every other processor.
b. ct 1.

2. Wait until you receive a message V’.
a. If V’ c V then goto 2.
b. If V’ 9 Vthen:

/* there is some q E V’ such that q 4 V or J4 in V’is smaller
than in V’ */

update V as described above and goto 1.
c. If V= V’ then: /* received another identical copy */

ccc+ 1.
If c c n - t then goto 2 else goto 3.

3. /* Vis a stable vector */
If previously suggested a name (i.e., xP # 0), and xp # x4 for any other suggested name
x4 E V, then:
a. Decide xp.
b. b”c 1.
c. Send V to every other processor.
d. Goto 5.

4. /* Never suggested a name before, or previous suggestion xp collides with other
suggestion(s): Needs to suggest a new name based on the stable vector V */
a. Set r to be the rank of p in UNDECIDED(V).
b. If r > t + 1 then goto 2. /* do not suggest any name */
c. Suggest a name by setting xp c FREE(V)(r), the rth free name in V.
d. Insert x0 to V.
e. JP+JP+ 1.
f. Goto 1.

5. / * echo stage-helping other processors */
continue forever; whenever you receive a message V’ :
a. Update V if necessary.
b. Send V to every other processor.

7.4 CORRECTNESS OF ALGORITHM A. We need some lemmas concerning the
order relation on vectors. The first trivial observation follows directly from the
description of the algorithm and Definitions 6.2 and 7.1.

LEMMA 7.1. Algorithm A is locally proper with respect to our vector ordering.

COROLLARY 7.2. In any run ofA, the set of stable vectors is totally ordered.

PROOF. Immediate from Lemmas 6.1 and 7.1. 0

The partial correctness of the algorithm is captured by the following claim.

LEMMA 7.3. If p and p’ have decided on new names x and x’, respectively, then
XZX’.

PROOF. Assume to the contrary that x = x’. Let I/ (respectively, V’) be
the stable vector that p (respectively, p ’) held when deciding its new name.
Corollary 7.2 implies that in any run of the algorithm the set of stable vectors is
totally ordkred; therefore, V and V’ are comparable.

If V < I/‘, then the name x must appear also in V’, since p never changes its
suggested name after decision. Therefore, the choice of x’ by p’ is invalid, as it
conflicts the requirement of Step 3. A similar contradiction follows from assuming
V’C Vor V= I/‘. 0

540 ATTIYA ET AL.

We also need to prove that no processor “gets stuck” when it has to suggest a
name.

LEMMA 7.4. Whenever a processor p has to suggest a name (in Step 4(c)), there
is an available name in FREE(V).

PROOF. We need to show that whenever a processor p gets to execute Step 4(c),
(FREE(V) 1 1 t + 1. Note that p reaches this step only when either xp = 0 or xp
collides with some other suggestion in V. Therefore, the number of distinct
suggestions currently appearing in V is at most n - 1. Given that N 2 yt - t, there
must be at least t + 1 free names. 0

It remains to prove termination. This requires us to show that every correct
processor eventually gets to decide a new name. We prove this by assuming the
opposite and deriving a contradiction.

Assume the existence of a run in which some of the correct processors p continue
running forever with bP = 0. Let us introduce the following notation. Denote by
DECIDED the set of all processors p that decide on a name along the run (i.e.,
that switch to bP = 1 and stop increasing Jp at some point), and let UNDECIDED
= P - DECIDED. Our hypothesis is that UNDECIDED contains at least one
correct processor. Denote by STUCK, STUCK C UNDECIDED, the set of all
processors p that get stuck, i.e., stop increasing Jp (but remain with bP = 0) from
some point on, and let TRY = UNDECIDED - STUCK. TRY contains those
(correct) processors that continuously try to suggest new names forever but keep
colliding, and never get to decide. See Figure 1.

LEMMA 7.5. TRY # 0.

