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1. INTRODUCTION

Methods for synthesizing (finite state) concurrent programs from temporal logic
specifications based on the use of a decision procedure for testing temporal satisfi-
ability have been proposed by Emerson and Clarke [1982] and Manna and Wolper
[1984]. An important advantage of these synthesis methods is that they obviate
the need to manually compose a program and manually construct a proof of its
correctness. One only has to formulate a precise problem specification; the syn-
thesis method then mechanically constructs a correct solution. A serious drawback
of these methods in practice, however, is that they produce concurrent programs
for restricted models of parallel computation. For example, the method of Manna
and Wolper [1984] produces CSP programs; in other words, programs with syn-
chronous message passing. Moreover all communication takes place between a
central synchronizing process and one of its satellite processes, and thus the over-
all architecture of such programs is highly centralized. The synthesis method of
Emerson and Clarke [1982] produces concurrent programs for the shared-memory
model of computation. Transitions of such programs are test-and-set operations in
which a large number of shared variables can be tested and set in a single transi-
tion; in other words, the grain of atomicity is large. More recent synthesis methods
[Anuchitanukul and Manna 1994; Pnueli and Rosner 1989a; 1989b] for synthesizing
reactive modules assume that all of the inputs to a system can be consolidated into
a single input variable [Pnueli and Rosner 1989a; 1989b], or into a global state that
the module can read in one step [Anuchitanukul and Manna 1994]. In practice, the
primitives provided by hardware are of small (and fixed) granularity, e.g., atomic
read and write operations on a single register, or test-and-set operations on a single
bit. It is therefore desirable to synthesize concurrent programs with small-grain
operations.

In this paper, we present a method for synthesizing concurrent programs for
a shared-memory model of computation in which the only operations are atomic
reads or atomic writes of single variables. Our method accepts as input a formal
specification, which can be expressed either as a finite-state machine, together with
a temporal logic formula that specfies additional required properties (safety and
liveness), or can be expressed just as a temporal logic formula. In the later case,
the formula would be somewhat larger, since it must also express some “frame”
properties such as the local structure of each process. From the specification, we
first synthesize a correct program that, in general, contains test-and-set and mul-
tiple assignment operations. We then decompose these operations into sequences
of atomic reads/writes. Finally, we modify the resulting program to ensure that it
still satisfies the original specification, since new behaviors (that violate the specifi-
cation) may have been introduced by the decomposition. We illustrate our method
by synthesizing an atomic read/write solution to the mutual exclusion problem.

The paper is organized as follows. Section 2 presents our model of concurrent
computation and our specification language. It also reviews the synthesis method
of Emerson and Clarke [1982] and provides all the needed material from that earlier
work. In particular, it discusses the relationship between programs and the global-
state transition diagrams that they give rise to (or, going in the other direction,
can be “extracted” from). Section 3 formalizes our notion of concurrent programs
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in which the only operations are atomic reads or atomic writes of single variables.
It also explores the relationship between these atomic read/write programs and the
global-state transition diagrams from which such programs can be extracted. This
lays the foundation for Section 4, which presents our synthesis method. Section 5
presents an example of the use of our method to synthesize an atomic read/write so-
lution to the two-process mutual exclusion problem. Section 6 extends our method
so that it produces programs for an atomic registers model. Section 7 analyzes the
space complexity of our method. It then discusses related work, further directions
for research, and concludes. Some of the longer proofs are omitted from the main
body, and are provided in Appendix A; Appendix B provides a glossary of symbols.

2. PRELIMINARIES

2.1 Model of Concurrent Computation

We consider finite-state concurrent programs of the form P = P1‖ · · · ‖PK that con-
sist of a finite number of fixed sequential processes P1, . . . , PK running in parallel.
With every process Pi, we associate a single, unique index, namely i. We observe
that for most actual concurrent programs the portions of each process responsi-
ble for interprocess synchronization can be cleanly separated from the sequential
applications-oriented computations performed by the process. This suggests that
we focus our attention on synchronization skeletons which are abstractions of actual
concurrent programs where detail irrelevant to synchronization is suppressed.

We may view the synchronization skeleton of an individual process Pi as a state-
machine where each state represents a region of code intended to perform some
sequential computation and each arc represents a conditional transition (between
different regions of sequential code) used to enforce synchronization constraints.
For example, there may be a node labeled Ci representing the critical section of
process Pi. While in Ci, the process Pi may simply increment a single variable,
or it may perform an extensive series of updates on a large database. In general,
the internal structure and intended application of the regions of sequential code in
an actual concurrent program are unspecified in the synchronization skeleton. By
virtue of the abstraction to synchronization skeletons, we thus eliminate all steps
of the sequential computation from consideration.

Formally, the synchronization skeleton of each process Pi is a directed graph
where each node is labeled by a unique name (si) which represents a local state of
Pi, and each arc is labeled with a synchronization command B → A consisting of
an enabling condition (i.e., guard) B and corresponding action A to be performed
(i.e., a guarded command [Dijkstra 1976]). Each node must have at least one
outgoing arc, i.e., a skeleton contains no “dead ends.” A global state is a tuple of
the form (s1, . . . , sK , v1, . . . , vm) where each node si is the current local state of
Pi and v1, . . . , vm is a list giving the current values of shared variables x1, . . . , xm
(we assume that these are ordered in some fixed way, so that v1, . . . , vm specifies a
unique value for each shared variable). A guard B is a predicate on states, and an
action A is a parallel assignment statement that updates the values of the shared
variables. If the guard B is omitted from a command it is interpreted as true, and
we simply write the command as A. If the action A is omitted the shared variables
are unaltered, and we write the command as B.

ACM Transactions on Programming Languages and Systems, Vol. ??, No. ?, Month 2001



4 · P.C. Attie and E.A. Emerson

We model concurrency in the usual way by the nondeterministic interleaving of
the “atomic” transitions of the individual synchronization skeletons of the processes
Pi. Hence, at each step of the computation, some process with an “enabled” arc is
nondeterministically selected to be executed next. Assume that the current state is
s = (s1, . . . , si, . . . , sK , v1, . . . , vm) and that process Pi contains an arc from node
si to node s′i labeled by the command B → A. If B is true in the current state
then a permissible next state is (s1, . . . , s

′
i, . . . , sK , v

′
1, . . . , v

′
m) where v′1, . . . , v

′
m is

the list of updated values for the shared variables resulting from the execution of
action A. The arc from si to s′i is said to be enabled in state s. An arc that is
not enabled is disabled, or blocked. A computation path is any sequence of states
where each successive pair of states is related by the above next-state relation.
Note that the operations involved in just checking the value of a guard B are not
explicitly represented by the next-state relation given above. In particular, if B is
checked and found to be false, then no change occurs, not even an indication that
some computation has occurred at a “lower” implementation level. Essentially,
when Pi is in some local state si, the guards of all the arcs leaving si must be
repeatedly checked until one of them is found to be true, at which point Pi can
execute the corresponding arc. Thus, guards really hide “busy wait” loops (or
“await” primitives) where their value is checked. We discuss these issues further in
Section 6.

The synthesis task thus amounts to supplying the commands to label the arcs of
each process’ synchronization skeleton so that the resulting global-state transition
diagram of the entire program P1‖ · · · ‖PK meets a given temporal logic specifica-
tion.

2.2 Programs and Global-State Transition Diagrams

We consider the semantics of a program P to be given by the global state transition
diagram M that is generated by all the computation paths of P starting from a
specified set of initial states S0. We now formalize our notions of program and
global-state transition diagram.

Definition 2.2.1 (Program). A program P = P1‖ · · · ‖PK is the parallel compo-
sition of K processes P1, . . . , PK . Associated with each process Pi is a set of atomic
propositions APi (with AP i ∩ APj = ∅ when i 6= j). Let AP =

⋃
i∈[1:K]AP i.1

Each process Pi is a synchronization skeleton. An arc of Pi (henceforth called a
Pi-arc) is a tuple (si, B → A, ti), where si, ti are local states of Pi (henceforth called
Pi-states), and B → A is an arc label, consisting of a Pi-guard B and a multiple
assignment statement A. B is built up from the standard propositional logic con-
nectives, the atomic propositions in AP −AP i, and expressions of the form x = c
(c ∈ Dx), where x is a shared variable in P , and c is some value drawn from Dx, the
domain of x. A multiple assignment statement has the form //m∈[1:n] x

m := cm,
where xm is a shared variable in P , and cm ∈ Dxm , for all m ∈ [1 : n].2 Associated

1We use [1 : K] for the set of natural numbers 1 through K inclusive.
2// is the simultaneous parallel assignment operator. Execution of //m∈[1:n] x

m := cm is achieved
by executing all of the assignments xm := cm simultaneously. Here xm is a shared variable in
P , and cm ∈ Dxm . Note that the possibility of interference does not arise, since the cm are all
constants. If n = 0, then the multiple assignment //m∈[1:n] x

m := cm is written as skip.
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with each Pi-state si is a local atomic proposition valuation L[si] ⊆ APi. L[si]
contains the atomic propositions that are true in si. Also, all of the structures
defined here are finite, since our programs are finite-state.

We shall use the term “local state” when we intend to say Pi-state for some
unspecified process index i. Let SH denote the set of all shared variables in P , and
let A denote the set of all multiple assignment statements in P .

We shall find it technically convenient in the sequel to “group” the atomic propo-
sitions in AP i into a single variable Li whose value in si is L[si]. We also extend
the definition of i-state to provide for a value assigned to Li by every i-state. Li
may be regarded as a concrete implementation of the atomic propositions in AP i.
For a particular i-state si, the corresponding value of Li is given by

si(Li) = L[si], (LOC)

i.e., Li is the set of atomic propositions in AP i that are true in i-state si. In prac-
tice, Li could be encoded efficiently as a bit string. Since the atomic propositions of
Pi (those in AP i) can be read by other processes, and since the value of the atomic
propositions of Pi gives some information about the possible current local state of
Pi, we shall refer to Li as the externally visible location counter of Pi. However, it
is possible for different local states of Pi to have the same local atomic proposition
valuation, and thus the same value of Li. Hence Li does not uniquely determine
the current local state of Pi. Thus, the actual location counter of Pi is properly
thought of as having two components: the externally visible Li, and an internal
component (not readable by processes other than Pi) that distinguishes between
local states of Pi that happen to have the same local atomic proposition valua-
tion. This internal component is formalized in Section 3.2 below. The presence
of this internal component allows Pi to change its local state without executing a
write operation to a variable that other processes can read (namely Li). If every
transition of Pi required a write operation to Li, then Pi could never read the
value of a shared variable (or the Lj of some other process Pj) without violating
the requirements of the atomic read/write model. Thus, the decomposition of the
location counter into an externally visible component and an internal component
facilitates the introduction of “read only” transitions during the refinement of the
initial high-atomicity program into an atomic read/write program.

If s = (s1, . . . , si, . . . , sK , v1, . . . , vm) is a global state, then we define s↑i = si and
s↑SH = (v1, . . . , vm).3 We write si(Qi), s(Qi) for the value of atomic proposition
Qi in local state si, global state s respectively. si(Qi) = true if Qi ∈ L[si], and

false otherwise. s(Qi)
df
== s↑i(Qi).

Definition 2.2.2 (Global-State Transition Diagram). The global-state transition
diagram of program P = P1‖ · · · ‖PK is a tuple (S0, S, R) where

(1) S is the set of all global states of P1‖ · · · ‖PK , and

(2) S0 ⊆ S is the set of initial states of P1‖ · · · ‖PK , and

3Alternatively, we can consider s↑SH as a set of variable bindings {< x1, v1 >, . . . ,< xm, vm >}.
Global state s is then the tuple (s1, . . . , sK ,< x1, v1 >, . . . , < xm, vm >). This viewpoint is useful
later in the description of the synthesis method.
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(3) R ⊆ S × [1 : K]×A×S is the set of transitions of P1‖ · · · ‖PK , that is, the set

of all transitions s
i,A−→ t such that

(a) i ∈ [1 : K], and
(b) s ∈ S, t ∈ S (i.e., s and t are global states of P1‖ · · · ‖PK), and
(c) ∧j ∈ [1 : K]− {i} : s↑j = t↑j, and
(d) there exists an arc (s↑i, B → A, t↑i) in Pi such that

i. s(B) = true,4 and
ii. 〈s↑SH〉A 〈t↑SH〉.

〈s↑SH〉A 〈t↑SH〉 is Hoare triple notation [Hoare 1969] for total correctness,
which in this case means that execution of A always terminates,5 and, when the
shared variables in SH have the values assigned by s, leaves these variables with
the values assigned by t. Note that whenever we say “state” we intend “global
state,” unless the context makes it clear that a local state is intended. A transition

by Pi (i.e., of the form s
i,A−→ t) is referred to as a Pi-transition. A (computation)

path is therefore a sequence of transitions such that the end state of each transition
is the start state of the next transition. An initialized path is a path that starts in
an initial state. A state is reachable iff it lies on some initialized path. A transition
is reachable iff its source state is reachable. If all transitions in a global-state tran-
sition diagram are reachable, then we say that the global-state transition diagram
is in reachable form.

Figure 1 gives an example program P = P1‖P2 together with the global-state
transition diagram M generated by applying Definition 2.2.2 to P . The atomic
propositions are {D1, E1} for process P1, and {D2, E2} for process P2. The initial-
state set is {s0}. In each global (local) state, we display the propositions that are
true.

2.3 The Temporal Logic CTL

CTL [Emerson and Clarke 1982; Emerson 1990] is a propositional branching time
temporal logic. We have the following syntax for CTL, where Qi denotes an atomic
proposition in AP i, i ∈ [1 : K], and f, g denote (sub-)formulae.

(1) Each of Qi, f ∧g, and ¬f is a formula (where the latter two constructs indicate
conjunction and negation, respectively).

(2) EXjf is a formula which means that there is an immediate successor state
reachable by executing one arc of process Pj , j ∈ [1 : K], in which formula f
holds.

(3) A[fUg] is a formula which means that for every maximal computation path
there is some state along the path where g holds, and f holds at every state
along the path until that state.

(4) E[fUg] is a formula which means that for some maximal computation path
there is some state along the path where g holds, and f holds at every state
along the path until that state.

4s(B) is defined by the usual inductive scheme: s(“x = c”) = true iff s(x) = c, s(B1∧B2) = true
iff s(B1) = true and s(B2) = true, s(¬B1) = true iff s(B1) = false.
5Termination is obvious, since the right-hand side of A is a list of constants.
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E1 D2

s2

D1 E2

D1 D2
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E1 E2
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s32

1 21

P1:

P2:

21

D2 ∨ E2

D2
D1 E1

D1 ∨ E1

D1

D2 E2

M :

Fig. 1. Example program P = P1‖P2 and its global-state transition diagram M .

Formally, we define the semantics of CTL formulae with respect to a Kripke struc-
ture M = (S0, S, R) consisting of

S, a countable set of global states.

S0 ⊆ S, a countable set of initial states.

R ⊆ S × [1 : K] × A × S, a transition relation. R is partitioned into relations
R1, . . . , RK , where Ri gives the transitions of process i.

A fullpath is a maximal computation path, i.e., a path that is either infinite or
ends in a state with no outgoing transitions. If π is a fullpath, then define |π|,
the length of π, to be ω when π is infinite and k when π is finite and of the form
(s0, . . . , sk). We use the usual notation for truth in a structure: M, s0 |= f means
that f is true at state s0 in structure M . When the structure M is understood, we
write s0 |= f . We define |= inductively:

M, s0 |= Qi iff Qi ∈ L[s0↑i]
M, s0 |= ¬f iff not(M, s0 |= f)
M, s0 |= f ∧ g iff M, s0 |= f and M, s0 |= g
M, s0 |= EXjf iff for some state t, (s0, t) ∈ Rj and M, t |= f
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8 · P.C. Attie and E.A. Emerson

M, s0 |= A[fUg] iff for all fullpaths π = (s0, s1, . . .) in M that start in s0,
there exists i ∈ [0 : |π|] such that

M, si |= g and for all j ∈ [1 : (i− 1)]: M, sj |= f
M, s0 |= E[fUg] iff for some fullpath π = (s0, s1, . . .) in M that starts in s0,

there exists i ∈ [0 : |π|] such that
M, si |= g and for all j ∈ [1 : (i− 1)]: M, sj |= f

We say that a formula f is satisfiable if and only if there exists a structure M and
state s of M such that M, s |= f . In this case, we say that M is a model of f . We
say that a formula f is valid if and only if M, s |= f for all structures M and states
s of M .

We use the notation M,U |= f as an abbreviation of ∀s ∈ U : M, s |= f , where
U ⊆ S. We introduce the abbreviations f ∨ g for ¬(¬f ∧ ¬g), f ⇒ g for ¬f ∨ g,
f ≡ g for (f ⇒ g) ∧ (g ⇒ f), AFf for A[trueUf ], EFf for E[trueUf ], AGf for
¬EF¬f , EGf for ¬AF¬f , AYif for ¬EXi¬f , EXf for EX1f ∨ · · · ∨ EXkf , and AYf
for AY1f ∧ · · · ∧ AYkf .

