
Synthesis of Fault-Tolerant Concurrent Programs

PAUL C. ATTIE

Northeastern University and MIT Laboratory for Computer Science

ANISH ARORA

The Ohio State University

and

E. ALLEN EMERSON

The University of Texas at Austin

Methods for mechanically synthesizing concurrent programs from temporal logic specifications
obviate the need to manually construct a program and compose a proof of its correctness. A serious
drawback of extant synthesis methods, however, is that they produce concurrent programs for
models of computation that are often unrealistic. In particular, these methods assume completely
fault-free operation, i.e., the programs they produce are fault-intolerant. In this paper, we show
how to mechanically synthesize fault-tolerant concurrent programs for various fault classes. We
illustrate our method by synthesizing fault-tolerant solutions to the mutual exclusion and barrier
synchronization problems.

Categories and Subject Descriptors: F.3.1 [Logics and Meanings of Programs]: Specifying
and Verifying and Reasoning about Programs—logics of programs, mechanical verification, spec-
ification techniques; D.2.4 [Software Engineering]: Software/Program Verification—correct-
ness proofs, formal methods, model checking, reliability; D.2.2 [Software Engineering]: Design
Tools and Techniques—state diagrams; F.4.1 [Mathematical Logic and Formal Languages]:
Mathematical Logic—temporal logic; C.4 [Performance of Systems]: Fault Tolerance; D.1.2
[Programming Techniques]: Automatic Programming; D.1.3 [Programming Techniques]:
Concurrent Programming; C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems; I.2.2 [Artificial Intelligence]: Automatic Programming—program synthesis

General Terms: Design, Languages, Reliability, Theory, Verification

Additional Key Words and Phrases: Concurrent programs, fault-tolerance, program synthesis,
specification, temporal logic

An extended abstract containing some of the results of this paper was presented at the ACM
Symposium on Principles of Distributed Computing, Puerto Vallarta, Mexico, 1998. P.C. Attie
was supported in part by the National Science Foundation under grant number CCR-0204432. A.
Arora was supported in part by DARPA-NEST contract number F33615-01-C-1901, NSF grant
NSF-CCR-9972368, an Ameritech Faculty Fellowship, and an unrestricted grant from Microsoft
Research. E.A. Emerson was supported in part by NSF grants CCR-009-8141 and ITR-CCR-
020-5483, and SRC Contract No. 2002-TJ-1026. Authors’ addresses: P.C. Attie, College of
Computer Science, Northeastern University, Boston, MA 02115, e-mail: attie@ccs.neu.edu; A.
Arora, Department of Computer and Information Science, The Ohio State University, Columbus,
OH 43210, e-mail: anish@cis.ohio-state.edu; E.A. Emerson, Department of Computer Sciences,
The University of Texas at Austin, Austin, TX 78712, e-mail: emerson@cs.utexas.edu.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2003 ACM ??? $3.50

ACM Transactions on Programming Languages and Systems, Vol. ??, No. ?, Month 2001, Pages 1–??



2 · Paul C. Attie et al.

1. INTRODUCTION

Methods for synthesizing concurrent programs from temporal logic specifications
based on the use of a decision procedure for testing temporal satisfiability have been
proposed by Emerson and Clarke [1982] and Manna and Wolper [1984]. An impor-
tant advantage of these synthesis methods is that they obviate the need to manually
compose a program and manually construct a proof of its correctness. One only has
to formulate a precise problem specification; the synthesis method then mechani-
cally constructs a correct solution. A serious drawback of these methods, however,
is that they deal only with functional correctness properties. Non-functional prop-
erties such as fault-tolerance are not addressed. For example, the method of Manna
and Wolper [1984] produces CSP programs in which all communication takes place
between a central synchronizer process and one of its satellite processes. Thus,
failure of the central synchronizer blocks the entire system.

In this paper, we present a sound and complete method for the synthesis of fault-
tolerant programs. In our method, the properties of the program in the absence of
faults are described in a problem specification, and the fault-tolerance properties of
the program are described in terms of the behavior of the program when subjected
to the occurrence of faults [Arora and Kulkarni 1998]. The faults themselves are
specified as a set of actions (guarded commands) that perturb the state of the
program [Arora and Gouda 1993].

Our synthesis method is based on a decision procedure for the branching-time
temporal logic CTL [Emerson and Clarke 1982]. We apply this decision procedure
to synthesize both “normal” behavior in the absence of faults, and “recovery” be-
havior, after the occurrence of a fault. Soundness of our method means that both
normal and recovery behavior conform to the given specification. Completeness
means that if some fault-tolerant program exists which satisfies the specification,
then our method produces such a program. A byproduct of completeness is the
ability to mechanically generate impossibility results : if the method fails, then we
can conclude that the specified problem has no solution, e.g., because the required
recovery is not attainable in the presence of the specified faults.

Our method has time complexity exponential in the size of the problem de-
scription. Roughly speaking, this is because our method generates a global-state
transition diagram which contains exactly the behaviors of the program to be syn-
thesized. We note that all extant synthesis methods (except those of Attie and
Emerson [1998], Attie [1999], and Emerson et al. [1992]) rely on exhaustive state-
space search and thus also have exponential (at least) time complexity. We outline
in the conclusions a way of circumventing this exponential complexity by combining
the method presented here with that of Attie and Emerson [1998], Attie [1999].

We also show how our method accommodates multitolerance [Arora and Kulkarni
1998], in which different faults may have to be tolerated in different ways, i.e., the
required fault-tolerance properties depend not only on the problem specification,
but also on the particular fault that occurs.

The paper is as follows. Section 2 defines the model of computation, specification
language (CTL), fault-model, and fault-tolerance properties that we consider. Sec-
tion 3 formally defines the synthesis problem for fault-tolerant concurrent programs.
Section 4 reviews the CTL decision procedure [Emerson 1981; Emerson and Clarke
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1982]. Section 5 presents our synthesis method. Section 6 illustrates our method
by applying it to synthesize fault-tolerant solutions for the mutual exclusion and
barrier synchronization problems, and also to automatically produce an impossi-
bility result. Section 7 establishes the soundness, completeness, and complexity of
the method. Section 8 discusses the method’s scope, extends the method to deal
with multitolerance, and outlines an alternative synthesis method that guarantees
stronger correctness properties but has a narrower range of application. Section 9
discusses related work, proposes future research, and concludes.

2. TECHNICAL PRELIMINARIES

We now present some technical preliminaries. First, our model of concurrent com-
putation, and the temporal logic CTL (mostly taken from Emerson and Clarke
[1982]). We then give some of the concepts and technical details needed in order
to model faults. We first give a general model of faults, and then define a special
type of Kripke structure that incorporates the transitions that arise from the oc-
currence of a fault (which we call fault-transitions). We finally outline some of the
fault-tolerance properties that our method can deal with. One of the contributions
of this paper is the definition of a formal model of faults within the model-theoretic
setting, which enables mechanical reasoning about programs, specifically, synthesis
of a program from a specification (our topic in this paper) and model-checking a
program against a specification (a topic we leave to another occasion, but certainly
one that our framework can address).

2.1 Model of Concurrent Computation

We consider nonterminating concurrent programs of the form P = P1‖ · · · ‖PI which
consist of a finite number of fixed sequential processes P1, . . . , PI running in parallel.
With every process Pi, we associate a single, unique index, namely i. Formally, each
process Pi is a directed graph where each node is labeled by a unique name (si), and
each arc is labeled with an action B → A consisting of an enabling condition (i.e.,
guard) B and corresponding statement A to be performed (i.e., a guarded command
[Dijkstra 1976]). A global state is a tuple of the form (s1, . . . , sI , x1, . . . , xm) where
each node si is the current local state of Pi and x1, . . . , xm is a list (possibly empty)
of shared synchronization variables. A guard B is a predicate on global states and
a statement A is a parallel assignment which updates the values of the shared
variables. If the guard B is omitted from an action, it is interpreted as true and we
simply write the action as A. If the statement A is omitted, the shared variables
are unaltered and we write the action as B.

We model concurrency in the usual way by the nondeterministic interleaving of
the “atomic” transitions of the individual processes Pi. Hence, at each step of the
computation, some process with an enabled action is nondeterministically selected
to be executed next. Assume that s = (s1, . . . , si, . . . , sI , x1, . . . , xm) is the current
global state, and that Pi contains an arc from node si to s′i labeled by the action
B → A. If B is true in the current state then a transition can be made to the next
state s′ = (s1, . . . , s

′
i, . . . , sI , x

′
1, . . . , x

′
m) where x′1, . . . , x

′
m is the list of updated

shared variables resulting from execution of statement A (we notate this transition
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as s
i,A−→ s′). A computation is any sequence of states where each successive pair of

states is related by the above next state transition relation.
The synthesis task thus amounts to supplying the actions to label the arcs of each

process so that the resulting computation tree of the entire program P1‖ · · · ‖PI
meets a given temporal logic specification.

2.2 The Specification Language CTL

We have the following syntax for CTL, where p denotes an atomic proposition, and
f, g denote (sub-)formulae. The atomic propositions are drawn from a set AP that
is partitioned into sets AP1, . . . ,API . APi contains the atomic propositions local
to process i. Other processes can read propositions in AP i, but only process i can
modify these propositions (which collectively define the local state of process i).

—Each of p, f ∧ g and ¬f is a formula (where ∧, ¬ indicate conjunction and
negation, respectively).

—EXjf is a formula which means that there is an immediate successor state reach-
able by executing one step of process Pj in which formula f holds.

—A[fUg] is a formula which means that for every computation path, there is some
state along the path where g holds, and f holds at every state along the path
until that state.

—E[fUg] is a formula which means that for some computation path, there is some
state along the path where g holds, and f holds at every state along the path
until that state.

Formally, we define the semantics of CTL formulae with respect to a Kripke struc-
ture M = (S0, S, A, L) consisting of:

S,. a countable set of global states.

S0. ⊆ S, a nonempty set of initial states.

A. ⊆ S×[1 :I ]×S, a transition relation. A is partitioned into relationsA1, . . . , AI ,
where Ai gives the transitions of process i1.

L. : S 7→ 2AP , a labeling function which labels each state with the set of atomic
propositions true in that state.

A path is a sequence of states where each pair of successive states is related by
the transition relation A. A fullpath is a maximal path, i.e., a path that is either
infinite, or ends in a state with no outgoing transitions. If π is a fullpath, then
define |π|, the length of π, to be ω when π is infinite and k when π is finite and
of the form s0 → · · · → sk. We use the usual notation for truth in a structure:
M, s0 |= f means that f is true at state s0 in structure M . When the structure M
is understood, we write s0 |= f . We define |= inductively:

M, s0 |= p iff p ∈ L(s0) for atomic proposition p
M, s0 |= ¬f iff not(M, s0 |= f)
M, s0 |= f ∧ g iff M, s0 |= f and M, s0 |= g

1We use [m : n] for the set of natural numbers m through n inclusive, (∅ if m > n), and [m : n)
for the set of natural numbers m through n− 1 inclusive, (∅ if m ≥ n).
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M, s0 |= EXjf iff for some state t, (s0, t) ∈ Aj and M, t |= f
M, s0 |= A[fUg] iff for all fullpaths π = (s0, s1, . . .) in M that start in s0,

there exists i ∈ [0 : |π|] such that
M, si |= g and for all j ∈ [1 : (i− 1)]: M, sj |= f

M, s0 |= E[fUg] iff for some fullpath π = (s0, s1, . . .) in M that starts in s0,
there exists i ∈ [0 : |π|] such that

M, si |= g and for all j ∈ [1 : (i− 1)]: M, sj |= f

We say that a formula f is satisfiable if and only if there exists a structure M and
state s of M such that M, s |= f . In this case, we say that M is a model of f . We
say that a formula f is valid if and only if M, s |= f for all structures M and states
s of M .

We use the notation M,U |= f as an abbreviation of ∀s ∈ U : M, s |= f , where
U is a set of global states. We introduce the abbreviations f ∨ g for ¬(¬f ∧ ¬g),
f ⇒ g for ¬f ∨ g, f ≡ g for (f ⇒ g) ∧ (g ⇒ f), AFf for A[trueUf ], EFf for
E[trueUf ], A[fWg] for ¬E[¬fU¬g], E[fWg] for ¬A[¬fU¬g], AGf for A[falseWf ],
EGf for E[falseWf ], AXif for ¬EXi¬f , EXf for EX1f ∨ · · · ∨ EXkf , and AXf for
AX1f ∧· · ·∧AXkf . Note that A[gWh] ≡ A[hUw(g∧h)] and E[gWh] ≡ E[hUw(g∧h)],
where Uw is the “weak until” modality: A[f ′Uwf

′′], (E[f ′Uwf
′′]) mean that along

all paths (along some path), either f ′ holds forever, or that f ′′ eventually holds,
and f ′ holds at all states up to (but not necessarily including) the first state in
which f ′′ holds. When omitting the subformulae, we will write A[fUg], E[fUg],
A[fWg], E[fWg] as AU, EU, AW, EW, respectively. In CTL, every occurrence of a
path quantifier (A or E) is paired with one of the linear time modalities Xj , F, G,
U, W. We call such a pair a CTL modality .

A formula of the form A[fUg] or E[fUg] is an eventuality formula. An eventuality
corresponds to a liveness property in that it makes a promise that something does
happen. This promise must be fulfilled. The eventuality A[fUg] (E[fUg]) is fulfilled
for s in M provided that for every (respectively, for some) path starting at s, there
exists a finite prefix of the path in M whose last state satisfies g and all of whose
other states satisfy f . For all the states of this finite prefix except the last, we say
that the eventuality is pending , since g does not hold in these states (otherwise a
shorter prefix could have been used). Since AFg and EFg are special cases of A[fUg]
and E[fUg], respectively, they are also eventualities. In contrast, A[fWg],E[fWg]
(and their special cases AGf and EGf) are invariance formulae. An invariance
corresponds to a safety property since it asserts that whatever happens to occur (if
anything) will meet certain conditions.

Since our programs are in general finite state, the propositional version of tem-
poral logic can be used to specify their properties. This is essential, since only
propositional temporal logics enjoy the finite-model property, which is the under-
lying basis of the CTL decision procedure of Emerson and Clarke [1982] that this
paper builds upon.

An example CTL specification is that for the two process mutual exclusion prob-
lem (here i ∈ {1, 2}):

(1) Initial State (both processes are initially in their Noncritical region): N1 ∧N2
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(2) It is always the case that any move Pi makes from its Noncritical region is into
its Trying region and such a move is always possible:

AG(Ni ⇒ (AXiTi ∧ EXiTi))

(3) It is always the case that any move Pi makes from its Trying region is into its
Critical region:

AG(Ti ⇒ AXiCi)

(4) It is always the case that any move Pi makes from its Critical region is into
its Noncritical region and such a move is always possible: AG(Ci ⇒ (AXiNi ∧
EXiNi))

(5) Pi is in at most one of Ni, Ti, or Ci:
AG(Ni ⇒ ¬(Ti ∨ Ci)) ∧ AG(Ti ⇒ ¬(Ni ∨ Ci)) ∧ AG(Ci ⇒ ¬(Ni ∨ Ti))

(6) A transition by one process cannot cause a transition by another (interleaving
model of concurrency):

AG((N1 ⇒ AX2N1) ∧ (N2 ⇒ AX1N2))
AG((T1 ⇒ AX2T1) ∧ (T2 ⇒ AX1T2))
AG((C1 ⇒ AX2C1) ∧ (C2 ⇒ AX1C2))

(7) Pi does not starve: AG(Ti ⇒ AFCi)

(8) P1, P2 do not access critical resources together: AG(¬(C1 ∧ C2))

(9) It is always the case that some process can move: AGEXtrue

We call the specification that expresses the required properties of the program
in the absence of faults the problem specification . We assume, in the sequel,
that the problem specification is expressed in the form init−spec∧AG(global−spec),
where init−spec contains only atomic propositions and boolean operators. init−spec
specifies the initial state, and global−spec specifies correctness properties that are
required to hold at all states that are reachable from an initial state in the absence
of faults. We call these the initial specification and global specification, respectively.

For the mutual exclusion specification above, init−spec is clause 1, and global−spec
is the conjunction of clauses 2–9.

2.3 Model of Faults

The faults that a concurrent program is subject to may be categorized in a variety
of ways:

(1) Type, e.g., the faults are stuck-at, fail-stop, crash, omission, timing, perfor-
mance, or Byzantine.

(2) Duration, e.g., the faults are permanent, intermittent, or transient.

(3) Observability, e.g., the faults are detectable or not by the program.

(4) Repair, e.g. the faults are correctable or not by the program.

Towards developing a uniform and general method for fault-tolerant concurrent
program synthesis that accommodates these various categories of faults, we recall a
uniform and general representation of faults (cf. [Arora and Gouda 1993]). In this
representation, faults are modeled as actions (guarded commands) whose execution
perturbs the program state. Consider for example a fault that corrupts the state
of a wire. The wire itself is represented by the following program action over two
one-bit variables in and out: out 6= in → out := in . The fault that corrupts
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the state of the wire is represented by the fault action: out 6= in → out :=? ,
where ? denotes a nondeterministically chosen binary-value.

For this representation to capture all of the categories mentioned above sometimes
requires the use of auxiliary state variables. For example, consider the fault by
which the wire is stuck-at-low-voltage. In this case, the correct behavior of the wire
is represented by using an auxiliary atomic proposition broken and the program
action: out 6= in ∧ ¬broken → out := in . The incorrect behavior of the wire,
once a fault occurs, is represented by the program action that sets out to 0 provided
that the state of the wire is broken: broken → out := 0 . The stuck-at-low-
voltage fault is represented by the fault action: ¬broken → broken := true .

Should it be of interest to capture that only a bounded number k of wires can be
stuck-at-low-voltage, an auxiliary variable brokencount can be used to strengthen
the stuck-at-low-voltage fault action to:
¬broken ∧ brokencount < k → broken := true, brokencount := brokencount+ 1.

To reinforce the use of fault actions, here are several more examples:

— A fault action that captures repair of the wire is: broken→ broken := false.

— Taken together, the stuck-at-low-voltage and the repair fault action capture
intermittent stuck-at faults.

— Consider an omission fault by which a buffer loses its content. In this case,
letting the proposition is full denote that the buffer has content, the omission fault
is represented by the action: is full → is full := false

— Consider a timing fault by which access to the contents of a buffer is delayed.
By introducing an auxiliary proposition is delayed, the timing fault is represented
by the two actions:

is full → is full := false , is delayed := true, and
¬is full ∧ is delayed→ is full := true, is delayed := false .