PROOF. Assume to the contrary that TRY = 0, or STUCK = UNDECIDED.
Consider the point of time by which all processors reached their final J. The
information exchanged from that point on does not change, so at some later point
all correct processors obtain a stable vector. Consider the smallest correct processor
in UNDECIDED (there is such a processor by our general hypothesis). Its rank in
UNDECIDED is at most t + 1 because at most t processors are faulty. Therefore,
by the rules of the algorithm it will suggest a new name and increase its J; a
contradiction. 0

Consequently, let p. be the smallest processor (old name) in TRY.
Since TRY # 0, the set of stable vectors obtained during the run is infinite.

From some point on, all these vectors V satisfy the following properties:

(1) their length is 1 V 1 = k for some k 2 n - t (which does not change afterwards),
and

(2) all processors in DECIDED U STUCK have reached their final J value (hence,
they do not suggest any new names afterwards, and in particular, all processors
in DECIDED already have b = 1).

Let VL be the first stable vector with the above properties (where by “first” we
mean smallest according to the ordering defined earlier for vectors). Hereafter, we
refer to every stable vector V 2 V, as a limit vector. Note that for all limit vectors
V, the set of processors in it, UNDECZDED(V), is exactly UNDECIDED.

Denote the rank of p. in the set UNDECIDED by ro. By the rules of the
algorithm, for every p E TRY, the rank of p in the set UNDECIDED is at most
t + 1. In particular,

LEMMA 7.6. r. I t + 1.

Renaming in an Asynchronous Environment 541

DECIDED

b=l

reach
final J

UNDECIDED

b=O

STUCK TRY

reach
final J

increase J
forever

FIG. I. The partition of processors.

UNS

NAMESSTUCK POOL

(2, < z2 < . . .}

iILz+i

FIG. 2. The partition of new names.

Let us now classify the names in UNS as follows. Let NAMESDECIDED denote the
set of new names decided by processors in DECIDED, let NAMESsrUcK denote
the set of new names last suggested by processors in STUCK and let POOL =
UNS - (NAMESDECIDED U NAMES srUcK). (See Figure 2.) Intuitively, POOL is
the set from which the processors of TRY continuously attempt to choose names.
For every stable limit vector I/ let NAMESTRy denote the set of new
names appearing in V as suggestions xq of processors q E TRY. Note that for every
limit vector V, POOL = FREE(V) U NAME&-&V). Assume that POOL is
ordered, and let POOL = (xl 5 x2 5 . . .). For every stable limit vector V and
for every name x E FREE(V), denote by f(x, V) its rank in FREE(V). Clearly
f(x;, V) 5 i.

There is a later point in time after which every processor in TRY has already
suggested a name based on a limit vector. Hence, there is a future point in which
p. holds a stable vector VL with the property that for every name x4 suggested in
NAME&& VL), the vector that was used to suggest x4 was a limit vector.

LEMMA 7.7. In every stable vector V 2 VL, either x, E FREE(V) or x, is
suggested only by po.

542 ATTIYA ET AL.

PROOF. Assume to the contrary that xrO appears in V as a name suggestion.
Since x,~ E POOL (or, x,,, @ NAMESDECIDED U NAMESsrUcK), it is suggested by
some q E TRY, q # po. Then q suggested x, according to some stable limit vector
I/‘. Let Y be the rank of q in UNDECIDED. Then, r. < r by definition of po. Since
q must suggest the rth name in FREE(V’) based on I/‘, and since x, is not the
rth element of FREE(V’) (asf(x,, I”) 5 r. < r), q could not have suggested it; a
contradiction. q

Therefore, on seeing VL, p. either decides immediately on x~,, as its name (if xrO
appears as its suggested name in VL) or it suggests x, now and decides on it upon
obtaining the next stable vector.

It follows that p. does not decide a new name, so p. E DECIDED, contradicting
the fact that p. E UNDECIDED. Since this fact follows from our general hypothesis
that UNDECIDED contains some correct processors, we get

LEMMA 7.8. In every run of the algorithm, all the correct processors eventually
decide new names.

THEOREM 7.9. There is an algorithm for the uniqueness problem that uses the
names(l,...,n+tj.

