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Abstract. We present a decision algorithm for the following problem:
given a specification, does there exist a concurrent program which both
satisfies the specification and which can be implemented in hardware-
available operations in a straightforward manner, i.e, without long cor-
rectness proofs, and without introducing excessive blocking and/or cen-
tralization? In case our decision algorithm answers “yes,” we also present
a synthesis method to produce such a program. We consider specificati-
ons expressed in branching time temporal logic. Our result gives a way
of classifying specifications as either “easy to implement” or “difficult to
implement,” and can be regarded as the first step towards a notion of
“implementation complexity” of specifications.

1 Introduction

One of the major approaches to the construction of correct concurrent programs
is successive refinement : start with a high-level specification, and construct a
series of programs, each of which “refines” the previous one in some way. In
the realm of shared-memory concurrent programs, this refinement usually takes
the form of reducing the grain of atomicity of the operations used for inter-
process communication and synchronization. For example, a high-level design
might assume that the entire global state can be read and updated in a single
atomic transition, whilst a low-level implementation would be restricted to the
operations typically available in hardware: atomic reads and writes of registers,
test-and-set of a single bit, load-linked/store-conditional, compare-and-swap, etc.
Each of the successive refinements is considered correct if and only if it conforms
to the specification. The notions of conformance to a specification which are
widely studied can be roughly categorized into two approaches:

1. The use of an operational specification, e.g., an automaton or a labeled tran-
sition system, which is successively refined, via several intermediate levels of
abstraction, into an implementation. The implementation is considered cor-
rect if and only if each of its externally visible behaviors (“traces”) is also a
trace of the specification, or if it is “bisimilar” to the specification.
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2. The use of a temporal logic formula as a specification. The program is con-
sidered correct iff its “semantic denotation” satisfies the formula. In the
branching-time paradigm, the semantic denotation of a program is its global-
state transition diagram, which can be viewed as a model-theoretic structure
for a suitable branching-time temporal logic. The implementation is correct
if and only if the specification is true in each of the initial states of the
implementation. In the linear-time paradigm, the semantic denotation of a
program is the set of its executions. Each execution can be viewed as a
model-theoretic structure for a suitable linear-time temporal logic. The im-
plementation is correct if and only if the specification is true along every
execution.

We consider the following question: given a specification, does there exist
a concurrent program which both satisfies the specification and which can be
easily refined to hardware-available operations in a straightforward and efficient
manner, i.e, without long correctness proofs, and without introducing excessive
blocking and/or centralization? We use the branching-time temporal logic CTL
[9,10] to express specifications. For CTL specifications, we present an algorithm
which decides this question in the sense that it detects a condition, temporary
stability of action guards, which allows for easy refinement. When this condi-
tion holds, we provide a method of mechanically synthesizing a program which
satisfies the specification and which can be easily refined.

Related work. Previous synthesis methods [2,8,10,13,14,15,17,18] all produce
high-grain concurrent programs. In [10], every process can read and update the
global state in a single atomic transition. In [15], the synthesized program con-
sists of a central “synchronizer” process which communicates with satellite pro-
cesses, who do not communicate amongst each other. The methods of [2,8,13,14,
17,18] all synthesize a single “reactive module,” which communicates with the
environment. Thus, all these methods produce a centralized system consisting
of a single process.

The rest of the paper is as follows. Section 2 presents technical preliminaries:
our model of concurrent computation, and the specification language CTL. Sec-
tion 3 gives some technical background on the CTL decision procedure. Section 4
presents our result: a decision procedure for answering the question posed above,
and a synthesis method for the case when the answer is positive. Section 5 ap-
plies our result to the mutual exclusion and readers-writers problems. Section 6
discusses further work and concludes.

2 Technical Preliminaries

2.1 Model of Concurrent Computation

We consider concurrent programs of the form P = P1‖ · · · ‖PI that consist of a
finite number I of fixed sequential processes P1, . . . , PI running in parallel. With
every process Pi, 1 ≤ i ≤ I, we associate a single unique index i. Each Pi is a
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synchronization skeleton [10], that is, a state-machine where each (local) state of
Pi represents a region of code intended to perform some sequential computation
and where each arc represents a conditional transition (between different regions
of sequential code) used to enforce synchronization constraints.

Formally, each Pi is a directed graph where each node is a (local) state of
Pi and is labeled by a unique name (si), and where each arc is labeled with
a guarded command [7] Bi → Ai consisting of a guard Bi and corresponding
action Ai. With each Pi we associate a set APi of atomic propositions, and a
mapping Vi from local states of Pi to subsets of APi: Vi(si) is the set of atomic
propositions that are true in si. As Pi executes transitions and changes its local
state, the atomic propositions in APi are updated. Different local states of Pi

have different truth assignments: Vi(si) �= Vi(ti) for si �= ti. Atomic propositions
are not shared: APi∩APj = ∅ when i �= j. Other processes can read (via guards)
but not update the atomic propositions in APi. We define AP = AP1∪· · ·∪API .
There is also a set of shared variables x1, . . . , xm, which can be read and written
by every process. These are updated by the action A.