— Fail-stop faults [Schneider 1984; 1990]: A fault in this class stops a process
from executing any actions, possibly forever. Thus, fail-stop faults effectively cor-
rupt program processes in a detectable (i.e., other processes are explicitly notified
of the failure), uncorrectable, and potentially permanent manner. Fail-stop faults
may thus be distinguished from crash faults, which are undetectable in purely asyn-
chronous systems. That is, we assume some underlying failure detection mechanism
[Chandra and Toueg 1996] which provides the explicit notification of the fault to
the other processes. Thus, fail-stop faults are more benign than crash faults. The
assumption of failure detection, of course, implies a departure from a purely asyn-
chronous model of concurrent computation [Fischer et al. 1985]. If some processes
fail permanently, then the remaining processes can be thought of as a “subprogram”
of the original program.

— General state faults: A fault in this class arbitrarily perturbs the state of a
process or a shared variable, without being detected by any process. As a result,
the program may be placed in a state it would not have reached under normal
computation of the processes. Such state faults are general in the sense that by a
sequence of these faults the program may reach arbitrary global states [Jayaram
and Varghese 1996]; thus, general state faults effectively corrupt global state in an
undetectable, correctable, and transient manner.
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We will use fail-stop and general state faults in the mechanical synthesis examples
we present in this paper. Needless to say, our synthesis method suffices for the many
other concurrent program faults that are captured by fault actions.

In general, we will need to specify constraints on the update of the auxiliary
atomic propositions2, and their relation to the “regular” atomic propositions, i.e.,
those appearing in the problem specification. This is provided by a problem-
fault coupling specification , which is a CTL formula AG(coupling−spec), where
coupling−spec itself can be any CTL formula. The coupling specification could,
for instance, restrict the local states which a process can be in when an auxil-
iary proposition is true, or express that an auxiliary atomic proposition cannot be
changed by any process. For example, a problem-fault coupling specification for
the wire example with the stuck-at-low-voltage fault is AG(broken⇒ AGbroken) ∧
AG((broken∧¬out)⇒ AG¬out), i.e., once broken, always broken, and once broken
and output is low, then output stays low forever.

2.4 Fault-Tolerant Kripke Structures

To model the occurrence of faults, we use a fault-tolerant Kripke structure MF =
(S0, S, A,AF , L), where S0, S, A, L are as before, and AF ⊆ S × F × S is a set of
fault-transitions. F is a set of fault-actions as discussed above. A fault-transition
labeled with a ∈ F models the occurrence of fault action a. Note that A and AF
are disjoint, by definition.

A fullpath (path) in MF can contain transitions drawn from A and from AF .
A fault-free fullpath (fault-free path) is a fullpath (path) that contains no
fault-transitions, i.e., its transitions are drawn only from A. An initialized fullpath
(initialized path) is a fullpath (path) whose first state is an initial state (i.e., in S0).

A global state is normal iff it lies on some fault-free initialized fullpath. A global
state that (1) lies on no initialized fault-free fullpath, and (2) is the final state of
an initialized path that ends in a fault-transition, is perturbed . All other states
are recovery states. Thus, perturbed states can only be reached from initial states
via paths that contain at least one fault-transition. In particular, a state that can
be reached by both a fault-free initialized path, and an initialized path that ends
in a fault-transition, is a normal (and not a perturbed) state. Let SF denote that
set of all perturbed states.

The set of transitions A is partitioned into normal-transitions—those that start
in a normal state, and recovery-transitions—those that start in a perturbed or
recovery state.

The appropriate notion of satisfaction in a fault-tolerant Kripke structure is given
by |=n , a version of the |= relation that is relativized to fault-free fullpaths.3 The
definition of |=n is verbatim identical to that of |= above, except that every occur-
rence of “fullpath” is replaced by “fault-free fullpath.” We give the clauses that
differ from the above definition of |=:

2We assume that all auxiliary state variables are represented as a finite number of auxiliary atomic
propositions.
3The idea of relativized satisfaction comes from Emerson and Lei [1985] where it is used to handle
fairness in CTL model checking.
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M, s0 |=n A[fUg] iff for all fault-free fullpaths π = (s0, s1, . . .) in M that
start in s0,

there exists i ∈ [0 : |π|] such that
M, si |= g and for all j ∈ [1 : (i− 1)]: M, sj |= f

M, s0 |=n E[fUg] iff for some fault-free fullpath π = (s0, s1, . . .) in M that
starts in s0,

there exists i ∈ [0 : |π|] such that
M, si |= g and for all j ∈ [1 : (i− 1)]: M, sj |= f

2.5 Fault-Tolerance Properties

In the presence of faults, a concurrent program need not always satisfy its given
specification. But it is desirable then that when faults occur, the program at
least satisfy some “tolerance” property, which may be potentially weaker than the
given specification. The choice of the tolerance is, of course, dependent on the
context and application, nevertheless it is generally possible to classify the tolerance
property in terms of how (and whether) the safety and the liveness parts of the
given specification are respected in the presence of the faults. In one class, masking
tolerance, both the safety and the liveness parts are always respected; in another,
fail-safe tolerance, only the safety part but not necessarily the liveness part is
respected; and in yet another, nonmasking tolerance, the liveness part is always
respected but the safety part is only eventually respected. (The alternative that
only the liveness part is respected but the safety is not ever respected appears to
be uncommon.)

Let P be a concurrent program which satisfies a problem specification
problem−spec = init−spec ∧ AG(global−spec), where init−spec and global−spec can
be any CTL formulae, and let F be a set of fault actions. It follows that in all states
reached by program execution in the absence of faults (i.e., the normal states) the
CTL formula global−spec holds. In states reached by program execution in the
presence of faults (i.e., the perturbed states), however, global−spec need not hold
in general. We define:

—P is masking tolerant to F for problem−spec if and only if AG(global−spec) holds
at all perturbed states. That is, subsequent execution of P from these states
satisfies the desired correctness properties of P .

—P is nonmasking tolerant to F for problem−spec if and only if AFAG(global−spec)
holds at all perturbed states. That is, subsequent execution of P from these
states eventually reaches a state from where the desired correctness properties of
P are satisfied.

—P is fail-safe tolerant to F for problem−spec if and only if AG(global−safety−spec)
holds at all perturbed states, where global−safety−spec consists of all the safety
properties in global−spec. That is, subsequent execution of P from these states
satisfies the desired safety properties—but not necessarily the liveness properties—
of P . We assume that specifications are written in such a way that the safety
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component of the specification can be extracted. This assumption must be made
by any method that guarantees fail-safe tolerance only4.

Let spec
df
== problem−spec∧AG(coupling−spec), where problem−spec = init−spec∧

AG(global−spec) is a problem specification, and AG(coupling−spec) is a problem-
fault coupling specification. We shall call spec a temporal specification.

Definition 2.1 (Label TOL). Given a temporal specification spec = init−spec ∧
AG(global−spec) ∧ AG(coupling−spec), define Label TOL(spec) as follows, where
TOL ∈ {masking ,nonmasking , fail−safe}:
—If TOL = masking , Label TOL(spec) is the CTL formula AG(global−spec) ∧

AG(coupling−spec). For masking tolerance, the global specification must hold
in all perturbed states.

—If TOL = nonmasking , Label TOL(spec) is the CTL formula AFAG(global−spec) ∧
AG(coupling−spec). For non-masking tolerance, the global specification must
eventually hold in all computations starting in perturbed states (provided that
faults stop occurring).

—If TOL = fail−safe , Label TOL(spec) is the CTL formula AG(global−safety−spec)∧
AG(coupling−spec). For fail-safe tolerance, the safety component of the global
specification must hold in all perturbed states. Note that recovery to states
where global−spec holds is not required.

LabelTOL(spec) gives the formula that must be satisfied by perturbed states in order
for the synthesized program to have the desired fault-tolerance properties. In all
cases, the coupling specification must hold in all perturbed states.
Just as our representation of faults is general enough to capture extant fault-classes,
our definition of tolerance properties is general enough to capture the fault-tolerance
requirements of extant computing systems. (The interested reader is referred to
Arora and Gouda [1993] for a detailed discussion of how these tolerance proper-
ties suffice for fault-tolerance in distributed systems, networks, circuits, database
management, etc.) To mention but a few examples, systems based on consensus,
agreement, voting, or commitment require masking tolerance—or at least failsafe
tolerance—whereas those based on reset, checkpointing/recovery, or exception han-
dling typically require nonmasking tolerance.

3. THE SYNTHESIS PROBLEM

The problem of synthesis of fault-tolerant concurrent programs is as follows. Given
are:

(1) A problem specification, which is a CTL formula problem−spec of the form
init−spec ∧ AG(global−spec), where init−spec and global−spec can be any CTL
formulae. Section 2.2 gives an example problem specification for mutual exclu-
sion.

(2) A fault specification, which consists of (1) a set of auxiliary atomic propo-
sitions, and (2) a set F of fault actions (guarded commands) over the atomic

4See Manolios and Trefler [2001] for a discussion of how a branching time specification can be
expressed as a conjunction of a safety specification and a liveness specification.
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propositions (including the auxiliary ones). We assume, for the time being, that
fault actions cannot reference the shared synchronization variables x1, . . . , xm.
We show how to remove this restriction in Section 5.3 below. We also assume
that fault actions always terminate.
For example, the fault specification of the stuck-at-low-voltage-fault, as given
in Section 2.3, is {broken} and { ¬broken → broken := true }. Execution
of the fault actions models the occurrence of faults.

(3) A problem-fault coupling specification , AG(coupling−spec), where
coupling−spec can be any CTL formula. It relates the atomic propositions
in the problem specification with those in the fault specification. For ex-
ample, a problem-fault coupling specification for the wire example of Sec-
tion 2.3 with the stuck-at-low-voltage fault is AG(broken ⇒ AGbroken) ∧
AG((broken ∧ ¬out) ⇒ AG¬out), i.e., once broken, always broken, and once
broken and output is low, then output stays low forever.

(4) A type of tolerance TOL ∈ {masking ,nonmasking , fail−safe}, which specifies
the desired tolerance property.

Required is to synthesize a concurrent program that

(1) satisfies init−spec ∧ AG(global−spec) in the absence of faults, and

(2) satisfies AG(coupling−spec) in the absence of faults, and

(3) is TOL-tolerant to F for init−spec ∧ AG(global−spec).
Let MF = (S0, S, A,AF , L) be the Kripke structure generated by the execution of
the synthesized program in the presence of the set of faults F , and let SF be the
set of perturbed states in MF . Then, we require:

(1) MF , S0 |=n init−spec ∧ AG(global−spec) ∧ AG(coupling−spec), and

(2) MF , SF |=n LabelTOL(spec).

Note that AG(coupling−spec) is required to be satisfied in all states, since it is a
conjunct of LabelTOL(spec) for all tolerances TOL.

4. THE CTL DECISION PROCEDURE

We provide here an overview of the CTL decision procedure [Emerson 1981; Emer-
son and Clarke 1982; Emerson 1990], together with necessary technical definitions
(taken from Emerson [1981, chapter 4] and Emerson and Clarke [1982]). Since
Emerson [1981, chapter 4] deals with the logic UB, which is obtained from CTL by
replacing AU,EU,AW,EW by AF,EF,AG,EG respectively, we make the necessary
extensions needed to account for the until modality of CTL.

A CTL formula f is in positive normal form iff any negations within f are applied
only to atomic propositions. Any CTL formula can be converted to positive normal
form by “pushing” the negations inwards, using the appropriate dualities for the
abbreviations ∨, AW, EW, and AXi, e.g., ¬A[gUh] ≡ E[¬gW¬h].

Definition 4.1 (Fisher-Ladner closure). If f is a CTL formula, then cl(f), the
generalized Fisher-Ladner closure of f , is given by:

cl(p) = p for atomic proposition p
cl(g ∧ h) = {g ∧ h} ∪ cl(g) ∪ cl(h)
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cl(¬f) = {¬f} ∪ cl(f)
cl(A[gUh]) = {A[gUh],AXA[gUh]} ∪ cl(g) ∪ cl(h)
cl(E[gUh]) = {E[gUh],EXE[gUh]} ∪ cl(g) ∪ cl(h)
cl(AFg) = {AFg,AXAFg} ∪ cl(g)
cl(EFg) = {EFg,EXEFg} ∪ cl(g)
cl(EXig) = {EXig} ∪ cl(g)
cl(A[gWh]) = {A[gWh],AXA[gWh]} ∪ cl(g) ∪ cl(h)
cl(E[gWh]) = {E[gWh],EXE[gWh]} ∪ cl(g) ∪ cl(h)
cl(AGg) = {AGg,AXAGg} ∪ cl(g)
cl(EGg) = {EGg,EXEGg} ∪ cl(g)
cl(AXig) = {AXig} ∪ cl(g)

Let |f |, the length of f , be the sum of the number of occurrences of atomic
propositions, propositional connectives, and CTL modalities, in f (with multiple
occurrences of the same proposition, connective, or modality counting). Then,
|cl(f)| ≤ 2|f |.

A CTL formula is elementary iff it is an atomic proposition, the negation of an
atomic proposition, or has either AXj or EXj as its main connective. We classify a
nonelementary formula as either a conjunctive formula α ≡ α1∧α2 or a disjunctive
formula β ≡ β1 ∨ β2, as follows:

α = g ∧ h α1 = g α2 = h
α = A[gWh] α1 = h α2 = g ∨ AXA[gWh]
α = E[gWh] α1 = h α2 = g ∨ EXE[gWh]
α = AGg α1 = g α2 = AXAGg
α = EGg α1 = g α2 = EXEGg
α = AXg α1 = AX1g . . . αI = AXIg

β = g ∨ h β1 = g β2 = h
β = A[gUh] β1 = h β2 = g ∧ AXA[gUh]
β = E[gUh] β1 = h β2 = g ∧ EXE[gUh]
β = AFg β1 = g β2 = AXAFg
β = EFg β1 = g β2 = EXEFg
β = EXg β1 = EX1g . . . βI = EXIg

Note that nonelementary formulae whose main connective is a temporal modality
are classified according to the fixpoint characterization of the modality, e.g.: AFg ≡
g∨AXAFg, so AFg is a β formula. Also, the expansions of AX,EX involve I formulae
(recall that I is the number of processes) rather than just two. In subsequent
discussion we shall, for sake of brevity, assume that all of these expansions produce
exactly two formulae. The generalization to deal with I formulae will always be
straightforward. We refer to the above transformations as α-β expansions .

A set of formulae F is downward closed iff (1) if α ∈ F then α1, α2 ∈ F , and (2)
if β ∈ F then β1 ∈ F or β2 ∈ F .

Definition 4.2 (AND/OR graph, fullgraph). An AND/OR graph K is a tuple
(VC , VD, ACD, ADC , L) with the following components

(1) VC , a set of AND-nodes

(2) VD, a set of OR-nodes
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(3) ACD ⊆ VC × [1 :I ]× VD, a set of AND-OR transitions

(4) ADC ⊆ VD × VC , a set of OR-AND transitions

(5) L : VC ∪ VD 7→ 2cl(f), a labeling function which labels each node in VC ∪ VD
with a subset of cl(f)

A fullgraph is an AND/OR graph in which ACD is a function from VC to VD ,
i.e., every AND-node has exactly one successor. We abuse notation and write
(u, v) ∈ ACD for “there exists i ∈ [1 :I ] such that (u, i, v) ∈ ACD”.

Given a CTL formula f0 (which has first been rewritten into positive normal
form) the CTL decision procedure first constructs a particular kind of AND/OR
graph (a tableau) T0 for f0. We use c, c′, . . . to denote AND-nodes, d, d′, . . . to
denote OR-nodes, and e, e′, . . . to denote nodes of either type. Each node is labeled
with a subset of cl(f0), and no two AND-nodes (OR-nodes) have the same label. A
model for f0 is extracted from the tableau by taking the AND-nodes of the tableau
as states of the model, and preserving the local transition structure of the tableau.
Soundness of the CTL decision procedure is established by showing that, in the
final model, every state satisfies all the formulae in its label.

The CTL decision procedure constructs the tableau T0 by starting with a single
OR-node d0 labeled with {f0}, and repeatedly constructing successors of “frontier”
nodes until there is no more change. The set of AND-node successors Blocks(d)
of an OR-node d is determined as follows. d is “expanded” into a tree using the
above characterization of nonelementary formulae as α or β. Suppose e is a leaf
in the tree constructed so far, and f ∈ L(e). If f ≡ α1 ∧ α2 is an α formula,
then add a single son to e with label L(e)− {f} ∪ {α1, α2}. If f ≡ β1 ∨ β2 is a β
formula, then add two sons to e with labels L(e)− {f} ∪ {β1}, L(e)− {f} ∪ {β2}.
For example, AFg ≡ g ∨ AXAFg, so AFg “generates” two successors, one with
g in its label and one with AXAFg in its label. These successors correspond to
the two different ways of satisfying an eventuality. The successor labeled with g
certifies that the eventuality AFg is fulfilled, while the successor labeled with AXAFg
propagates AFg. On the other hand, AGg ≡ g ∧AXAGg, and so AGg generates only
one successor, labeled with both g and AXAGg. This tree construction terminates
when all leaves contain only elementary formulae in their labels. This must happen,
since each expansion removes one nonelementary formula and replaces it with one
or two smaller formulae. Upon termination, let Blocks(d) contain one AND-node
c for each leaf node, and let the label of each c be the union of all node labels
along the path from the corresponding leaf back to the root d of the tree. Clearly,
L(c) is downward-closed by virtue of the tree construction algorithm. The nodes
in Blocks(d) can be regarded as embodying all of the different ways in which the
(conjunction of the) formulae in the label of d can be satisfied. The reader is
referred to Emerson [1981], Emerson and Clarke [1982] for full details, where it
is also shown that (1) L(d) is satisfiable iff L(c) is satisfiable for at least one c ∈
Blocks(d), and (2) L(c) is satisfiable iff LE(c) is satisfiable, for c ∈ Blocks(d) and
LE(c) = {f ∈ L(c) | f is elementary}.

The set Tiles(c) of OR-node successors of an AND-node c is defined to be⋃
i∈[1:I] Tiles i(c), where Tiles i(c) is the set of OR-node successors of c that are asso-

ciated with process i. Assume c is labeled with n formulae of the form AXig, namely
AXig1, . . . ,AXign, and m formulae of the form EXih, namely EXih1, . . . ,EXihn.
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Then, Tiles i(c)
df
== {D1

i , . . . , D
m
i }, where Dj

i = {AXig1, . . . ,AXign} ∪ {EXihj}, for
j ∈ [1 : m]. Finally, the edge from c to every node in Tiles i(c) is labeled with the
process index i, to indicate that this successor is associated with process i. There
are two special cases in the definition of Tiles(c). First, if c has no nexttime formu-
lae in its label, then Tiles(c) = {d}, where L(d) = L(c), and Blocks(d) = {c}, i.e.,
c is given a single “dummy” successor labeled with the same formulae. Second, if
only EXi-formulae are missing, then c is split into I AND-nodes c1, . . . , cI (which
have the same incoming edges) and L(ci) is set to L(c)∪{EXitrue}, for all i ∈ [1 :I ].
The OR-node successors of each ci are then computed as above. From the above
discussion, we see that Tiles(c) is exactly the set of successors required to satisfy
all of the nexttime formulae in the label of c. In Emerson [1981] it is shown that
L(c) is satisfiable iff L(d) is satisfiable for all d ∈ Tiles(c), and LP (c) is satisfiable,
where LP (c) = {f ∈ L(c) | f is a proposition or its negation}.