An extreme case in which n + t names are actually needed by the algorithm is
when the t processors with the smallest initial names suggest the names 1 through
t and then fail and stop functioning. Thus, the names (1, . . . , t) are now occupied,
and the collection of names from which the rest of the processors get to select
their names is POOL = {t + 1, . . . , n + t 1. The correct processors then select their
names sequentially in increasing order of original names. Each correct processor
that gets to select a name views itself as the t + 1st contestant, and therefore has to
select the t + 1st free name. Therefore, the correct processors end up selecting the
names {2t + 1, . . . , n + t 1. The names (1, . . . , t 1 remain as suggestions made by
the faulty processors, and the names (t + 1, . . . , 2t) remain free forever.

We remark that one can construct a simplified probabilistic version of this
algorithm, in which the new name space is of size n, and processors suggest new
names at random from the set FREE(V) with equal probability. For such an
algorithm, partial correctness is handled just as before, and (expected) termination
can be proved by standard probabilistic arguments. As the realm of this paper does
not concern efficiency, we do not enter the issue of expected number of rounds
and related questions.

8. The Order-Preserving Problem

8.1 THE ALGORITHM. In this section we present an algorithm for the order-
preserving problem that matches the lower bound of Section 4. We first give a
simplified version of the algorithm, which makes the proof easier but yields a larger
name space than is implied by the lower bound. Later, we show how to shrink
the name space further, to match the lower bound.

Let us start with an informal description of the algorithm. The general structure
is similar to the simple algorithm for the uniqueness problem (described in
Section 6). During the execution of the algorithm, the processors store some
information in a vector I/. A processor is required to repeatedly exchange its
information until reaching a stable vector. Then it can decide on its new name.

The vector held by processor p is of the form I’ = (L, L,-, , . . . , L,), where
each of the components is an ordered list of (old) processor names. The first list,

Renaming in an Asynchronous Environment 543

L, consists of all the processors known to p. The role of the other lists is slightly
more complex. Later in this section, it is shown that, just as in the previous
algorithms, at most t + 1 different sets of processors may occur as sets L in
stable vectors during any run. Furthermore, these sets may be of size i for each
n - t 5 i % n, and they are totally ordered by the subset relation. During the run,
every processor p learns of some of these lists: and stores them in its vector K
Thus, each of the lists Li in Vis either empty or contains a set of exactly i processors,
which are the processors occurring in the list L of some stable vector.

Note that processor p may learn of sets L; as above in two different ways. When
p obtains its stable vector V, the list of all processors known to p, L, is itself such a
list. Besides, p may learn of such lists Li from vectors it receives from other
processors.

It turns out that for our purposes, the relative position of a processor’s name is
fully characterized by its ranks in these sets. Specifically, the name x chosen by
processor p once obtaining a stable vector V = (L, L,,-, , . . . , L,) consists of a
list of rank numbers (x,+, x~++~, . . . , x,,), where Xi is the rank of p in the list
Li U {p 1, if Li # 0 in V, and 0, otherwise. Note that 0 5 Xi 5 i + 1; the case
Xi = i + 1 occurs whenever p $ L; and p is larger than any processor q E Lie
The list L is henceforth called the choice list of x.

Whenever p gets a vector I/’ from one of the other processors, it has to check
whether this vector contains some processors q or some lists Li which p did not
know of so far. In such a case, p has to update its vector, send it to all other
processors and restart its attempt to obtain a stable vector. After obtaining a stable
vector V, p can decide its name. The precise definition of the ordering on the new
name space is designed to ensure that new names chosen in this way will preserve
the original order.

Let us now proceed with more formal definitions.

Definition 8.1. The new name space, OPNS, contains names of the following
form. Each name x consists of a sequence of t + 1 numbers, (x,-, , x~-,+~, . . . ,
x,),whereOsxisi+ 1 andOs+-XiIj-iforallj>isuchthatbothxjand
Xi are nonzero. We refer to these names as rank sequences.

Definition 8.2. Given a name x = (xn-,, . . . , x,,), the choice length of x,
denoted cl(x), is the index of the last nonzero entry in x, that is,

(1) -u(,) > 0, and
(2) for every i > Cl(X), Xi = 0.

The reason for this choice of terminology has to do with the fact that whenever
a processor decides a new name x based on a choice list L we have cl(x) = 1 L 1,
that is, the choice length of x equals the length of its choice list.