A global state is a tuple of the form (s1, . . . , sI , v1, . . . , vm) where si is the
current local state of Pi and v1, . . . , vm is a list giving the current values of
x1, . . . , xm, respectively. A guard Bi is a predicate on global states, and an
action Ai is a parallel assignment statement that updates the shared variables.

We model parallelism as usual by the nondeterministic interleaving of the
“atomic” transitions of the individual processes Pi. Hence, at each step of the
computation, some process with an “enabled” arc is nondeterministically selected
to be executed next. Let s = (s1, . . . , si, . . . , sI , v1, . . . , vm) be the current global
state, and let Pi contain an arc from node si to s′

i labeled with Bi → Ai (we
write this arc as the tuple (si, Bi → Ai, s

′
i)). If Bi holds in s, then a permissible

next state is s′ = (s1, . . . , s′
i, . . . , sI , v

′
1, . . . , v′

m) where v′
1, . . . , v′

m are the new
values for the shared variables resulting from action A. The transition relation
R is the set of all such triples (s, i, s′). The arc from node si to s′

i is enabled
in state s. A computation path is a sequence of states s0, s1, . . . , sk, . . . where
∀k ≥ 0, ∃i ∈ [1 : I] : (sk, i, sk+1) ∈ R,1 i.e., each successive pair of states is
related by R. If s = (s1, . . . , si, . . . , sI , v1, . . . , vm), then we define s�i = si and
s�APi = Vi(s�i).

Definition 1 (Global state transition diagram). Given a concurrent pro-
gram P = P1‖ · · · ‖PI and a set S0 of initial global states for P , the global state
transition diagram generated by P is a structure M = (S0, S, R, V ) given as
follows: (1) R is the next-state relation defined above, (2) S is the smallest set
of global states satisfying (2.1) S0 ⊆ S and (2.2) if ∃s ∈ S, i ∈ [1 :I] : (s, i, t) ∈ R
then t ∈ S, and (3) V is given by V (s) = V1(s1) ∪ · · · ∪ VI(sI), that is, a global
state inherits its truth-assignments to atomic propositions from its constituent
local states.

1 [1 :I] is the set of natural numbers from 1 to I, inclusive.
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2.2 The Specification Language CTL

Our specification language is the propositional branching time temporal logic
CTL [10]. CTL formulae are built up from the atomic propositions in AP , ¬, ∧,
and the temporal modalities EXif , A[fUg], and E[fUg] (f, g are sub-formulae).

Formally, we define the semantics of CTL formulae with respect to structures
of the same type as global state transition diagrams, i.e., a structure M =
(S0, S, R, V ) consisting of a countable set S of global states, a set S0 ⊆ S of initial
states, a relation R ⊆ S × [1 : I] × S, giving the transitions, and a mapping V :
S �→ 2AP which labels each state s with a set V (s) ⊆ AP of atomic propositions
true in s. If s = (s1, . . . , si, . . . , sI , v1, . . . , vm), then V (s) df== V1(s1)∪· · ·∪VI(sI),
where Vi(si) ⊆ APi gives the atomic propositions that hold in si. We require
that R be total, i.e., that ∀s ∈ S, ∃i, s′ : (s, i, s′) ∈ R.

A fullpath is an infinite sequence of states (s0, s1, . . . , sk, . . . ) such that ∀k ≥
0, ∃i ∈ [1 : I] : (sj , i, sj+1) ∈ R, i.e., an infinite computation path. M, s |= f
means that f is true at state s in structure M . We define |= inductively:

M, s |= p iff p ∈ V (s)
M, s |= ¬f iff not(M, s |= f)
M, s |= f ∧ g iff M, s |= f and M, s |= g
M, s |= EXif iff for some state t, (s, i, t) ∈ R and M, t |= f ,
M, s |= A[fUg] iff for all fullpaths (s, s1, s2, . . . ) in M ,

∃k ≥ 0[M, sk |= g ∧ (∀� : 0 ≤ � < k ⇒ M, s� |= f)]
M, s |= E[fUg] iff for some fullpath (s, s1, s2, . . . ) in M ,

∃k ≥ 0[M, sk |= g ∧ (∀� : 0 ≤ � < k ⇒ M, s� |= f)]