We continue the process of generating successors of frontier nodes (which we refer
to as “expanding” a node, in the sequel) until there are no more frontier nodes, i.e.,
every node in T0 has at least one successor. If, when a node e is being expanded,
some successor e′ of e has the same label as an already present node e′′ of the
same type (i.e., AND or OR), then we identify e′ and e′′, i.e., delete e′ and add a
transition from e to e′′. This ensures that every AND-node (OR-node) in T0 has a
unique label. Since there are at most 2|cl(f0)| different labels, the expansion process
must terminate.

Thus, the tableau T0 for CTL formula f0 is an AND/OR graph with a root
d0 which is an OR-node with label {f0}. Every AND-node c (OR-node d) in
T0 has successors given by Tiles(c) (Blocks(d)). A tableau T is written as a tuple
(d, VC , VD, ACD, ADC , L), where d is the root, and the remaining components are as
in Definition 4.2. Before continuing the description of the CTL decision procedure,
we need a few more technical definitions.

Definition 4.3 (Prestructure). A prestructure G = (V,A, L) for a CTL formula
f consists of a set of nodes V , a set of transitions A ⊆ V × V , and a labeling
L : V 7→ cl(f) of each node with a set of formulae.

We use the generic term graph to refer to any object which is a prestructure or
an AND/OR graph. Let G be a graph with labeling L. We define frontier (G),
the frontier of G, to be the set of nodes of G that have no successor in G, and
interior (G), the interior of G, to be the set of all other nodes of G.

Definition 4.4 (Generated). A fullgraph K = (V ′C , V
′
D, A

′
CD , A

′
DC , L

′) is gener-
ated by tableau T = (d, VC , VD, ACD, ADC , L) iff there exists a generation function
E : V ′C ∪ V ′D 7→ VC ∪ VD such that

(1) E[V ′C ] ⊆ VC
(2) E[V ′D] ⊆ VD
(3) L′ = L ◦E
(4) if (u, i, w) is an edge in A′CD, then (E(u), i, E(w)) is an edge in ACD
(5) if (w, u) is an edge in A′DC , then (E(w), E(u)) is an edge in ADC
(6) if an AND-node u of K is an interior node, then for every OR-node d (of T0)

in Blocks(E(u)), there exists an OR-node w of K such that (u,w) ∈ A′CD and
E(w) = d
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(7) every OR-node w of K has at least one successor in K

A prestructure G = (V ′′, A′′, L′′) is generated by tableau T iff there exists a
fullgraph K = (V ′C , V

′
D, A

′
CD, A

′
DC , L

′) generated by tableau T and such that

(1) V ′′ = V ′C
(2) A′′ = {(u, i, v) ∈ V ′′×[1 :I ]×V ′′ | ∃w ∈ V ′D, (u, i, w) ∈ A′CD and (w, v) ∈ A′DC}
(3) L′′ = L′ restricted to V ′C

In a prestructure or an AND/OR graph, whenever there is an edge from node u
to node v that is labeled with process index i, then we say that v is a Pi-successor
of u.

Definition 4.5 (Directly embedded). A fullgraphK is directly embedded in tableau
T0 if K is generated by T0 and the generation function is one-to-one.

Definition 4.6 (Fulfilled). The eventuality A[gUh] is fulfilled for node e in graph
G provided that for every path starting at e in G, there is some node e′ along
the path such that h ∈ L(e′), and for every node e′′ on the path up to (but not
necessarily including) node e′, g ∈ L(e′′).

The eventuality E[gUh] is fulfilled for node e in graph G provided that for some
path starting at e in G, there is some node e′ along the path such that h ∈ L(e′),
and for every node e′′ on the path up to (but not necessarily including) node e′,
g ∈ L(e′′).

Definition 4.7 (Full Subdag). A full subdag D rooted at node e in T0 is a directed
acyclic subgraph of T0 satisfying all of the following conditions

(1) Node e is the unique node from which all other nodes in D are reachable,

(2) For every AND-node c in D, if c has any sons in D, then every successor of c
in T0 is a son of c in D,

(3) For every OR-node d, there exists precisely one AND-node c in T0 such that c
is a son of d in D.

The next step of the CTL decision procedure is to apply the set of deletion rules
given in Figure 1 to T0. Roughly speaking, these rules remove all nodes that are
either propositionally inconsistent, or do not have enough successors, or are labeled
with an eventuality formula which is not fulfilled. The presence of a suitable full
subdag rooted at e serves to certify the fulfillment of the corresponding eventuality
in L(e). We repeatedly apply the deletion rules until there is no change. Since
each application removes one node, and T0 is finite, this process must terminate.
Upon termination, if the root of T0 is has been removed, then f0 is unsatisfiable.
Otherwise f0 is satisfiable, in which case let T ∗ be the tableau induced by the
remaining nodes. In Emerson and Clarke [1982] it is shown how to extract an
actual model from T ∗, by a process of “unraveling.” From this model, a correct
concurrent program can be produced by projecting onto the individual processes.

The unraveling step is as follows. For each AND-node c in T ∗, a “fragment”
FRAG[c] is constructed. FRAG[c] is a directed acyclic graph whose nodes are
AND-nodes, and whose local structure is taken from T ∗, i.e., c′ → c′′ in FRAG[c]
only if c′ → d → c′′ in T ∗ for some OR-node d. In addition, c is the root of
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FRAG[c] and all eventualities in the label of c are fulfilled in FRAG[c]. Given that
an AND-node c was not removed by the deletion rules, it follows that for each
eventuality g ∈ L(c), T ∗ contains at least one full subdag D with root c and in
which g is fulfilled. Let DAG[c, g] be the directed acyclic prestructure that results
from removing all the OR-nodes in D and connecting up the AND-nodes so that
c′ → c′′ in DAG[c, g] only if c′ → d→ c′′ in D for some OR-node d. By construction,
DAG[c, g] is generated by T ∗.

We construct FRAG[c] from the DAG’s in T ∗ as follows. Let g1, . . . , gm be all of
the eventualities in L(c), and let frontier (FRAGj) denote the frontier of fragment
FRAGj .

let FRAG1 be a copy of DAG[c, g1];
to obtain FRAGj+1 from FRAGj , do

identify any two nodes on the frontier of FRAGj that have the same label;
forall s′ ∈ frontier (FRAGj) do

/* let c′ be the AND-node in T ∗ that s′ is a copy of */
if gj+1 ∈ L(s′) then

attach a copy of DAG[c′, gi+1] to FRAGj at s′

endfor;
/* call the resulting directed acyclic graph FRAGj+1 */
let FRAG[c] be the directed acyclic graph obtained from FRAGm by
identifying any two nodes in frontier (FRAGm) with the same label

If L(c) contains no eventualities, then FRAG[c] consists of c together with enough
local successors to satisfy all of the formulae that have AXj or EXj as main con-
nective. That is, for each d ∈ Tiles(c), choose a c′ ∈ Blocks(d) and add c′ as a
successor of c. Identify all such c′ with the same label. Then FRAG[c] consists of
c together with all such c′.

In Emerson [1981] it is shown that FRAG[c] is an acyclic prestructure generated
by T ∗ whose root node s0 is a copy of c, and that all eventualities in Label(s0)
(= Label(c)) are fulfilled for s0 in FRAG[c].

Finally, the FRAG’s are connected together (essentially, the frontier nodes of a
FRAG are identified with root nodes of other FRAG’s) to form a Kripke structure in
which all eventualities are fulfilled. This structure is a model of f0. The procedure
is as follows:
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choose c0 ∈ Blocks(d0) arbitrarily (recall that d0 is the root of T );
let M1 = FRAG[c0];
to obtain Mi+1 from Mi, do

forall s ∈ frontier(Mi) do
/* let c be the AND-node in T ∗ that s is a copy of */
if there exists s′ ∈ interior (Mi) such that s′ is also a copy of c, and a

copy of FRAG[c] is directly embedded in Mi with root s′, then
identify s and s′

else
replace s by a copy of FRAG[c]

endif
endfor

/* call the resulting graph Mi+1 */
The construction halts with i = N when frontier(MN ) is empty. Let M = MN .
Let M = (S,A, L) and let M0 = (S,A, L0) where L0 is L restricted to the
propositions occurring in f0. M0 is a model of f0.

By construction, each fragment occurs at most once in M . Each step (i.e., obtain-
ing Mi+1 from Mi) either adds a new fragment or reduces the number of frontier
nodes by 1. Since there is one fragment for each AND-node, the number of frag-
ments is the same as the number of AND-nodes, which is bounded by 2|cl(f0)|.
Thus, after enough steps, no new fragments can be added, and eventually the fron-
tier must become empty. Thus, the above procedure is guaranteed to terminate.
It is shown in Emerson [1981] that M0, s |= f for every s ∈ S and f ∈ L(s). In
particular, since f0 ∈ L(c0) by definition of c0 and Blocks(d0), we have M0, c0 |= f0,
and so M0 is indeed a model of f0.

From the modelM0, a program can be extracted by projecting onto the individual
process indices. For example, Figure 8 shows a Kripke structure and a process P1

extracted from it. The arc from N1 to T1 labeled with N2 ∨ C2 is derived by
projecting the transitions from [N1N2] to [T1N2] and [N1 C2] to [T1 C2] in the
Kripke structure onto the process index 1.

DeleteP. Delete any propositionally inconsistent node.

DeleteOR. Delete any OR-node all of whose successors are already deleted.

DeleteAND. Delete any AND-node one of whose successors is already deleted.

DeleteAU. Delete any node e such that A[gUh] ∈ L(e) and there does not exist a full subdag rooted
at e such that h ∈ L(c′) for every frontier node c′ and g ∈ L(c′′) for every interior AND-node c′′.
DeleteEU. Delete any node e such that E[gUh] ∈ L(e) and there does not exist an AND-node c′

reachable from e via a path π such that h ∈ L(c′) and for all AND-nodes c′′ along π up to but
not necessarily including c′, g ∈ L(c′′).

Fig. 1. The deletion rules for the CTL decision procedure.
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5. SYNTHESIS OF FAULT-TOLERANT CONCURRENT PROGRAMS

To synthesize a program that has guaranteed behavioral properties after the occur-
rence of faults, we have to (1) represent the occurrence of faults, and (2) synthesize
the recovery behavior that conforms to the required behavioral properties. We rep-
resent the occurrence of faults by fault-transitions, and we represent the appropriate
recovery behavior by recovery-transitions (see Section 2.4 above). Thus, our syn-
thesis method first generates a tableau that, in addition to the normal-transitions
that represent the behavior of the program in the absence of faults (and which
are the only transitions that the previous synthesis method of Emerson and Clarke
[1982] produces), also contains the fault-transitions that represent the occurrence
of all the faults given in the synthesis problem specification (see Section 3), and the
recovery-transitions that generate a recovery behavior that satisfies the required
tolerance property (e.g., masking, fail-safe, or nonmasking). The required recovery
behavior is enforced by labelling the perturbed states appropriately. The suitable
labelling is generated from the problem-fault coupling specification and the type of
tolerance required, both of which are part of the synthesis problem specification.
The role of the problem-fault coupling specification is to characterize the informa-
tion retained by a process after the occurrence of a fault, and it’s relationship to
the state of the process when the fault occurred. As such, it will usually be fairly
straightforward to write. We further discuss the role of the problem-fault coupling
specification in the examples given in Section 6 below.

Section 5.1 presents technical definitions that we use to model the specified faults
and fault-tolerance properties. Section 5.2 presents our synthesis method.

5.1 Technical Definitions for Modeling Faults

Recall that faults are modeled as nondeterministic actions (guarded commands)
whose execution perturbs the current global state (Section 2.3). If a is a fault
action, then a.guard , a.body denote the guard, body respectively of the guarded
command that models a. If c is an AND-node, let L(c)↑AP denote the set of
atomic propositions that are true in c, and c(a.guard) the truth-value of a.guard in
c. Let ϕ, ψ ⊆ AP . Then define {ϕ} a.body {ψ} to mean that if a.body is executed in
a state in which exactly the propositions in ϕ are true, then one possible outcome
is a state in which exactly the propositions in ψ are true.

Definition 5.1.1 (
a,TOL−→ ). Let c be an AND-node, d be an OR-node, a a fault

action, and TOL a tolerance. Then

c
a,TOL−→ d if and only if ∃ϕ ⊆ AP : c(a.guard) = true and

{L(c)↑AP} a.body {ϕ} and
L(d) = ϕ ∪ LabelTOL(spec).

c
a,TOL−→ d intuitively means that fault action a can occur in AND-node c, and that its

occurrence can lead to OR-node d. (Recall that AND-nodes correspond to states in
the final model.) L(d) is the label of d. The propositional component of L(d) results
from applying a.body to the propositions in L(c), while the temporal component
LabelTOL(spec) of L(d) is determined solely by the problem specification and the
desired type of fault-tolerance.
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Definition 5.1.2 (FaultStates,FaultTrans). Given a set F of fault actions, a set
V of AND-nodes, and a tolerance TOL, define:

FaultStates(F,TOL, V ) = {d | ∃a ∈ F, ∃c ∈ V : c
a,TOL−→ d}

FaultTrans(F,TOL, V ) = {(c, F, d) | ∃a ∈ F, ∃c ∈ V : c
a,TOL−→ d}

FaultStates(F,TOL, V ) is the set of OR-nodes reached by executing some fault
action of F in some AND-node of V , and FaultTrans(F,TOL, V ) is the set of fault-
transitions generated by executing some fault action of F in some AND-node of
V .

A fault-free path in a tableau is a path that contains no fault-transitions. Anal-
ogously to Section 2.4, we define a node to be normal iff it lies on some fault-free
initialized path. A node that (1) lies on no initialized fault-free path, and (2) is the
final state of an initialized path that ends in a fault-transition, is perturbed . All
other nodes are recovery nodes.

In a structure that incorporates fault-transitions, we need to redefine our notions
of fulfillment of eventualities.

Definition 5.1.3 (Fault-free fulfilled). The eventuality A[gUh] is fault-free ful-
filled for node e in graph G provided that for every fault-free path starting at
e in G, there is some node e′ along the path such that h ∈ L(e′), and for every
node e′′ on the path up to (but not necessarily including) node e′, g ∈ L(e′′).

The eventuality E[gUh] is fault-free fulfilled for node e in graph G provided that
for some fault-free path starting at e in G, there is some node e′ along the path
such that h ∈ L(e′), and for every node e′′ on the path up to (but not necessarily
including) node e′, g ∈ L(e′′).

5.2 The Synthesis Method

Our synthesis method first generates a tableau that contains normal-transitions,
which represent the behavior of the program in the absence of faults, fault-transitions,
which represent the occurrence of all the faults given in the problem specification,
and recovery-transitions, which generate a recovery behavior that satisfies the re-
quired tolerance property.

In the absence of faults, we require both the problem specification init−spec ∧
AG(global−spec) and the problem-fault coupling specification AG(coupling−spec)
to hold. Thus, the initial OR-node d0 of the tableau will be labeled with the
temporal specification spec = init−spec ∧ AG(global−spec) ∧ AG(coupling−spec).
We start with d0 and construct the tableau T0 = (d0, V

0
C , V

0
D, A

0
CD, A

0
DC , L

0) for
spec in a similar way to the CTL decision procedure, except that the fault- and
recovery-transitions are also generated.

The tableau generation is done incrementally. At each stage, an “unexpanded”
node is selected, and its successors are constructed. If the node is an AND-node
c, then, in addition to all the successors required to satisfy all the formulae of the
forms AXig and EXih (the “nexttime” formulae) in the label of c, we also add all
the successors that can be generated by applying fault actions to c. This is because
AND-nodes correspond to states in the final model, and so we must represent all
the faults that can occur in the state corresponding to c. This is done by applying
all the fault-actions to c. Applying a fault-action to c generates (when the fault
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action’s guard is true in c) fault-transitions leading to fault-successor OR-nodes of
c. An OR-node d (including the fault-successor OR-nodes) is expanded as discussed
above in Section 4 for the CTL decision procedure, i.e., by computing Blocks(d).
The AND-node successors of d (i.e., the AND-nodes in Blocks(d)) correspond to
perturbed states in the final model (i.e., states that result from the occurrence
of a fault) provided that they do not lie on a fault-free path. Otherwise, the
occurrence of the fault-action generates an AND-node that could also have resulted
from normal execution, and so this AND-node does not correspond to a perturbed
state in the final model. We call such occurrences of fault actions insignificant , and
all other occurrences significant . The expansion of AND-nodes that do correspond
to perturbed states in the final model then results in recovery-transitions, which
generate the required behavior of the synthesized program after a significant fault
occurrence. Program transitions from a normal state, i.e., a state reachable from
d0 via a fault-free path, are normal transitions (see also Section 2.4).

The OR-node successors of an AND-node c are therefore computed as Tiles(c)∪
FaultStates(F,TOL, {c}), i.e., as the union of (1) Tiles(c), the “non-fault-successors,”
that are required to satisfy all nexttime formulae in L(c), and (2) the fault-successor
OR-nodes that arise from applying the fault-actions in F to c. Note that the
labels of fault-successors are computed as described above (in the definition of
FaultStates), and that the tolerance properties of the program are defined by the
requirement that all formulae in the labels of (the AND-node successors of) the
fault-successor OR-nodes hold in the final model.

The modeling of fault-occurrence (by means of fault-transitions), and the gen-
eration of the recovery-transitions, are both intertwined with the generation of
normal-transitions that constitute the program behavior in the absence of faults.
The tableau T0 encodes a model (state transition graph) for a fault-tolerant pro-
gram that satisfies the synthesis problem specification, provided that some such
program exists.

As stated in Section 3, we only require the formulae in the label of a state (whether
perturbed or not) to hold under a notion of satisfaction that is relativized to fault-
free fullpaths. Thus, only fault-free fullpaths are considered when evaluating the
truth of a formula in the label of a node of the tableau T0. This obviously affects
the application of the deletion rules, that eliminate portions of T0 which cause a
violation of the specification. Thus, the appropriate notion of full subdag to be used
for both applying the deletion rules, and then for use in the “unwinding” procedure
(constructing the fragments and then pasting them together to obtain the final
model), is one in which the AND-nodes must have all of their non-fault-successors
(but fault-successors may be absent).