A formula of the form A[fUg] or E[fUg] is an eventuality formula. An eventuality
corresponds to a liveness property in that it makes a promise that something does
happen. This promise must be fulfilled. The eventuality A[fUg] (E[fUg]) is fulfilled
for s in M provided that for every (respectively, for some) path starting at s, there
exists a finite prefix of the path in M whose last state satisfies g and all of whose
other states satisfy f . Since AFg and EFg are special cases of A[fUg] and E[fUg],
respectively, they are also eventualities. In contrast, AGf and EGf are invariance
formulae. An invariance corresponds to a safety property, since it asserts that
whatever happens to occur (if anything) will meet certain conditions.

Following Definition 2.2.2, we annotate transitions in a Kripke structure with
the index i of the process executing the transition, and the assignment statement

A (if any) that Pi executes, e.g., s
i,A−→ t. In the sequel, we assume, for all Kripke

structures M = (S0, S, R), and all s
i,A−→ t ∈ R: ∧j ∈ [1 : K] − {i} : s↑j = t↑j and

〈s↑SH〉A 〈t↑SH〉. This merely excludes Kripke structures that do not respect our
model of concurrent computation. All Kripke structures generated by our synthesis
method (and the method of Emerson and Clarke [1982]) satisfy this assumption.

2.4 The Specification Language

For the purposes of this paper, we restrict specifications to the sublogic of CTL
whose formulae are finite conjunctions of the following terms:

—h, where h ∈ LO(AP ,¬,∧), specifies the initial states.6

—AGh, where h ∈ LO(AP ,¬,∧), specifies safety properties, since AGh is satisfied
by all initial states iff h is satisfied by all reachable states, i.e., h is invariant.

—AG(p ⇒ A[qUr]), where p, q, r ∈ LO(AP ,¬,∧), specifies a temporal leads-to
property, combined with an “unless” property: from any global state satisfying
p, eventually a state satisfying r must be reached (along all outgoing fullpaths),
and all intervening states must satisfy q.

6We denote various sets of propositional formulae by LO followed by a list of the atomic propo-
sitions and boolean operators that can be used in constructing the formulae.
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—AG(pi ⇒ EXiqi), where pi, qi ∈ LO(AP i,¬,∧), specifies a local structure prop-
erty; from every reachable state satisfying pi, there exists an outgoing Pi-transition
to a state satisfying qi. In the synthesized program, such a transition (if it in-
volves both a test and a set) will be broken down into a test transition followed by
some set transitions. Hence, the synthesized program will not, in general, satisfy
AG(pi ⇒ EXiqi); it will, however, satisfy AG(pi ⇒ EXi(pi ∨ qi)). For technical
reasons, we require pi 6≡ qi.

—AG(pi ⇒ AYiqi), where pi, qi ∈ LO(AP i,¬,∧), specifies a local structure prop-
erty; from every reachable state satisfying pi, every outgoing Pi-transition is to
a state satisfying qi. For the same reason as given for AG(pi ⇒ EXiqi), the syn-
thesized program will not, in general, satisfy AG(pi ⇒ AYiqi); it will, however,
satisfy AG(pi ⇒ AYi(pi ∨ qi)).

In addition, we assume that AGEXtrue is always a conjunct of the specification.
That is, we restrict our attention to nonterminating concurrent programs.

An example specification is given below for the two-process mutual exclusion
problem. In this specification, process Pi, i ∈ {1, 2}, is always in exactly one of
three states Ni, Ti, Ci, which represent, respectively, the noncritical, trying, and
critical code regions. A process in its noncritical state does not require the use of
critical (shared) resources, and performs computations that can proceed in parallel
with computations by the other processes. A process requiring a critical resource
moves into the trying state. From there, it enters the critical state as soon as
possible, provided that all constraints on the use of the critical resource are met. In
the critical state, Pi has access to the critical resource. This specification is given
by the following set of CTL formulae (which are implicitly conjoined):

(1) Initial State (both processes are initially in their noncritical region):
N1 ∧N2

(2) It is always the case that any move P1 makes from its noncritical region is into
its trying region and such a move is always possible. Likewise for P2:

AG(N1 ⇒ (AY1T1 ∧ EX1T1))
AG(N2 ⇒ (AY2T2 ∧ EX2T2))

(3) It is always the case that any move P1 makes from its trying region is into its
critical region. Likewise for P2:

AG(T1 ⇒ (AY1C1))
AG(T2 ⇒ (AY2C2))

(4) It is always the case that any move P1 makes from its critical region is into its
noncritical region and such a move is always possible. Likewise for P2:

AG(C1 ⇒ (AY1N1 ∧ EX1N1))
AG(C2 ⇒ (AY2N2 ∧ EX2N2))

(5) P1 is always in exactly one of the states N1, T1, or C1. Likewise for P2:
AG(N1 ≡ ¬(T1 ∨ C1)) ∧ AG(T1 ≡ ¬(N1 ∨ C1)) ∧ AG(C1 ≡ ¬(N1 ∨ T1))
AG(N2 ≡ ¬(T2 ∨ C2)) ∧ AG(T2 ≡ ¬(N2 ∨ C2)) ∧ AG(C2 ≡ ¬(N2 ∨ T2))

(6) Every request for critical section entry by P1, P2 is eventually granted, i.e.,
P1, P2 do not starve:

AG(T1 ⇒ AFC1)
AG(T2 ⇒ AFC2)
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10 · P.C. Attie and E.A. Emerson

(7) A transition by one process cannot cause a transition by another (interleaving
model of concurrency):

AG((N1 ⇒ AY2N1) ∧ (N2 ⇒ AY1N2))
AG((T1 ⇒ AY2T1) ∧ (T2 ⇒ AY1T2))
AG((C1 ⇒ AY2C1) ∧ (C2 ⇒ AY1C2))

(8) P1, P2 do not access critical resources together:
AG(¬(C1 ∧ C2))

(9) It is always the case that some process can move:
AGEXtrue

Note that since AFf ≡ A[trueUf ], the above is within our specification language.

2.5 Correctness Properties of Programs

Let M = (S0, S, R) be the global-state transition diagram of program P . From
the definitions of global-state transition diagram and Kripke structure given above,
we see that M can be considered to be a Kripke structure. Hence, we consider
a program P to be correct with respect to a specification f (expressed as a CTL
formula) iff M,S0 |= f . In other words, the specification must be true in all the
initial states of the global-state transition diagram of the program. In this case, we
say that program P satisfies specification f .

2.6 Synthesis of Programs

Our method builds on and extends the synthesis method of Emerson and Clarke
[1982].7 The method of Emerson and Clarke [1982] starts with a CTL specification
f and applies a tableau-based decision procedure to f . If f is satisfiable, the decision
procedure constructs a tableau from which a model M of f can be constructed. For
example, Figure 2 shows the model generated for the two-process mutual exclusion
specification given in Section 2.4. The model M can be regarded as the global-
state transition diagram of a correct program, and this program can be extracted
from M by “projecting” onto the individual processes. This extraction operation
was described informally in Emerson and Clarke [1982]. To establish our technical
results, we need a formal definition of program extraction. We proceed as follows.

Let s be a state. We use s↓i for s− {si}, i.e., s with its Pi-component removed.
We define,

Definition 2.1 (State-to-Formula Definition).

{|s|} = “(
∧

s(Q)=true

Q) ∧ (
∧

s(Q)=false

¬Q) ∧ (
∧

x∈SH
x = s(x))”

where Q ranges over AP

{|s↓i|} = “(
∧

s(Q)=true

Q) ∧ (
∧

s(Q)=false

¬Q) ∧ (
∧

x∈SH
x = s(x))”

7While this paper is self-contained, the reader is referred to Emerson and Clarke [1982] for more
detail.
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C1 T2

T1 x = 1 T2

N1 T2
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1
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T1 N2

N2C1

1
x := 2

1

2

2

2

2x := 1

The initial state set is { [N1 N2] }

N2

Fig. 2. Global-state transition diagram for the two-process mutual exclusion problem produced
by the synthesis method of Emerson and Clarke [1982].

where Q ranges over AP −AP i

{|si|} = “(
∧

s(Q)=true

Q) ∧ (
∧

s(Q)=false

¬Q)”

where Q ranges over AP i.

{|s|} characterizes s in that s |= {|s|}, and s′ 6|= {|s|} for all states s′ such that
s′ 6= s, i.e., it converts a state into a propositional formula. For example, {|s0|} =
A1 ∧ ¬B1 ∧ A2 ∧ ¬B2, where s0 is the global state depicted in Figure 1.

From the global-state transition diagram definition (2.2.2), we see that a par-
ticular Pi-arc (si, B → A, ti) generates a set of Pi-transitions; it generates one
Pi-transition in every state s such that s↑i = si and s(B) = true. We group all the
Pi-transitions generated by a single Pi-arc into a Pi-family :8

Definition 2.2 (Pi-Family). A Pi-family F in a Kripke structure M = (S0, S, R)
is a maximal subset of R such that

(1) all members of F are Pi-transitions, and have the same label
i,A−→ , and

(2) for any pair s
i,A−→ t, s′

i,A−→ t′ of members of F : s↑i = s′↑i and t↑i = t′↑i.

8We assume that every process Pi contains, between any pair of local states, at most one arc labeled
with a given assignment statement. If process Pi contains two such arcs, say (si, B1→ A, ti) and
(si, B2→ A, ti), then these can be combined into the single arc (si, (B1 ∨ B2)→ A, ti).
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If s
i,A−→ t ∈ F , then let F .start, F .finish, F .assig, F .label denote s↑i, t↑i, A, and

i,A−→ respectively. Given that T.begin denotes the source state of transition T , i.e.,

T.begin = s for transition T = s
i,A−→ t, let F .guard denote

∨
T∈F{|(T.begin)↓i|}.

When Pi is understood from context, or when we wish to refer to a Pi-family for an
unspecified Pi, we will use the term “family,” i.e., we drop the prefix “Pi-”. F .guard
is equivalent to the guard B of the Pi-arc (s↑i, B → A, t↑i) which generates F .9

The Pi-family definition allows us to give a succinct definition for the operation
of extracting a program from a Kripke structure. This definition formalizes the
extraction technique of Emerson and Clarke [1982].

Definition 2.3 (Program Extraction Definition). Let M = (S0, S, R) be an arbi-
trary Kripke structure. Then the program P = P1‖ · · · ‖PK extracted from M is
given by

(si, B → A, ti) ∈ Pi iff
there exists a Pi-family F in M such that

F .start = si, F .finish = ti, F .assig = A, F .guard = B.

For example, the Kripke structure shown in Figure 2 contains the P1-families

{ [N1N2]
1−→ [T1N2], [N1 C2]

1−→ [T1C2] },
{ [N1 T2]

1,x:=2−→ [T1 x = 2T2] },
{ [T1N2]

1−→ [C1 N2], [T1 x = 1T2]
1−→ [C1 T2], },

{ [C1 N2]
1−→ [N1N2], [C1 T2]

1−→ [N1 T2] },
and the P2 families

{ [N1N2]
2−→ [N1 T2], [C1N2]

2−→ [C1 T2] },
{ [T1N2]

2,x:=1−→ [T1 x = 1T2] },
{ [N1 T2]

2−→ [N1 C2], [T1 x = 2T2]
2−→ [T1C2], },

{ [N1 C2]
2−→ [N1N2], [T1C2]

2−→ [T1N2] }.
Applying Definition 2.3, the above families give rise to the following P1-arcs, re-
spectively

(N1, N2 ∨ C2 → skip, T1),
(N1, T2 → x := 2, T1),
(T1, N2 ∨ (T2 ∧ x = 1)→ skip, C1),
(C1, N2 ∨ T2 → skip,N1),

and the following P2-arcs, respectively,
(N2, N1 ∨ C1 → skip, T2),
(N2, T1 → x := 1, T2),

9Equivalence is with respect to the Kripke structure M . In other words, F .guard and B agree on
every reachable global state u in M whose projection onto Pi is F .start, the local start state for
a transition in F . That is, M,Sr |= {|F .start|} ⇒ (B ≡ F .guard), where Sr is the set of reachable
states of M . Another way of stating this is {|F .start|}M ∩ F .guardM = {|F .start|}M ∩ BM ,
where fM = {s | s |= f and s is a reachable state of M}.
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N2 T2 C2

N1 ∨ C1

N1 ∨ (T1 ∧ x = 2)

N1

N2 ∨ C2

T1 C1
N2 ∨ (T2 ∧ x = 1)

T1 → x := 1

N2 ∨ T2

N1 ∨ T1

T2 → x := 2

Fig. 3. Program for the two-process mutual exclusion problem extracted from the Kripke structure
of Figure 2.

(T2, N1 ∨ (T1 ∧ x = 2)→ skip, C2),
(C2, N1 ∨ T1 → skip,N2).

The resulting program is depicted in Figure 3. We remark that this program con-
tains large-grain atomicity operations. For example, one of the arcs from N1 to T1

is labeled with the guarded command T2 → x := 2. Thus the atomic proposition
T2 must be tested, and then the assignment x := 2 must be performed. In addi-
tion, the values assigned to the atomic propositions N1, T1 must be changed from
true, false respectively to false , true respectively. So, overall, a test followed by a
multiple assignment must be performed as a single atomic operation.

Definition 2.3 guarantees that the execution of program P generates the same
structure M that P was extracted from, i.e., the program extraction and global-
state transition diagram generation operations are “inverses.” In particular, the
use of F .guard =

∨
T∈F{|(T.begin)↓i|} as the guard B of the arc (si, B → A, ti)

corresponding to family F ensures that all and only the transitions in F are gen-
erated by the execution of (si, B → A, ti). When Pi is in state si, the disjunct
{|(T.begin)↓i|} of F .guard evaluates to true if and only if the current global state is
T.begin. Hence, {|(T.begin)↓i|} contributes the transition T (and only the transition
T ) to the global-state transition diagram of P . Hence, F .guard contributes exactly
the transitions in F , as desired.

We note that the model in Figure 2 contains a shared variable x. This variable
serves to disambiguate the states [T1 x = 1 T2] and [T1 x = 2 T2], which are propo-
sitionally equivalent, but differ temporally, since [T1 x = 1 T2] satisfies EX1true,
while [T1 x = 2 T2] satisfies EX2true. Without x, the extracted program would
generate a global-state transition diagram in which these states are “merged” into
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a single global state [T1 T2]. This is because the extracted program depends only
on the propositional component of the states, and does not take the temporal in-
formation that labels the states into account (see Emerson and Clarke [1982]). In

this global-state transition diagram, there is a cycle [N1 T2]
1→ [T1 T2]

1→ [C1 T2]
1→ [N1 T2]. This cycle causes violation of the absence-of-starvation specification

AG(T2 ⇒ AFC2). Hence we see that it is necessary that propositionally identical
states be disambiguated in some way, e.g., by the use of shared variables.

In summary, we see that there is a correspondence between Pi-arcs in a program
P and Pi-families in the global-state transition diagram M of P . A Pi-arc ARi
in P gives rise to a Pi-family of transitions in M which represent all the possible
executions of ARi, i.e., the executions of ARi in all the global states that satisfy
the guard of ARi, and where local control of Pi is “at” the start state of ARi, as
specified by the global-state transition diagram definition (2.2.2). Also, a Pi-family
F of transitions in M gives rise to a single Pi-arc when P is extracted from M , the
guard of this arc being the disjunction of all global states s (with the Pi-component
removed, i.e., s↓i, and then converted to a formula, i.e., {|s↓i|}) which are source
states of some transition in F .

3. ATOMIC READ/WRITE SYNTAX AND SEMANTICS

3.1 Syntactic Characterization of Atomic Read/Write Programs

We recall that a Pi-transition of a program P = P1‖ · · · ‖PK may, in general, change
one or more atomic propositions in AP i and/or shared variables. In effect, the Pi-
transition executes a multiple assignment. Since we aim to synthesize programs for
an atomic read/write model of computation, such a Pi-transition must be decom-
posed into a series of Pi-transitions, each of which executes a single assignment.

Intuitively, P = P1‖ · · · ‖PK is an atomic read/write program iff the execution
of every arc (of every process of) P requires only a single atomic read operation
or a single atomic write operation. We formalize this by defining a set of syntactic
arc attributes (Definition 3.1.2 below). These attributes characterize an arc in
terms of the atomic read/write operations that are required to implement it. Some
of the clauses of Definition 3.1.2 have an accompanying (indented) paragraph of
explanatory text.

Definition 3.1.1 (Syntactic Equality). We use
.
= to denote syntactic equality.

i.e., B
.
= true means that B is the constant true. If B is N1 ∨ ¬N1, for example,

then B 6 .= true.

Definition 3.1.2 (Syntactic Arc Attributes). We define the following seven at-
tributes of synchronization skeleton arcs.

—An arc (si, B → A, ti) is guarded iff B 6 .= true. A guarded arc requires one or
more read operations for its implementation, since the guard, in general, refers
to shared variables and/or atomic propositions (of other processes), which must
be read in order that the guard be evaluated.

—An arc (si, B → A, ti) is unguarded iff B
.
= true. An unguarded arc requires no

read operations for its implementation, since it can be executed unconditionally
when local control is “at” its start state.
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—An arc (si, B → A, ti) is single-writing iff A
.
= skip and L[si] 6= L[ti], or A

.
=

“x := c” (for some shared variable x and c ∈ Dx) and L[si] = L[ti]. In the first
case, a single write operation is needed to set the values of all atomic propositions
in AP i to those assigned by ti. Since these atomic propositions are combined
into the externally visible location counter Li, this requires only a single write
operation. In the second case, a single write operation sets the shared variable x
to the constant c.