Thus X indicates “nexttime” and U indicates “until”: [fUg] means that g even-
tually holds, and f holds up to that point. E, A quantify existentially, universally
(respectively), over the fullpaths starting from a state. A formula f is satisfiable
if and only if there exists a structure M and state s of M such that M, s |= f .
Such an M is a model of f . M, U |= f abbreviates ∀s ∈ U : M, s |= f , where
U ⊆ S. We introduce the abbreviations f ∨ g for ¬(¬f ∧ ¬g), f ⇒ g for ¬f ∨ g,
f ≡ g for (f ⇒ g)∧ (g ⇒ f), A[fUwg] for ¬E[¬gU(¬f ∧¬g)], AFf for A[trueUf ],
AGf for ¬EF¬f , AXif for ¬EXi¬f , EXf for EX1f ∨ · · · ∨ EXIf , and AXf for
AX1f ∧ · · · ∧ AXIf .

A formula of the form A[fUg] or E[fUg] is an eventuality formula. The eventu-
ality A[fUg] (E[fUg]) is fulfilled for s in M provided that for every (respectively,
for some) fullpath starting at s, there exists a finite prefix of the fullpath in M
whose last state satisfies g and all of whose other states satisfy f .

We annotate transitions in a structure with the index i of the process Pi exe-
cuting the transition, and the assignment statement A (if any) that Pi executes,

e.g., s
i,A−→ t.

2.3 Example Specifications: Mutual Exclusion and Readers-Writers

The CTL specification of the two process mutual exclusion problem is the con-
junction of the following (i, j ∈ {1, 2}, i �= j):
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N1 ∧ N2: Both processes are initially in their Noncritical region
AG(Ni ⇒ (AXiTi ∧ EXiTi)): Any move Pi makes from its Noncritical region Ni

is into its Trying region Ti and such a move is always possible.
AG(Ti ⇒ AXiCi): Any move Pi makes from its Trying region Ti is into its

Critical region Ci.
AG(Ci ⇒ (AXiNi ∧ EXiNi)): Any move Pi makes from its Critical region Ci is

into its Noncritical region Ni and such a move is always possible.
AG(Ni ≡ ¬(Ti ∨ Ci)) ∧ AG(Ti ≡ ¬(Ni ∨ Ci)) ∧ AG(Ci ≡ ¬(Ni ∨ Ti)): Pi is al-

ways in one of Ni, Ti, or Ci.
AG(Ni ⇒ AXjNi) ∧ AG(Ti ⇒ AXjTi) ∧ AG(Ci ⇒ AXjCi): A transition by Pi

cannot cause a transition by Pj (interleaving model of concurrency).
AG(Ti ⇒ AFCi): Pi does not starve.
AG(¬(C1 ∧ C2)): P1, P2 do not access their critical regions simultaneously.
AGEXtrue: It is always the case that some process can move.

To obtain the specification for readers-writers [6], we replace AG(Ti ⇒ AFCi)
by the conjunction of the following, where P1 is the reader and P2 is the writer:
AG(T1 ⇒ AF(C1 ∨ ¬N2)): absence of starvation for reader provided writer does

not request access
AG(T2 ⇒ AFC2): absence of starvation for writer
AG((T1 ∧ T2) ⇒ A[T1UC2]): priority of writer over reader for access to Critical

region

3 Overview of the CTL Decision Procedure

CTL is decidable: given a CTL formula f0 there exists a decision procedure
[10] that determines, in O(2|f0|) deterministic time, whether f0 is satisfiable or
not. The CTL decision procedure first constructs a particular kind of AND/OR
graph (a tableau) T0 for f0. We use c, c′, . . . to denote AND-nodes, d, d′, . . . to
denote OR-nodes, and e, e′, . . . to denote nodes of either type. Each node e is
labeled with a set of formulae L(e), each of which is either a subformula of f0,
or a subformula of f0 preceded by AX or EX. No two AND-nodes (OR-nodes)
have the same label.

The CTL decision procedure constructs T0 by starting with a single “root”
OR-node d0 labeled with {f0}, and repeatedly constructing successors of “fron-
tier” nodes until there is no change. The set of AND-node successors Blocks(d)
of an OR-node d is determined by expanding d into a tree as follows. A CTL
formula is elementary iff it is an atomic proposition, the negation of an ato-
mic proposition, or has either AXi or EXi as its main connective. We classify a
nonelementary formula as either a conjunctive formula α ≡ α1 ∧ α2 or a disjun-
ctive formula β ≡ β1 ∨ β2 according to the fixpoint characterization of the main
connective, e.g., AGg ≡ g ∧ AXAGg, so α1 = g, α2 = AXAGg, and AGg is a α
formula, and AFg ≡ g∨AXAFg, so β1 = g, β2 = AXAFg, and AFg is a β formula.
Suppose e is a leaf in the tree constructed so far, and f ∈ L(e). If f ≡ α1 ∧ α2,
then add a single son to e with label L(e) − {f} ∪ {α1, α2}. If f ≡ β1 ∨ β2,
then add two sons to e with labels L(e) − {f} ∪ {β1}, L(e) − {f} ∪ {β2}. This
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tree construction terminates when all leaves contain only elementary formulae in
their labels. This must happen, since each expansion removes one nonelementary
formula and replaces it with one or two smaller formulae. Upon termination, let
Blocks(d) contain one AND-node c for each leaf node, whose label L(c) is the
union of all node labels along the path from the corresponding leaf back to the
root d of the tree. The nodes in Blocks(d) embody all the different ways in which
the (conjunction of the) formulae in L(d) can be satisfied: L(d) is satisfiable iff
L(c) is satisfiable for at least one c ∈ Blocks(d). In the final tableau, an OR-node
must have at least one AND-node successor present.