The null value in OPNS is the sequence (0, . . . , 0) (denoted 0 for simplicity)
and its choice length is 0. We now define a partial order on the name space OPNS,
as follows.

Definition 8.3. Let x = (x,,-[, . . . , XI, 0, . . . , 0) # 0 and x’ = (xA+, . . . , XL,
0 f * 9 0) # 0 be two names in OPNS where n - t I I = cl(x) 5 n and n - t 5
d ‘= c/(x’) 5 n (note that by Definition 8.2 xl # 0 and XL # 0). Without loss of
generality assume that 15 m. Then, x and x’ are comparable only if

(a) x; > 0 and
(b) m = 1 implies that XL # xl.

544 ATTIYA ET AL.

Their ordering is determined as follows:

(1) case I= m, then

(1.1) casexrcx& thenxcx’,
(1.2) case xl = XL, then x and x’ are incomparable (see (b) above),
(1.3) casex/>xA, thenx>x’,

(2) case 1 c m then

(2.1) casex,<x;,thenx<x’,
(2.2) case x1 = x; , then x > x’,
(2.3) casexj>x;,thenx>x’.

This somewhat involved ordering is needed to ensure that whenever processors
p and p’ decide new names, if these names are at all comparable, then their relative
order is the same as that ofp and p’ (see the proofs of Lemmas 8.6 and 8.10). Note
that the ordering is not defined for every pair of names in OPNS. However, the
algorithm guarantees that names that are actually chosen in any specific run are
always comparable.

Again we need a partial ordering for vectors too.

Definition 8.4. For two vectors V = (L, L,-, , . . . , L,) and I” = (L’, L,‘-, ,
L,‘),wesaythat Vr V’iffLGL’andforeveryi,n-taisn,LiCL,!.

(In iact, it follows from previous discussion that either Li = Lr or L, = 0.)

Suppose that a processor holds the vector V, and gets a vector V’ so V’ 9 V.
This means that either L’ contains some processors not in L, or there is some
nonempty list Ll in V’ so Li = 0. In such a case, the processor can update its
vector V based on V’. This operation consists of including any newly found
processor in L, and setting L; t Lz! for any i for which V’ was more updated.

Let us now give a precise description of the algorithm for the order-preserving
problem.

Algorithm B
0. Construct an initial Vwith L = (p) and Li = 0 for every n - t 5 i 5 n.
1. /* sending a new vector */

a. Send V to every other processor.
b. cc 1.

2. Wait until you receive a message V’.
a. If V’ < Vthen goto 2.
b. If V’ 5 V then update V according to V’ and goto 1.
c. If V= V’ then: /* received another identical copy */

c+c+l.
If c C n - t then goto 2 else goto 3.

3. /* V is a stable vector: decide a name */
a. IclLI.
b. L,c L.
c. Send V to every other processor.
d. xp c 0.
e. For every L, # 0 in V, set xf to be the rank ofp in the list Li U (p).
f. Decide xp.

4. /* echo stage-helping other processors */
Continue forever; whenever you receive a message V’ :
a. Update V ifnecessary.
b. Send V to every other processor.

8.2 CORRECTNESS OF ALGORITHM B. As in the previous section we immediately
have from Definitions 6.1 and 8.4 and from Lemma 6.1

Renaming in an Asynchronous Environment 545

COROLLARY 8.1. Algorithm B is locally proper with respect to our vector
ordering.

COROLLARY 8.2. In any run of algorithm B, the set of stable vectors is totally
ordered.

The above corollary implies

COROLLARY 8.3. If V= (L, L,-,, . . ., L,) and V’ = (L’, L&,, . . . , LA) are
stablevectorsandIL1 = IL’I,thenL=L’.

COROLLARY 8.4. If two processors p, p’ hold nonempty lists, Li, L,! respectively,
for some n - t I i 5 n, then Li = L(.

We now prove that every two new names preserve the order of the old names.

LEMMA 8.5. If processors p and p’ have decided on new names x and x’,
respectively, then x and x’ are comparable.