—An arc (si, B → //m∈[1:n] x
m := cm, ti) is multiple-writing iff n > 1, or (n >

0 and L[si] 6= L[ti]). In the first case, one write operation is needed to set the
values of all atomic propositions in AP i to those assigned by ti, and at least one
write operation is needed to perform //m∈[1:n] x

m := cm, since we have n > 0. In
the second case, n > 1 write operations are needed to perform //m∈[1:n] x

m := cm.
Note that an arc (si, B → skip, ti) is never multiple-writing.

—An arc is writing iff it is either single-writing or multiple-writing.

—An arc (si, B → skip, ti) is nonwriting iff L[si] = L[ti]. An arc is nonwriting if
and only if it is not writing.

—An arc is test-and-set iff it is both guarded and writing.

Define a simple term to be a formula of the form Qi ∈ Li, (where Qi ∈ AP i, i ∈
[1 : K]), or of the form x = c, (where x ∈ SH, c ∈ Dx). In an atomic read/write
model, a simple term can be used as the guard of an arc, since checking that a
simple term evaluates to true (and therefore that the arc can be executed) can be
done using a single atomic read operation (which reads the single shared variable
or externally visible location counter that the simple term refers to, depending on
its form). Likewise, a disjunction of simple terms can be used as the guard of an
arc, since checking that a disjunction evaluates to true reduces to checking that
one of its disjuncts evaluates to true. However, a conjunction of terms (simple or
otherwise) cannot be used as the guard of an arc in a straightforward manner, since
checking that a conjunction evaluates to true requires us to check that all conjuncts
evaluate to true simultaneously. This requires the simultaneous reading of all the
shared variables and location counters that are mentioned in any conjunct, and the
atomic read/write model does not permit such “multiple” reads.

Definition 3.1.3 (Single-Reading). An arc (si, B → A, ti) is single-reading iff B
is a disjunction of simple terms.

Note, that in the synchronization skeleton model, Pi does not need to read its
own local state si, since the model requires that local control of Pi is “at” si
before (si, B → A, ti) can be executed. (In Section 6, we show how to translate
our synchronization skeleton programs into a model based on atomic read/write
registers. In this model, the local state si does have to be read by process Pi.)

Definition 3.1.4 (Atomic Read/Write Program). P is an atomic read/write pro-
gram iff P is a program such that every arc in P is either single-reading and
nonwriting, or unguarded and single-writing.

3.2 Numbered Local States

By Definition 3.1.4 above, P = P1‖ · · · ‖PK is in atomic read/write form iff every arc
of every process P1, . . . , PK either reads a single variable or writes a single variable.
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In our framework, there are two types of variables: (1) shared variables, which every
process can read/write, and (2) the externally visible location counter, which the
owning process can write and which every other process can read. Consider an arc
of Pi that reads a single variable. This arc must have the form (si, B → skip, ti),
where B references the variable. Also, L[si] = L[ti], since no atomic propositions
in AP i can be modified. However, it is clear that, in general, si and ti do not
denote the same i-state (i.e., si 6= ti), since Pi makes the transition from si to ti
based on B evaluating to true. If si and ti were the same i-state, then executing
the arc (si, B → skip, ti) would not change anything, i.e., there would be no point
in testing the truth of B, since the final local state is the same regardless of the
outcome of the test. Thus, the value read has no effect on subsequent execution.10

We conclude that in general si and ti are different i-states that happen to assign the
same truth values to all atomic propositions in AP i, and therefore have the same
externally visible location counter. Now, when the current i-state is ti instead of si,
this records the fact that B evaluated to true. Hence, the read operation impacts
the subsequent execution.

Since the externally visible location counter does not distinguish si and ti, we
introduce a function num, from the set of i-states to the natural numbers, that
assigns a natural number to each i-state. The idea is that i-states with the same
externally visible location counter (i.e., local atomic proposition valuations) are
assigned different numbers:

L[si] = L[ti] ∧ si 6= ti ⇒ num(si) 6= num(ti). (NUM)

Since another way of writing (NUM) is

L[si] = L[ti] ∧ num(si) = num(ti)⇒ si = ti,

we can take the pair (L[si], num(si)) as uniquely defining si, i.e., as giving the
location counter (which, in effect, points to the “current” local state). L[si] is the
externally visible component of the location counter (readable by other processes),
and num(si) is the internal component of the location counter (not readable by
other processes). In examples, we shall not give local states explicit names (e.g.,
si, ti, etc.) but will use the combination of L[si] and num(si) to identify local states.
We shall usually indicate the number assigned to an i-state as a superscript, e.g.,
s1
i , s

2
i , etc. Since a global state is a tuple of local states and shared variable values,

we shall not name global states in examples. Global states are uniquely identified
by their constituent local states and shared variable values.

3.3 Atomic Read/Write Kripke Structures

In Sections 2.2 and 2.6, we dealt with the relationship between programs and Kripke
structures. Since an arbitrary Kripke structure can contain transitions that assign
to several shared variables and test the global state, it is clear that the programs
extracted from such a structure must contain “test-and-set” operations of a large
grain of atomicity. Since the set of all (finite state) programs corresponds (via

10Note that we are not claiming that programs in our model do not use “busy waiting.” Busy
waiting, however, comes into the picture when we implement the synchronization skeleton model.
In an implementation, busy waiting would usually be needed in order to repeatedly test the guard
of an arc, so that the arc can be executed when the guard evaluates to true.
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extraction in one direction and global-state transition diagram generation in the
other) to the set of all (finite state) Kripke structures, it follows from the above that
the set of atomic read/write programs corresponds to a proper subset of the set of
(finite state) Kripke structures. We now define this subset: the atomic read/write
Kripke structures. We also define the operation for extracting an atomic read/write
program from an atomic read/write Kripke structure.

Since there is a correspondence between Pi-arcs and Pi-families, the syntactic arc
attributes can be extended to families merely by applying Definition 3.1.2 to the
arc corresponding to the family. We do this for the “writing” attributes:

Definition 3.3.1 (Family Write Attributes). A family F is single-writing, multiple-
writing, writing, nonwriting iff the arc (F .start, F .guard→ F .assig, F .finish) is
single-writing, multiple-writing, writing, nonwriting, respectively.

For the “guarding” attributes, we find it technically convenient to use the follow-
ing definition instead.

Definition 3.3.2 (Unguarded Family, Guarded Family). A Pi-family F is unguarded
in Kripke structure M = (S0, S, R) iff:

for all reachable states s in M such that s↑i = F .start,
there exists a transition T ∈ F such that T.begin = s

A Pi-family F is guarded in M iff F is not unguarded in M .

In other words, an unguarded family contains a transition starting in every reach-
able state s whose Pi-projection s↑i is equal to the start state of the family. Hence
the Pi-arc (F .start, F .guard → F .assig, F .finish) extracted from F can be ex-
ecuted in every state s such that s↑i = F .start. Hence s |= {|F .start|} implies
s |= F .guard for every reachable state s. We can rewrite this as s |= {|F .start|} ⇒
(F .guard ≡ true). Thus F .guard can be replaced by true, and so the arc extracted
from an unguarded family is also unguarded.11 Also, if ARi is an unguarded arc
in program P , then the Pi-family that ARi generates in the global-state transition
diagram of P (according to the global-state transition diagram definition (2.2.2)),
is also unguarded.

Consider a guarded Pi-family F in M . If we apply the program extraction defini-
tion (2.3) to extract a program fromM , then the Pi-arc corresponding to F will have
the guard F .guard, which, by the Pi-family definition (2.2), is

∨
T∈F{|T.begin↓i|}.

By the state-to-formula definition (2.1), {|T.begin↓i|} is a conjunction of simple
terms. Thus we see that F .guard is in disjunctive normal form, with each dis-
junct being a conjunction of simple terms. The atomic read/write program def-
inition (3.1.4) requires that every guard in an atomic read/write program be a
disjunction of simple terms. Hence, to extract an atomic read/write program from
M , we must replace F .guard by an equivalent12 guard which is a disjunction of
simple terms. If this can be done, then the Pi-family F can be implemented by a
single-reading arc. We call such a family a single-reading family:

11In fact F .guard would be replaced by true in the guard simplification step of (Phase 1 of) the
synthesis method. See Section 4.1.4.
12Equivalence is with respect to the Kripke structure M—see footnote 9.
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Definition 3.3.3 (Single-Reading Family). A family F of a Kripke structure
M is single-reading iff there exist subsets F1, . . . ,Fn of F such that F =

⋃
k∈[1:n] Fk,

and, for each Fk, (k ∈ [1 : n]), there exists a simple term bk such that

for all T ∈ Frk, T.begin(bk) = true, and (G1)

for all reachable states s in M such that s↑i = F .start,
if s is not the start state of some transition in Fk, then s(bk) = false , (G2)

where Frk is the set of all reachable transitions in Fk.

In other words, bk is true in all states that are the begin state of some reachable
transition in Fk, and is false in any reachable state whose Pi-projection is the
start state of F , but which is not the begin state of some transition in Fk. Thus,
including bk as a disjunct in the guard of the arc corresponding to F takes into
account exactly the reachable transitions in Fk. Hence, the guard

∨
k∈[1:n] bk takes

into account all reachable transitions in F (since F =
⋃
k∈[1:n] Fk). Furthermore,

requiring that bk be false in every state s such that s↑i = F .start and such that s is
not the start state of some transition in Fk ensures that no “extra” transitions are
generated by the extracted programs (i.e., no transitions that are not present in the
reachable portion of the Kripke structure from which the program is extracted).
Thus

∨
k∈[1:n] bk is a suitable guard for the arc corresponding to F . Also,

∨
k∈[1:n] bk

is a disjunction of simple terms, as required.
We can now define atomic read/write Kripke structures. From such a structure,

it is always possible to extract an atomic read/write program. Note how this
definition parallels that of atomic read/write programs (Definition 3.1.4 above).

Definition 3.3.4 (Atomic Read/Write Kripke Structure). M = (S0, S, R) is an
atomic read/write Kripke structure iff M is a Kripke structure such that every fam-
ily in M is either single-reading and nonwriting, or unguarded and single-writing.

3.4 Extracting Atomic Read/Write Programs from Atomic Read/Write Kripke Struc-
tures

Given an atomic read/write Kripke structure M , an atomic read/write program P
can be extracted from M according to the following definition, which is a modifi-
cation of the program extraction definition (2.3).

Definition 3.4.1 (Atomic Read/Write Program Extraction Definition). Let M
be an atomic read/write Kripke structure. Then, the program P = P1‖ · · · ‖PK
extracted from M is as follows:

(si, B → skip, ti) ∈ Pi iff
there exists a single-reading and nonwriting Pi-family F in M such that

si = F .start, ti = F .finish, B =
∨
k∈[1:n] bk, and there exist

subsets F1, . . . ,Fn of F such that
F1, . . . ,Fn, b1, . . . , bn satisfy Definition 3.3.3

(si, true → A, ti) ∈ Pi iff
there exists an unguarded, single-writing Pi-family F in M such that

si = F .start, ti = F .finish, and A = F .assig
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Proposition 3.4.2. If P has been extracted from an atomic read/write Kripke
structure M according to Definition 3.4.1, then P is an atomic read/write program.

Proof. By Definition 3.4.1, the only arcs in P are of the form (si, B → skip, ti)
or of the form (si, true → A, ti). For arcs of the form (si, B → skip, ti), B is a dis-
junction of simple terms, by Definition 3.4.1 and Definition 3.3.3. Hence, such arcs
are single-reading and nonwriting. For arcs ARi of the form (si, true → A, ti), the
corresponding family F is single-writing, by Definition 3.4.1. Thus, by the family
write attributes definition (3.3.1), ARi is single-writing (since si = F .start, ti =
F .finish, and A = F .assig). Hence ARi is unguarded and single-writing. Thus,
every arc in P is either single-reading and nonwriting, or unguarded and single-
writing. Hence, by the atomic read/write program extraction definition (3.4.1), P
is an atomic read/write program.

The next lemma establishes that the atomic read/write extraction operation is
“faithful” in that the global-state transition diagram of the extracted program is
the same as the reachable portion of the original Kripke structure from which the
program was extracted.

Lemma 3.4.3 (Correct Extraction). Let M 1 = (S0, S, R
1) be an atomic

read/write Kripke structure. Furthermore, let P = P1‖ · · · ‖PK be an atomic
read/write program extracted from M 1 using Definition 3.4.1, and let M 2 =
(S0, S, R

2) be the global-state transition diagram of P obtained by applying Defi-
nition 2.2.2 to P . If a state s is reachable in both M 1 and M2, then

s
i,A−→ t ∈ R1 iff s

i,A−→ t ∈ R2

for all i, A, t.

Proposition 3.4.4. Let M1 = (S0, S, R
1) be an atomic read/write Kripke struc-

ture. Furthermore, let P be an atomic read/write program extracted from M 1 using
Definition 3.4.1, and let M 2 = (S0, S, R

2) be the global-state transition diagram
of P obtained by applying Definition 2.2.2 to P . Let f be an arbitrary formula of
CTL. Then

M1, S0 |= f iff M2, S0 |= f .

4. THE SYNTHESIS METHOD

Let f be a specification, expressed in CTL, for a concurrent program. Roughly
speaking, we proceed as follows. We apply the CTL decision procedure of Emerson
and Clarke [1982] to f . If f is satisfiable, then the decision procedure yields a model
M of f . M can be viewed as the global-state transition diagram of a program P that
satisfies f , and P can be extracted from M via the program extraction definition
(2.3). In general, P will contain arbitrarily large grain test-and-set operations.
We decompose these operations into single atomic read and single atomic write
operations. The decomposition is straightforward and syntactic in nature; a test-
and-set operation is decomposed into a test operation followed by a (multiple-)write
operation, and a multiple-write operation is decomposed into a set of sequences of
single-write operations which express all the possible serializations of the multiple-
write operation. This decomposition may, in general, introduce new behaviors
that violate the specification. We deal with this by generating the global-state
transition diagram of the decomposed program, and then deleting all the portions
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of this diagram that are inconsistent with the specification. If some initial state is
not deleted, then, from the resulting structure, an atomic read/write program that
satisfies the specification can be extracted.

Our method will be presented as a sequence of phases, with each phase (except
Phase 1) taking as input the output of the previous phase:

Phase 1 Extract a correct high-atomicity program from M , a finite-state model
of the CTL problem specification.

Phase 2 Decompose the high-atomicity program into an atomic read/write pro-
gram by syntactically decomposing each arc of each process.

Phase 3 Generate the global-state transition diagram of the atomic read/write
program.

Phase 4 Delete portions of the global-state transition diagram that violate the
specification.

Phase 5 From the resulting global-state transition diagram, extract an atomic
read/write program that satisfies the specification.

In Phase 1, M could be given directly, as a “specification automaton,” or could
be produced from the CTL specification by the synthesis method of Emerson and
Clarke [1982], whose application could then be considered to be “Phase 0.” For
technical reasons, we assume that M is in reachable form. Since only the reachable
portion of a Kripke structure affects the behavior of an extracted program, this
assumption does not restrict our synthesis method in any way. Furthermore, in
practice we would wish to remove the unreachable portion of a Kripke structure
simply as a matter of efficiency.13 Note also that the externally visible location
counter (which encodes the atomic propositions) is not introduced until Phase 2;
Phase 1 deals directly with the atomic propositions.

4.1 Phase 1: Synthesize a Correct High-Atomicity Program

The objective of this phase is to synthesize an initial program that satisfies the
specification f , but is not necessarily in atomic read/write form.

4.1.1 Step 1.1: Derive the Initial Kripke Structure. Our method accomodates a
variety of problem specification techniques. If the problem specification is given as
a CTL formula f , then we can apply the CTL decision procedure of Emerson and
Clarke [1982] to f . If f is unsatisfiable, then no program can satisfy f . Otherwise,
f is satisfiable, and the decision procedure yields a Kripke structure M = (S0, S, R)
such that M,S0 |= f , i.e., M is a model of f .

Alternatively, we can specify M directly, i.e., we view M as a state-machine
whose executions constitute a set of “acceptable” executions. Examples of this
technique are Lynch and Tuttle [1987], Lynch and Vaandrager [1995]. Even if M
is given directly, our method still requires a CTL specification f which expresses
the acceptable behaviors. This is because the decomposition performed in Phase 2
may introduce new and undesirable behaviors, which have to be pruned out. The

13If we wish to take fault tolerance or self-stabilization [Arora 1992; Arora et al. 1998] properties
into account, then the unreachable portions do have to be considered. Since we do not consider
such properties in this paper, we ignore “unreachable behavior.”
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Given a finite-state machine speficiation M , extract the corresponding CTL frame specification
as the conjunction of all the formulae specified by the following rules.

Initial state:
W
s is an initial state{|s|}

Local AY-structure of each process: for all Pi: AG({|si|} ⇒ AYi
W
`{|t`i |}) where t`i

ranges over all the Pi-states such that some arc of Pi goes from si to t`i .