The set Tiles(c) of OR-node successors of an AND-node c is
⋃

i∈[1:I] Tilesi(c),
where Tilesi(c) is the set of OR-node successors of c that are associated with Pi.
Suppose that c is labeled with n formulae of the form AXig, namely AXig1, . . . ,
AXign, and m formulae of the form EXih, namely EXih1, . . . ,EXihm. Then
Tilesi(c)

df== {d1
i , . . . , dm

i }, where L(dj
i ) = {AXig1, . . . , AXign} ∪ {EXihj}, for

j ∈ [1 : m]. Finally, the edge from c to every node in Tilesi(c) is labeled with the
process index i, to indicate that this successor is associated with Pi. Tiles(c) is
exactly the set of successors required to satisfy all of the nexttime formulae in the
label of c: L(c) is satisfiable iff L(d) is satisfiable for all d ∈ Tiles(c), and LP (c)
is satisfiable, where LP (c) = {f ∈ L(c) | f is a proposition or its negation}.

We continue generating successors of frontier nodes (“expanding” a node)
until there are no more frontier nodes, i.e., every node in T0 has at least one
successor. If a node is ever created which has the same label as an already
present node of the same type (i.e., AND or OR), then we merge the two nodes.
Since the number of possible labels is finite (O(2|f0|)), this process terminates.

The next step is to apply the deletion rules given in Figure 1 to T0. Roughly
speaking, these rules remove all nodes e whose label is propositionally inconsi-
stent, or who do not have enough successors, or who are labeled with an eventu-
ality formula which is not fulfilled. The presence of a suitable full subdag (path)
rooted at e serves to certify the fulfillment of an eventuality A[gUh] (E[gUh]) in
L(e). A full subdag D rooted at node e in T0 is a directed acyclic subgraph of T0
such that: (1) e is the unique node from which all other nodes in D are reachable,
(2) for every AND-node c in D, if c has any sons in D, then every successor of c
in T0 is a son of c in D, and (3) for every OR-node d in D, there exists precisely
one AND-node c in T0 such that c is a son of d in D. We repeatedly apply the
deletion rules until there is no change. Since each application removes one node,
and T0 is finite, this procedure must terminate. Upon termination, if the root of
T0 is has been removed, then f0 is unsatisfiable. Otherwise f0 is satisfiable, in
which case let T ∗ be the tableau induced by the remaining nodes.

For each eventuality A[gUh] ∈ L(c), let DAG[c,A[gUh]] be the directed acyclic
graph that results from removing all the OR-nodes in a full subdag D rooted at
c that fulfills A[gUh], and for each eventuality E[gUh] ∈ L(c), let DAG[c,E[gUh]]
be the path that results from removing all the OR-nodes in a path starting from
c that fulfills E[gUh]. In both cases we connect up the AND-nodes so that c′ → c′′

in DAG[c, g] only if c′ → d → c′′ for some removed OR-node d. These DAG’s
exist by virtue of Figure 1.
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For each AND-node c in T ∗, we construct a “fragment” FRAG[c] by
connecting up copies of the DAG’s for the eventualities in L(c), so that for
A[gUh] ∈ L(c), every infinite path from c encounters DAG[c,A[gUh]], and for
E[gUh] ∈ L(c), some infinite path from c has DAG[c,E[gUh]] as a prefix. Thus,
all eventualities in L(c) are fulfilled in FRAG[c]. We construct a model M for
f0 by connecting up copies of all the FRAG’s so that every state (AND-node)
c has at least one successor. This is done by identifying the root of one FRAG
with a frontier node of another FRAG if they have the same label. The truth
assignment V is given by V (c) = L(c) ∩ AP , where AP is the set of atomic
propositions in spec. In M , every state satisfies all the formulae in its label.
From M , a correct concurrent program can be produced by projecting onto the
individual processes, as given in Definition 2 below.