Definition 5.2.1 (Fault-free Full Subdag). A fault-free full subdag D rooted at
node e in T0 is a directed acyclic subgraph of T0 satisfying all of the following
conditions

(1) Node e is the unique node from which all other nodes in D are reachable,

(2) For every AND-node c in D, if c has any sons in D, then every non-fault
successor of c in T0 (i.e., every d ∈ Tiles(c)) is a son of c in D,

(3) For every OR-node d in D, there exists precisely one AND-node c in T0 such
that c is a son of d in D.
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We now describe the steps of our synthesis method. We give pseudocode for
each step, followed by some discussion. The first step is to construct the tableau
T0 = (d0, V

0
C , V

0
D , A

0
CD, A

0
DC , L

0):

(1) Let d0 be an OR-node with label {spec};
T0 := d0;
repeat until frontier (T0) = ∅
(a) Select a node e ∈ frontier(T0);

(b) if ∃e′ ∈ V 0
D : L(e) = L(e′) then

merge e and e′

else
attach all e′ ∈ Succ(e) as successors of e and mark e as expanded

endif ;
Update V 0

C , V 0
D , A0

CD , A0
DC appropriately.

where the successors Succ(e) of a node of either type are defined as follows:
if e is an OR-node, then Succ(e) = Blocks(d), and if e is an AND-node, then
Succ(e) = Tiles(e) ∪ FaultStates(F,TOL, {e}).
Let T0 be the resulting tableau.

We now repeatedly apply the deletion rules in Figure 2 to T0, until there is no
change. These are similar to the CTL decision procedure [Emerson and Clarke
1982] rules, except that they require the existence of a fault-free full subdag to certify
fulfillment of A[gUh], and the existence of a fault-free path to certify fulfillment of
E[gUh].

(2) Repeatedly apply the deletion rules in Figure 2 to T0 until no deletion rule
is applicable. If d0 is deleted, then return an impossibility result and halt.
Otherwise, let TF be the tableau induced by the nodes that are still reachable
(via normal, fault, and recovery transitions) from d0.

Upon termination, if d0, the root of T0, has been removed, then no program ex-
ists that satisfies spec = init−spec ∧ AG(global−spec) ∧ AG(coupling−spec) under
normal operation, and that has the required tolerance properties after a fault has
occurred. In this case, we obtain an impossibility result. If d0 is not removed, then
we extract a model from TF by a process of “unraveling.”

For each AND-node c in TF , a “fragment” FFRAG[c] is constructed. FFRAG[c]
is a directed acyclic graph whose nodes are AND-nodes, and whose local structure
is taken from TF , i.e., c′ → c′′ in FFRAG[c] only if c′ → d → c′′ in TF for some
OR-node d. In addition, c is the root of FFRAG[c] and all eventualities in the
label of c are fault-free fulfilled in FFRAG[c]. Given that c was not removed by the
deletion rules, it follows that, for each eventuality g ∈ L(c), TF contains a fault-free
full subdag with root c and in which g is fulfilled. Let FDAG[c, g] be the directed
acyclic prestructure that results from removing all the OR-nodes from this subdag,

and connecting the AND-nodes up appropriately, i.e., if c
i→ d and d→ c′ are edges

in the full subdag for some OR-node d, then c
i→ c′ is an edge in FDAG[c, g]. We

construct FFRAG[c] as follows. Let g1, . . . , gm be all of the eventualities in L(c).
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(3) (a) Let FFRAG1 be a copy of FDAG[c, g1]. To obtain FFRAGj+1 from
FFRAGj , do
i. identify any two nodes on the frontier of FFRAGj that have the same

label;
ii. forall s′ ∈ frontier (FFRAGj) do

/* let c′ be the AND-node in TF that s′ is a copy of */
if gj+1 ∈ L(s′) then

attach a copy of FDAG[c′, gi+1] to FFRAGj at s′

/* call the resulting directed acyclic graph FFRAGj+1 */
(b) Obtain FFRAG′[c] from FFRAGm by identifying any two nodes in

frontier(FFRAGm) with the same label
(c) To obtain FFRAG[c] from FFRAG′[c], do:

i. forall AND-nodes c′ in FFRAG′[c] and a ∈ F :

forall d such that c′
a,TOL−→ d

attach a copy of at least one node c′′ ∈ Blocks(d) as
successor of c′;5

label the transition from c′ to c′′ as a fault-transition

If L(c) contains no eventualities, then FRAG′[c] consists of c together with enough
local successors to satisfy all of the formulae that have AXj or EXj as main connec-
tive. That is, for each d ∈ Tiles(c), choose a c′ ∈ Blocks(d) and add c′ as a successor
of c. Identify all such c′ with the same label. Then FRAG′[c] consists of c together
with all such c′. Obtain FRAG[c] from FRAG′[c] by attaching fault-successors as
in Step 3c.

Note, in particular, that step 3c adds the fault-successors of every AND-node
in FFRAG[c] to its frontier. We prove in the sequel that FFRAG[c] is an acyclic
prestructure generated by TF whose root node s0 is a copy of c, and that all
eventualities in Label(s0) (= Label(c)) are fault-free-fulfilled for s0 in FFRAG[c].

Finally, the FFRAG’s are connected together (essentially, the frontier nodes of
a FFRAG are identified with root nodes of other FFRAG’s) to form a Kripke
structure in which all eventualities are fault-free-fulfilled. This structure is a model
of spec. The procedure is as follows:

(4) (a) Choose c0 ∈ Blocks(d0) arbitrarily (recall that d0 is the root of T );
Let M1 = FFRAG[c0];

(b) To obtain Mi+1 from Mi, do

i. forall s ∈ frontier(Mi) do
/* let c be the AND-node in TF that s is a copy of */

if there exists s′ ∈ interior(Mi) such that s′ is also a copy of c,
and a copy of FFRAG[c] is directly embedded in Mi with
root s′,

then
identify s and s′

else
replace s by a copy of FFRAG[c]

endif

/* call the resulting graph Mi+1 */
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(c) The construction halts with i = N when frontier (MN ) is empty. Let
M = MN . We write M = (c0, S, A,AF , L), where c0 is given in step 4a
(we write c0 instead of {c0}), L is given by the labels of each node, S is
the set of all nodes in MN , A is the set of all transitions in MN that are
labeled with a process index (i.e., normal or recovery transitions), and AF
is the set of all transitions in MN that have label (a,TOL) for some a ∈ F
(i.e., the fault transitions).

Let MF = (c0, S, A,AF , L0) where L0 is L restricted to the propositions
occurring in spec. MF is a model of spec.

We show in the sequel that MF , s |=n f for every s ∈ S and f ∈ L(s). In particular,
since spec ∈ L(c0) by definition of c0 and Blocks(d0), we have MF , c0 |=n spec, and
so the synthesized program satisfies spec under normal operation.

From the model MF , we extract a program as follows. In going from M to MF ,
we remove all of the nonpropositional formulae in the label of each node. This
may result in several nodes (states) having the same label in MF . As in Emerson
and Clarke [1982], we introduce shared variables to distinguish such states. If this
is not done, the extracted program will exhibit the same future behavior from all
such states, even though they have different labels (in M), thus allowing pending
eventualities to remain unfulfilled.6

Suppose that a set ϕ of propositional formulae occurs as the label of states
s1, . . . , sn in M . We introduce a new shared variable xϕ, and add the proposition
xϕ = k to the label of sk, for k ∈ [1 : n]. We also add the assignment xϕ := k to
the label of each transition in MF that enters sk, for k ∈ [1 : n]. Once all necessary
shared variables have been added to MF , we extract a program P = P1‖ · · · ‖PI
by projecting onto the individual process indices as follows: add an arc to (the
synchronization skeleton) Pi going from local state si to local state ti and labeled
with the guarded command B → A iff there exists a transition MF from state
s to state t labeled with assignment A7, and such that si = s↑i, ti = t↑i, and
B = ∧(L(s)↓i). Here s↑i denotes the projection global state s onto Pi (i.e., the
component of s that gives the local state of Pi), and L(s)↓i denotes the set of all
formulae in L(s) of the form pj or the form ¬pj (where pj is an atomic proposition
in APj , and j ∈ [1 :I ] − {i}) or the form x = k (where x is a shared variable and
k is a natural number). ∧(L(s)↓i) then denotes the conjunction of all formulae
in the set L(s)↓i. In other words, the guard B checks all of the components of
global state s except for s↑i. The pseudocode for the extraction step is as follows:

6For example, not introducing a shared variable in the mutual exclusion example in Figure 8 gives

rise to a cycle [N1 T2]
1→ [T1 T2]

1→ [C1 T2]
1→ [N1 T2] that causes violation of the absence of

starvation specification AG(T2 ⇒ AFC2).
7If the transition is not labeled with an assignment, we take A to be skip.
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(5) (a) for every maximal set {s1, . . . , sn} of states in MF such that L0(s1) =
L0(s2) = · · · = L0(sn)
i. introduce a new shared variable x
ii. add the proposition x = k to the label of sk, k ∈ [1 : n]
iii. label each transition of MF that enters sk with the assignment x := k,

for k ∈ [1 : n]

(b) forall transitions s
i,A−→ t in MF

add an arc to Pi going from s↑i to t↑i, and with the label ∧(L(s)↓i)→ A

Appendix 9.2 gives the entire pseudocode for our method.

DeleteP. Delete any node whose label is propositionally inconsistent (i.e., the propositional com-
ponent of the label is equivalent to false).

DeleteOR. Delete any OR-node all of whose successors are already deleted.

DeleteAND. Delete any AND-node one of whose successors (including fault-successors) is already

deleted.8

DeleteAU. Delete any node e such that A[gUh] ∈ L(e) and there does not exist a fault-free full
subdag rooted at e such that h ∈ L(c′) for every frontier node c′ and g ∈ L(c′′) for every interior
AND-node c′′.
DeleteEU. Delete any node e such that E[gUh] ∈ L(e) and there does not exist an AND-node c′

reachable from e via a fault-free path π such that h ∈ L(c′) and for all AND-nodes c′′ along π up
to but not necessarily including c′, g ∈ L(c′′).

Fig. 2. The deletion rules for our synthesis method.

5.3 Allowing Faults to Corrupt Shared Synchronization Variables

We have assumed up to now that fault actions cannot reference shared variables.
Let x be one such variable, and let t̄ be the set of propositionally identical states
that x disambiguates, and let |t̄| = n. Then, without loss of generality, we may
assume that the domain of x is [1 : n]. By construction of our method, x is set to
a constant upon entry to a state in t̄ (to record which state in t̄ is being entered),
and is read only upon exit from states in t̄ (to determine which state in t̄ is in fact
the current global state). Hence, the value of x in states outside t̄ has no effect
whatsoever on any future computation path.9 Bearing this in mind, suppose the
occurrence of some fault action f changes the current global state to some global
state s. There are several cases to consider. If s 6∈ t̄, then corrupting x has no effect,
since the value of x in s doesn’t affect any future computation. If s ∈ t̄ and x is
corrupted to some value in [1 : n], then the effect is that of changing the final state
from some s′ ∈ t̄ (which would otherwise have been entered) to s. Since s is an
already present state from which recovery is guaranteed, this is also not a problem.

8This is mainly where our deletion rules differ from those of the CTL decision procedure. The
DeleteAUand DeleteEUrules are also modified to apply to fault-free subdags, fault-free paths,
respectively.
9In fact, the Emerson and Clarke [1982] synthesis method does not even record the value of x in
states outside t̄.
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If s ∈ t̄ and x is corrupted to some value outside [1 : n], then we simply interpret
the new value of x as some “default” value within [1 : n], e.g., as 1.10 Then the
effect is as if x had been corrupted to 1, which is dealt with by the previous case.

Note that the above reasoning also deals with fault actions that corrupt several
shared variables at once. Finally note that although we allow fault actions to
corrupt (i.e., overwrite) shared variables, we do not allow fault actions to read
shared variables. This restriction is needed (for technical reasons) to ensure the
completeness of our method. In particular, this means that our method cannot
deal with an adversary that chooses its strategy based on the value of the shared
variables. Extending our method to deal with such adversaries is a topic for future
work.

6. EXAMPLES

6.1 Mutual Exclusion Subject to Fail-stop Failures

Our first example is the mutual exclusion problem subject to fail-stop failures. The
mutual exclusion specification is given in Section 2.2. The fault specification is, for
each process Pi, the auxiliary proposition Di (denoting Pi is “down”) and four fault
actions: one that truthifies Di and falsifies all other propositions of Pi (denoting
the fail-stop of Pi), and three that truthify Ni, Ti, Ci (respectively) and falsify all
other propositions of Pi (denoting the repair of Pi).

11 The problem-fault coupling
specification is as follows, where i ∈ {1, 2},

(1) A fail-stopped process is not in any of the states Ni, Ti or Ci:
AG(Di ≡ ¬(Ni ∨ Ti ∨ Ci))

(2) A fail-stopped process may stay down forever: AG(Di ⇒ EGDi)

(3) A transition by one process cannot cause a fault or recovery in another:
AG((D1 ⇒ AX2D1) ∧ (D2 ⇒ AX1D2))

Finally, the type of fault-tolerance we require is masking. The introduction of
an auxiliary proposition Di which is set to true when Pi is “down” implies an
assumption of failure-detection [Chandra and Toueg 1996], since the other process
can read Di and thus detect that Pi is down.

We now illustrate the tableaux T0 and TF generated by our method for this prob-
lem. Throughout, AND-nodes are shown as rectangles, and OR-nodes as hexagons.
Also, we include in the labels only as much information as needed to uniquely iden-
tify each node. So, for example, for all conjuncts of the form AGf that occur in the
problem specification we assume implicitly that f appears in the label of all normal
nodes, and for all conjuncts of the form AGf that occur in the coupling specifica-
tion we assume implicitly that f appears in the label of all normal, perturbed, and
recovery nodes. The fault-free portion of TF is given by Figure 9 in Emerson and
Clarke [1982]. Figure 3 shows some of the fault-transitions in T0 and TF . The top
group are fault-transitions arising from fail-stop failures, and the bottom group are
fault-transitions arising from repairs (i.e., when a process “comes back up”). Note
that repairs are considered to be fault-transitions in our model. Figure 4 shows the

10We can do this since the domain of x is known in advance.
11Ci is truthified only when mutual exclusion would not be violated.
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portion of T0, TF that corresponds to the fail-stop of P1 in local state N1. Since
no nodes are deleted, this portion is the same in T0 and TF . Figure 5 shows the
portion of T0 that corresponds to the fail-stop of P1 followed by the fail-stop of P2,
from the initial state [N1 N2]. Here, two of the OR-nodes are propositionally incon-
sistent, and are therefore deleted, by rule DeleteP of Figure 2 (e.g., the OR-node
with label {D1,EGD1} is propositionally inconsistent since the global specification
requires that exactly one of the propositions N2, T2, C2, D2 be true in each node,
and none of these propositions is true in this node). This leads to the deletion of
three of the AND-nodes, by rule DeleteAND of Figure 2. Note that, for clarity of
Figure 5, the OR-AND transitions leaving the lower row of OR-nodes have all been
omitted. Figure 6 shows the result of performing the deletions, i.e., the portion
of TF that corresponds to the portion of T0 in Figure 5. Figure 7 shows some of
the FFRAG’s that are extracted from the tableau portions in Figures 4 and 6. We
have labeled some of the AND-nodes (OR-nodes) with ANDn (ORn) in these figures
so as to illustrate which nodes are used in constructing the FFRAG’s. Note that
in Figure 4, the nodes labeled OR1 and OR5 are the same node, and are duplicated
for clarity of the figure. Finally, in Figures 3–7, we have used solid, dashed, and
dotted lines to denote those AND-OR and OR-AND transitions in the tableau that
will give rise to normal-transitions, recovery-transitions, and fault-transitions in the
final model (Figure 8) respectively.

Figure 8 shows the final model that is obtained by unwinding TF , and Fig-
ure 9 shows the concurrent program P1‖P2 that is extracted from this model. This
program is a solution to the two-process mutual exclusion problem and exhibits
masking tolerance to fail-stop failures.

The portion of the Kripke structure in Figure 8 that is above the dark horizontal
line is the model for the mutual exclusion specification that is produced by the
CTL decision procedure of Emerson and Clarke [1982] (and from which a fault-
intolerant program could be extracted). The entire Kripke structure is the final
model produced by our synthesis method. For clarity, only the fault-/recovery-
transitions corresponding to the failure of P1 followed by the failure of P2, are
shown. The transitions corresponding to the other order of failure can be deduced
by symmetry considerations. Normal, fault, and recovery-transitions are indicated
by solid, dotted, and dashed lines respectively. Perturbed states are indicated by
a dotted boundary. Note the grouping of states into the sets [N2], [T2], [C2], [D1].
All states in each set have the indicated fault- and recovery-transitions, which are
drawn to the boundary of the set.

6.2 Barrier Synchronization Subject to General State Failures

Our second example is the barrier synchronization problem subject to general state
failures. The barrier synchronization specification is as follows:

Each process consists of a cyclic sequence of two terminating phases, phase A
and phase B. Process i, i = 1, 2, is in exactly one of 4 local states, SAi, EAi, SBi,
EBi, corresponding to the start of phase A, the end of phase A, the start of phase
B, and the end of phase B, respectively:

(1) Initial State (both processes are initially at the start of phase A): SA1 ∧ SA2
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D1 D2 N1 D2

D1 T2 C1 T2

D1 N2 N1 N2

N1 T2 D1 T2

D1 T2T1 T2 EX1true

N1 N2 D1 N2

D1 N2N1 T2 EX1true

D1 N2 D1 D2

Fig. 3. Some fault-transitions in the tableaux T0, TF for the two-process mutual exclusion problem
with fail-stop failures.
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Fig. 4. Portion of T0, TF corresponding to the fail-stop of P1 in local state N1.

ACM Transactions on Programming Languages and Systems, Vol. ??, No. ?, Month 2001



Synthesis of Fault-Tolerant Concurrent Programs · 29
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Fig. 5. Portion of T0 corresponding to the fail-stop of P1 followed by the fail-stop of P2, from
initial state [N1 N2].

(2) The start of phase A is always followed by the end of phase A:
AG(SAi ⇒ AXiEAi)

(3) The end of phase A is always followed by the start of phase B:
AG(EAi ⇒ AXiSBi)

(4) The start of phase B is always followed by the end of phase B:
AG(SBi ⇒ AXiEBi)

(5) The end of phase B is always followed by the start of phase A:
AG(EBi ⇒ AXiSAi)

(6) Pi is always in exactly one of the states SAi, EAi, SBi, EBi:
AG(SAi ≡ ¬(EAi ∨ SBi ∨ EBi)) ∧ AG(EAi ≡ ¬(SAi ∨ SBi ∨ EBi)) ∧
AG(SBi ≡ ¬(SAi∨ EAi ∨ EBi)) ∧ AG(EAi ≡ ¬(SAi∨ SBi ∨ EBi))

(7) The processes are never simultaneously at the start of different phases:
AG¬(SA1 ∧ SB2) ∧ AG¬(SA2 ∧ SB1)

(8) The processes are never simultaneously at the end of different phases:
AG¬(EA1 ∧EB2) ∧ AG¬(EA2 ∧ EB1)

(9) It is always the case that some process can move: AGEXtrue

The fault specification adds no propositions, and for every combination of truth-
values for the atomic propositions of a process, there exists a fault action assigning
those values to the propositions. The problem-fault coupling specification is sim-
ply true (since general state failures are undetectable it is not useful to add extra

ACM Transactions on Programming Languages and Systems, Vol. ??, No. ?, Month 2001



30 · Paul C. Attie et al.