Local EX-structure of each process: for all Pi: AG({|si|} ⇒ EXi{|ti|}) if, in M , every
global state s with s↑i = si has some successor state t reached by a Pi-transition
such that t↑i = ti.

The interleaving model: for all Pi, Pj , i 6= j and Qi ∈ APi: AG(Qi ⇒ AYjQi)

Deadlock-freedom: AGEXtrue

Fig. 4. Extracting the CTL frame specification from a finite-state machine specification.

only way to determine which behaviors are undesirable is to have a specification
against which to judge the new behaviors introduced by Phase 2. We have chosen
to use a restricted subset of CTL for the purpose of writing these specifications.
The main advantage is that the modifications required to eliminate the undesirable
behaviors (and thereby restore the satisfaction of the specification) are reasonably
straightforward (cf. the deletion rules in Section 4.4).

If M is given directly, then the accompanying CTL specification is usually sig-
nificantly shorter than if the specification were given only as a CTL formula. This
is because many of the conjuncts of a CTL specification are “frame specifications”
which specify the initial state (e.g., clause 1 in the CTL specification of two-process
mutual exclusion given in Section 2.4), the local structure of each process (clauses 2,
3, 4, and 5), the interleaving model (clause 7), and deadlock-freedom (clause 9).
When M is given, such frame specifications can be extracted mechanically from M ,
as shown in Figure 4. They are then conjoined to the CTL specification accompa-
nying M , and used as the specification for the purposes of the remaining steps in
our synthesis method. (Except that the interleaving model clause is not needed,
since it is implicitly satisfied by our operational semantics. The need for this clause
arises in the Emerson and Clarke [1982] synthesis method.)

For example, looking at the CTL specification of two-process mutual exclusion
given in Section 2.4, we see that clauses 8 and 6 express the crucial safety and
liveness properties required of a solution to mutual exclusion. Thus, an alterna-
tive specification of mutual exclusion would be the Kripke structure of Figure 2,
together with the (much shorter) CTL formula AG(¬(C1 ∧C2)) ∧ AG(T1 ⇒ AFC1)
∧ AG(T2 ⇒ AFC2).

We note, that when M and f are both given, then we do not require M, s0 |= f
for every initial state s0 of M . In other words, the given finite-state machine
is not required to be “correct.” Thus, our method provides both debugging and
refinement, in this case.

4.1.2 Step 1.2: Replicate Multiple Assignments. First, we transform M =
(S0, S, R) into an “equivalent” Kripke structure M ′ = (S′0, S, R

′) such that every
multiple assignment //m∈[1:n] x

m := cm in M is replicated along all “compatible”
transitions. This has the desirable effect of weakening the guard of the assignment
//m∈[1:n] x

m := cm in the program extracted from M ′.
Let //m∈[1:n] x

m := cm be a multiple assignment that labels some Pi-transition
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s
i−→ t in M . We replicate this assignment along every Pi-transition u

i,A−→ v in M
such that u↑i = s↑i, v↑i = t↑i, (i.e., every Pi-transition which takes Pi from the
same (local) start state to the same (local) finish state) and A does not assign to
any of x1, . . . , xn. After this replication is performed (for all multiple assignments
in M), it is possible that some states in M end up with two or more different values
for the same shared variable, due to the extra assignments introduced. We therefore
apply the following “propagation rules” (which “propagate” the resulting values of
all shared variables) repeatedly to M , until none of the rules produces any change:

add-prop If a transition into state s is labeled with x := c then add the
binding < x, c > to s↑SH.14

split-state If state s contains bindings < x, c1 >, . . . , < x, ck > (k > 1)
then replace s by k propositionally equivalent15 states s1, . . . , sk, where s`

contains < x, c` > and all bindings of s not involving x (` ∈ [1 : k]). Each
s` has the same outgoing transitions as s, but has as incoming transitions
only the incoming transitions of s that are consistent16 with x = c`.

propagate-value If state s contains < x, c > and there exists a transition
from s to s′ not labeled with an assignment to x, then add < x, c > to s′.

The function of the above three rules is to resolve any inconsistencies that arise
due to the replication of multiple assignments by creating new global states as
needed. The three rules above cannot introduce any new cycles, nor any states
that are not propositionally equivalent to a state already occurring in M . Also,
termination is guaranteed since the number of possible states and/or transitions is
finite; hence, eventually no new states and/or transitions can be added. Finally,
we let the set of initial states of M ′, namely S′0, be

{s | s is a state of M ′ and s is propositionally equivalent to some state in S0}.

Proposition 4.1.2.1. Let f be an arbitrary formula of CTL. Then

M,S0 |= f iff M ′, S′0 |= f .

Proof. It is straightforward to establish a bisimulation [Clarke et al. 1986] be-
tween M and M ′: every state in M is bisimilar to all states M ′ that are proposi-
tionally equivalent to it. Since the only rule that adds new states is split-state,
and since this rule preserves all outgoing transitions, i.e., all successor states, it
follows (by a simple induction) that propositionally equivalent states are indeed
bisimilar. Theorem 2 of Clarke et al. [1986] is as follows:

14Note the abuse of notation here. Technically, s↑SH is a mapping; it relates each x ∈ SH to
exactly one value in Dx. However, in the middle of applying the rules, s↑SH could relate some
x ∈ SH to more than one value in Dx. The split-state rule ensures that upon termination s↑SH
is a mapping, for all states s in M . We use the notation < x, c > to denote a variable to value
binding here. We say that state s contains the binding < x, c > iff < x, c >∈ s↑SH.
15Two states are propositionally equivalent iff they agree on all atomic propositions.
16An incoming transition is consistent with x = c` iff either (1) it is labeled with x := c`, or
(2) it is not labeled with an assignment (or equivalently, it is labeled with skip), and it originates
in a state containing the binding < x, c` >.
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Let M1 and M2 be two structures that correspond.
Then for all formulae f of CTL∗,

M1, s1
0 |= f iff M2, s2

0 |= f .

Here the term “correspond” means “are bisimilar.” Although this theorem is given
for structures M1,M2 with single initial states s1

0, s
2
0 respectively, it is easily seen

to generalize to structures with a set of initial states. Furthermore, the logic CTL∗

[Emerson 1990] subsumes CTL. Thus, applying the theorem toM,M ′, we conclude:
M,S0 |= f iff M ′, S′0 |= f for any formula f of CTL.

4.1.3 Step 1.3: Extract a Correct High-Atomicity Program. Next, we extract
a correct high-atomicity program P = P1‖ · · · ‖PK from M ′ using the program
extraction definition (2.3). We mention our convention, which we use in all figures
of Kripke structures (synchronization skeletons), of showing in a global (local) state
only the atomic propositions that are true in that global (local) state. The atomic
propositions not shown can be taken to be false in the global (local) state. Note
also, that in all figures of Kripke structures, we show only the reachable portions
of the actual structures.

4.1.4 Step 1.4: Simplify the Guards. The program extraction definition (2.3)
produces guards that are in disjunctive normal form, where each disjunct con-
tributes exactly one transition. Each guard, in principle, may read the entire global
state, i.e., the atomic propositions of all other processes, and the values of all shared
variables. Often, it is not necessary to read all the components of the global state,
and the guards can be “simplified” considerably.

Consider an arbitrary arc (si, B → A, ti) of Pi. The guard B is tested only in
global states whose Pi-component is si. Hence, B can be replaced by any B′ that
has the same value as B in all such global states, and possibly differs from B in
other global states. Hence, any B′ such that

for all s ∈ S : s↑i = si implies s |= (B ≡ B′) (GS)

can be used as a guard instead of B, i.e., the arc (si, B → A, ti) is replaced by
(si, B

′ → A, ti).
Two special cases of (GS) that are useful in practice are as follows:

Guard elimination: B′ = true. If we establish

for all s ∈ S : s↑i = si implies s |= B

then B can be replaced by true, i.e., the arc is enabled whenever “local control” is
at its start state.

Conjunct elimination: B = B′′∨(b1∧ . . . ∧bn), and B′ = B′′∨(b1∧ . . . ∧bn−1).
If we establish

for all s ∈ S : s↑i = si implies s |= [(b1 ∧ . . . ∧ bn−1)⇒ bn]

then B can be replaced by B′, since we would have:

for all s ∈ S : s↑i = si implies s |= [(b1 ∧ . . . ∧ bn−1) ≡ (b1 ∧ . . . ∧ bn)]

and so

ACM Transactions on Programming Languages and Systems, Vol. ??, No. ?, Month 2001



24 · P.C. Attie and E.A. Emerson

for all s ∈ S : s↑i = si implies s |= [B′′∨(b1∧ . . . ∧bn−1) ≡ B′′∨(b1∧ . . . ∧bn)].

Since the program extraction definition (2.3), produces guards in disjunctive normal
form, this simplification method should be quite useful.

4.2 Phase 2: Decompose the Initial Program

4.2.1 Step 2.1: Introduce the Externally Visible Location Counters. We now
introduce the externally visible location counter Li, and replace all references to
the atomic propositions in AP i by references to Li:

—Every occurrence of an atomic proposition Qi ∈ AP i in some guard B (occurring
in the skeleton for some process Pj , j 6= i) is replaced by “Qi ∈ Li.”

—Every arc (si, B → A, ti) of Pi, such that L[si] 6= L[ti], is replaced by the arc
(si, B → A//Li := L[ti], ti).

The first transformation replaces a read of an atomic proposition in AP i by a
read of Li. The second transformation ensures that Li implements the atomic
propositions in AP i correctly; in other words, it ensures that LOC (Section 2.2)
holds for every i-state in Pi. We extend the definition of global state to provide for
a value assigned to Li by a global state s: s(Li) = s↑i(Li). Finally, we mention that
the state-to-formula definition (2.1) should be modified (to take into account the
introduction of the Li) as follows: every conjunct of the form Qi, (¬Qi) is replaced
by Qi ∈ Li (Qi 6∈ Li) respectively.

Since L[ti] is constant for a given local state ti, the assignment Li := L[ti] can be
implemented by a single atomic write operation. Thus, the assignment operation
A of an arc (si, B → A, ti) has the form //m∈[1:n]A

m, (n ≥ 0), where each Am has
either the form x := c (x ∈ SH, c ∈ Dx), or the form Li := L[ti], with at most one
Am having the latter form. If L[si] = L[ti], then no Am has the form Li := L[ti],
and if L[si] 6= L[ti], then exactly one Am has this form.

4.2.2 Step 2.2: Decompose the Test-and-Set Arcs. Our next step is to decom-
pose every test-and-set arc in P into a guarded and nonwriting arc (for the “test”),
followed by an unguarded and writing arc (for the “set”):

—For every test-and-set arc AR = (si, B → A, ti)
replace AR by AR′ and AR′′, where

AR′ = (si, B → skip, ui)
AR′′ = (ui, true → A, ti)

where ui is a “new” i-state (i.e., it does not already occur in Pi), and L[ui] is set
to L[si].

4.2.3 Step 2.3: Decompose the Multiple-Writing Arcs and Number the Local
States. Finally, we replace every unguarded and multiple-writing arc by a set of
sequences of unguarded and single-writing arcs, where each sequence represents
one order of serialization of the write operations of the original multiple-writing
arc:
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—For every multiple-writing arc AR = (ui, true → //m∈[1:n]A
m, ti)

remove AR from P ;
for every permutation m1, . . . ,mn of 1, . . . , n,

add ARm1 , . . . , ARmn to P , where
ARm1 = (ui, true → Am1 , um1

i )
ARmk = (u

mk−1

i , true → Amk , umki ) for k ∈ [2 : n− 1]
ARmn = (u

mn−1

i , true → Amn , ti)

where the i-states um1

i , . . . , u
mn−1

i do not previously occur in P (for every per-
mutation), i.e., we use “new” local states for each permutation.

Also, the local atomic proposition valuations of the new local states are given as
follows:

—If //m∈[1:n]A
m does not assign to Li, (and so no Amk has the form Li := L[ti]),

then set L[umki ] to L[si] for all k in [1 : n− 1].

—If //m∈[1:n]A
m assigns to Li, then exactly one Am` , ` ∈ [1 : n] has the form

Li := L[ti]. In this case:

set L[umki ] to L[si] for all k in [1 : `− 1]

set L[umki ] to L[ti] for all k in [` : n− 1]

Call the resulting program P ′ = P ′1‖ · · · ‖P ′K . Looking at Figure 13, we see
that it contains propositionally equivalent but distinct local states. We now assign
numbers to local states (see Section 3.2) so that all propositionally equivalent but
distinct local states in P ′ are distinguished from each other by their numbers (i.e.,
so that (NUM)—see Section 3.2—holds).

Let P ′′ = P ′′1 ‖ · · · ‖P ′′K be the program that results from the local state numbering.
We can now state the following proposition. To facilitate its proof, we shall make
the following assumption:

Technical Assumption: P contains no arcs that are both unguarded and
nonwriting.

If P does contain such arcs, we can always convert them to single-writing arcs by
adding a new atomic proposition which is “written to” by such arcs, but is never
“read” by any arc, and so does not change P ’s behavior.

Proposition 4.2.3.1. Every arc in the skeletons of P ′′ is either guarded and
nonwriting, or unguarded and single-writing.

Proof. By construction of Phase 2, P ′′ contains no test-and-set arcs. Hence
by the syntactic arc attributes definition (3.1.2), every arc in P ′′ is nonwriting
or unguarded. By this and the technical assumption (given immediately above),
every arc in P ′′ is guarded and nonwriting or unguarded and writing. Finally, by
construction of Phase 2, P ′′ contains no multiple-writing arcs. Hence every arc in
P ′′ is guarded and nonwriting or unguarded and single-writing.

ACM Transactions on Programming Languages and Systems, Vol. ??, No. ?, Month 2001



26 · P.C. Attie and E.A. Emerson

4.3 Phase 3: Generate the Global-State Transition Diagram

In Phase 3, we generate the global-state transition diagram M ′′ = (S′0, S, R
′′) of

P ′′ by applying the global-state transition diagram definition (2.2.2) to P ′′.17

Our use of local-state numbers makes it clear which local states a global state
projects onto. For example, the state [T 2

1 2 N1
2 ] in Figure 15 has a P1-projection

of [T 2
1 ], i.e., the 1-state indicated by T 2

1 in Figure 14. Since there are two other
propositionally equivalent P1-states in Figure 14, namely those labeled with T 1

1 , T 3
1

respectively, it would be impossible to distinguish these P1-states from the P1-state
labeled with T 2

1 were it not for the use of local-state numbers.

4.4 Phase 4: Delete Portions of the Global-State Transition Diagram that Violate the
Specification

The global-state transition diagram generated in Phase 3 will not, in general, satisfy
the CTL specification. This is because the syntactic decomposition of the skeleton
arcs performed in Phase 2 introduces the possibility of new interleavings, leading
to computation paths that generate previously unreachable states. For example,
suppose that the arcs ARi, ARj in processes Pi, Pj of P = P1‖ · · · ‖PK are decom-
posed into arcs AR1

i , AR
2
i and AR1

j , AR
2
j respectively, in the processes P ′′i , P

′′
j of

the decomposed program P ′′ = P ′′1 ‖ · · · ‖P ′′K produced by Phase 2. In the execution
of P , either ARi is executed before ARj or vice versa. In the execution of P ′′,
it is possible for the execution of AR1

i , AR
2
i and AR1

j , AR
2
j to be interleaved, e.g.,

AR1
i ;AR

1
j ;AR

2
i , AR

2
j . This represents a new behavior, not possible in program P .

Such new behaviors can lead to global states (or cycles of global states) that were
previously unreachable. These new states/cycles could violate the specification.
For example, in Figure 15, the dashed path results from such a new behavior, and
leads to the state [C1

1 2C1
2 ], which violates the conjunct AG(¬(C1 ∧ C2)) of the

mutual exclusion specification.
Our solution to this problem is to delete all portions of the global-state transition

diagram that violate the specification. Provided that not all initial states are deleted
as a result, the remaining structure will then satisfy the specification, and a correct
atomic read/write program could be extracted from it. We proceed as follows.

4.4.1 Step 4.1: Label the Reachable States. First, we label every reachable state
of M ′′ with a set of CTL formulae. The label of each state (notated as label(s))
contains exactly the CTL formulae that must be satisfied by that state in order
that every initial state of M ′′ satisfy the specification. The labeling procedure is
given in Figure 5.

4.4.2 Step 4.2: Prune the Structure So that the Labels Are Satisfied. Next, we
check that every state of M ′′ satisfies all the formulae in its label. If some state of
M ′′ does not satisfy a formula in its label, then M ′′ does not satisfy the specification
and must be modified. We modify M ′′ by deleting initial states and transitions.
Now deleting a single transition TRi (of some process P ′′i of P ′′) may cause the
arc ARi corresponding to the family containing TRi to become guarded. If ARi
was previously single-writing, then ARi now becomes test-and-set. We avoid this

17S′0 is the set of initial states of the structure M ′ derived in Phase 1. See Section 4.1.2.
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For each conjunct f of the specification, except those of the form AG(pi ⇒ AYiqi), label the states
of M ′′ according to the following labeling rules, where p, q, r, h ∈ LO(AP ,¬,∧), and pi, qi ∈
LO(AP i,¬,∧).