PROOF. Let V= (L, L,-,, . . ., L,) (respectively, V’ = (L’, LA-,, . . . , LA))
be the stable vector which p (respectively, p’) held when deciding its new name.
Corollary 8.2 implies that in any run of the algorithm the set of stable vectors is
totally ordered; therefore, V and V’ are comparable.

Let I= c/(x), 1’ = c/(x’), and without loss of generality assume that I I I’. If
1 = I’, then p and p’ are in L, as a processor always belongs to its choice list.
Consequently, their rank is not the same, that is, xl # xl . By Definition 8.3(b),
x and x’ are comparable.

Otherwise, I< 1’. Now, assume to the contrary that x and x’ are not comparable.
By Definition 8.3(a), this assumption implies that xi = 0. Contradiction is now
derived from the fact that V and V’ are comparable together with the following
two observations:

(1) Since x;, > 0 (Definition 8.2(1)) and xl, = 0 (Definition 8.2(2)), necessarily
V’ 2s v.

(2) Since x; = 0 (by assumption) and xl > 0 (Definition 8.2(l)), necessarily
VI V’. 0

LEMMA 8.6. If processors p and p’ have decided on new names x and x’,
respectively, then these names preserve the original ordering.

PROOF. By the previous lemma, x and x’ are comparable. Let 1 = cl(x),
1’ = c/(x’) and without loss of generality assume that 1~ I’.

By Corollary 8.4, there is only one list Ll of length 1 occurring in stable vectors.
By the choice of new names (in Step 3 of the algorithm), xl is the rank of p in
Ll U (p). Since L, is the choice list of x, necessarily p E 4, so xl is the rank
ofp in L, as well. Similarly, x; is the rank ofp’ in LI U (p’).

There are two cases to consider. Ifp < p’, then xi is strictly larger than xl; hence,
x < x’ by Definition 8.3 (1.1 and 2.1). So assume p > p’. If x; < XI, then x’ < x
by Definition 8.3 (1.3 and 2.3). The only remaining case is when p’ @ L, and
-6 = xl. This may happen, for instance, when p and p’ are adjacent in the
original list of processor names, because xi is the rank of p’ in L, U (p’)
rather than 4. However, Definition 8.3 (2.2) ensures that even here the right
ordering is preserved. 0

This completes the proof that algorithm B is partially correct for the order-
preserving problem. We now prove the termination of algorithm B.

546 ATTIYA ET AL.

LEMMA 8.7. In every run of the algorithm, every correct processor eventually
decides a new name.

PROOF. We need to establish that every correct processor eventually leaves the
loop at Step 2.

Each processor p updates its vector V by either including a new processor in the
set L or setting one of its lists L,. The set L can be updated at most n - 1 times.
Each list L; is set at most once, so there are at most t + 1 updates of this type. This
bounds the number of times a processor returns to Step 1 and retransmits its
vector.

The rest of the proof is straightforward and follows Lemma 6.5. Cl

8.3 REDUCING THE NAME SPACE. A direct calculation shows that the algorithm
as presented requires a new name space of size at most (n + ,)‘+I. Here we slightly
modify the algorithm in two stages. A careful analysis of the second modification
implies that the modified solution uses a name space of size 2’(n - t + I) - 1,
tightly matching the lower bound.

Definition 8.5. A complete rank sequence, or CRS, is a rank sequence
(&l-t, . . 1, xi, 0, . . . 2 O)suchthatxi#O(or, 1 Sxisi+ l)foralln-t(iI1.

Note that in a CRS, 0 5 Xi - Xi-1 5 1 for every n - t < i I 1.

LEMMA 8.8. Every rank sequence (x,,+, . . . , XI, 0, . . . , 0) can be extended into
aCRS(xL-,, xi’,0 ,..., 0) such that, if xj # 0, then xj’ = xj.

Definition 8.6. For a rank sequence x = (x,-, , . . . , xl, 0, . . . , 0), define the
CRS f(x) to be the largest (lexicographically) CRS that extends x.

Note that a CRS x can be extended only to itself and therefore./(x) = x.

First Modification of Algorithm B. Modify Step 3f of the algorithm to be:
decide j-(x”).

LEMMA 8.9. The modified algorithm is still correct.