EX2EGD2

D1

AX1D2

EX1EGD1

AX2D1

D2

1 2

D1 D2

OR7

AND4

OR8 OR9

N2D1

D2EGD1 D1 EGD2

Fig. 6. Portion of TF corresponding to the fail-stop of P1 followed by the fail-stop of P2, from
initial state [N1 N2].

propositions, and since they are also correctable, there is no need to add any re-
strictions on the propositions). Finally, the type of fault-tolerance we require is
non-masking.

Figure 10 gives the model generated by our synthesis method for this problem.
(The model for the barrier synchronization specification that is produced by the
CTL decision procedure is obtained by removing the four perturbed states and all
incident transitions.) For clarity, the fault-transitions are omitted. Figure 11 shows
the program extracted from the model. Note that the tolerance of the extracted
program is a special case of non-masking, namely self-stabilizing [Arora and Gouda
1993].

It is interesting that in the fault-intolerant program for barrier synchronization
(solid lines only), a process can move if the other process is at the same state or
one state “ahead”, whereas in the fault-tolerant program (solid and dashed lines),
a process can move if the other process is at the same state or one state ahead, or
two states ahead. The fault-intolerant program deadlocks in any of the perturbed
states, whereas the fault-tolerant program, with the recovery-transitions added,
does not deadlock. But note however, that these recovery-transitions do not permit
the fault-tolerant program to generate any new states or transitions under normal
(fault-free) operation.
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Fig. 7. Some FFRAG’s for the two-process mutual exclusion problem with fail-stop failures.

6.3 An Impossibility Result

Consider also the barrier synchronization problem subject to fail-stop failures and
with nonmasking tolerance required. Suppose P1 goes down in state [SA1 EA2].
If we allow that P1 may stay down forever (AG(D1 ⇒ EGD1) in the coupling
specification), then the resulting perturbed state has a label that is unsatisfiable,
and so recovery-transitions from this state cannot be generated. Indeed from the
meaning of the barrier synchronization problem—the progress of P2 requires the
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Fig. 8. Two-process mutual exclusion structure for the fail-stop failures model.

concomitant progress of P1—it is easy to see that if P1 stays down forever then
the original problem specification cannot be satisfied. Hence our synthesis method
provides a mechanical way of obtaining such impossibility results.

7. CORRECTNESS AND COMPLEXITY OF THE SYNTHESIS METHOD

There are three aspects to the correctness of the synthesis method: soundness,
completeness, and fault-closure. Soundness means that the synthesized program
satisfies the specification. Completeness means that, if there is a program which
satisfies the specification, then one such program will be synthesized. Fault-closure
means that every specified fault-action is faithfully represented in the synthesized
program.

7.1 Soundness

Recall that |=n denotes the |= relation of CTL when path quantification is restricted
to fault-free fullpaths, and that MF = (s0, S, A,AF , L0)12 is the fault-tolerant
model produced by our method. Soundness means that all formulae in the label of a

12Since our method produces a single initial state, we use s0 instead of {s0} to denote the corre-
sponding singleton set.
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Fig. 9. Fault-tolerant concurrent program P1‖P2 extracted from the structure in Figure 8.

state hold in that state, i.e., for all s ∈ S and g ∈ L(s): MF , s |=n g. Thus, by virtue
of the way that labels are computed for nodes that correspond to perturbed states
(Sections 4 and 5), the resulting program is a solution of the synthesis problem.

There are two key ideas in establishing soundness. The first is that all formulae
in the label of a node are “propagated” correctly. For example, if E[gUh] is in
the label of a node v, then some successor of v must either contain h in its label
(thereby fulfilling the eventuality E[gUh]), or it must contain g, E[gUh], EXE[gUh]
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Fig. 10. Barrier synchronization structure for the general state failures model.
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Fig. 11. Fault-tolerant concurrent program P1‖P2 extracted from the structure in Figure 10.

in its label, (thereby propagating the eventuality E[gUh]). The second key idea
is that all eventualities are fulfilled, because every maximal path will eventually
“intersect” with the root of a fragment. Fragment roots serve as “checkpoints,”
which ensure that all pending eventualities are fulfilled.

We start with Propositions 7.1.1–7.1.3 below, which establish useful structural
properties of the tableau T0 Proposition 7.1.1 follows from the definition of Blocks .
Blocks(d) in effect contains all the successor nodes that correspond to different ways
of simultaneously satisfying the formulae in L(d). Proposition 7.1.2 follows from
the fact that, for any c ∈ Blocks(d), the conjunction of the elementary formulae
in L(c) is logically equivalent to the conjunction of all the formulae in L(c). It
is easily seen that this equivalence is preserved by each of the “α-β” expansions
(Section 4) which construct a child from its parent in the tree that is constructed
during the computation of Blocks . Proposition 7.1.3 follows from the definition
of Tiles , in that Tiles(c) is the minimum set of successors that are needed in
order to satisfy the nexttime (AXg or EXh) formulae in L(c). By construction,
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L(c) contains only elementary formulae, and so the only other formulae in L(c)
besides the nexttime formulae are either atomic propositions or negations of atomic
propositions. See Section 4 for the detailed discussion of Blocks and Tiles . The
full proofs of Propositions 7.1.1–7.1.3 can be found in Emerson [1981, chapter 4],
where these are given as Propositions 4.4.1–4.4.3, respectively.13

We next establish Proposition 7.1.4, which gives useful structural properties that
all nodes (including the perturbed nodes) in tableau T0 have, e.g., that nodes have
unique labels, no nodes are without successors, every AND-node has a downward-
closed label, and the relationships between satisfiability of a node label and the
satisfiability of the labels of its successor nodes are as given in Propositions 7.1.1 and
7.1.3. Most of these follow from the construction of T0, and by Propositions 7.1.1,
7.1.3. Clauses 7 and 8 are noteworthy in that they establish that the nexttime
formulae in the label of a node are propagated appropriately to the successors of
the node. This is a crucial first step for showing that all the formulae in a node
label actually hold in the final model that is constructed. Proposition 7.1.4 lays the
groundwork for Proposition 7.1.5, which establishes similar structural properties
for any prestructure that is generated by tableau T0. Specifically, it shows that
the nexttime formulae are propagated appropriately. Thus, nexttime formulae are
“satisfied locally” in such a prestructure.

In Proposition 7.1.6, we show that all CTL formulae are propagated appropri-
ately. For example, if E[gUh] is in the label of some node v0, then there must be
some maximal fault-free path starting from v0 such that g, E[gUh], EXE[gUh] are
all propagated, i.e., they are in the labels of successive nodes along the path, until
a node is reached containing h in its label. If no such node exists, then g, E[gUh],
EXE[gUh] are propagated forever. The propagation is enforced by the presence of
EXE[gUh] in the node labels, since Proposition 7.1.5 shows that nexttime formulae
are propagated appropriately. This would be sufficient to establish that all for-
mulae in the label of a node are true, except for the issue of eventualities. So,
in the above example of E[gUh], it is possible that every node along the maximal
fault free path is labeled with g, and no node is labeled with h. E[gUh] requires
that h is actually true at some node along the path. We establish that this must
hold by showing that the eventualities in the root c of a fragment FFRAG[c] are
all fulfilled within FFRAG[c] (Proposition 7.1.7). Thus, the root c of a fragment
serves as a “checkpoint,” which guarantees that all eventualities that are pending
in c are actually fulfilled. Since the final model is constructed by pasting together
fragments (Step 4 in Section 5.2), we can show that every maximal fault-free path
must contain a node which is the root of a fragment. This node serves to certify
the fulfillment of all eventualities that are pending in the first state of the path. We
do this in Theorem 7.1.9, which shows that in the final model M , a node satisfies
all the formulae in its label.

13The results in Emerson [1981, chapter 4] are established for the logic UB, which is obtained
from CTL by replacing AU,EU,AW,EW by AF,EF,AG,EG respectively. However, the results can
be easily seen to carry over to CTL: to deal with A[fUg], E[fUg], modify the treatment of AFg,
EFg respectively to check that f holds along the prefix of the fullpath up to the state where g
holds. Likewise, to deal with A[fWg], E[fWg], modify the treatment of AGg, EGg respectively to
check that g holds only in all states up to and including the first state in which f holds (rather
than in all states of the path).
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If ϕ is a set of propositional formulae, then the notation =|ϕ means that all the
formulae in ϕ are simultaneously satisfiable, i.e., there exists an assignment of truth
values to the atomic propositions in these formulae which makes all of the formulae
true.

Proposition 7.1.1. Let d be an OR-node. Then =|L(d) iff =|L(c1) or · · · or
=|L(ck), where Blocks(d) = {c1, . . . , ck}.

Proposition 7.1.2. Let d be an OR-node. Then, for each ci ∈ Blocks(d),
=|L(ci) iff =|LE(ci), where LE(ci) = {f ∈ L(ci) | f is elementary}.

Proposition 7.1.3. Let c be an AND-node. Then =|L(c) iff =|L(d1) and · · · and
=|L(dk) and =|LP (c) where Tiles(c) = {d1, . . . , dk} and LP (c) = {f ∈ L(c) | f is an
atomic proposition or its negation}.

Proposition 7.1.4. Tableau T0 satisfies the following:

(1 ) The root of T0 is an OR-node d0 such that L(d0) = {f0}.
(2 ) All AND-nodes (OR-nodes) in T0 have distinct labels.

(3 ) Every node in T0 has a successor in T0.

(4 ) L(c) is downward-closed for all AND-nodes c in T0.

(5 ) For every OR-node d, L(d) iff =|L(c1) or · · · or =|L(cn), where Blocks(d) =
{c1, . . . , cn}.

(6 ) For every AND-node c, =|L(c) iff =|L(d1) and · · · and =|L(dm) and =|LP (c)
where Tiles(c) = {d1, . . . , dm}.

(7 ) For every AND-node c,
AXf ∈ L(c) implies f ∈ L(d) for all d ∈ Tiles(c)
EXf ∈ L(c) implies f ∈ L(d) for some d ∈ Tiles(c)

(8 ) For every AND-node c,
AXif ∈ L(c) implies f ∈ L(d) for all d ∈ Tiles i(c)
EXif ∈ L(c) implies f ∈ L(d) for some d ∈ Tiles i(c)

Proof. We deal with each clause of the proposition in turn.
Clause 1. By construction of our method.
Clause 2. Nodes with identical labels are merged in step 1b, Section 5.2.
Clause 3. By definition, Succ(e) is never empty for any node e. Since every node

is expanded at some point, it follows that every node has at least one successor.
Clause 4. Any AND-node c is a member of Blocks(d) for some OR-node d, by

construction of our method. By definition of Blocks , any node in Blocks(d) has a
downward-closed label. (Note that the nodes directly generated by applying a fault
action are OR-nodes.)

Clause 5. Follows directly from Proposition 7.1.1.
Clause 6. Follows directly from Proposition 7.1.3.
Clause 7. Holds by definition of Tiles(c).
Clause 8. Holds by definition of Tiles i(c).

Proposition 7.1.5. If prestructure G = (V,A, L) is generated by tableau T0,
then

(1 ) For all nodes v in G, L(v) is downward closed.
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(2 ) For all interior nodes v in G, if AXf ∈ L(v), then f ∈ L(v′) for all non-fault
successors v′ of v in G.

(3 ) For all interior nodes v in G, if AXif ∈ L(v), then f ∈ L(v′) for all (non-fault)
Pi-successors v′ of v in G.

(4 ) For all interior nodes v in G, if EXf ∈ L(v), then f ∈ L(v′) for some non-fault
successor v′ of v in G.

(5 ) For all interior nodes v in G, if EXif ∈ L(v), then f ∈ L(v′) for some (non-
fault) Pi-successor v′ of v in G.

Proof. Recall that tableau T0 = (d0, V
0
C , V

0
D , A

0
CD, A

0
DC , L

0), and let K =
(V ′C , V

′
D, A

′
CD, A

′
DC , L

′) be the fullgraph satisfying the definition of “G is gener-
ated by T0,” and let E be the generation function satisfying the definition of “K is
generated by T0.” We establish each clause in turn.

Clause 1. Let v be an arbitrary node of G. By definition of generated, L(v) is
the label of some AND-node of T0. Hence, by Proposition 7.1.4, clause 4, L(v) is
downward-closed.

Clause 2. Let v be an arbitrary interior node of G, and let v′ be an arbitrary non-
fault successor of v in G. By definition of generated, there exists w ∈ V ′D such that
(v, w) ∈ A′CD and (w, v′) ∈ A′DC . By definition of generated, (E(v), E(w)) ∈ ACD
and (E(w), E(v′)) ∈ ADC . By the fact that v′ is a non-fault successor of v, we have
E(w) ∈ Tiles(E(v)) and E(v′) ∈ Blocks(E(w)). Now suppose AXf ∈ L(v). Then,
AXf ∈ L0(E(v)). Hence, by Proposition 7.1.4, clause 7, f ∈ L0(E(w)). Thus,
by construction of Blocks(E(w)), f ∈ L0(E(v′)). By definition of generated, we
conclude f ∈ L(v′).

Clause 3. Let v be an arbitrary interior node of G, and let v′ be an arbitrary
non-fault Pi-successor of v in G. By definition of generated, there exists w ∈
V ′D such that (v, i, w) ∈ A′CD and (w, v′) ∈ A′DC . By definition of generated,
(E(v), i, E(w)) ∈ ACD and (E(w), E(v′)) ∈ ADC . By the fact that v′ is a non-
fault Pi-successor of v, we have E(w) ∈ Tiles i(E(v)) and E(v′) ∈ Blocks(E(w)).
Now suppose AXif ∈ L(v). Then, AXif ∈ L0(E(v)). Hence, by Proposition 7.1.4,
clause 8, f ∈ L0(E(w)). Thus, by construction of Blocks(E(w)), f ∈ L0(E(v′)).
By definition of generated, we conclude f ∈ L(v′).

Clause 4. Let v be an arbitrary interior node of G. By definition of generated,
v is an interior node of K. Hence E(v) is an interior node of T0. Now suppose
EXf ∈ L(v). Then, EXf ∈ L0(E(v)). By Proposition 7.1.4, clause 7, f ∈ L0(d) for
some OR-node successor d of E(v) in T0. By definition of generated, there exists
some OR-node w of K such that (v, w) ∈ A′CD, E(w) = d, and w has some successor
in K. Let v′ be some non-fault AND-node successor of w in K, i.e., (w, v′) ∈ A′DC .
By definition of generated, (E(w), E(v′)) ∈ A0

DC , i.e., (d,E(v′)) ∈ A0
DC . Since

f ∈ L0(d) and E(v′) ∈ Blocks(d), we have f ∈ L0(E(v′)) by construction of
Blocks . Hence f ∈ L(v′). From (v, w) ∈ A′CD, (w, v′) ∈ A′DC , and the definition of
generated, (v, v′) is a non-fault edge in G. Since f ∈ L(v′), we are done.

Clause 5. Let v be an arbitrary interior node of G. By definition of generated,
v is an interior node of K. Hence E(v) is an interior node of T0. Now suppose
EXif ∈ L(v). Then, EXif ∈ L0(E(v)). By Proposition 7.1.4, clause 8, f ∈ L0(d)
for some OR-node Pi-successor d of E(v) in T0. By definition of generated, there
exists some OR-node w of K such that (v, i, w) ∈ A′CD , E(w) = d, and w has some

ACM Transactions on Programming Languages and Systems, Vol. ??, No. ?, Month 2001



Synthesis of Fault-Tolerant Concurrent Programs · 39

successor in K. Let v′ be some AND-node successor of w in K, i.e., (w, v′) ∈ A′DC .
By definition of generated, (E(w), E(v′)) ∈ A0

DC , i.e., (d,E(v′)) ∈ A0
DC . Since

f ∈ L0(d) and E(v′) ∈ Blocks(d), we have f ∈ L0(E(v′)) by construction of Blocks .
Hence f ∈ L(v′). From (v, i, w) ∈ A′CD, (w, v′) ∈ A′DC , and the definition of
generated, (v, i, v′) is a non-fault edge in G. Since f ∈ L(v′), we are done.

Proposition 7.1.6. Let G be a prestructure generated by tableau T0. For all
nodes v0 in G, the following all hold.

(1 ) If A[gUh] ∈ L(v0), then for all maximal fault-free paths v0, v1, v2, . . . in G,
for all j ≥ 0, g,A[gUh],AXA[gUh] ∈ L(vj), or
there exists i ≥ 0 such that

h,A[gUh] ∈ L(vi) and for all j ∈ [0 : i), g,A[gUh],AXA[gUh] ∈ L(vj)

(2 ) If E[gUh] ∈ L(v0), then for some maximal fault-free path v0, v1, v2, . . . in G,
for all j ≥ 0, g,E[gUh],EXE[gUh] ∈ L(vj), or
there exists i ≥ 0 such that

h,E[gUh] ∈ L(vi) and for all j ∈ [0 : i), g,E[gUh],EXE[gUh] ∈ L(vj)

(3 ) If A[gWh] ∈ L(v0) then for all maximal fault-free paths v0, v1, v2, . . . in G,
for all j ≥ 0, h,A[gWh],AXA[gWh] ∈ L(vj), or
there exists i ≥ 0 such that

g, h,A[gWh] ∈ L(vi) and for all j ∈ [0 : i), h,A[gWh],AXA[gWh] ∈ L(vj)

(4 ) If E[gWh] ∈ L(v0) then for some maximal fault-free path v0, v1, v2, . . . in G,
for all j ≥ 0, h,E[gWh],EXE[gWh] ∈ L(vj), or
there exists i ≥ 0 such that

g, h,E[gWh] ∈ L(vi) and for all j ∈ [0 : i), h,E[gWh],EXE[gWh] ∈ L(vj)

Proof. The proof is similar to the proof of Proposition 4.5.3 in Emerson [1981,
chapter 4] except that Proposition 7.1.5 is invoked instead of Proposition 4.5.2 (of
[Emerson 1981, chapter 4]), and the straightforward adjustments need to be made
for the modalities AU, EU, AW, EW (as noted previously, Emerson [1981, chapter
4] deals only with the modalities AF, EF, AG, EG):

Clause 1. Suppose A[gUh] ∈ L(v0) and v0, v1, v2, . . . is a maximal fault-free path
in G. By Proposition 7.1.5, clause 1 and the definition of downward-closed, we
see that, for each vj , if A[gUh] ∈ L(vj) and h 6∈ L(vj), then g,AXA[gUh] ∈ L(vj).
Furthermore, unless vj is the last node on v0, v1, v2, . . ., A[gUh] ∈ L(vj+1), by
Proposition 7.1.5, clause 2. Now either h 6∈ L(vi) for any i or there is a least i such
that h ∈ L(vi). In the former case, we have g,A[gUh],AXA[gUh] ∈ L(vj) for all
j ≥ 0. In the latter case we have, for some i, h,A[gUh] ∈ L(vi) and for all j ∈ [0 : i),
g,A[gUh],AXA[gUh] ∈ L(vj).