—If f = h, then label every initial state in M ′′ (i.e., every state in S′0) with h.

—If f = AGh, then label every reachable state in M ′′ with h.

—If f = AG(p⇒ A[qUr]) then label every reachable state s in M ′′ such that s |= p with A[qUr].

—If f = AG(pi ⇒ EXiqi) then label every reachable state s in M ′′ such that s |= pi with
EXi(pi ∨ qi).

Fig. 5. The labeling rules.

procedure delete(TRi)

Let F i be the family in M ′′ containing TRi, and let ARi be the
skeleton arc corresponding to F i.
if F i is guarded and nonwriting then

remove TRi from M ′′;
if F i is now empty, then remove ARi from P ′′i

else (F i is unguarded and single-writing)
remove all transitions in F i from M ′′;
remove ARi from P ′′i

endif;
recompute the “deletable” attribute for all arcs of P ′′i

Fig. 6. The delete transition procedure.

possibility by deleting all transitions of the family containing TRi, thereby deleting
ARi entirely. However, this may leave P ′′i incapable of infinite behavior, e.g., if P ′′i
was previously a single “cycle.” We say that an arc ARi of P ′′i is deletable iff its
deletion leaves at least one cycle in P ′′i , i.e., leaves P ′′i capable of infinite behavior.
Otherwise we say that ARi is nondeletable. We only delete transitions in M ′′ that
correspond to deletable arcs. A transition TRi is deleted by invoking the procedure
delete(TRi), shown in Figure 6.

The actual deletions to be carried out are given by a set of deletion rules, shown
in Figure 7. The deletion rules are applied as long as possible. Since M ′′ is finite,
and each application of a deletion rule results in the deletion of at least one state or
one transition in M ′′, we eventually terminate, i.e., reach a situation in which none
of the deletion rules are applicable. Upon termination, let S ′′′0 , R

′′′ be the set of un-
deleted initial states, undeleted and reachable (from S ′′′0 ) transitions, respectively.
If S′′′0 is empty, then all the initial states have been deleted, and we are therefore
unable to extract a program from M ′′ that satisfies the problem specification. In
this case, our synthesis method terminates with failure. This possibility of termi-
nation with failure means that our synthesis method is not complete, i.e., it may
not always produce an atomic read/write program satisfying a given specification,
even if such a program does in fact exist. The method is sound however, as we
subsequently establish. If S ′′′0 is nonempty, let M ′′′ be the structure (S′′′0 , S, R

′′′).
We show that M ′′′ satisfies the CTL specification.
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Prop-rule h ∈ label(s) and s 6|= h.
If s ∈ S′0, then delete s. Otherwise, make s unreachable in M ′′, i.e., find one deletable
transition TRi from every initialized path ending in s, and remove TRi from M ′′ by
invoking delete(TRi) (an initialized path is a path starting in an initial state).

AU-rule A[qUr] ∈ label(s) and s 6|= A[qUr].
Find one deletable transition TRi from every fullpath π starting in s such that π 6|= [qUr],
and remove TRi from M ′′ by invoking delete(TRi).

EXi-rule EXi(pi ∨ qi) ∈ label(s) and s 6|= EXi(pi ∨ qi).
If s ∈ S′0, then delete s. Otherwise, make s unreachable in M ′′, as in the Prop-rule.

EX-rule s 6|= EXtrue, i.e., s has no successors.
If s ∈ S′0, then delete s. Otherwise, make s unreachable in M ′′, as in the Prop-rule.

Arc-rule (si, B → A, ti) is an arc in P ′′i such that either (1) P ′′i contains no arc with start
state ti, or (2) P ′′i contains no arc with finish state si, and si 6∈ S′0↑i18 (i.e., si is not an
initial local state).

Remove (si, B → A, ti) from P ′′i , and its corresponding family from M ′′.

The name and activation condition (for a particular reachable state s) of each rule is given first,
with the action required by the rule given on succeeding lines.
For all the above rules, whenever a state s in S′0 is deleted, all transitions in R′′ which involve s
(as either a begin or end state) are also deleted. If any of these transitions are undeletable, then
the synthesis method terminates with failure.

Fig. 7. The deletion rules.

Proposition 4.4.2.1 (Soundness). If S ′′′0 6= ∅, and f is a conjunct of the
specification, then

M ′′′, S′′′0 |= f∗

where f∗ = f if f has one of the forms h, AGh, AG(p⇒ A[qUr]), and f ∗ = AG(pi ⇒
EXi(pi ∨ qi)), AG(pi ⇒ AYi(pi ∨ qi)) if f = AG(pi ⇒ EXiqi), AG(pi ⇒ AYiqi)
respectively, and where p, q, r, h ∈ LO(AP ,¬,∧), pi, qi ∈ LO(AP i,¬,∧).

Proposition 4.4.2.2. Every family in M ′′′ is either guarded and nonwriting or
unguarded and single-writing.

Proof. By Proposition 4.2.3.1, every arc in the skeletons of P ′′ is either guarded
and nonwriting, or unguarded and single-writing. Now M ′′ is generated by applying
the global-state transition diagram definition (2.2.2) to P ′′. From the global-state
transition diagram definition (2.2.2) and the unguarded family definition (3.3.2),
we see that an unguarded arc generates an unguarded family. From the global-
state transition diagram definition (2.2.2), and the family write attributes def-
inition (3.3.1), a nonwriting (single-writing) arc generates a nonwriting (single-
writing) family, respectively.

Hence every family in M ′′ is either guarded and nonwriting or unguarded and
single-writing. By construction of Phase 4, every unguarded family in M ′′ either
survives intact, i.e., none of its transitions are deleted, and hence it is unguarded
(and single-writing) in M ′′′, or is deleted entirely. Thus the only guarded families
in M ′′′ are (subsets of) those that were guarded in M ′′. Thus, by the family write
attributes definition (3.3.1) these families are nonwriting in M ′′′, since they are
nonwriting in M ′′. Since every family in M ′′′ corresponds to a family in M ′′, the
proposition follows.
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4.5 Phase 5: Extract a Correct Atomic Read/Write Program

4.5.1 Step 5.1: Ensure Atomic Read/Write Form. The Kripke structure pro-
duced by Phase 4 is not, in general, guaranteed to be in atomic read/write form.
What is missing is that the guarded and nonwriting families must be single-reading
and nonwriting. Boolean function CHECK-STRUCTURE(M) given in Figure 8
tests all guarded and nonwriting families in a Kripke structure M , and returns true
iff they are all single-reading as well. We invoke CHECK-STRUCTURE(M ′′′). If
this returns true, then, by Proposition 4.4.2.2, we can conclude that every family in
M ′′′ is either single-reading and nonwriting, or unguarded and single-writing, i.e.,
that M ′′′ is an atomic read/write Kripke structure. Given that M ′′′ is in atomic
read/write form, the atomic read/write program extraction definition (3.4.1) can
be applied to extract the final atomic read/write program. If, however, M ′′′ is not
in atomic read/write form, then there are one or more guarded and nonwriting
families that do not satisfy (at least one of) the conditions (G1), (G2) of the single-
reading family definition (3.3.3). For each such family, we attempt to make (G1)
and (G2) true by deleting reachable states that violate (G1) or (G2) (or both).
Since such deletions may, in general, cause violation of the specification, we must
repeat Phase 4 after one or more of these deletions are performed.

CHECK-STRUCTURE(M) works by invoking CHECK-FAMILY(M,F) for each
guarded and nonwriting family F in M . CHECK-FAMILY(M,F) returns true if
and only if F is single-reading, and it works as follows. Recall that a simple term
is a formula of the form Qi ∈ Li or x = c. Because a simple term refers to only
one variable (either Li or x), its value can be checked with a single atomic read
operation. Recall also that the truth of a disjunction of simple terms can be verified
by a single atomic read operation, namely the read of the variable referenced by
a simple term disjunct that happens to be true. CHECK-FAMILY(M,F) now
attempts to satisfy Definition 3.3.3 by finding a suitable “covering” F 1, . . . ,Fn of
F (i.e., subsets F1, . . . ,Fn of F such that F =

⋃
k∈[1:n] Fk) and simple terms

b1, . . . , bn such that the transitions in each Fk can be “generated” by including
bk as a disjunct of the guard of F . CHECK-FAMILY(M,F) starts with the set
of all possible simple terms (this is of size O(|M |)). If a simple term generates
only transitions in F then it is added to the set ok (see the definition of OK(b) in
Figure 8). If, after all simple terms have been examined, the disjunction of the terms
in ok (call them b1, . . . , bn) generates all the transitions in F (see the definition
of COV(F , ok) in Figure 8) then b1, . . . , bk, together with each Fk generated by
bk, satisfy Definition 3.3.3. In this case, CHECK-FAMILY(M,F) returns true.
Otherwise, it returns false .

4.5.2 Step 5.2: Extract the Atomic Read/Write Program. OnceM ′′′ is in atomic
read/write form, we apply the atomic read/write program extraction definition (3.4.1)
to extract the final atomic read/write program P ′′′ = P ′′′1 ‖ · · · ‖P ′′′K .

We now establish the soundness of the synthesis method.

Proposition 4.5.2.1. Let M iv = (S′′′0 , S, R
iv) result from applying the global-

state transition diagram definition (2.2.2) to P ′′′. If S′′′0 6= ∅, and f is a conjunct
of the specification, then

M iv , S′′′0 |= f∗
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Boolean Function CHECK-STRUCTURE(M)

/* input: Kripke structure M such that every family in M is guarded and nonwriting or
unguarded and single-writing

output: true — if M is an atomic read/write Kripke structure, i.e.,
every guarded and nonwriting family in M is single-reading

false — otherwise
*/
for each guarded and nonwriting family F of M do

if ¬CHECK-FAMILY(M,F) then return(false) endif
/* If some guarded and nonwriting family F is not single-reading, then M is not in

atomic read/write form */
endfor;
return(true)

Boolean Function CHECK-FAMILY(M,F)

/* input: Kripke structure M and family F of M
output: true — if F is single-reading (in this case, F .srguard gives a suitable guard for the

corresponding extracted arc)
false — otherwise

*/
simple := {“Qi ∈ Li”, “Qi 6∈ Li” | Qi ∈ APi, i ∈ [1 : K]} ∪ {“x = c” | x ∈ SH ∧ c ∈ Dx};
/* simple contains all possible simple terms */
ok := ∅;
for each b ∈ simple do

if OK(M,F , b) then ok := ok ∪ {b} endif
/* Simple terms that generate only transitions in F are added to ok.

This ensures that condition G2 of Definition 3.3.3 is satisfied. */
endfor;
if COV(F , ok) then
F .srguard := “

W
b∈ok b”;

return(true)
/* If all the simple terms in ok collectively generate all the transitions in F , then declare

F to be single-reading. This ensures that condition G1 of Definition 3.3.3 is satisfied. */
else

return(false)
endif

where the predicates OK(M,F , b), COV(F , ok) are as follows:

OK(M,F , b) ≡ ∀ reachable states s of M (s(b) = true ⇒ ∃T ∈ F (T.begin = s))
/* b is true only in states from which there is an outgoing transition of F */

COV(F , ok) ≡ ∀T ∈ F (∃b ∈ ok (T.begin(b) = true))
/* The simple terms in ok collectively generate all the transitions of F */

Fig. 8. Function CHECK-STRUCTURE(M) for testing the atomic read/write form of a Kripke
Structure M .

where f∗ = f if f has one of the forms h, AGh, AG(p⇒ A[qUr]), and f ∗ = AG(pi ⇒
EXi(pi ∨ qi)), AG(pi ⇒ AYi(pi ∨ qi)) if f = AG(pi ⇒ EXiqi), AG(pi ⇒ AYiqi)
respectively, and where p, q, r, h ∈ LO(AP ,¬,∧), pi, qi ∈ LO(AP i,¬,∧).

Proof. Assume that S′′′0 6= ∅ and that f is a conjunct of the specification.
By Proposition 4.4.2.1, we have M ′′′, S′′′0 |= f∗. Hence, by Proposition 3.4.4, we
conclude M iv , S′′′0 |= f∗.
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Theorem 4.5.2.2 (Soundness for Synchronization Skeleton Model).
If S′′′0 6= ∅ and f is a conjunct of the specification, then P ′′′ is an atomic read/write
program that satisfies f∗, where f∗ = f if f has one of the forms h, AGh, AG(p⇒
A[qUr]), and f∗ = AG(pi ⇒ EXi(pi ∨ qi)), AG(pi ⇒ AYi(pi ∨ qi)) if f = AG(pi ⇒
EXiqi), AG(pi ⇒ AYiqi) respectively, and where p, q, r, h ∈ LO(AP ,¬,∧), pi, qi ∈
LO(AP i,¬,∧).

Proof. Assume S′′′0 6= ∅. By construction of Phase 5, M ′′′ is an atomic read/write
Kripke structure. Since P ′′′ results from applying the atomic read/write program
extraction definition (3.4.1) to M ′′′ (by construction of Phase 5), we conclude by
Proposition 3.4.2 that P ′′′ is an atomic read/write program.

Finally, since M iv is the global-state transition diagram of P ′′′, we conclude from
Proposition 4.5.2.1 and the definition of correctness property (see Section 2.5) that
P ′′′ satisfies f∗.

4.6 Summary of the Method

To give an overview of our method, we summarize the steps as follows. For some
steps, we indicate the Kripke structure or program that is produced (or modified)
by that step.

—Phase 1: Synthesize a Correct High-Atomicity Program
Step 1.1: Derive (or specify) the initial Kripke Structure M
Step 1.2: Replicate Multiple Assignments (M ′)
Step 1.3: Extract a Correct High-Atomicity Program (P )
Step 1.4: Simplify the Guards

—Phase 2: Decompose the High-Atomicity Program
Step 2.1: Introduce the Externally Visible Location Counters
Step 2.2: Decompose the Test-and-Set Arcs
Step 2.3: Decompose the Multiple-Writing Arcs (P ′) and

Number the Local States (P ′′)

—Phase 3: Generate the Global-State Transition Diagram (M ′′)

—Phase 4: Delete Portions of the Global-State Transition Diagram that Violate
the Specification

Step 4.1: Label the Reachable States
Step 4.2: Prune Structure So That Labels Are Satisfied (M ′′′)

—Phase 5: Extract a Correct Atomic Read/Write Program
Step 5.1: Ensure Atomic Read/Write Form (M ′′′)
Step 5.2: Extract the Atomic Read/Write Program (P ′′′)

5. EXTENDED EXAMPLE: TWO-PROCESS MUTUAL EXCLUSION

We now present a detailed example of the use of our method to synthesize an
atomic read/write solution to the two-process mutual exclusion problem. We show
the working of each phase of our method, along with the intermediate results.

We note that whenever the atomic propositions in AP i are mutually exclusive
and exhaustive (in other words, every atomic proposition is true in exactly one
i-state, with no two atomic propositions being true in the same i-state), then we
can encode the externally visible location counter Li efficiently by setting its value
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1

1

1

2

1 2

1
x := 2

2

2 2

2, x := 1

N1 2 N2 N1 1 N2

T1 2 N2 N1 1 T2

C1 1 T2 T1 2 C2

x := 1

1, x := 2

The initial state set is { [N1 2 N2], [N1 1 N2] }

x := 2x := 1

T1 1 T2 T1 2 T2 N1 1 C2C1 2 N2

2, x := 11, x := 2

12

Fig. 9. Global-state transition diagram for the two-process mutual exclusion problem after appli-
cation of the propagation rules in Section 4.1.2 to Figure 2.

to the name of the proposition that is currently true, rather than the singleton set
containing that proposition. That is, if Qi ∈ L[si] then set si(Li) to “Qi” rather
than to {“Qi”}.

5.1 Phase 1

We discuss each step in turn.

Step 1.1 : Derive (or specify) the initial Kripke Structure. We start with the
two-process mutual exclusion specification given in Section 2.4, and apply the CTL
decision procedure of Emerson and Clarke [1982] to it. Figure 2 shows the resulting
model.

Step 1.2 : Replicate Multiple Assignments. This step replicates the assignments
x := 2, x := 1 in Figure 2. Figure 9 shows the resulting Kripke structure. The
assignment x := 2 which, in Figure 2 is executed only in the P1-transition [N1 T2]
1,x:=2−→ [T1 x = 2 T2], is, in Figure 9, executed in every P1-transition starting in a
state whose P1-component is N1 and ending in a state whose P1-component is T1,

i.e., the transitions [N1 2 N2]
1,x:=2−→ [T1 2 N2], [N1 1 N2]

1,x:=2−→ [T1 2 N2], [N1 1 T2]
1,x:=2−→ [T1 2 T2], and [N1 1 C2]

1,x:=2−→ [T1 2 C2]. x := 1 is similarly replicated.
Another point is that every state in Figure 9 assigns a value to x, whereas some
states of Figure 2 do not (note our convention in Figure 9, which we use henceforth,
of just writing down the value of x, rather than “x = value,” as in Figure 2). Thus
we see that every state (except [T1 x = 2 T2] and [T1 x = 1 T2]) in Figure 2
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(N2 ∧ x = 1) ∨
(T2 ∧ x = 1) ∨

(N2 ∧ x = 2) ∨

(C2 ∧ x = 1)
→

(N1 ∧ x = 2) ∨
(T1 ∧ x = 2) ∨

(N1 ∧ x = 1) ∨

(C1 ∧ x = 2)
→

N1

x := 2
T1 C1

N2

x := 1
T2 C2

(N2 ∧ x = 2) ∨ (T2 ∧ x = 1)

(N1 ∧ x = 1) ∨ (T1 ∧ x = 2)

(N2 ∧ x = 2) ∨ (T2 ∧ x = 1)

(N1 ∧ x = 1) ∨ (T1 ∧ x = 2)

Fig. 10. Program for the two-process mutual exclusion problem extracted from the Kripke struc-
ture of Figure 9.

potentially represents two states—one for each element of the domain {1, 2} of x.
For example, in Figure 9, [N1 N2] has been split into two initial states, [N1 1 N2]
and [N1 2 N2].