DeleteP Delete any propositionally inconsistent node.
DeleteOR Delete any OR-node all of whose successors are already deleted.
DeleteAND Delete any AND-node one of whose successors is already deleted.
DeleteAU Delete any node e such that A[gUh] ∈ L(e) and there does not exist a full

subdag rooted at e where h ∈ L(c′) for every frontier node c′ and g ∈ L(c′′) for
every interior AND-node c′′.

DeleteEU Delete any node e such that E[gUh] ∈ L(e) and there does not exist an
AND-node c′ reachable from e via a path π such that h ∈ L(c′) and for all AND-
nodes c′′ along π up to but not necessarily including c′, g ∈ L(c′′).

Fig. 1. The deletion rules for the CTL decision procedure.

4 Refinability of Specifications

4.1 Implementing the Guards: Temporary Stability

Suppose that in a program P = P1‖ · · · ‖PI , a guard Bi of an arc ai = (si, Bi →
Ai, ti) of process Pi is temporarily stable, [12], that is, once Bi holds, it continues
to hold until Pi executes some transition, not necessarily a transition correspon-
ding to the execution of ai. In this case, Pi can test for the truth of Bi by
repeatedly reading the individual variables referenced in Bi. More formally, let
(si, Bi → Ai, ti) be an arc of Pi, and let M = (S0, S, R, V ) be the global state
transition diagram of P given by Definition 1. We require

M, S0 |= AG( ({|si|} ∧ Bi) ⇒ A[Bi Uw ¬{|si|}] ). (GSTAB)
where {|si|} = “(

∧
Q∈APi∩Vi(si) Q) ∧ (

∧
Q∈APi−Vi(si) ¬Q)”. {|si|} characterizes

si in that si |= {|si|}, and s′
i �|= {|si|} for all local states s′

i such that s′
i �= si,

i.e., it converts a local state into a propositional formula. GSTAB requires that
once Pi is in state si and guard Bi holds, then Bi continues to hold until Pi
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leaves si, if ever. Note the use of the weak until Uw: [Bi Uw ¬{|si|}] means that Bi

holds until ¬{|si|} becomes true (i.e., Pi leaves si), or, Bi holds forever if ¬{|si|}
never becomes true. Thus, Pi can check Bi by reading the atomic propositions
and shared variables in Bi sequentially, i.e., in a non-atomic manner. If Pi ever
observes that Bi holds, then Pi can subsequently execute ai.

We say that “M satisfies GSTAB” if and only if GSTAB holds for every arc
(si, Bi → Ai, ti) of every process Pi of P .

Given a CTL formula spec, we wish to answer the following question: does
there exist a program P which both satisfies spec and whose guards are tem-
porarily stable? More technically, does there exist a program P with global state
transition diagram M = (S0, S, R, V ) such that M, S0 |= spec, and M satisfies
GSTAB? Since the tableau T ∗ for spec that is generated by the CTL decision
procedure encodes every possible model of spec, we can answer this question by
analyzing T ∗. Figure 2 presents an algorithm which performs this analysis.

To explain the operation of the algorithm, we first discuss how we extract
a program from a structure M that conforms to the interleaving model, i.e.,
only transitions by Pi change atomic propositions in APi. A Pi-family [3] F in
M = (S0, S, R, V ) is a maximal subset of R such that (1) all members of F are Pi-

transitions, and have the same label
i,A−→ , and (2) for any pair s

i,A−→ t, s′ i,A−→ t′ of

members of F : s�i = s′�i and t�i = t′�i. If s
i,A−→ t ∈ F , then let F.start, F.finish,

F.assig, F.label denote s�i, t�i, A, and
i,A−→ respectively. Given that T.begin de-

notes the source state of transition T , i.e., T.begin = s for transition T = s
i,A−→ t,

let F.guard denote
∨

T∈F {|(T.begin)�i|}, where s�i is s with its Pi-component re-
moved, and {|s�i|} = “(

∧
Q∈(AP−APi)∩V (s) Q) ∧ (

∧
Q∈(AP−APi)−V (s) ¬Q) ∧

(
∧

x x = s(x))”, where x ranges over the shared variables. {|s�i|} converts glo-
bal state s into an “equivalent” propositional formula, with the omission of the
component s�i.

Definition 2 (Program Extraction). Let M = (S0, S, R, V ) be a structure
that conforms to the interleaving model. Then the program P = P1‖ · · · ‖PI ex-
tracted from M is as follows. Process Pi contains arc (si, Bi → Ai, ti) if and
only if:

there exists a Pi-family F in M such that
F.start = si, F.finish = ti, F.assig = Ai, F.guard = Bi.

The truth assignment Vi is given by Vi(si) = V (s) ∩ APi where s ∈ S is such
that s�i = si.