Clause 2. Suppose E[gUh] ∈ L(v0). By Proposition 7.1.5, clause 1, and the
definition of downward-closed, we have: (1) for each node v of G: if E[gUh] ∈ L(v)
and h 6∈ L(v), then g ∈ L(v) and EXE[gUh] ∈ L(v). Also by Proposition 7.1.5,
clause 4, we have: (2) for each internal node v of G: if EXE[gUh] ∈ L(v), then
E[gUh] ∈ L(v′) for some non-fault successor v′ of v.

Now if h ∈ L(v0) then we are done. Otherwise, h 6∈ L(v0), and so, by (1),
g ∈ L(v0) and EXE[gUh] ∈ L(v0). If v0 is a frontier node, then we are done.
Hence we have: (3) if h ∈ L(v0) or v0 is a frontier node then we are done. If v0
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is not a frontier node, then it is internal, and so by (2) and EXE[gUh] ∈ L(v0), v0

has some non-fault successor v1 such that E[gUh] ∈ L(v1). Now, using the same
reasoning as in proving (3), we have: if h ∈ L(v1) or v1 is a frontier node then we
are done. Otherwise, h 6∈ L(v1) and v1 is internal, and so by (1), g ∈ L(v1) and
EXE[gUh] ∈ L(v1). Hence, by (2), E[gUh] ∈ L(v2) for some non-fault successor v2

of v1. We can continue to generate non-fault successors in this way until we reach
a node vi such that h ∈ L(vi) or vi is a frontier node. In the first case, we also
have E[gUh] ∈ L(vi), and for all j ∈ [0 : i), g,E[gUh],EXE[gUh] ∈ L(vj), and so we
are done. In the second case, we have for all j ≥ 0, g,E[gUh],EXE[gUh] ∈ L(vj),
since the path v0, v1, v2, . . . is maximal. Hence we are done, since v0, v1, v2, . . . is
also fault-free.

Clause 3. Suppose A[gWh] ∈ L(v0) and v0, v1, v2, . . . is a maximal fault-free path
in G. By Proposition 7.1.5, clause 1, and the definition of downward-closed, we
see that, for each vj , if A[gWh] ∈ L(vj), then (1) h ∈ L(vj), and (2) if g 6∈ L(vj),
then AXA[gWh] ∈ L(vj). Furthermore, unless vj is the last node on v0, v1, v2, . . .,
A[gWh] ∈ L(vj+1), by Proposition 7.1.5, clause 2. Now either g 6∈ L(vi) for
any i or there is a least i such that g ∈ L(vi). In the former case, we have
h,A[gWh],AXA[gWh] ∈ L(vj) for all j ≥ 0. In the latter case we have, for some i,
h, g,A[gWh] ∈ L(vi) and for all j ∈ [0 : i), h,A[gWh],AXA[gWh] ∈ L(vj).

Clause 4. Suppose E[gWh] ∈ L(v0). By Proposition 7.1.5, clause 1, and the defi-
nition of downward-closed, we have (1) for each node v ofG: if E[gWh] ∈ L(vj), then
h ∈ L(vj), and (g 6∈ L(vj) implies EXE[gWh] ∈ L(vj)). Also by Proposition 7.1.5,
clause 4, we have: (2) for each internal node v of G: if EXE[gWh] ∈ L(v), then
E[gWh] ∈ L(v′) for some non-fault successor v′ of v.

Now if g ∈ L(v0) then we are done. Otherwise, g 6∈ L(v0), and so, by (1),
h ∈ L(v0) and EXE[gWh] ∈ L(v0). If v0 is a frontier node, then we are done.
Hence we have: (3) if g ∈ L(v0) or v0 is a frontier node then we are done. If v0 is
not a frontier node, then it is internal, and so by (2) and EXE[gWh] ∈ L(v0), v0

has some non-fault successor v1 such that E[gWh] ∈ L(v1). Now, using the same
reasoning as in proving (3), we have: if g ∈ L(v1) or v1 is a frontier node then we
are done. Otherwise, g 6∈ L(v1) and v1 is internal, and so by (1), h ∈ L(v1) and
EXE[gWh] ∈ L(v1). Hence, by (2), E[gWh] ∈ L(v2) for some non-fault successor v2

of v1. We can continue to generate non-fault successors in this way until we reach
a node vi such that g ∈ L(vi) or vi is a frontier node. In the first case, we also have
h,E[gWh] ∈ L(vi), and for all j ∈ [0 : i), h,E[gWh],EXE[gWh] ∈ L(vj), and so we
are done. In the second case, we have for all j ≥ 0, h,E[gWh],EXE[gWh] ∈ L(vj),
since the path v0, v1, v2, . . . is maximal. Hence we are done, since v0, v1, v2, . . . is
also fault-free.

Proposition 7.1.7. For every AND-node c in TF , FFRAG[c] satisfies the fol-
lowing

(1 ) The fault-free portion of FFRAG[c] is an acyclic prestructure generated by TF
whose root node s0 is a copy of c.

(2 ) All eventuality formulae in L(s0) are fulfilled for s0 in the fault-free portion of
FFRAG[c]
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Proof. By construction, the fault-free portion of FFRAG[c] is just FRAG[c].
The proof is then verbatim identical to the proof of Proposition 4.8.1 in Emerson
[1981, chapter 4] except that the propositions established above are invoked instead
of their analogues in Emerson [1981, chapter 4].

Let FDAG[s, g] denote a copy of FDAG[c, g], where s is a copy of AND-node c.
Referring to step 3 in Section 5.2, we see that the fault-free portion of FFRAG[c]
is FFRAG′[c]. Also, FFRAG′[c] is obtained from FFRAGm by identifying any two
nodes in frontier(FFRAGm) with the same label. Thus, if the proposition holds
for FFRAGm, then it must also hold for FFRAG′[c]. It is left to establish the
proposition for FFRAGm. Let g1, . . . , gm be all of the eventualities in L(c).

Referring to step 3, we establish, by induction on the loop variable j, that:

(1) The fault-free portion of FFRAGj is an acyclic prestructure generated by TF
whose root node s0 is a copy of c.

(2) The eventuality formulae g1, . . . , gj are fulfilled for s0 in the fault-free portion
of FFRAGj

The induction hypothesis holds for FFRAG1 = FDAG[s0, g1] by definition of
fault-free full-subdag. We assume the induction hypothesis for j = n and establish
it for j = n+ 1.
FFRAGn+1 is obtained from FFRAGn by replacing some nodes s′ in its frontier
with FDAG[s′, gn+1]. By definition, FDAG[s′, gn+1] is acyclic, and is generated
by TF . Hence, applying the induction hypothesis to FFRAGn, we conclude that
FFRAGn+1 is acyclic and is generated by TF .

By the induction hypothesis, the eventualities g1, . . . , gj are fulfilled for s0 in
the fault-free portion of FFRAGn. Hence, by definition of fulfilled, and the fact
that FFRAGn+1 is obtained by extending the frontier of FFRAGn, we conclude
that g1, . . . , gj are fulfilled for s0 in the fault-free portion of FFRAGn+1. We now
show that gn+1 is fulfilled for s0 in the fault-free portion of FFRAGn+1. First, we
note, by its definition, that FFRAGn is generated by TF . Hence, FFRAGn is also
generated by T0. Hence, Proposition 7.1.6 is applicable to FFRAGn. The rest of
the argument is in two cases.

Case 1: gn+1 is E[gUh] for some formulae g, h.
By Proposition 7.1.6, these exists a maximal fault-free path s0 = v0, v1, v2, . . . , v`
in FFRAGn, where vk ∈ frontier (FFRAGn) and:

(i) there exists i ∈ [0 : `] such that
h,E[gUh] ∈ L(vi) and for all j ∈ [0 : i), g,E[gUh],EXE[gUh] ∈ L(vj),

or

(ii) for all j ∈ [0 : `], g,E[gUh],EXE[gUh] ∈ L(vj)

If (i) holds, then we are done. Otherwise, E[gUh] ∈ L(v`), and so FDAG[c`,E[gUh]]
was attached at c` in constructing FFRAGn+1. Thus E[gUh] is fulfilled.

Case 2: gn+1 is A[gUh] for some formulae g, h.
Let s0 = c0, c1, . . . , ck be an arbitrary path in FFRAGn+1 such that
ck ∈ frontier(FFRAGn+1). By construction, frontier(FFRAGn) is a cutset of
FFRAGn+1. Hence, c0, c1, . . . , ck contains exactly one node (call it c`) that is
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in frontier(FFRAGn). Now c0, c1, . . . , c` is a maximal path in FFRAGn, Thus, by
Proposition 7.1.6:

(i) there exists i ∈ [0 : `] such that
h,A[gUh] ∈ L(ci) and for all j ∈ [0 : i), g,A[gUh],AXA[gUh] ∈ L(cj),

or

(ii) for all j ∈ [0 : `], g,A[gUh],AXA[gUh] ∈ L(cj).

If (i) holds, then we are done. Otherwise, A[gUh] ∈ L(c`), and so FDAG[c`,A[gUh]]
was attached at c` in constructing FFRAGn+1. So, ck ∈ frontier(FDAG[c`,A[gUh]]).
Thus h ∈ L(ck). Since c0, c1, . . . , ck is an arbitrary maximal path in FFRAGn+1,
we conclude that A[gUh] is fulfilled.

Proposition 7.1.8. The synthesis method terminates.

Proof. We show in turn that each step of the method terminates.
Step 1: The number of possible distinct labels is bounded by 2|cl(spec)|. Since

nodes of the same type and with identical labels are merged, the construction of T0

must terminate.
Step 2: Since each application of a deletion rule removes one node, and T0 is

finite, the deletion process must terminate.
Step 3: Since the frontiers of all the fragments involved are finite, it is clear that

al of the substeps terminate. Since the number of eventualities in L(c) is finite, the
overall step terminates.

Step 4: There are only O(2|cl(spec)|) fragments. Each application of substep
4(b)i to a node c either adds FFRAG[c] to the model, or identifies c with some
other already-present interior node. Since the number of fragments is finite, after
some point, all steps will be to merge a frontier node with an interior node, thereby
decreasing the number of frontier nodes. Since, at this point, the number of frontier
nodes is finite, it follows that, after enough steps, the frontier becomes empty and
the model construction process terminates.

Step 5: Since MF is finite, it is clear that each substep is iterated only a finite
number of times.

Theorem 7.1.9 (Soundness). Let M = (s0, S, A,AF , L) be the structure pro-
duced in step 4 of the method, and let MF = (s0, S, A,AF , L0) where L0 is L re-
stricted to the atomic propositions occurring in spec. Then, for all s ∈ S, f ∈ L(s):
MF , s |=n f .

Proof. The proof is by induction on the length of f in positive normal form
(i.e., negations are pushed inwards using dualities so that only atomic propositions
are negated). By construction, MF is generated by TF . Since TF is a subgraph
of T0, MF is also generated by T0. Hence Propositions 7.1.5 and 7.1.6 apply to
MF . Let s be an arbitrary state in S, and let f be an arbitrary formula in L(s).
We consider all the possible cases for the main modality of f . In each case, we
assume f ∈ L(s), and establish MF , s |=n f . (For clarity, we underline the case
assumption.)
f = p, where p is an atomic proposition. M, s |=n f by definition of |=n .

ACM Transactions on Programming Languages and Systems, Vol. ??, No. ?, Month 2001



Synthesis of Fault-Tolerant Concurrent Programs · 43

f = ¬p. Since L(s) contains no propositional inconsistencies (otherwise s would
have been deleted), p 6∈ L(s). Hence M, s 6|=n p. Hence M, s |=n ¬p by definition
of |=n .

f = g ∨ h. Since L(s) is downward-closed, we conclude g ∈ L(s) or h ∈ L(s).
Applying the induction hypothesis, we get M, s |=n g or M, s |=n h. Hence M, s |=n

g ∨ h by definition of |=n .

f = g ∧ h. Since L(s) is downward-closed, we conclude g ∈ L(s) and h ∈ L(s).
Applying the induction hypothesis, we get M, s |=n g and M, s |=n h. Hence
M, s |=n g ∧ h by definition of |=n .

f = AXig. Let t be an arbitrary non-fault Pi-successor of s, i.e., (s, i, t) ∈ A. By
Proposition 7.1.5, clause 3, g ∈ L(t). By the induction hypothesis, t |= g. Since t
was arbitrarily chosen, we conclude s |= AXig.

f = EXig. By Proposition 7.1.5, clause 5, s has some non-fault Pi-successor t in
M such that g ∈ L(t). By the induction hypothesis, t |= g. Hence, s |= EXig.

f = A[gUh]. We will show that for every maximal fault-free path s = s0, s1, s2, . . .
in M there is an n such that

h,A[gUh] ∈ L(sn) and for all j ∈ [0 : n), g,A[gUh],AXA[gUh] ∈ L(sj).

The induction hypothesis can then be applied to obtain

M, sn |=n h and for all j ∈ [0 : n), M, sj |=n g.

By definition of |=n , we then conclude M, s0 |=n A[gUh].
Let s = s0, s1, s2, . . . be an arbitrary maximal fault-free path in M starting in

state s. By construction of M , every node occurs in some fragment embedded in M
and at the frontier of each fragment there occurs the root of still another fragment
embedded in M . Thus, there must be a least i ≥ 0 such that si is the root of some
fragment FFRAG[si] embedded in M . If

there exists ` ∈ [0 : i) such that
h,A[gUh] ∈ L(s`) and for all j ∈ [0 : `), g,A[gUh],AXA[gUh] ∈ L(sj)

then we are done immediately. Otherwise, by Proposition 7.1.6, we have

g,A[gUh],AXA[gUh] ∈ L(si).

Since si is the root of FFRAG[si], A[gUh] is fulfilled along all maximal fault-free
paths starting in si, by Proposition 7.1.7. Hence

there exists ` ≥ 0 such that
h,A[gUh] ∈ L(s`) and for all j ∈ [0 : `), g,A[gUh],AXA[gUh] ∈ L(sj)

and we are done.

f = E[gUh]. We will show that there exists a finite fault-free path s = s0, . . . , sn
in M such that

h,A[gUh] ∈ L(sn) and for all j ∈ [0 : n), g,A[gUh],AXA[gUh] ∈ L(sj).

The induction hypothesis can then be applied to obtain

M, sn |=n h and for all j ∈ [0 : n), M, sj |=n g.

By definition of |=n , we conclude M, s0 |=n E[gUh].

ACM Transactions on Programming Languages and Systems, Vol. ??, No. ?, Month 2001



44 · Paul C. Attie et al.

From Proposition 7.1.6 and E[gUh] ∈ L(s0), we have that there exists a maximal
fault-free path s0, s1, s2, . . . in M such that

for all j ≥ 0, g,E[gUh],EXE[gUh] ∈ L(sj), or
there exists i ≥ 0 such that

h,E[gUh] ∈ L(si) and for all j ∈ [0 : i), g,E[gUh],EXE[gUh] ∈ L(sj).

By the construction of M , every node occurs in some fragment embedded in M
and at the frontier of each fragment there occurs the root of still another fragment
embedded in M . Thus, there must be a least i ≥ 0 such that si is the root of some
fragment FFRAG[si] embedded in M . If

there exists ` ∈ [0 : i) such that
h,E[gUh] ∈ L(s`) and for all j ∈ [0 : `), g,E[gUh],EXE[gUh] ∈ L(sj)

then we are done: let n = `. Otherwise, we have

g,E[gUh],EXE[gUh] ∈ L(si).

Since si is the root of FFRAG[si], E[gUh] is fulfilled for si in FFRAG[si]. Hence
there is a fault-free path si = t0, t1, . . . , tm in FFRAG[si] such that

h,E[gUh] ∈ L(tm) and for all j ∈ [0 : m), g,E[gUh],EXE[gUh] ∈ L(tj).

Then s = s0, s1, s2, . . . , si = t0, t1, . . . , tm is the desired finite fault-free path.

f = A[gWh]. By Proposition 7.1.6 clause 3, we have, for every maximal fault-free
path s = s0, s1, s2, . . . in M ,

for all j ≥ 0, h,A[gWh],AXA[gWh] ∈ L(vj), or
there exists i ≥ 0 such that

g, h,A[gWh] ∈ L(vi) and for all j ∈ [0 : i), h,A[gWh],AXA[gWh] ∈ L(vj).

Applying the induction hypothesis to this, we obtain

for all j ≥ 0, M, sj |=n h or
there exists i ≥ 0 such that

M, si |=n g ∧ h and for all j ∈ [0 : n), M, sj |=n h.

By definition of |=n , we conclude M, s0 |=n A[gWh].

f = E[gWh]. By Proposition 7.1.6 clause 4, we have, for some maximal fault-free
path s = s0, s1, s2, . . . in M ,

for all j ≥ 0, h,E[gWh],EXE[gWh] ∈ L(vj), or
there exists i ≥ 0 such that

g, h,E[gWh] ∈ L(vi) and for all j ∈ [0 : i), h,E[gWh],EXE[gWh] ∈ L(vj).

Applying the induction hypothesis to this, we obtain

for all j ≥ 0, M, sj |=n h or
there exists i ≥ 0 such that

M, si |=n g ∧ h and for all j ∈ [0 : n), M, sj |=n h.

By definition of |=n , we conclude M, s0 |=n E[gWh].

Corollary 7.1. Let M = (s0, S, A,AF , L) be the structure produced in step 4 of
the method, and let MF = (s0, S, A,AF , L0) where L0 is L restricted to the atomic
propositions occurring in spec. Also, let SF be the set of perturbed states in MF .
Then
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(1 ) MF , s0 |=n init−spec ∧ AG(global−spec) ∧ AG(coupling−spec)
(2 ) MF , SF |=n LabelTOL(spec)

Proof. From our semantics of concurrent programs given in Section 2.1 and
the pseudocode for Step 5 (the extraction step) of our method given in Section 5.2,
we can check that execution of the extracted program P does indeed generate
MF . This follows, since each transition in MF corresponds to a unique arc in P
whose execution generates that transition. Furthermore, the introduction of shared
variables ensures that every state of P corresponds to a unique state of MF (which
furthermore agrees with it on all atomic propositions) and vice-versa. Formalization
of this argument is straightforward, and is omitted. We refer the reader to Attie
and Emerson [2001] for examples of formal arguments of this kind.