Step 1.3 : Extract a Correct High-Atomicity Program. Figure 10 shows the pro-
gram extracted from the Kripke structure of Figure 9, using Definition 2.3.

Step 1.4 : Simplify the Guards. Figure 11 illustrates the synchronization skeletons
that result when the guards in Figure 10 are simplified. The guard (N2 ∧ x =
2)∨ (T2 ∧x = 1) in P1 (from T1 to C1) has been simplified to N2 ∨x = 1, using the
conjunct elimination method of step 1.4. For example, from Figure 9, we see that
the condition for replacing (N2 ∧ x = 2) ∨ (T2 ∧ x = 1) by N2 ∨ (T2 ∧ x = 1) is

[T1 x = 2 N2] |= (N2 ⇒ x = 2) and
[T1 x = 1 T2] |= (N2 ⇒ x = 2) and
[T1 x = 2 T2] |= (N2 ⇒ x = 2) and
[T1 x = 2 C2] |= (N2 ⇒ x = 2).

This is easily verified. In a similar manner, we can then replace N2 ∨ (T2 ∧ x = 1)
by N2 ∨ x = 1.

Using the guard elimination method of step 1.4, the guard (N2∧x = 2)∨(N2∧x =
1)∨(T2∧x = 1)∨(C2∧x = 1) in P1 in Figure 10 has been replaced by true. Likewise,
the guard (N2 ∧ x = 2) ∨ (T2 ∧ x = 1) in P1 (from C1 to N1) has been simplified
to true. The program resulting from all of these guard simplifications (applied
symmetrically to P2 as well) is shown in Figure 11.
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N2 T2 C2

N1 T1 C1

true

true

x := 2

x := 1

N2 ∨ x = 1

N1 ∨ x = 2

Fig. 11. Two-process mutual exclusion program after guard simplification.

N2 T2 C2

N1 T1 C1

L1 := N1

L2 := N2

L2 = N2 ∨ x = 1→ L1 := C1

L1 = N1 ∨ x = 2→ L2 := C2

x := 2//L1 := T1

x := 1//L2 := T2

Fig. 12. Two-process mutual exclusion program after introduction of the externally visible location
counters.

5.2 Phase 2

We discuss each step in turn.

Step 2.1: Introduce the Externally Visible Location Counters. Figure 12 shows
the program of Figure 11 after the externally visible location counters L1 and L2

have been introduced. Note that we have used the convention (mentioned at the
beginning of Section 5) of writing Li = “Qi” instead of Qi ∈ Li when si(Li) assigns
true to exactly one proposition. This convention is used in the sequel for the mutual
exclusion example (but we abuse notation slightly by omitting the quotation marks
around the atomic proposition names).

Step 2.2: Decompose the Test-and-Set Arcs, and Step 2.3: Decompose the Multiple-
Writing Arcs and Number the Local States. Figure 13 shows the program of Fig-
ure 12 after all arcs have been decomposed. Note that the arc labeled x := 2//L1 :=
T1 has been decomposed into two sequences, each sequence corresponding to one
of the two possible serializations of the two write operations x := 2 and L1 := T1.

In Figure 13, there are three local states in the skeleton for P1 with the same
atomic proposition valuation: they all assign false , true, false to N1, T1, C1 respec-
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N2

T2

N2

T2 T2 C2

L2 := T2 x := 1

x := 1 L2 := T2

L1 = N1 ∨ x = 2 L2 := C2

L2 := N2

L2 = N2 ∨ x = 1
T1 C1T1

L1 := C1

x := 2

L1 := T1x := 2

L1 := N1

L1 := T1

N1

T1

N1

Fig. 13. Decomposed two-process mutual exclusion program.

L2 := T2 x := 1

x := 1 L2 := T2

L2 := C2

L2 := N2

L1 := C1

x := 2

L1 := T1x := 2

L1 := N1

L1 := T1

N1
1

T 1
1

N2
1

T 2
1 T 3

1 C1
1

N1
2

T 1
2

N2
2

T 2
2 T 3

2 C1
2

L2 = N2 ∨ x = 1

L1 = N1 ∨ x = 2

Fig. 14. Decomposed two-process mutual exclusion program after all local states have been num-
bered.

tively (these states being shown as circles containing T1, as per our convention for
figures). To distinguish local states with the same atomic proposition valuation,
we now number the local states, as discussed in Section 3.2. Figure 14 shows the
result of performing this numbering on the program in Figure 13. The numbers are
shown as superscripts on the atomic proposition(s) displayed in each local state.
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2

T 2
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2

T 2
1 1 T 2
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T 2
1 2 C1

2
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1 1 N1

2

T 1
1 2 N1

2

T 2
1 2 N1

2 N1
1 1 T 2
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T 3
1 2 T 2
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2

N2
1 2 T 2
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1 1 T 3
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N1
1 1 C1

2

N2
1 2 C1

2

T 3
1 2 T 3

2

1

C1
1 2 T 1

2 T 3
1 1 T 2

2

state s

2, x :=1 1, x :=2

1, x :=2 2, x :=1

1, x :=2
2, x :=1

2, x :=1 1, x :=2

2, x :=1 1, x :=2

2, x :=1

1, x :=2 1, x :=2

2, x :=1 1, x :=2

2, x :=1

1, x :=2

1 2

1 2

N2
1 2 N2

2

T 2
1 2 N2

2

T 3
1 2 N2

2

C1
1 2 C1

2

C1
1 1 N2

2

C1
1 2 N1

2

T 3
1 2 N1

2

N1
1 2 N1

2

N2
1 2 N1

2 N1
1 2 T 1

2 T 1
1 1 N1

2

Fig. 15. Partial global-state transition diagram of the program of Figure 14.

We use this convention of superscripting all the displayed atomic propositions of a
local state with the number of that local state.

5.3 Phase 3

Figure 15 shows (part of) the global-state transition diagram of the program in
Figure 14. The solid lines indicate paths that correspond to (decompositions of)
paths in Figure 9. These paths represent the same interleavings of transitions as
in Figure 9. The single-dashed path shown represents a “new” interleaving, due to
the decomposition of the arcs (of the program in Figure 12). There are many more
such new paths, but they have been omitted for sake of clarity of the figure. Also,
the assignments to L1, L2 have been omitted, since they can be easily inferred from
the begin and end states of each transition.

5.4 Phase 4

We discuss each step in turn.

Step 4.1: Label the Reachable States. Taking as our specification that given for
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2, x :=12
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state t

Fig. 16. Partial global-state transition diagram of the program of Figure 14 after some deletions
have been performed.

the two-process mutual exclusion problem in Section 2.4, we see, that in Figure 15,
every state will be labeled with ¬(C1 ∧ C2). Also, all states satisfying T1 (T2) will
be labeled with AFC1 (AFC2) respectively.

Step 4.2: Prune Structure So that Labels Are Satisfied. Figure 15 contains a state
s = [C1

1 2 C1
2 ] (at the end of the dashed path) such that ¬(C1 ∧ C2) ∈ label(s),

and s 6|= ¬(C1 ∧ C2). Hence, by the Prop-rule, s must be made unreachable. A

deletable transition along a path from an initial state to s is [N 1
1 1N1

2 ]
2,x:=1−→ [N1

1 1N2
2 ].

Since this transition is a member of an unguarded family, the entire family must be
deleted. Figure 16 shows (part of) the resulting Kripke structure. Again, there is a
state t (in Figure 16) such that ¬(C1 ∧ C2) ∈ label(t), and t 6|= ¬(C1 ∧ C2), and so
t must be made unreachable by the Prop-rule. This can be achieved by the dele-

tion of the (unguarded) family containing the transition [N 1
1 2 N1

2 ]
1,x:=2−→ [N2

1 2 N1
2 ].

The (reachable part of the) complete Kripke structure that results after all deletions
have been made is shown in Figure 17.
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Fig. 17. Global-state transition diagram of the program of Figure 14 after all deletions have been
performed.

5.5 Phase 5

We discuss each step in turn.

Step 5.1: Ensure Atomic Read/Write Form. Figure 17 gives M ′′′ for our ex-
tended example. There is exactly one guarded and nonwriting P1-family F in M ′′′,
consisting of the following transitions:

[T 2
1 2 N1

2 ]
1−→ [T 3

1 2 N1
2 ]

[T 2
1 1 T 2

2 ]
1−→ [T 3

1 1 T 2
2 ]

We can verify, by inspection, that this family is single-reading. The single P2-family
in M ′′′ that is guarded and nonwriting is also seen to be single-reading. Thus, the
function CHECK-STRUCTURE returns true, and so no states need be deleted.

Step 5.2: Extract the Final Atomic Read/Write Program. Consider first the
guarded and nonwriting P1-family F in M ′′′, given above. The only simple terms
that do not generate transitions outside F are “N2 ∈ L2” and “x = 1.” Thus, in
the invocation CHECK-FAMILY(M ′′′,F), ok is set to {“N2 ∈ L2”, “x = 1”}.
Since “N2 ∈ L2” generates [T 2

1 2 N1
2 ]

1−→ [T 3
1 2 N1

2 ], and “x = 1” generates
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[T 2
1 1 T 2

2 ]
1−→ [T 3

1 1 T 2
2 ], we see that COV(F , ok) is true in this case. Hence,

CHECK-FAMILY(M ′′′,F) computes the guard “N2 ∈ L2 ∨ x = 1” for the cor-
responding extracted arc (this is returned as the final value of F .srguard). Thus
the single-reading arc (T 2

1 , N2 ∈ L2 ∨ x = 1→ skip, T 3
1 ) is extracted.

The unguarded P1-families in Figure 17 and the corresponding extracted arcs are
as follows:

[N1
1 2 N1

2 ]
1−→ [T 1

1 2 N1
2 ]

[N1
1 1 N1

2 ]
1−→ [T 1

1 1 N1
2 ]

[N1
1 2 T 1

2 ]
1−→ [T 1

1 2 T 1
2 ]

[N1
1 1 T 1

2 ]
1−→ [T 1

1 1 T 1
2 ]

[N1
1 1 T 2

2 ]
1−→ [T 1

1 1 T 2
2 ]

[N1
1 1 T 3

2 ]
1−→ [T 1

1 1 T 3
2 ]

[N1
1 1 C1

2 ]
1−→ [T 1

1 1 C1
2 ]

from which the unguarded arc (N1
1 , true → L1 := {T1}, T 1

1 ) is extracted, and

[T 1
1 2 N1

2 ]
1,x:=2−→ [T 2

1 2 N1
2 ]

[T 1
1 1 N1

2 ]
1,x:=2−→ [T 2

1 2 N1
2 ]

[T 1
1 2 T 1

2 ]
1,x:=2−→ [T 2

1 2 T 1
2 ]

[T 1
1 1 T 1

2 ]
1,x:=2−→ [T 2

1 2 T 1
2 ]

[T 1
1 1 T 2

2 ]
1,x:=2−→ [T 2

1 2 T 2
2 ]

[T 1
1 1 T 3

2 ]
1,x:=2−→ [T 2

1 2 T 3
2 ]

[T 1
1 1 C1

2 ]
1,x:=2−→ [T 2

1 2 C1
2 ]

from which the unguarded arc (T 1
1 , true → x := 2, T 2

1 ) is extracted, and

[T 3
1 2 N1

2 ]
1−→ [C1

1 2 N1
2 ]

[T 3
1 2 T 1

2 ]
1−→ [C1

1 2 T 1
2 ]

[T 3
1 1 T 2

2 ]
1−→ [C1

1 1 T 2
2 ]

from which the unguarded arc (T 3
1 , true → L1 := {C1}, C1

1 ) is extracted, and

[C1
1 2 N1

2 ]
1−→ [N1

1 2 N1
2 ]

[C1
1 2 T 1

2 ]
1−→ [N1

1 2 T 1
2 ]

[C1
1 1 T 2

2 ]
1−→ [N1

1 1 T 2
2 ]

from which the unguarded arc (C1
1 , true → L1 := {N1}, N1

1 ) is extracted.

These extracted arcs constitute the synchronization skeleton for P1 in Figure 18.
The synchronization skeleton for P2, also shown in this figure, is extracted from
the Kripke structure of Figure 17 in a similar manner. Figure 18 gives the syn-
thesized atomic read/write program for our extended example: the two-process
mutual exclusion problem. Note that we use the convention given in the beginning
of Section 5.
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[L1 = N1 num1 = 1 L2 = N2 num2 = 1 x = 2] }
The initial state set is { [L1 = N1 num1 = 1 L2 = N2 num2 = 1 x = 1],

N1
1 T 1

1 T 2
1 T 3

1 C1
1

x := 2 L2 = N2 ∨ x = 1L1 := T1 L1 := C1

L1 := N1

N1
2

L2 := T2

T 1
2 T 2

2 T 3
2 C1

2

x := 1 L1 = N1 ∨ x = 2 L2 := C2

L2 := N2

Fig. 18. Atomic read/write program for the two-process mutual exclusion problem.

The initial state set is { [s1 ¬Q1 s2 ¬Q2 TURN = 1],

[s1 ¬Q1 s2 ¬Q2 TURN = 2] }

v1s1

¬Q2 ∨ TURN = 2Q1 := true TURN := 1

Q1 := false

s2

¬Q1 ∨ TURN = 1

v2

Q2 := true TURN := 2

Q2 := false

t1 u1

u2t2

Fig. 19. Petersons solution for the two-process mutual exclusion problem.

5.6 Comparison with Peterson’s Mutual Exclusion Solution

It is instructive to compare our synthesized solution to the two-process mutual
exclusion problem, given in Figure 18, with the well-known solution of Peterson
[1981], which is shown in Figure 19. s1, t1, u1, v1 (s2, t2, u2, v2) are names for local
states of P1 (P2) respectively. s1, s2 are the noncritical states, and v1, v2 are the
critical states.

We see that TURN plays the same role as x, with “flipped” values, so that TURN
= 2 gives priority to P1, whereas x = 1 gives priority to P1. We also see that Q1
is a boolean variable that indicates whether or not P1 is in its neutral state, i.e.,
Q1 = false is “equivalent” to N1 = true. We note that Peterson’s solution only
has four local states in each process, whereas ours has five (with one binary-valued
shared variable in both solutions). This is explained by noting that our synthesis
method is suboptimal in the following respect. Inspecting Figure 11, we note that
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the only atomic proposition in AP2 = {N2, T2, C2} that is tested by P1 is N2.
In other words, N2 is the only atomic proposition that needs to be “externally
visible.” The propositions T2 and C2 are not tested by P1 and so do not have to
be externally visible. Thus, we could optimize the synthesis method by “grouping”
only the atomic propositions of each process Pi that are referenced by some Pj , j 6=
i, into the externally visible location counter Li. The remaining propositions could
then be grouped into an internal location counter ILi. In the mutual exclusion
example, we see that L2 (L1) would incorporate just N2 (N1) respectively, while
IL2 (IL1) would incorporate T2 (T1) and C2 (C1) respectively. Thus, for example,
the arc (T2, N1 ∨ x = 2 → skip, C2) in Figure 11 becomes, upon introduction
of the location counters, the arc (T2, L1 = N1 ∨ x = 2 → IL2 := C2, C2), cf.
Figure 12. Since IL2 is not externally visible, a write operation to it does not
count as a write to shared data, and so, in the decomposition step of Phase 2, the
arc (T2, L1 = N1 ∨ x = 2 → IL2 := C2, C2) can be left as is, and considered to
be a guarded and nonwriting arc, whereas the analogue arc in Figure 12, namely
(T2, L1 = N1 ∨ x = 2 → L2 := C2, C2), has to be decomposed into the guarded
and nonwriting arc (T2, L1 = N1 ∨ x = 2 → skip, T2), followed by the unguarded
and single-writing arc (T2, true → L2 := C2, C2), cf. Figure 13. Avoiding this
decomposition would result in a mutual exclusion program with four local states
per process, which would be effectively isomorphic to Peterson’s program.

Since this optimization is straightforward in principle, and does not add any
important capabilities to our method, we omit it for sake of simplicity.