PROOF. We have to show that for every two processors p and q, the CRS-
extensions yp =f(xp) and yg =f(xg) preserve the same ordering of xp and x4. The
choice lengths of xp and x4 remain the same in yp and yg, as no entries to their
right are changed. Let I= min(cl(xP), cl(xq)). It follows that xf and xl” are nonzero.
Therefore, yp and yp are nonzero and equal to xf and xl”. Thus, the same ordering
rule from Definition 8.3 is applied. Cl

We comment that this modification already reduces the size of the new name
space to less than twice the value of the lower bound given in Section 4. We now
proceed to reduce this size further and match it with the lower bound. This is done
by showing that one can actually do with only about half the above sequences.

Definition 8.7
(1) The class C is the class of all CRSs x = (x,.+, . . . , x1, 0, . . . , 0) such that

l>n-tandx/-,<x/.
(2) For every CRS, x E C, let m(x) be the maximal index n - t < m 5 1 such that

&l-l = &n, if exists, and m(x) = n - t, otherwise.
(3) For every CRS x = (xn+, . . . , xl, 0, . . . , 0), if x E C then

g(x) = (XH-+, . . .) X,-l, Xm + 1, xm+l + 1, . . .) X/-l + 1, x/, 0, . . .) O),

where m = m(x), else g(x) = x.

Renaming in an Asynchronous Environment 547

Note that in Part (2) of the definition the only case where there is no such index
is when p E L,-, and all the processors in LI - L,-, have (old) names strictly
smaller than that of p. For Part (3) note that g(x) is a CRS and g(x) 4 C.

Second Modification of Algorithm B. Modify Step 3f of the algorithm to be:
decide g(f(x)).

LEMMA 8.10. The modified algorithm is still correct.

PROOF. We have to show that for every two processors p and q, yp = g(f(xp))
and yq = g(f(xq)) preserve the same ordering of xp and x4. Note that the choice
lengths of xp and x4 remain the same in yp and yq and without loss of generality
assume that I = cI(xp) 5 m = cI(xq). It follows that xl” and x7 are nonzero.

Ifl=m,thenxp=yfandxp=y,Q. Therefore, yp and y4 preserve the order of
xp and x9.

Now assume that I < m and hence xf = yp . The following case analysis completes
the proof.

(1) xp < x4. By Definition 8.3 (2.1) xf < XI” and by Definition 8.7 (3) x7 5 y,4.
Consequently yp = xf < x7 < yp, which implies (Definition 8.3 (2.1)) that
yp < y4 and the order is preserved.

(2) xp > x4. By Definition 8.3 (2.2 and 2.3) xf z XT.
2.1 xf > xp. As yfls xl” + 1 (Definition 8.7 (3)) it follows that yp = xf 2 yy.

By Definition 8.3 (2.2 and 2.3), we get that yp > yq and the order is
preserved.

2.2 xf = xl”. This can happen only if q is not in the list LI (see the proof of
Lemma 8.6). Let L, , I <j, be the first list such that q E Lj and x,” # 0 (i.e.,
q knows about the list Lj). It follows from the choice off(xq) (Definition
8.6) that x,“-, = x,” and hence iff(xq) E C then m(f(xq)) > 1 (Definition
8.7 (2)). According to Definition 8.7, yy = x,4, as only indices that are
larger than m(f(xq)) may be changed (Definition 8.7 (3)). Combining all
together we get yp = xf = xl” = yp that implies (Definition 8.3 (2.2)) that
yp > yq and the order is preserved. 0

Let us now analyze the size of the resulting name space. Every CRS
x = (xn+, . . .) x/, 0, . . .) 0) can be encoded by a sequence (x,-~, cl, . . . , Q),
where ti E (0, 1) and k = 1 - (n - 1). This encoding is obtained by taking ei =
Xn-r+i - x,.++~-~. It follows from Definition 8.5 that E; E (0, 1).

Let x be a name chosen by the processor p according to the second modification
of the algorithm and let k = cl(x) - (n - t). Using the encoding described above,
there are two cases:

(1) If k = 0, then there are n - t possible CRSs of the form (x,-, , 0, . . . , 0) for
1 5 xn.+ I n - t, since p must appear in its choice list L,-,.