The key idea is this: for the guard Bi to be temporarily stable, we need
that, once a global state s is entered which has an outgoing transition belonging
to F , i.e., s�i = si and ∃t : s

i,A−→ t ∧ t�i = ti, then every transition by some
process other than Pi must lead to a state which also has an outgoing transition
belonging to F , i.e., to a state u such that u�i = si and ∃v : u

i,A−→ v ∧ v�i = ti.
Consider AND-node c which has an outgoing AND-OR transition t = c

i−→ d.
If c is present as a state in the final extracted model M , then there will be an
outgoing transition from c (in M) corresponding to the AND-OR transition
t. This transition is a member of a family F . To check that M satisfies the
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above condition, we check that T ∗, from which M is extracted, satisfies an
analogous condition, applied to the AND-nodes of T ∗, which become states in
M . The algorithm of Figure 2 performs this check as follows. First invoke the
CTL decision procedure on spec, halting if spec is unsatisfiable. If not, then
analyze the tableau T ∗ as follows. For every AND-node in T ∗, compute the
set C of all AND-nodes reachable from c by paths not labeled with index i, i.e.,
corresponding to executions by processes other than Pi. Then, check every AND-
node c′ in C to ensure that it has an outgoing AND-OR transition c′ i−→ d′ in T ∗

such that d′�APi = d�APi, i.e., an AND-OR transition that will generate, in the
extracted model M , a transition in family F . If not, then c′ causes a violation of
GSTAB, and must be made unreachable from c by deleting all of the OR-AND
transitions from OR-nodes in C to c′. If all such necessary deletions can be made
without causing the root node to be deleted, according to the deletion rules of
Figure 1, then a model M can be extracted from the resulting tableau, using the
same method as in the CTL decision procedure, and M will satisfy GSTAB.

1. Apply the CTL decision procedure to spec. If the root of T0 is deleted, then
output “there exists no program satisfying spec” and halt.
Otherwise, let T ∗ be the resulting tableau.

2. for every process index i, and every AND-OR transition t = c
i−→ d in T ∗:

C := {e | e is reachable from c by a path not containing process index i};
forall AND-nodes c′ ∈ C in increasing distance from c do

if there exists an AND-OR transition c′ i−→ d′ in T ∗ such that
d′�APi = d�APi then

mark c′ as “satisfying with respect to t”
else

delete all the OR-AND transitions from OR-nodes in C to c′;
recompute C to account for the deletion of the OR-AND transitions

endif
endfor;

/* call the resulting tableau Ts */
3. Apply the deletion rules of Figure 1 to Ts;
4. if the root node of Ts is undeleted then /* positive decision */

let T be the subgraph of Ts induced by the remaining undeleted nodes;
extract M from T using the same method as in the CTL decision procedure

else /* negative decision */
output “there exists no program satisfying the specification whose guards

are temporarily stable”
endif

Fig. 2. The Test for Specifications that allow Temporarily Stable guards

Shared Variables. The algorithm of Figure 2 does not take shared variables
into account. We introduce shared variables to distinguish between global states
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which have different labels, but which assign the same values to all atomic pro-
positions [10]. This is necessary, since only atomic propositions are implemented
in the synthesized program, whereas the labels which distinguish different sta-
tes in the tableau consist of not only atomic propositions, but CTL formulae in
general. Thus, if propositionally identical but globally different states are not
distinguished, the effect would be to “merge” such states, which could lead to
violation of liveness, e.g., if the [T1 T2] states c6 and c7 in Figure 3 are merged
in this way, then the liveness specification AG(Ti ⇒ AFCi), i ∈ {1, 2}, is viola-
ted. So, in Figure 3, we introduce a shared variable x which has value 1 in c6
and value 2 in c7. This requires adding an assignment x := 1 to all transitions
entering c6, and an assignment x := 2 to all transitions entering c7. Whilst x
will appear in the guards of the synthesized program, the temporary stability of
these guards is dependent solely on the existence of the appropriate AND-OR
transitions c′ i−→ d′ as determined by the algorithm of Figure 2. The subsequent
introduction of a shared variable does not change this, provided however, that
the assignment to the shared variable is performed along all transitions of Pi

which belong to the same transition family.

Theorem 1. Let spec be a CTL formula, and suppose that the algorithm of
Figure 2 produces a model M when applied to spec. Then, M satisfies GSTAB.

4.2 Implementing the Multiple Assignments: Lock-Free
Multi-object Operations

Execution of an arc (si, Bi → Ai, ti) involves both changing the atomic propo-
sitions in APi which are true from those in Vi(si) to those in Vi(ti) (all other
atomic propositions remaining unchanged) and updating the shared variables
according to the parallel assignment Ai, which has the form x, y, . . . := v, w, . . .
where x, y, . . . is a list of shared variables, and v, w, . . . is a list of constants.