5.7 Another Example: The Barrier Synchronization Problem

In this problem, each process consists of a cyclic sequence of two terminating phases,
phase A and phase B. Process i (i ∈ {1, 2}) is in exactly one of four local states,
SAi, EAi, SBi, EBi, corresponding to the start of phase A, the end of phase A,
the start of phase B, and the end of phase B, respectively. The CTL specification
is the conjunction of the following:

(1) Initial State (both processes are initially at the start of phase A): SA1 ∧ SA2

(2) The start of phase A is immediately followed by the end of phase A:
AG(SAi ⇒ AYiEAi)

(3) The end of phase A is immediately followed by the start of phase B:
AG(EAi ⇒ AYiSBi)

(4) The start of phase B is immediately followed by the end of phase B:
AG(SBi ⇒ AYiEBi)

(5) The end of phase B is immediately followed by the start of phase A:
AG(EBi ⇒ AYiSAi)

(6) Pi is always in exactly one of the states SAi, EAi, SBi, EBi:
AG(SAi ≡ ¬(EAi ∨SBi ∨EBi)) ∧ AG(EAi ≡ ¬(SAi ∨SBi ∨EBi)) ∧
AG(SBi ≡ ¬(SAi ∨ EAi ∨ EBi)) ∧ AG(EBi ≡ ¬(SAi ∨EAi ∨ SBi))

(7) P1 and P2 are never simultaneously at the start of different phases:
AG(¬(SA1 ∧ SB2)) ∧ AG(¬(SA2 ∧ SB1))

(8) P1 and P2 are never simultaneously at the end of different phases:
AG(¬(EA1 ∧ EB2)) ∧ AG(¬(EA2 ∧EB1))
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(9) A transition by one process cannot cause a transition by another, i, j ∈ {1, 2},
i 6= j (interleaving model of concurrency):

AG(SAi ⇒ AYjSAi) ∧ AG(EAi ⇒ AYjEAi) ∧
AG(SBi ⇒ AYjSBi) ∧ AG(EBi ⇒ AYjEBi)

(10) It is always the case that some process can move: AGEXtrue

The initial state set is { [SA1 SA2] }

SA1 ∨EA1 EA1 ∨ SB1 SB1 ∨ EB1
SA2

EB1 ∨ SA1

SA2 ∨EA2 EA2 ∨ SB2 SB2 ∨ EB2
SA1

EB2 ∨ SA2

EB1

EB2

SB1EA1

EA2 SB2

Fig. 20. Program for the barrier synchronization problem.

SA1
2

EB2
2

SA1
1

EB2
1

SA2
1 EA1

1

SB2
1EB1

1

L1 = SA1 ∨ L1 = EA1 SA2
2

EB1
2

EA1
2

SB2
2

EA2
2

L1 = EB1 ∨ L1 = SA1

L2 = EB2 ∨ L2 = SA2 L1 := EB1

L2 := EA2

L2 := EB2

L1 := SA1

L2 = SA2 ∨ L2 = EA2 L1 := EA1

L2 := SA2

L2 = EA2 ∨ L2 = SB2

L2 = SB2 ∨ L2 = EB2

L1 = EA1 ∨ L1 = SB1

L1 = SB1 ∨ L1 = EB1

L1 := SB1

L2 := SB2

EA2
1

SB1
1

SB1
2

The initial state set is { [SA1
1 SA

1
2], [SA2

1 SA
1
2], [SA1

1 SA
2
2], [SA2

1 SA
2
2] }

Fig. 21. Atomic read/write program for the barrier synchronization problem.

(7) and (8) together specify the synchronization aspect of the problem: P1 can
never get one whole phase ahead of P2 (and vice-versa). Figure 20 presents the
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program synthesized by the Emerson and Clarke [1982] method from the barrier
synchronization specification. Figure 21 presents the atomic read/write program
synthesized from this specification by our synthesis method.

6. TRANSLATING SYNCHRONIZATION SKELETON PROGRAMS INTO PROGRAMS
THAT USE ATOMIC REGISTERS

Our current model of computation admits arcs that read or write an externally
visible variable (either Li or a shared variable) and simultaneously modify a local
variable, namely the variable encoding the local-state numbering function num.
Hence, strictly speaking, we are not adhering to a single atomic read/single atomic
write model of computation, which allows a single atomic read or write operation at
a time, whether of a local or a shared variable. Also, the synchronization skeleton
model is really based upon the use of an await primitive to evaluate guards that
reference nonlocal variables: the arc (si, B → skip, ti) is essentially the same as an
“await B” statement. The await primitive is generally regarded as a higher-level
primitive than atomic reads and writes of registers. This is because implementa-
tion of an await involves busy waiting : the nonlocal variables referenced in the
await have to be read repeatedly until the await condition becomes true (if ever).
Thus, as long as the await condition is false, the nonlocal variables are being read,
but these read operations are “hidden” in that they are not reflected in the tran-
sitions generated by the program containing the await—the await either occurs
atomically or not at all. We now present a method of translating the synthesized
synchronization skeleton programs into programs that use n-bit atomic registers
[Singh et al. 1994] to implement all variables that are accessed by more than one
process. We proceed as follows.

Each process P ′′′i of P ′′′ is implemented as a single do statement Di (in Dijkstra’s
guarded command language [Dijkstra 1976]). We make no assumptions about the
level of atomicity of the implementation of guarded commands, e.g., the evaluation
of guards is not necessarily atomic—it can, for example, be a sequence of opera-
tions, which first reads all the referenced variables, and then evaluates the guard.
Associated with each Di are the variables Li and numi. Li is the externally visible
location counter, and numi is an integer variable that contains the number of the
current i-state. Li is readable (but not writable) by Dj , j 6= i, and numi is local
to Di, i.e., not readable or writable by any Dj , j 6= i. Additionally, we introduce
a (local to Di) variable LLi. LLi keeps track of the externally visible variable Li,
so that we avoid making two references to externally visible variables in a single
guarded command (this is necessary for technical reasons). Finally, we also have
the shared variables in SH, which are shared by all Di, i ∈ [1 : K].

To emphasize the atomic registers model, we use read, write to indicate read and
write operations on nonlocal variables (i.e., variables that are visible to more than
one Di, i ∈ [1 : K], that is, the shared variables in SH and the Li, i ∈ [1 : K]).
Each Li, i ∈ [1 : K], is implemented by a multiple-reader, single-writer, n-bit atomic
register, and each x ∈ SH is implemented by a multiple-reader, multiple-writer, n-
bit atomic register [Singh et al. 1994].

The guarded commands of each Di are derived as follows.
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—An unguarded and single-writing arc in Pi gives rise to a single guarded command.
There are two cases, depending on the form of the arc.

(1) If the arc has the form (si, true → x := c, ti), then the corresponding guarded
command is

LLi = L[si] ∧ numi = num(si)→ write(x, c);
numi := num(ti).

(2) If the arc has the form (si, true → Li := L[ti], ti), then the corresponding
guarded command is

LLi = L[si] ∧ numi = num(si)→ write(Li,L[ti]);
LLi := L[ti];
numi := num(ti).

—A single-reading and nonwriting arc ARi = (si,
∨
k∈[1:n] bk → skip, ti) in P ′′′i

gives rise to n guarded commands, one guarded command for each k in [1 : n],
as follows. We introduce a local variable ctrARi (unique to ARi), which is a
counter modulo n. Its purpose is to ensure that every disjunct of

∨
k∈[1:n] bk is

tested for truth, so that if
∨
k∈[1:n] bk is continuously true, then this is eventually

detected. We also introduce a local boolean variable Lbi (unique to P ′′′i ), used
to temporarily store the “sampled” value of bk. For each k in [1 : n], we have the
following guarded command in Di

LLi = L[si] ∧ numi = num(si) ∧ ctr = k → Lbi := eval(bk);
if Lbi → numi := num(ti)
[] ¬Lbi → ctr := (k mod n) + 1
fi.

The function eval, whose purpose is to return the value of a simple term in the
current global state, is given below. It takes a simple term as argument, reads
the shared variable or externally visible location counter in the term, and then
returns the value of the term.

boolean function eval(b)
/* b is assumed to be either a simple term, or the constant true

TLLi, Lxi are local variables unique to P ′′′i */

if b
.
= “Qj ∈ Lj”→ TLLi := read(Lj);

return(Qj ∈ TLLi)
[] b

.
= “x = c”→ Lxi := read(x);

return(Lxi = c)
[] b

.
= “true”→ return(true)

fi

In practice, eval is most efficiently implemented as an in-line macro. The tests
on the syntactic form of b (b

.
= “Qj ∈ Lj”, b

.
= “x = c”, b

.
= “true”) can then be

dispensed with. It is, however, technically convenient for our purposes to use eval
to encapsulate all the read operations.

The translation of P ′′′ = P ′′′1 ‖ · · · ‖P ′′′K into guarded command notation is then
given byD = D1‖ · · · ‖DK , where eachDi, i ∈ [1 : K], is the translation of P ′′′i given
above, and ‖ still denotes parallel composition under a nondeterministic interleaving
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D1 :: do
LL1 = N1 ∧ num1 = 1 → write(L1, T1); LL1 := T1; num1 := 1

[] LL1 = T1 ∧ num1 = 1 → write(x, 2); num1 := 2
[] LL1 = T1 ∧ num1 = 2 ∧ ctr1 = 1 → Lb1 := eval(L2 = N2);

if Lb1 → num1 := 3
[] ¬Lb1 → ctr1 := 2
fi

[] LL1 = T1 ∧ num1 = 2 ∧ ctr1 = 2 → Lb1 := eval(x = 1);
if Lb1 → num1 := 3
[] ¬Lb1 → ctr1 := 1
fi

[] LL1 = T1 ∧ num1 = 3 → write(L1, C1);LL1 := C1;num1 := 1;<cs1>
[] LL1 = C1 ∧ num1 = 1 → write(L1, N1); LL1 := N1; num1 := 1
od

‖
D2 :: do

LL2 = N2 ∧ num2 = 1 → write(L2, T2); LL2 := T2; num2 := 1
[] LL2 = T2 ∧ num2 = 1 → write(x, 1); num2 := 2
[] LL2 = T2 ∧ num2 = 2 ∧ ctr2 = 1 → Lb2 := eval(L1 = N1);

if Lb2 → num2 := 3
[] ¬Lb2 → ctr2 := 2
fi

[] LL2 = T2 ∧ num2 = 2 ∧ ctr2 = 2 → Lb2 := eval(x = 2);
if Lb2 → num2 := 3
[] ¬Lb2 → ctr2 := 1
fi

[] LL2 = T2 ∧ num2 = 3 → write(L2, C2);LL2 := C2;num2 := 1;<cs2>
[] LL2 = C2 ∧ num2 = 1 → write(L2, N2); LL2 := N2; num2 := 1
od

Fig. 22. Atomic register guarded commands program for two-process mutual exclusion. <cs1>,
<cs2> are the critical sections of D1, D2, respectively.

model of concurrency. Figure 22 shows the result of applying this translation to
the program of Figure 18.

Let D̂ = D̂1‖ · · · ‖D̂K be a large-grain version of D in which the execution of
each guarded command is atomic, that is, the computations of D̂ are sequences of
segments, each segment consisting entirely of all of the operations resulting from a
single execution of a single guarded command. Let MD = (SD0 , S

D, RD), M̂D =
(ŜD0 , Ŝ

D, R̂D) be the global-state transition diagrams generated by the execution
of D, D̂ respectively (the formal definitions of MD, M̂D are similar to the global-
state transition diagram definition (2.2.2), and are a straightforward exercise in
operational semantics). A global state u of D (or D̂) is a mapping of the variables
of D onto their appropriate domains. SD is the set of all such global states. ŜD is
the set of all such global states that assign the same values to Li and LLi, for all
i ∈ [1 : K].

Define an empty transition of M̂D to be a transition of M̂D in which the eval
function is invoked, and returns false . Thus an empty transition tests a disjunct
of some guard in some process P ′′′i and finds it false, and so no P ′′′i -transition is

“simulated” by D̂i. It is possible, therefore, to have fullpaths with a suffix consisting
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entirely of (the interleaved operations of) empty transitions, which means that no
real progress in the computation of P ′′′ is being made. The only thing that is
occurring is that the same false guards are being tested over and over again.19

Likewise, define an empty transition of MD to be a transition of MD resulting
from an execution of the eval function which returns false (recall that in MD there
will be several transitions resulting from a single execution of eval, whereas in
M̂D, execution of eval induces exactly one transition, i.e, there is a one-to-one
correspondence).

We therefore impose the following progress condition on the interleaving of oper-
ations of the Di (in both M̂D and MD).

Progress Condition. No fullpath of M̂D,MD has a suffix composed entirely of
empty transitions.

The progress condition is a restriction only on the infinite behavior of M̂D,MD—
it cannot be violated by any finite prefix of some path in M̂D,MD. In form,
therefore, it resembles a fairness notion [Francez 1986]. Its sole purpose is to rule
out infinite paths in which (one or more) false guards in P ′′′ are tested continuously
from some point onward.

The following theorem presents our main correctness result for the atomic-registers-
based implementation. It essentially states that the guarded command implemen-
tation D satisfies the original problem specification (with the local structure spec-
ifications appropriately modified).

Theorem 6.1 (Soundness Theorem for Registers Model). If SD0 6= ∅,
and f is a conjunct of the given specification, and the progress condition holds,
then D is an atomic registers program that satisfies f ∗, where f∗ = f if f has
one of the forms h, AGh, AG(p ⇒ A[qUr]), and f ∗ = AG(pi ⇒ EXi(pi ∨ qi)),
AG(pi ⇒ AYi(pi ∨ qi)) if f = AG(pi ⇒ EXiqi), AG(pi ⇒ AYiqi) respectively, and
where p, q, r, h ∈ LO(AP ,¬,∧), pi, qi ∈ LO(AP i,¬,∧).

The proof is omitted due to lack of space, and can be found in [Attie 1995]. Essen-
tially, we show that M iv and M̂D agree on all CTL formulae of the form f ∗, and
so do M̂D and MD. The relation between M iv and M̂D is established by showing
that there is a one-to-one correspondence between a transition in M iv that arises
from the execution of some arc ARi of P ′′′, and the transition in M̂D that arises
from the execution of the guarded command in D that is derived from ARi. This
establishes a bisimulation between M iv and M̂D, from which it follows that M iv

and M̂D satisfy the same CTL formulae [Browne et al. 1988]. The relation between
M̂D and MD is established by using the results of Lamport [1990], which shows
that under certain conditions a class of correctness properties is preserved when
a sequence of actions is combined into a single atomic action (provided that the
sequence contains only a single access to a single shared variable), or the atomic
action is decomposed into the sequence. The main result of Lamport [1990] then

19If
W
k∈[1:n] bk is false, then all of the bk, k ∈ [1 : n] are false. Hence eval(bk) returns false for all

k ∈ [1 : n].
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implies that M̂D and MD agree on all formulae in our specfication language. The
reader is referred to Attie [1995] for details of the proof.

Applying Proposition 4.5.2.1 then allows us to conclude that D satisfies f ∗. Fur-
thermore, D is an atomic registers program by construction of the translation pro-
cedure from synchronization skeleton notation given above.

6.1 Implementing the Progress Condition

We now show that implementing the progress condition does not unduly restrict
the scheduling of D.

Claim. Let u be an arbitrary reachable state in MD, and let πD be an arbitrary
maximal path of MD starting in u. Then there exists a state v along πD , and a
guarded command GC in D, such that v(GC.guard) = true, and execution of GC
in v results in a nonempty transition.

A proof of this claim is provided in Attie [1995].
Thus, we see that implementing the progress condition does not restrict the

scheduling of D (except to prohibit infinite empty paths), since, from any reachable
state, no matter which path is chosen by the scheduler, it will always be possible
to satisfy the progress condition, i.e., to eventually execute a nonempty transition.

In practice, the progress condition could be implemented by adding to each Di

a variable flag−emptyi, which would be set to true whenever eval returns false ,
and set to false whenever eval returns true or a write is executed. The scheduler
would then check for states in which

∧
i∈[1:K] flag−emptyi is true. All that is

required is to attempt to detect
∧
i∈[1:K] flag−emptyi under the assumption that

it is eventually stable. In the event of detection, the scheduler must intervene,
but may wait arbitrarily long to do so. Intervention takes the form of finding an
enabled guarded command whose execution leads to a nonempty transition, (from
the claim, there must be at least one such guarded command) and executing it.

7. ANALYSIS AND DISCUSSION

7.1 Space Complexity

Consider the finite-state model which is input to Phase 1. M is either given di-
rectly, as input to our synthesis method, or is generated by the synthesis method of
Emerson and Clarke [1982], from a CTL specification. In the case that M is gen-
erated by the Emerson and Clarke [1982] method, a shared variable is introduced
whenever two or more global states occur that are propositionally equivalent, but
not temporally equivalent in the sense that they differ in some of the temporal for-
mulae that they satisfy (see Section 2.6). The shared variable serves to distinguish
such states from each other. We shall assume that a directly given M also has
this characteristic. This is a reasonable assumption, since states that are proposi-
tionally inequivalent can always be distinguished by reading the externally visible
location counters (which encode the values of the atomic propositions), and so no
shared variable is needed to distinguish these states from each other. In the worst
case, the number of sets of propositionally equivalent but temporally inequivalent
states is linear in the size of M , and therefore so is the number of shared variables.
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Hence, the refinement of the model M effected by Phases 1 and 2 can lead to an ex-
ponential blowup, causing the method to have (at least) double-exponential space
complexity. To avoid this, we note that any finite-state model M can be easily
modified so that it uses at most one shared variable.