From the pseudocode for Step 1 of our method given in Section 5.2 (especially
Definitions 5.1.1 and 5.1.2), we have:

(1) L(s0) = {init−spec ∧ AG(global−spec) ∧ AG(coupling−spec)}
(2) ∀s ∈ SF : Label TOL(spec) ⊆ L(s)

The corollary follows immediately by applying Theorem 7.1.9.

Comparing with Section 3, we confirm that our synthesis method solves the
synthesis problem. A slight technicality is that our method produces models with a
single initial state, whereas the method is stated in (somewhat more general) terms
of models with a finite set of initial states.

7.2 Completeness

Completeness of our method is the requirement that if some fault-tolerant program
satisfying the requirements of Section 3 exists, then our method produces such a
program. Since a fault-tolerant program can always be extracted from the model
MF produced by our method, we actually formalize completeness in terms of the
existence of MF : if a model satisfying the requirements of Section 3 exists, then
our method produces such a model MF .

To assure completeness, the deletion rules in Figure 2 are formulated so that a
nodes in the tableau is deleted only if necessary. Keeping in mind that in the final
model, the label of every state must be satisfied by that state, we examine all of
the deletion rules from Figure 2:

—DeleteP: A propositionally inconsistent node label cannot be satisfied.

—DeleteOR: Each successor of an OR-node d gives one of the (finitely many)
ways in which L(d) may possibly be satisfied. If all these successors are deleted,
then there is no way of satisfying L(d).

—DeleteAND: If a successor (but not a fault-successor) of an AND-node c is
deleted, that means that some elementary formula in L(c) cannot be satisfied.
Hence, neither can L(c). If a fault-successor of c is deleted, then from c, some
fault-action in the fault-specification can be executed, leading to an unsatisfiable
OR-node. Since these faults must be allowed to occur in any state (i.e., AND-
node) of the final extracted model, the only recourse is to delete the AND-node
itself.
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—DeleteAU: Some AU formula in a node e cannot be fault-free fulfilled by the
normal and recovery transitions leaving e, even when all possible choices for the
successors of OR-nodes are considered (i.e., all possible fault-free full subdags
rooted at e). Thus, L(e) cannot be satisfied in any model, and so e must be
deleted.

—DeleteEU: Some EU formula in a node e cannot be fault-free fulfilled by the
normal and recovery transitions leaving e, even when all possible choices for the
successors of OR-nodes are considered (i.e., all possible fault-free paths starting
at e). Thus, L(e) cannot be satisfied in any model, and so e must be deleted.

Thus, we see that each rule only deletes a node if there is no way of satisfying the
node’s label. In particular, for an AND-node c, this means that there is no model
M containing c as a state, such that c satisfies its label (M, c |=n L(c)).

We now define the notion of fault-subgraph. A fault-subgraph rooted at node e
is the fault-tolerant analogue of an infinite tree-like model rooted at e—it certifies
that the label of every node reachable from e (including e itself) is satisfied (in the
final model) despite the occurrence of faults.

Even though all formulae in L(e) are satisfied by the fault-free portion of TF
starting at e, it could be that fault-transitions lead from e to another node for
which this isn’t the case. Thus, L(e) could be satisfiable, but fault-transitions lead
from e to a node e′ such that L(e′) is not satisfiable. In some cases, this may
require that e itself is deleted, e.g., if e is an AND-node and e′ is one of it’s fault-
successors (as discussed above under the DeleteAND bullet). Thus, nodes that are
not deleted in the synthesis method of Emerson and Clarke [1982] could be deleted
in our method. However, every node that is deleted by the Emerson and Clarke
[1982] method will also be deleted by our method, since its label will be unsatisfiable
(by virtue of the completeness of the Emerson and Clarke [1982] method).

Definition 7.2.1 (Fault-Subgraph). A fault-subgraph D rooted at node e is a di-
rected bipartite AND/OR graph satisfying all of the following conditions

(1) All other nodes in D are reachable from e,

(2) All nodes in D are propositionally consistent,

(3) For every AND-node c in D, all fault-successors of c are sons of c in D, and all
nodes in Tiles(c) are sons of c in D,

(4) For every OR-node d in D, there exists exactly one AND-node c such that
c ∈ Blocks(d) and c is a son of d in D,

(5) For every node e′ in D, every eventuality in L(e′) is fault-free fulfilled for e′ in
D.

To establish completeness, we show that if there exists a fault-subgraph rooted
at node e, then, for every eventuality in the label of e, there exists a fault-free full
subdag rooted at e which certifies the fulfillment of that eventuality. Furthermore,
e will retain enough successors so that it is not deleted by virtue of the DeleteOR
and DeleteAND rules. We will show below that if a node e is deleted at some
point in our method, then there does not exist a fault-subgraph rooted at e.
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Lemma 7.2.2. Let e be a node in T0. If A[gUh] ∈ L(e) and there exists a fault-
subgraph D whose root is labeled with L(e), then there exists a fault-free full subdag
D∗ which is rooted at e and fulfills A[gUh], and for which the following hold:

(1 ) Every node of D∗ is the root of some fault-subgraph, and

(2 ) D∗ is embedded in T0 at e.

Proof. By definition 7.2.1, clause 5, A[gUh] is fault-free fulfilled for e in D.
Hence, there exists a fault-free full subdag D0 in D whose root is labeled with L(e)
and which fulfills A[gUh]. We can assume that L(e) is unique in D0. if not, take D0

to be the subtree of D0 rooted at the deeper occurrence of L(e). By definition 7.2.1
and the construction of T0, it is easy to see that D0 is generated by T0.

From definition 7.2.1, we easily verify that for any fault-subgraph D′ and any
node e′ in D′, the subgraph of D′ induced by the nodes reachable from e′ is also a
fault-subgraph. Hence, every node in D is the root of some fault-subgraph. Hence,
every node in D0 is the root of some fault-subgraph.

We construct a series of fault-free full subdags D0, D1, . . . , Dn = D∗, where
Di+1 is obtained from Di by merging a pair of duplicate nodes (i.e., AND/OR
nodes respectively with the same label). Define the depth of a node to be the
length of a longest path in D0 from that node back to e. Thus, depth(v) = 1 +
max{depth(v′) | v′ is a predecessor of v}. Suppose u and v are both AND-nodes or
OR-nodes in Di with the same label, and wlog suppose that depth(u) ≥ depth(v).
We then replace the shallower node v by the deeper node u to obtain Di+1. That
is, we replace each edge (w, v) by the edge (w, u), and remove all nodes that are
rendered unreachable from the root.

We show by induction on i that, for each Di, the following all hold:

(1) Di is a dag generated by T0

(2) root(Di) = root(D0)

(3) Di is a full-subdag that fulfills A[gUh]

(4) every node of Di+1 is the root of some fault-subgraph

Basis. Clauses 1– 4 holds for D0 by virtue of its construction.
Induction step. Assume clauses 1–3 hold for Di and show that they hold for Di+1.

Clause 1. The argument is identical to that in the proof of Lemma 4.9.2, [Emerson
1981].

Clause 2. Since L(e), the label of root(D0), is unique in D0, it cannot be deleted.
Hence root(Di+1) = root(Di) = root(D0).

Clause 3. The duplicate elimination step preserves the successor requirements in
definition 4.7. Hence Di+1 is a full subdag. It remains to show that Di+1 fulfills
A[gUh]. This argument is the same as that in the proof of Lemma 4.9.2, [Emerson
1981], except that internal nodes also have to be dealt with, since Lemma 4.9.2,
[Emerson 1981], is for AF and not AU.

Clause 4. By definition 7.2.1, we see that the property of being the root of a
subgraph depends only on the labeling of a node. Hence this property is clearly
preserved by the duplicate elimination step.

Continue eliminating duplicates until there are none left. Let D∗ be the resulting
full subdag. Since D∗ is generated by T0 and contains no duplicates, it is easy to
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see that D∗ is embedded in T0. Furthermore, since root(D∗) = root(D0), and
L(root(D0)) = L(e), we have L(root(D∗)) = L(e). By construction, node labels are
unique in T0, and hence root(D∗) = e.

Lemma 7.2.3. Let e be a node in T0. If E[gUh] ∈ L(e) and there exists a fault-
subgraph D whose root is labeled with L(e), then there exists a finite fault-free path
π starting in e which fulfills E[gUh] and for which the following hold:

(1 ) Every node of π is the root of some fault-subgraph, and

(2 ) π is a path in T0.

Proof. By definition 7.2.1, clause 5, E[gUh] is fulfilled for e in D. Hence, there
exists a finite fault-free path ρ in D whose first state is labeled with L(e) and which
fulfills E[gUh] (i.e., the last state of ρ is labeled with h and all other states are
labeled with g). We can assume that L(e) is unique in ρ. if not, take ρ to be the
suffix of ρ starting at the deeper occurrence of L(e). Let path π result from ρ by
identifying all duplicate nodes (i.e., π may contain cycles). Since ρ fulfills E[gUh],
it is easy to see that π also fulfills E[gUh]. By definition 7.2.1 and the construction
of T0 it is easy to see that ρ is generated by T0. Since π contains no duplicates, it
is easy to see that π is a path in T0. Also, since node labels are unique in T0 and
the first state of π is labeled with L(e), the first state of π must be e.

From definition 7.2.1, we easily verify that for any fault-subgraph D′ and any
node e′ in D′, the subgraph of D′ induced by the nodes reachable from e′ is also a
fault-subgraph. Hence, every node in D is the root of some fault-subgraph. Hence,
every node in ρ is the root of some fault-subgraph.

Finally, by definition 7.2.1, we see that the property of being the root of a fault-
subgraph depends only on the labeling of a node. Since every node of π has the
same label as some node of ρ, we conclude that every node of π is the root of some
fault-subgraph.

Theorem 7.2.4 (Completeness). Let e be a node in T0 that is deleted at some
point in our method. Then there does not exist a fault-subgraph rooted at e.

Proof. We prove the theorem by induction on the “time” at which node e was
deleted. Nodes are deleted in step 2 of the synthesis method (Section 5), as a result
of applying one of the deletion rules in Figure 2. We treat each rule in turn.

DeleteP. Hence L(e) is propositionally inconsistent. Hence, by definition 7.2.1,
clause 2, there does not exist a fault-subgraph rooted at e.

DeleteOR. Hence e is an OR-node all of whose AND-node successors c1, . . . , cn
have already been deleted. By the induction hypothesis, for all i ∈ [1 : n], there does
not exist a fault-subgraph rooted at ci. By construction of our synthesis method,
{c1, . . . , cn} = Blocks(e). Therefore, we conclude by definition 7.2.1, clause 4, that
there does not exist a fault-subgraph rooted at e.

DeleteAND. Hence e is an AND-node one of whose OR-node successors d has
already been deleted. By the induction hypothesis, there does not exist a fault-
subgraph rooted at d. By construction of our synthesis method, d ∈ Tiles(e) or d
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is a fault-successor of e. In either case, we conclude by definition 7.2.1, clause 3,
that there does not exist a fault-subgraph rooted at e.

DeleteAU. We establish the contrapositive. Suppose that A[gUh] ∈ L(e) and
there exists a fault-subgraph D rooted at e. Then, by Lemma 7.2.2, there exists a
fault-free full subdag D∗ rooted at e and which fulfills A[gUh] and such that

(1) Every node of D∗ is the root of some fault-subgraph, and

(2) D∗ is embedded in T0 at e.

By the induction hypothesis, no nodes in D∗ have been deleted up to now. There-
fore, e cannot be deleted by applying rule DeleteAU.

DeleteEU. We establish the contrapositive. Suppose that E[gUh] ∈ L(e) and
there exists a fault-subgraph rooted at e. Then, by Lemma 7.2.3, there exists a
finite fault-free path π starting in e which fulfills E[gUh] and for which the following
hold:

(1) Every node of π is the root of some fault-subgraph, and

(2) π is a path in T0.

By the induction hypothesis, no nodes in π have been deleted up to now. Therefore,
e cannot be deleted by applying rule DeleteEU.

Corollary 7.2. If d0, the initial OR-node of T0 is deleted, then no model MF

of the specification exists.

Proof. We establish the contrapositive. Suppose there exists a model MF =
(S0, S, A,AF , L) of the specification (where each label L(s) gives only the atomic
propositions true in s, and S0 contains at least one state s0). Then MF , s0 |= spec.
Construct M ′ = (S0, S, A,AF , L

′) from MF by labeling each state s of MF as

follows. If s is normal, then L′(s)
df
== {f | f ∈ cl(spec) and MF , s |= f}. If s is

perturbed, then L′(s)
df
== LabelTOL(spec) ∪ L(s). By definition, spec ∈ L′(s0). Take

the portion of M ′ reachable (via both normal and fault-transitions) from s0 and
unwind it into an infinite tree. Classify all the nodes as AND-nodes, and then
interject exactly one unique OR-node between every pair of adjacent AND-nodes,

i.e., replace c
i→ c′ by c

i→ d → c′, where d is a “new,” i.e., not previously present,
node, and the label of d is set to be the label of c′. The result is a fault-subgraph
FS with root s0. Since L(d0) = {spec} ⊆ L(s0), it is clear that we can replace
s0 in FS by d0 and the result will still be a fault-subgraph. Thus, there exists a
fault-subgraph rooted at d0. By Theorem 7.2.4, d0 is not deleted.

7.3 Fault-closure

Fault-closure means that all the faults given in the fault specification are included
in the final model. Fault-closure follows easily from the construction of our method:
for every AND-node of T0, all possible fault-successors are generated.

Proposition 7.3.1. Let c be an AND-node in TF . If c
a,TOL−→ d for some fault

action a ∈ F , then d is an OR-node in TF .

Proof. The proposition holds in T0 by construction of our method. TF is ob-
tained from T0 by applying the deletion rules in Figure 2. Hence, if any fault-
successor d of an AND-node c is deleted, then c will also be deleted by virtue of the
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DeleteAND rule. Hence, all remaining AND-nodes (i.e., all AND-nodes in TF )
will have all possible fault-successors.

Theorem 7.3.2 (Fault-closure). For all s ∈ S, a ∈ F such that s(a.guard) =

true, there exists t ∈ S such that s
a→ t ∈ AF .

Proof. MF = (s0, S, A,AF , L) is built by unraveling TF . By construction of
our method, MF inherits the local structure of TF . Since every state of MF is an
AND-node of TF , we conclude by Proposition 7.3.1 that every state of MF has all
possible fault-successors.

7.4 Complexity of the Method

We give the time complexity in terms of two parameters: (1) the length of the
temporal specification spec = init−spec ∧ AG(global−spec) ∧ AG(coupling−spec),
i.e., the sum of the lengths of the problem specification and the problem-fault
coupling specification, and (2) the size of the description of the set of fault actions
F . We assume that each auxiliary atomic proposition is mentioned at least once
in the problem-fault coupling specification (since otherwise it can be removed from
the fault specification without changing the specification logically), and so the size
of the set of auxiliary atomic propositions is always smaller than the size of the
problem-fault coupling specification. Hence it is not included as a parameter in the
complexity analysis.

The construction of T0 involves creating nodes whose labels are subsets of cl(spec),
and, in the case of perturbed states, subsets of cl(spec∧AFAG(global−spec)), since
AFAG(global−spec) is the only “new” subformula that can be added by Label TOL

(Definition 2.1). Since AG(global−spec) is a subformula of spec, we have |cl(spec ∧
AFAG(global−spec))| ≤ 2|cl(spec)|. Hence, the number of nodes in T0 is

O(exp(|cl (spec ∧ AFAG(global−spec))|)), where exp(n)
df
== 2n. This is

O(exp(2|cl (spec)|)), which is O(exp(4|spec|)). Also, for any node e of T0,
L(e) ⊆ cl(spec ∧ AFAG(global−spec)). Hence |L(e)| ≤ 2|cl(spec)|, and so |L(e)| ≤
4|spec|. Hence, the sum of the lengths of the formulae in L(e) is in O(|spec|2), since
each such formula has length in O(|spec|). Thus, the size of (a reasonable encoding
of) each node in T0 is O(|spec|2).

Each node e in T0 is expanded once. Expanding a node involves (1) calculating
Blocks(e) or Tiles(e) as appropriate, and (2) if e is an AND-node, applying all the
fault-actions in F to e.

Calculating Tiles(e) has cost at most |L(e)|, since each formula in L(e) con-
tributes at most one element of Tiles(e). Thus, the cost is O(|spec|). Calculating
Blocks(e) involves constructing a tree, and applying α-β expansions until all the
leaves contain only elementary formulae in their node labels. This has cost at most
O(|spec|2∑f∈L(e) |f |), since each α-β expansion discharges one connective in one

formula in L(e), and generates at most two new nodes, each of size O(|spec|2). Since
each formula in L(e) has length in O(|spec|), and there are O(|spec|) such formulae,
the total cost of calculating Blocks(e) is in O(|spec|4).

Each action a ∈ F is a guarded command. We consider the size |a| of a to be
the length of the text of the guarded command14. Then, we define |F | = ∑a∈F |a|.
14We assume an underlying notation for guarded commands, e.g., that given in Dijkstra [1976].
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Applying all the fault-actions in F to an AND-node c involves “executing” each
fault action a in the propositional valuation given by node c, and generating a
fault-successor OR-node if a’s guard is true in c. This can be done with cost |F |.

Thus, the cost of expanding a single node is O(|spec|4 + |F |). There are at most
O(exp(4|spec|)) nodes in T0. Hence, the total cost of node expansion is O((|spec |4 +
|F |)exp(4|spec|)).

The remaining steps, namely applying the deletion rules, constructing the frag-
ments from the fault-free full subdags, and constructing the model from the frag-
ments, can all be done in time polynomial in the size of T0, i.e., in time exp(O(|spec|)).
The proof is essentially the same as that for the CTL decision procedure. We refer
the reader to Emerson [1981] for the details.

Thus, the overall time complexity is |F |exp(O(|spec|)), that is, single exponential
in the size of the specification (= size of problem specification + size of problem-
fault coupling specification), and linear in the size of the description of the fault
actions. It is clear form the above discussion that the overall space complexity is
also |F |exp(O(|spec|)).

All synthesis methods based on exhaustive state exploration will have time com-
plexity no better than single exponential in the specification size. Some methods
[Kupferman et al. 2000; Pnueli and Rosner 1989a; 1989b; Wong-Toi and Dill 1990]
have double exponential time and space complexity in the size of the specification.