We implement this as follows. First, we consolidate all the atomic propositi-
ons of each Pi into a single variable Li, whose value in local state si is Vi(si):
si(Li) = Vi(si), i.e., Li is the set of atomic propositions in APi that are true in
si. In practice, Li could be encoded efficiently as a bit string. Thus, in executing
the arc (si, Bi → Ai, ti), we update the value of Li from Vi(si) to Vi(ti). We now
have a multiple assignment of the form Li, x, y, . . . := Vi(ti), v, w, . . . . To imple-
ment this multiple assignment, we use any lock-free method for implementing
multiple-object operations atomically [1,11,16,19]. We do not need the more ex-
pensive wait-free implementations, because we only need to correctly implement
the transitions in the model M , and, a lock-free implementation suffices for this.
Liveness properties are still satisfied, since M satisfies liveness properties under
nondeterministic scheduling, i.e., no matter which transition is next selected for
execution. In particular, no form of fairness is needed.

4.3 Implementation in Hardware-Available Primitives

Let M be a model for spec resulting from the algorithm of Figure 2, and let P be a
program extracted from M according to Definition 2. Let MP = (S0, S, R, V ) be



On the Implementation Complexity of Specifications 161

the global state transition diagram of P given by Definition 1. Then, MP , S0 |=
spec by the soundness of the CTL decision procedure [10]. Also, MP satisfies
GSTAB, since we can show that MP and M are strongly bisimilar [5]. Let
(si, Bi → Ai, ti) be an arc of Pi in program P , where Ai is x, y, . . . := v, w, . . . .
We implement this arc as follows:

1. while the guard Bi is not observed to be true
read sequentially all the atomic propositions and shared variables in Bi;
evaluate Bi

endwhile;
2. Invoke a lock-free multiple object operation to implement the multiple

assignment Li, x, y, . . . := Vi(ti), v, w, . . . .
We show that this implementation of P is correct by establishing a stuttering
bisimulation [5] between MP and the global-state transition diagram Mimp of
the implementation, which is formally defined along the lines of Definition 1.
See [4] for examples of such definitions for low-atomicity implementations. A
state s of M and a state u of Mimp are related by stuttering bisimulation iff
they assign the same values to all atomic propositions and shared variables.
Since states related by stuttering bisimulation satisfy the same formulae of
CTL – X (CTL without the EXi, AXi modalities) this is sufficient to esta-
blish typical safety and liveness properties. Also, if a conjunct of spec has
the forms AG(pi ⇒ AXiqi), AG(pi ⇒ EXiqi), then AG(pi ⇒ AXi(pi ∨ qi)),
AG(pi ⇒ EXi(pi ∨ qi)), respectively, is satisfied by the implementation, where
pi, qi specify local states of Pi. We defer details of this to the full paper.

Theorem 2. Let spec be a CTL formula, and suppose that the algorithm of Fi-
gure 2 produces a model M of spec. Let P be the program extracted from M by
Definition 2, let Mimp be the global state transition diagram of the implementa-
tion of P given above, and let S0

imp be the set of initial states of Mimp. Let f be a
conjunct of spec which contains no EXi or AXi modality. Then Mimp , S0

imp |= f .

5 Examples: Mutual Exclusion and Readers-Writers

We now apply the above test to the mtual exclusion and readers-writers speci-
fications. Figure 3 shows the tableau produced by the CTL decision procedure
for the mutual exclusion specification given in Section 2.3. The OR-nodes are
named dk, and the AND-nodes are named ck. These names are not part of the
decision procedure, and are provided only to facilitate the discussion. The in-
itial OR-node is d0. Upon applying the algorithm of Figure 2 to the tableau
of Figure 3, we find that the tableau passes the test. Consider, for exampe, the
transition t = c1

1−→ d5, in which P1 moves from T1 to C1, and the application of
the test to t. The set of nodes reachable from c1 by a path not containing process
index 1 is {d6, c6, c7, d11, c10, d1, c2}. AND-node c6 is marked as “satisfying w.r.t.
t”, since c6 has an OR-node successor d10 which reflects the same transition by
P1, namely from T1 to C1. AND-node c7, on the other hand, fails the test, since
it does not have a suitable OR-node successor. Hence, the OR-AND transition
from d6 to c7 is deleted. This causes the remaining nodes to become unreachable
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d0