(2) If k 2 1, then the last modification implies that Ek = 0, and by Definition 8.5
there are (n - t + 1)2k-’ possible CRSs.

The size of the new name space is thus

N = (n - t) + (n - t + 1) i 2k-’ = 2’(n - t + 1) - 1.
k=l

THEOREM 8.11. There is an algorithm for the order-preserving problem that uses
thenames(1,...,2’(n-t+ I)- 1).

548 ATTIYA ET AL.

PROOF. Follows from the lemmas of this section and by a simple bijection from
OPNSto(l,..., 2’(n - t + 1) - 1). 0

ACKNOWLEDGMENTS. We are grateful to Michael Ben-Or, Nati Linial, Mark
Tuttle, and Lenore Zuck for helpful discussions and comments. Thanks are also
due to two anonymous referees for their careful reading of earlier versions of this
paper, and their detailed comments that greatly improved the presentation.

REFERENCES

1. ATTIYA, H., DOLEV, D., AND GIL, J. Asynchronous Byzantine consensus. In Proceedings of
the 3rd ACM Symposium of Principles of Distributed Computing (Vancouver, B.C., Canada, Aug.
27-29). ACM, New York, 1984, pp. 119- 133.

2. BAR-N• Y, A., DOLEV, D., KOLLER, D., AND PELEG, D. Fault-tolerant critical section management
in asynchronous environments. In Distributed Algorithms, 3rd International Workshop (Nice,
France, Sept.) Lecture Notes in Computer Science, No. 392. Springer-Verlag, New York, 1989, pp.
13-23. Inf Cornput., to appear.

3. BEN-OR, M. Another advantage of free choice: Completely asynchronous agreement protocols. In
Proceedings of the 2nd ACM Symposium of Principles of Distributed Computing (Montreal, Que.,
Canada, Aug. 17-19). ACM, New York, 1983, pp. 27-30.

4. BRACHA, G. An O(log n) expected rounds randomized Byzantine generals protocol. In Proceedings
of the 17th Annual ACM Symposium on Theory of Computing (Providence, RI., May 6-8). ACM,
New York, 1985, pp. 316-326.

5. BRIDGLAND, M. F., AND WATRO, R. J. Fault-tolerant decision making in totally asynchronous
distributed systems. In Proceedings of the 6th ACM Symposium of Principles of Distributed
Computing(Vancouver, B.C., Canada, Aug. 10-12). ACM, New York, 1987, pp. 52-63.

6. DOLEV, D., DWORK, C., AND STOCKMEYER, L. On the minimal synchronism needed for distributed
consensus. J. ACM 34, 1 (Jan. 1987) 77-97.

7. DWORK, C., LYNCH, N., AND STOCKMEYER, L. Consensus in the presence of partial synchrony.
J. ACM 35,2 (Apr. 1988), 288-323.

8. FISCHER, M. J., LYNCH, N. A., AND PATERSON, M. S. Impossibility of distributed consensus with
one faulty processor. J. ACM 32, 2 (Apr. 1985) 374-382.

9. KOLLER, D. Token survival: Resilient token algorithms. MSc. Thesis, Hebrew University,
Jerusalem, Israel, 1986.

10. MORAN, S., AND WOLFSTAHL, Y. Extended impossibility results for asynchronous complete
networks. Znf Proc. Lett. 26 (Nov. 1987), 145-15 1.

11. RABIN, M. 0. The choice coordination problem. Acta Znj 17 (1982) 121-134.
12. RABIN, M. 0. Randomized Byzantine generals. In Proceedings of the 24th Symposium of

Foundations of Computer Science (Nov.). IEEE, New York, 1983, pp. 403-409.
13. TAUBENFELD, G. Impossibility results for decision protocols. Tech. Rep. #445. Technion, Haifa,

Israel, Jan. 1987.

RECEIVED MAY 1987; REVISED AUGUST I988 AND JULY 1989; ACCEPTED JULY 1989

Journal of the Association for Computing Machinery, Vol. 37, No. 3, July 1990.