8. DISCUSSION

8.1 The Scope of our Synthesis Method

Our method is capable of dealing with any fault model in which faults can be
represented as actions that perturb the system state. Our synthesis method guar-
antees correctness properties only once faults stop occurring, i.e., along fault-free
fullpaths. However, a single fault can have a permanent effect in that it can per-
turb the state of some system component in a way that permanently changes the
behavior of that component. For example, in Section 2.3, an example is given of
a stuck-at-low-voltage fault. A single occurrence of this fault in a wire causes the
wire to permanently change its behavior so that it only outputs a low voltage, re-
gardless of its input. Our method is able to deal with such faults because our use of
auxiliary atomic propositions enables us to permanently record the occurrence of a
fault, and so we can model the permanent change of system behavior that results.
Another example of this is the mutual exclusion example shown in Section 6.1,
where process P1 may possibly stay fail-stopped forever after its fail-stop failure
occurs.

Since our method can model faults that have permanent effects, as well as ones
that have only transient effects, it has a broad scope of application. The main
limitation of our method is its underlying model of concurrent computation (Sec-
tion 2.1): a process can read and update many shared variables in a single atomic
transition. Extending our method to more realistic models of concurrency is thus
a topic of future work, and is discussed further in Section 9.2 below. Another
limitation is that our method cannot deal with faults that correspond to certain
adversaries that can read any part of the system state. In particular, if the adver-
sary can read the shared variables, then our method cannot model the associated
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faults. This is because the fault-actions are applied to the tableau T0, whereas
the shared variables are introduced only after the final model has been extracted,
in order to distinguish propositionally identical states whose labels differ in some
temporal formula (as in Emerson and Clarke [1982]). So, for example, our method
cannot model an adversary that increments the shared variables.

8.2 Extension of the Synthesis Method to Accommodate Multitolerance

Our synthesis method is not dependent on the particular way that labels are com-
puted for perturbed states (Definition 2.1). It is sound and complete relative to any
definition of the perturbed state labels. Thus, variants and extensions of the method
can easily be generated by simply changing the way that labels of perturbed states
are computed. For example, in Arora and Kulkarni [1998], the concept of multitol-
erance is presented. In multitolerance, the set of fault actions is partitioned into
classes, and different fault classes may require different kinds of tolerance (masking,
nonmasking, or failsafe). Thus, one class of faults may require masking tolerance,
while another class may require only failsafe tolerance.

It is straightforward to extend our method to deal with multitolerance. Simply
allow the required tolerance to vary, depending on the particular fault action. Our
method uses the function Label TOL(spec) (TOL ∈ {non-masking, fail-safe, masking})
to determine the labels of perturbed states. We replace this with Label a(spec),
where a is the particular fault-action that has been executed. Thus, if non-masking
tolerance is required for fault action a1, and failsafe tolerance for fault action a2,
then we set Labela1(spec) = Labelnon-masking(spec) and Labela2(spec) =

Label failsafe(spec). Also, Definition 5.1.1 must be changed to:

c
a,TOL−→ d if and only if ∃ϕ ⊆ AP : c(a.guard) = true and

{L(c)↑AP} a.body {ϕ} and
L(d) = ϕ ∪ Labela(spec).

These are the only needed changes. The new definition of Label a(spec) enables the
label of the resulting OR-node to depend on the fault-action a. Thus, different fault-
actions can be assigned different tolerances. The required recovery transitions are
computed automatically by the method, exactly as before. Note that, as discussed
in Section 5.2, the application of the various faults (e.g., a1, a2 above) is intertwined
with the synthesis of normal and recovery transitions. We emphasize that the
various faults are not applied in any particular order.

8.3 An Alternative Synthesis Method that Accommodates Fault-prone Paths

Our soundness results (Theorem 7.1.9 and Corollary 7.1) are given in terms of
fault-free paths only, i.e., using the |=n satisfaction relation. That is, they give the
formulae that are satisfied in the initial state, and in the perturbed states, but where
satisfaction is determined by only considering fault-free paths (i.e., the A and E path
quantifiers range only over fault-free paths). We consider an alternative method
that also deals with fault-prone paths, i.e., so that formulae can be asserted to be
true in the initial state and in perturbed states under the |= satisfaction relation,
in which the A and E path quantifiers range over all paths, both fault-free and
fault-prone.

A starting point for this alternative synthesis method could be:
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(1) Use full subdags that include fault-transitions, i.e., AND-nodes c in a full sub-
dag need as successors both the non-fault-successors (given by Tiles(c)) and
the fault-successors.

(2) The definition of fulfillment must take fault-prone paths into account, i.e., use
the “regular” definition of fulfillment (Definition 4.6) , rather than the fault-free
one (Definition 5.1.3).

While this alternative method would accommodate stronger correctness state-
ments, it may be inapplicable in many situations where our current method would
work. For example, repeated occurrence of faults could violate some correctness
property, causing the problem to have no model in this setting, whereas a model
would exist in the setting where the correctness property holds once faults stop oc-
curring. Thus our current method guarantees somewhat weaker correctness prop-
erties, but has wider application, than the proposed alternative method. Working
out the alternative method in full is a topic for future work.

9. RELATED WORK AND CONCLUSIONS

9.1 Related Work

A fault model may be considered as a particular type of adversarial environment.
Thus, by allowing the specification of a particular set of fault actions, our method in
effect enables the synthesis of programs that are correct with respect to a specified
set of possible environments, namely those environments that generate exactly the
faults given in the set F of fault actions.

There has been considerable work on synthesis of programs that interact with
an adversarial environment (usually called reactive modules). Pnueli and Rosner
[1989a; 1989b] synthesize reactive modules that interact with an environment via
an input variable x (that only the environment can modify) and an output variable
y (that only the module can modify). In response to the environment modifying x,
the module must modify y so that a given propositional linear time temporal logic
formula φ(x, y) is satisfied (and so the execution of the module can be modeled as a
two-player game). In the synthesis method of Anuchitanukul and Manna [1994], the
environment and module take turns in selecting the next global state, according to
some schedule. However, while this framework would accommodate a fault model,
we argue as follows that, since it is based on propositional linear time temporal
logic (PLTL), it is expressively inadequate for modeling faults. PLTL is suitable
for expressing the correctness properties of fault-intolerant programs, where we are
mainly interested in the properties that hold along all computation paths, but it
cannot express the possible behavior of a process that has been affected by a fault.
For instance, in the example of the mutual exclusion problem with fail-stop failures
given in Section 6, the fault-coupling specification states that a fail-stopped process
may stay down forever (AG(Di ⇒ EGDi) in CTL). This simply cannot be written
in PLTL. It therefore appears that the existential path quantifier of branching time
temporal logic is essential in specifying the future behavior of failed processes. This
objection to PLTL also applies to Pnueli and Rosner [1989a; 1989b], as well as to
Wong-Toi and Dill [1990] which solves essentially the same problem as Pnueli and
Rosner [1989a; 1989b] but in a somewhat more general setting.
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Kupferman and Vardi [1997] presents a synthesis algorithm for reactive modules
and CTL/CTL∗ specifications. Similarly to Pnueli and Rosner [1989a; 1989b], reac-
tive modules communicate with the environment via input and output signals.15 In
the above approaches, the environment is “maximal” in the sense that its branching
behavior includes all possibilities (i.e., all possible choices of inputs to present to
the system) at each point. In Kupferman et al. [2000], the synthesis problem for
“reactive environments” is addressed. A reactive environment can choose the set of
possible inputs to present at each point based on the history of its interaction with
the module up to that point. However, the method presented synthesizes a program
that is correct with respect to all possible reactive environments. In general, this
is too strong a criterion. Our method allows the set of possible environments to be
specified, by means of specifying the set of fault actions.

All of the above approaches have time-complexity at least exponential in the
size of the temporal logic formula which gives the specification. Some, such as
Kupferman et al. [2000], Pnueli and Rosner [1989a; 1989b], Wong-Toi and Dill
[1990], have time-complexity double-exponential in formula size. Also, they specify
the adversarial environment with a temporal logic formula, whereas our method uses
nondeterministic actions to specify the adversarial (i.e., fault) behavior. We could
have also used a CTL formula for this. However, in the worst case, the formula
would be of size at least linear in the number of the perturbed states generated
by the fault actions. This is because a fault action can potentially affect all the
atomic propositions. Hence, the result of applying a fault action would have to be
explicitly specified in the formula. The number of perturbed states in the worst
case is exponential in the size of spec. Thus the formula size would be exponential
in the size of spec. Including this formula in the labels of perturbed states and
expanding these states would then result in a fault-tolerant Kripke structure of size
double-exponential in the size of spec. Thus, we feel that the use of actions rather
than a temporal logic formula to specify the faults is more efficient.

Furthermore, our method allows one to give a characterization of all the envi-
ronments that the synthesized program must be able to deal with, namely the set
of environments each of which generates the particular faults that we specify (the
environments in this set can differ from each other in aspects unrelated to faults).
In other words, we can specify a particular set of environments. All extant work on
open systems synthesis or controller synthesis deals with either a single, ”maximal”
environment (which can engage in all possible moves), or with the set of all possible
environments. Thus, our paper handles a more general setting.

Finally, we remark that the use of the EX modality of CTL usually provides
sufficient expressiveness to deal with reactive environments. For example, in the
mutual exclusion specification, one of the conjuncts is AG(Ni ⇒ (AXiTi ∧ EXiTi)),
i = 1, 2. This is logically equivalent to AG(Ni ⇒ AXiTi) ∧ AG(Ni ⇒ EXiTi). The
latter formula means that, when process Pi is in its Ni state, it can always move
to its Ti state. We can think of the transition from Ni to Ti as representing an
input request from the environment, or more specifically, from a “user” process
Ui, which sends requests to Pi, which we can regard as a “server” process. Then,

15There are also “unreadable inputs”—signals that the module cannot observe. Thus the setting
is one of “incomplete information.”
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when Pi enters Ci, we interpret that as an output to Ui, granting it access to the
critical resource. See Lynch [1996] for a nice discussion of this way of modeling
mutual exclusion with a user environment. More generally, the use of EX allows
us to specify general input enabling conditions [Lynch and Tuttle 1989]. These are
sufficient to model a very wide class of reactive environments and systems, a few
of which are: resource allocation [Lynch 1996; Welch and Lynch 1993], distributed
data services [Fekete et al. 1999], group communication services [Fekete et al. 2001],
distributed shared memory [Lynch and Shvartsman 2002; Luchangco 2001], and
reliable multicast [Livadas and Lynch 2002].

In Liu and Joseph [1992], a manual method of transforming a given fault-intolerant
shared-memory concurrent program into a fault-tolerant one is presented. Specifi-
cations are given in UNITY [Chandy and Misra 1988], and faults are specified as
fault-actions. The recovery actions are designed manually, and the paper presents
proof rules for establishing that the recovery actions guarantee the required fault-
tolerance. There is also a manual method for refining both the program and the
fault actions, e.g., to a lower level where the faults operate on specific hardware
components. This line of research is continued in Liu and Joseph [1999], where the
specification language is the Temporal Logic of Actions [Lamport 1994], and real-
time properties are also dealt with. The synthesis method of Kulkarni and Arora
[2000] mechanically transforms a fault-intolerant program into a fault-tolerant one.
The fault-tolerant program satisfies every specification (in the absence of faults)
that the fault-intolerant program does. A program is given as a transition rela-
tion over states, i.e., corresponding to Kripke structures in this paper. A separate
transformation is given for each of failsafe, nonmasking, and masking tolerance.

9.2 Conclusions and Further Work

We have presented a method for the automatic synthesis of fault-tolerant concur-
rent programs from specifications expressed in the temporal logic CTL. The user of
our method only has to construct a formal specification as described in Section 3.
Our method then automatically generates a program that satisfies the specifica-
tion, if such a program exists. The method has single-exponential time complexity
in the size of the problem specification plus the size of the problem-fault coupling
specification. This complexity is essentially that of generating the state-transition
diagram of the program to be synthesized. We have dealt with different fault
classes (fail-stops, general state failures) and different types of tolerance (mask-
ing, nonmasking, fail-safe). We have also shown how impossibility results may be
mechanically generated using our method.

By using a real-time extension of CTL [Emerson et al. 1993], our method should
be able to deal with real-time properties. This may also require an annotation of
fault-actions with timing information.

One potential difficulty with our method is the state explosion problem—the
number of states in a structure usually increases exponentially with the number of
processes, thereby restricting the applicability of synthesis methods based on state
enumeration to small systems. In Attie and Emerson [1998], Attie [1999], a method
is proposed of overcoming the state explosion problem by considering the interaction
of processes pairwise. The exponentially large global product of all the processes
in the system is never constructed. Instead, using the CTL synthesis method of
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Emerson and Clarke [1982], small Kripke structures depicting the product of two
processes are constructed and used as the basis for synthesis of concurrent programs
consisting of arbitrarily many processes. Using the synthesis method given here
instead of the Emerson and Clarke [1982] method, we can construct these “two-
process structures,” which will now incorporate fault-tolerant behavior. We then
plan to extend the synthesis method of Attie and Emerson [1998], Attie [1999] to
take these structures as input and produce fault-tolerant programs of arbitrary size.
We note that our method is efficient enough for small examples to be constructed
by hand, as demonstrated in this paper. So, the application of our method to the
synthesis of two-process structures should be feasible. This may not be true for
other methods with higher time complexity (e.g., double exponential).

In Attie and Emerson [1996; 2001], we present a method for synthesizing (fault
intolerant) programs for a model of concurrency in which every action is either
an atomic read of a single variable, or an atomic write of a single variable. By
integrating this with the synthesis method presented here, it will be possible to
address the high atomicity limitation discussed in Section 8.1 above. A possible
way of doing this is to first synthesize the fault-tolerant program, and then use
the Attie and Emerson [1996; 2001] method to refine it to an atomic read/write
program.

As we remark in Attie [2000; 2002], the Byzantine consensus problem cannot
be modeled in a shared memory model in which processes can access all of the
shared variables, since a single Byzantine process can corrupt the entire memory,
and therefore overwhelm any consensus algorithm. A shared memory model can be
used, however, if the amount of memory that each process can access is limited, e.g.,
by operating system level mechanisms such as access control matrices, access control
lists, or capability lists [Tanenbaum 1987; Pfleeger 1989; Silberschatz and Galvin
1994]. The Attie and Emerson [1996; 2001] synthesis method can be adapted to
enforce such access restrictions, since they are similar to the “single atomic write”
restriction that limits a process to modifying only a single variable in any transition:
the single atomic write restriction says “modify one variable and leave all the others
unchanged,” whilst the access control restriction says “leave the variables in this
particular set unchanged.” Combining our method with this adaptation of Attie
and Emerson [1996; 2001] would enable the synthesis of low-atomicity concurrent
programs that tolerate Byzantine faults.

Finally, combining both of the extensions discussed above would deal with state-
explosion and grain of atomicity issues.

APPENDIX: Complete Pseudocode for the Synthesis Algorithm

(1) /* Construct the tableau T0 = (d0, V
0
C , V

0
D , A

0
CD, A

0
DC , L

0) */
Let d0 be an OR-node with label {spec};
T0 := d0;
repeat until frontier (T0) = ∅
(a) Select a node e ∈ frontier(T0);
(b) if ∃e′ ∈ V 0

D : L(e) = L(e′) then
merge e and e′

else
attach all e′ ∈ Succ(e) as successors of e and mark e as expanded

ACM Transactions on Programming Languages and Systems, Vol. ??, No. ?, Month 2001



Synthesis of Fault-Tolerant Concurrent Programs · 57

endif ;
Update V 0

C , V 0
D , A0

CD , A0
DC appropriately.

where the successors Succ(e) of a node of either type are defined as follows:
if e is an OR-node, then Succ(e) = Blocks(d), and if e is an AND-node, then
Succ(e) = Tiles(e) ∪ FaultStates(F,TOL, {e}).

(2) /* Apply the deletion rules to T0, resulting in TF */
Repeatedly apply the deletion rules in Figure 2 to T0 until no deletion rule
is applicable. If d0 is deleted, then return an impossibility result and halt.
Otherwise, let TF be the tableau induced by the nodes that are still reachable
(via normal, fault, and recovery transitions) from d0.

(3) /* Construct the fragment FFRAG[c] for every AND-node c, using the fault-
free full subdags in TF */
(a) Let FFRAG1 be a copy of FDAG[c, g1]. To obtain FFRAGj+1 from FFRAGj ,

do
i. identify any two nodes on the frontier of FFRAGj that have the same

label;
ii. forall s′ ∈ frontier (FFRAGj) do

/* let c′ be the AND-node in TF that s′ is a copy of */
if gj+1 ∈ L(s′) then

attach a copy of FDAG[c′, gi+1] to FFRAGj at s′

/* call the resulting directed acyclic graph FFRAGj+1 */
(b) Obtain FFRAG′[c] from FFRAGm by identifying any two nodes in

frontier(FFRAGm) with the same label
(c) To obtain FFRAG[c] from FFRAG′[c], do:

i. forall AND-nodes c′ in FFRAG′[c] and a ∈ F :

forall d such that c′
a,TOL−→ d

attach a copy of at least one node c′′ ∈ Blocks(d) as
successor of c′;
label the transition from c′ to c′′ as a fault-transition

(4) /* Construct the model MF , using the fragments FFRAG[c], for every AND-
node c */
(a) Choose c0 ∈ Blocks(d0) arbitrarily (recall that d0 is the root of T );

Let M1 = FFRAG[c0];
(b) To obtain Mi+1 from Mi, do

i. forall s ∈ frontier(Mi) do
/* let c be the AND-node in TF that s is a copy of */
if there exists s′ ∈ interior (Mi) such that s′ is also a copy of c,

and a copy of
FFRAG[c] is directly embedded in Mi with root s′, then

identify s and s′

else
replace s by a copy of FFRAG[c]

endif
/* call the resulting graph Mi+1 */

(c) The construction halts with i = N when frontier (MN ) is empty. Let
M = MN . We write M = (c0, S, A,AF , L), where c0 is given in step 4a
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(we write c0 instead of {c0}), L is given by the labels of each node, S is
the set of all nodes in MN , A is the set of all transitions in MN that are
labeled with a process index (i.e., normal or recovery transitions), and AF
is the set of all transitions in MN that have label (a,TOL) for some a ∈ F
(i.e., the fault transitions).
Let MF = (c0, S, A,AF , L0) where L0 is L restricted to the propositions
occurring in spec. MF is a model of spec.

(5) /* Extract the fault-tolerant program from MF */
(a) for every maximal set {s1, . . . , sn} of states in MF such that L0(s1) =

L0(s2) = · · · = L0(sn)
i. introduce a new shared variable x
ii. add the proposition x = k to the label of sk, k ∈ [1 : n]
iii. label each transition of MF that enters sk with the assignment x := k,

for k ∈ [1 : n]

(b) forall transitions s
i,A−→ t in MF

add an arc to Pi going from s↑i to t↑i, and with the label ∧(L(s)↓i)→ A
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