c0

d1 d3 d4

c1 c2 c3 c4

d5 d6

d2

d7

c5 c6 c7 c8

d10 d11 d12

c9 c10

1 2

2

1

2

12

1 2

1

1

2

1

1

2

d9

d8

2

N2N1

N1 N2

N2C1

T1 N2 T1 N2 N1 N1

N2 N2 T2

C1 T2

N2 N2

C1 N2 T1 T2 T1 T2 C2

T2 T2

C1 T2 T1 C2 T1 C2

T2

T1 T1 N1 T2

T2

N1

N1T1T1

N1

C2

T2C1 C2T1

AFC1 AFC2

EX1true EX2true

AFC1 AFC1

AFC1

EX1true EX2true

AFC2 AFC2

AFC1AFC2 AFC2

Fig. 3. Tableau for the mutual exclusion specification

from c1 by paths not containing process index 1, and so we are done. The tableau
as a whole remains viable, since d6 still has a single successor, c6. For reasons of
symmetry, d7 will be left with sole successor c7 when the test is applied to tran-
sition c4

2−→ d8. Thus, the root is not deleted, and the synchronization skeletons
shown in Figure 4 can be extracted from the tableau.

Figure 5 shows the tableau produced by the CTL decision procedure for
the readers-writers specification given in Section 2.3. The initial OR-node is d0.
Consider the transition t = c1

1−→ d5, in which P1 moves from T1 to C1, and
the application of the test to t. The set of nodes reachable from c1 by a path
not containing process index 1 is {d6, c7, d11, c10, d1, c2}. The AND-node c7 fails
the test, since it does not have a suitable OR-node successor. Hence, the OR-
AND transition from d6 to c7 is deleted. This now leaves d6 without a successor.
Hence, when the deletion rules of Figure 1 are applied, d6 is deleted. This, in
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T1 C1

T2 C2N2
true → x := 1

N1 ∨ T1 → skip

N1 ∨ (T1 ∧ x = 2) → skipP2 ::

N1
true → x := 2 N2 ∨ (T2 ∧ x = 1) → skip

N2 ∨ T2 → skip

P1 ::

Fig. 4. Synchronization skeleton program for the mutual exclusion specification

d0
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d1 d3 d4

c1 c2 c3 c4

d5 d6

d2

d7

c5 c8
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c9 c10

2 1 2

2

1

1

2

1

1

2

1

1

d11

c7

1 2

d8

d9 2

N2N1

N1 N2

N2C1

T1 N2 T1 N2 N1 N1

N2 N2 T2

C1 T2

N2 N2

C1 N2 T1 T2 T1 T2 C2

T1 C2

T2

T1 T1 N1 T2

T2

N1

N1

N1

C2

T2C1 C2T1

AFC1 AFC2

EX1true EX2true

AFC1 AFC1 AFC2 AFC2

T2

T1 C2

T1
EX2true

AFC1 AFC2

Fig. 5. Tableau for the readers-writers specification
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turn results in the deletion of c1 and c2, since they are AND-nodes, and so
require all successors to be undeleted. This results in the deletion of d1 and d2
since they are left without successors. The deletion of d2 causes the deletion of
AND-node c0, and this causes the deletion of the root node d0, since c0 is the
only successor of d0. Thus the tableau is not viable, and we conclude that there
exists no concurrent program which satisfies the readers-writers specification and
which has temporarily-stable guards.

Intuitively, we see that the readers-writers specification imposes a “flickering”
guard on the reader, since it allows the writer to always preempt the reader’s
ability to enter the critical section: when the writer is in N2 and the reader in T1,
the reader is enabled to enter C1, but the writer can autonomously preempt this
enablement by entering T2. This is inherent in the writer priority requirement
of the specification.

6 Conclusions and Further Work

We presented a method for deciding whether a specification can be implemented
by a concurrent program which has the property of being “easily” refined to
a low-grain atomicity program that uses primitives available in hardware. The
refinement process is automatic, and the final program does not resort to inef-
ficient strategies such as using a central module which controls everything. In
practice, our method can be used iteratively. If the procedure of Figure 2 out-
puts “no” for a given specification spec, then every program which satisfies spec
must contain “flickering” guards, which can transit from true to false before the
arc that they label is executed. Detecting the truth of such guards is difficult:
it requires high atomicity operations, or inefficient strategies such as blocking
or centralization. In this case, the best course of action may be to modify the
specification and reapply the method. Extending the method to give advice on
modifying the specification so that it passes the test of Figure 2 is a topic of
future work.

Our test can be viewed as a design rule: specifications which fail it are in
some sense bad specifications, as they necessitate inefficient programs. Our result
therefore contributes to software engineering, as it provides a criterion for judging
the quality of a specification. More generally, our work suggests a notion of
implementation complexity for specifications: can we define a complexity measure
on specifications which indicates the “difficulty” of implementing a concurrent
program P that satisfies the specification. This “difficulty” may take several
attributes into account: the amount of blocking and centralization in P , the
length of the proof that P satisfies the specification, etc. We will examine this
issue further in future work.
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