Let s̄, t̄ denote different sets of propositionally equivalent but temporally inequiv-
alent global states in M . Let xs, xt denote the shared variables that are introduced
to distinguish all the occurrences of global states in s̄, t̄ respectively. xs is written
only upon entry to states in s̄ and read only upon exit from states in s̄, likewise for
xt. Since s̄ and t̄ have no common members (by definition), it should be possible
to “reuse” xs to distinguish among the global states in t̄. Even in the case where
there is a transition from a state in s̄ to a state in t̄ this would work: the transition
would be labeled with a test (to determine which state in s̄ is in fact the current
global state) and set (to record which global state in t̄ is being entered). We re-
fer the reader to Emerson and Clarke [1982] for more discussion of this technique,
while also noting that it is applicable to directly given models M , as well as those
generated by the Emerson and Clarke [1982] synthesis method.

With only one shared variable present, we see that once all atomic propositions
of a process have been consolidated into the externally visible location counter,
then the largest multiple-assignments that could occur would have size two. Hence,
in the decomposition carried out in Phase 2, each local state can be refined into
at most five local states (with the same propositional valuation but different local
state numbers—see Section 3.2). This is because one new local state is introduced
for the “test,” and three new local states are introduced for the two serializations
of the multiple-assignment.

Suppose that the high-atomicity program extracted from M in Phase 1 has K
processes with O(N) local states each. By Definition 2.3, every local state in (some
process Pi of) the program is the projection onto Pi of some global state in M .
Thus, M contains O(NK) states. By the previous paragraph, in any intermediate
program generated by the method, (including the final atomic read/write program),
there are K processes each containing O(5N) local states, i.e., O(N) local states.
Thus, the largest intermediate global-state transition diagram generated by our
method contains O(NK) states. Thus, our method has space complexity O(NK),
i.e., the same order of (space) complexity as the finite-state model M that is input
to the method. This is clearly the best that we can do.

7.2 Related Work

The refinement of concurrent programs is a topic of extensive research, with many
proposed approaches. The most general approach constructs a low-atomicity pro-
gram directly, and then establishes that the low-atomicity program is a “correct
implementation” of the high-atomicity program. Different approaches are distin-
guished by their notion of “correct implementation.” For example, in the I/O
automaton approach [Lynch and Tuttle 1987; Lynch and Vaandrager 1995], a low-
atomicity program is a correct implementation if each of its externally observable
behaviors (traces) is also a trace of the high-atomicity program. The approach of
Back and von Wright [1994] for refinement of action systems is likewise based on
trace-inclusion. The proofs of correct implementation are based on exhibiting a
simulation relation between the low-atomicity and high-atomicity programs. Sim-
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ulation is also used to establish refinement in the refinement calculus [Back 1989].
In UNITY [Chandy and Misra 1988], refinement is performed on specifications,
expressed as UNITY formulae, and a refined specification is correct if it logically
implies the higher-level specification.

In some approaches, the low-atomicity program is shown to have some properties
that are derived from properties established for the high-atomicity program. (Our
method uses a similar idea for the local-structure properties AG(pi ⇒ EXiqi) and
AG(pi ⇒ AYiqi)—see Theorems 4.5.2.2 and 6.1.) Manna and Pnueli [1995, Chapter
1] shows how an invariant for the low-atomicity program can be derived as a refine-
ment itself of an invariant for the high-level program. Other methods for refining a
high-atomicity program together with its invariant are given in Gribomont [1990],
Gribomont [1993]. Here, each time the program is refined, the invariant that holds
for the refined program is derived systematically from the original program, the
refined program, and the invariant that holds for the original program.

While some of the above methods provide a methodology for deriving the low-
atomicity program from the high-atomicty one, there is little guidance as to which
choices of refinement step will provide a correct refinement. This usually has to be
established afterward, e.g., by attempting to construct a simulation relation, or a
proof of invariance. Our method provides an initial “naive” refinement, in which
all possible refinements of each process action are performed initially. Then, our
method provides guidance in eliminating refinements that cause the specification
to be violated (see the deletion rules, Figure 7).

The only other temporal logic synthesis method to date that we are aware of
which generates atomic read/write programs is that of Dill and Wong-Toi [1990]
for synthesizing reactive modules. This method has double-exponential space com-
plexity in the length of the specification, and produces a program that has size
double-exponential in the length of the specification. By comparison, our method
has single-exponential space complexity in the length of the specification. Fur-
thermore, while the programs we synthesize could in the worst case have length
exponential in the specification, this would occur only if one process was much
larger than the others, since the size of the (exponentially large) model is on the
order of the product of the sizes of the processes. Thus, in practice, we expect our
programs to have size polynomial in the length of the specification.

On the other hand, the method of Dill and Wong-Toi [1990] is complete whereas
ours is not. While interesting theoretically, this advantage of Dill and Wong-Toi
[1990] is unlikely to have practical significance because the double-exponential space
complexity is a considerable impediment to practical application.

7.3 Further Directions for Research

Our method may easily be extended to handle temporal modalities other than those
given in Section 2.4. All that is needed is to devise the appropriate labeling and
deletion rules for Phase 4. All the other phases of the method are independent of
the particular subset of CTL chosen as the specification language. Furthermore,
it may be possible to extend our method to synthesize shared-memory concurrent
programs for different synchronization primitives such as compare-and-swap, fetch-
and-add, or n-register assignment [Herlihy 1991]. The main step would be devising a
characterization of the Kripke structures corresponding to programs containing the
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particular primitive, much like our atomic read/write Kripke structures correspond
to atomic read/write programs. The refinement phases (1 and 2) would then have
to be modified to refine the initial model into a structure that (after the deletion
rules have been applied) is in the appropriate form.

One potential drawback of our method is its susceptibility to state-explosion. Our
method requires generation of the global-state transition diagram. For a program
consisting of K processes each with O(N) local states, the size of the global-state
transition diagram is O(NK). State-explosion can be dealt with by integrating our
work here with that of Attie and Emerson [1998], ?]. In that method, construction
of the exponentially large global-state transition diagram is avoided. Instead, it
constructs a state transition diagram for each pair of component processes (of the
program) that interact (call these neighbors). This reduces the space complexity
to O(K2N2). A “pair-program,” which embodies all the interactions of the two
processes, is then extracted from this state transition diagram. These pair-programs
are then composed in a certain way to generate the final program. Integrating the
two methods will result in a method that can synthesize large atomic read/write
programs efficiently. There are some nontrivial issues however. For example, the
composition of the pair-programs relies on a process being able to interact in one
atomic step with all of its neighbors. This high atomicity will have to be refined in
some way, in the combined method.

Another possible extension of our work would deal with synthesizing fault-tolerant
programs. We have already devised a method [Arora et al. 1998] for synthesizing
fault-tolerant programs using high-atomiciy operations. Integrating this with our
work here would allow the synthesis of fault-tolerant atomic read/write programs,
or more generally, fault-tolerant programs that use synchronization primitives such
as compare-and-swap. In particular, by specifying that all but one process can
crash, we could deal with the important case of synthesizing wait-free programs.

7.4 Conclusions

We have presented a method for the synthesis of atomic read/write programs from
specifications expressed in temporal logic. The method is sound but not complete.
Although automatic in principle, some of the steps involved require a large amount
of search. For example, in the deletion step of Phase 4, there are in general many
choices of transitions to be deleted. Thus the method may be best implemented
as an interactive tool, akin to a theorem prover, allowing human guidance in order
to cut down on the search. Designing good heuristics for selecting transitions for
deletion is a topic for future work.

A shortcoming of our method is its incompleteness. This incompleteness arises
because our method starts from a coarse high-level program that embodies a par-
ticular solution to the specified problem. While this particular solution may be
realizable using high-atomicity primitives, it may not be realizable using atomic
reads and writes. On the other hand, there may be other solutions to the prob-
lem (essentially different from the particular high-level program that our method
starts with) which may be realizable using atomic reads and writes. Another way
of saying this is that our method embodies one particular strategy for refining a
progam from high-level atomicity to atomic read/write atomicity. Other strategies
are possible, and these might generate solutions that our method would miss.
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A complete method would have a wider scope of applicability. Extending the
method to make it complete is thus of some interest. On the other hand, complete-
ness is not essential to practical applicability, as our synthesis of Peterson’s solution
shows.

Recall that given a specification consisting of a finite-state machine M and CTL
formula f , it is not necessary that M,S0 |= f (S0 is the set of initial states of
M), since the method deletes any states/transitions that cause a violation of f . In
the “normal” refinement scenario where M,S0 |= f , states/transitions that cause a
violation of f can only be introduced by the decomposition step (Phase 2). However,
if M,S0 6|= f , then such states/transitions could be present initially. In this case,
we can regard the synthesis method as providing both refinement and debugging.

The work presented in this paper is one building block in our research program,
which aims to create truly practical synthesis methods. We have now devised
methods that each deal with one aspect of realistic concurrent programs: a real-
istic, low-atomicity model of concurrent computation (this paper), state-explosion
[Attie and Emerson 1998; ?], and fault-tolerance [Arora et al. 1998]. Some other
topics to be dealt with are real-time, and synthesis of asynchronous message-passing
distributed programs. The ultimate goal is to create a toolkit of synthesis methods
that address many issues in the derivation of large, complex, distributed systems
from formal specifications.

A. PROOFS

Proof of Lemma 3.4.3. The proof is by double implication.

s
i,A−→ t ∈ R1 follows from s

i,A−→ t ∈ R2. Let s
i,A−→ t be an arbitrary Pi-transition

in R2. Hence, by the global-state transition diagram definition (2.2.2), there is some
arc ARi = (s↑i, B → A, t↑i) in Pi such that s(B) = true. By Proposition 3.4.2 and
the atomic read/write program definition (3.1.4), ARi is either single-reading and
nonwriting, or unguarded and single-writing. Thus there are two cases.

Case 1 : ARi is unguarded and single-writing. By Definition 3.4.1, there must
be an unguarded and single-writing Pi-family F in M such that F .start = s↑i,
F .finish = t↑i, F .assig = A. So, by the unguarded family definition (3.3.2),

s
i,A−→u ∈ R1, for some state u such that u↑i = F .finish. (End of case 1.)

Case 2 : ARi is guarded and nonwriting. By Definition 3.4.1, there must be a
guarded and nonwriting Pi-family F in M such that F .start = s↑i and F .finish =
t↑i. AlsoB, the guard ofARi, is, by Definition 3.4.1 and Definition 3.3.3,

∨
k∈[1:n] bk,

where F =
⋃
k∈[1:n] Fk, and conditions (G1), (G2) of Definition 3.3.3 are satisfied.

We showed above that s(B) = true. Hence s(b`) = true for some ` ∈ [1 : n]. Since,
by assumption, s is reachable in M , we can instantiate (G2) for state s, and then
take the contrapositive, which yields

if s(b`) = true then s is the start state of some transition in F `.
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Since F` ⊆ F , we have s
i,A−→u ∈ R1 for some state u such that u↑i = F .finish.

(End of case 2.)

Thus in both cases, s
i,A−→u ∈ R1 for some state u such that u↑i = F .finish. By

the assumption on Kripke structures in Section 2.3, we have

〈s↑SH〉A 〈u↑SH〉 and ∀j ∈ [1 : K]− {i}, s↑j = u↑j. (a)

Also in both cases, s
i,A−→ t ∈ R2 (by assumption) and t↑i = F .finish. By the

global-state transition diagram definition (2.2.2), we have

〈s↑SH〉A 〈t↑SH〉 and ∀j ∈ [1 : K]− {i}, s↑j = t↑j. (b)

Since A is either skip or a deterministic multiple assignment, we have, from the
Hoare triples in (a) and (b), u↑SH = t↑SH. We also have, again from (a) and (b),
∀j ∈ [1 : K]− {i}, u↑j = t↑j. Finally, u↑i = F .finish = t↑i. Hence, by definition

of a global state, we conclude u = t. Since s
i,A−→u ∈ R1, we conclude s

i,A−→ t ∈ R1.

s
i,A−→ t ∈ R1 implies s

i,A−→ t ∈ R2. Let Ti = s
i,A−→ t be an arbitrary Pi-transition

in R1. Hence, by the Pi-family definition (2.2), there is some Pi-family F in M
such that Ti ∈ F . By Proposition 4.4.2.2, F is either guarded and nonwriting or
unguarded and single-writing. Thus there are two cases.

Case 1 : F is unguarded and single-writing. By Definition 3.4.1, there must
be a single-writing arc ARi = (s↑i, true → A, t↑i) in P . Thus, by the global-

state transition diagram definition (2.2.2), s
i,A−→u ∈ R2 for some state u such that

u↑i = t↑i. (End of case 1.)

Case 2 : F is guarded and nonwriting. By Definition 3.4.1, there must be a
nonwriting arc ARi = (s↑i, B → skip, t↑i) in P . Now B, the guard of ARi, is,
by Definition 3.4.1 and Definition 3.3.3,

∨
k∈[1:n] bk, where F =

⋃
k∈[1:n] Fk, and

conditions (G1), (G2) of Definition 3.3.3 are satisfied. Now since Ti ∈ F , we have
Ti ∈ F` for some ` ∈ [1 : n]. Since, by assumption, s is reachable in M , we can
instantiate (G1) for Ti to obtain (since s = T.begin)

s(b`) = true.

Therefore, s(B) = true, since b` is a disjunct of B. Hence, by the global-state

transition diagram definition (2.2.2), s
i,A−→u ∈ R2, for some state u such that

u↑i = t↑i. (End of case 2.)

Thus in both cases, s
i,A−→u ∈ R2 for some state u such that u↑i = t↑i. By the

global-state transition diagram definition (2.2.2), we have

〈s↑SH〉A 〈u↑SH〉 and ∀j ∈ [1 : K]− {i}, s↑j = u↑j. (c)

Also in both cases, s
i,A−→ t ∈ R1 by assumption. By the assumption on Kripke

structures in Section 2.3, we have

〈s↑SH〉A 〈t↑SH〉 and ∀j ∈ [1 : K]− {i}, s↑j = t↑j. (d)

Since A is either skip or a deterministic multiple assignment, we have, from the
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Hoare triples in (c) and (d), u↑SH = t↑SH. We also have, again from (c) and (d),
∀j ∈ [1 : K] − {i}, u↑j = t↑j. Hence, by u↑i = t↑i and the definition of a global

state, we conclude u = t. Since s
i,A−→u ∈ R2, we conclude s

i,A−→ t ∈ R2.

Proof of Proposition 3.4.4. First, we establish P1, P2 and P3:

If π is a finite initialized path in M1, then
π is also a finite initialized path in M2. (P1)

Proof of P1. The proof is by induction on |π|, the length of π. For the base
case, |π| = 0, and so π = s0, where s0 is some state in S0. Since s0 is reachable
in M2 = (S0, S, R

2) by definition, π is a finite initialized path in M 2 in this case.
For the induction step, we assume the induction hypothesis for π a finite path from
some state s0 in S0 to some state t, and establish P1 for π′ consisting of π extended

with an arbitrary transition t
i,A−→ t′ ∈ R1. Since t lies on a finite initialized path

in M2 (by the induction hypothesis), we have that t is reachable in both M 1,M2.

Hence we can apply Lemma 3.4.3 to conclude t
i,A−→ t′ ∈ R2. Since π is a finite

initialized path in M2 (by the induction hypothesis), and t
i,A−→ t′ ∈ R2, we have

that π′ is a finite initialized path in M2, which concludes the induction step. �

If π is a finite initialized path in M2, then
π is also a finite initialized path in M1. (P2)

Proof of P2. The proof is exactly symmetric to the proof of P1 above, with
the roles of M1 and M2 interchanged. �

s is a reachable state of M 1 iff s is a reachable state of M 2. (P3)

Proof of P3. The proof is by double implication. For the left-to-right direction,
let s be an arbitrary reachable state of M 1. Thus, by definition, there is a finite
initialized path π in M1 which ends in s. By P1 above, π is a finite initialized path
in M2. Thus, by definition, s is a reachable state of M 2. The right-to-left direction
is proven in the same way, with the roles of M 1 and M2 interchanged, and P2 being
invoked instead of P1. �

From P3, we see that M1 and M2 have the same reachable states. Thus, from
Lemma 3.4.3, M1 and M2 have the same reachable transitions. Since, by CTL
semantics, M1, S0 |= f and M2, S0 |= f depend only on the reachable portions of
M1 and M2 respectively, the proposition follows.

Proof of Proposition 4.4.2.1. Let f be an arbitrary conjunct of the spec-
ification. By Section 2.4, f has one of the forms given in the statement of the
proposition. Thus there are five cases:

Case 1 : f is of the form h, where h ∈ LO(AP ,¬,∧). Let s be an arbitrary state
of S′′′0 . By construction of Phase 4, S ′′′0 ⊆ S′0. Hence s ∈ S′0. Thus, by the definition
of S′0 (Section 4.1.2), there is some state s′ ∈ S0 such that s is propositionally
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equivalent to s′. By the soundness of the Emerson and Clarke [1982] synthesis
method, M,S0 |= h, and so s′ |= h. (If M = (S0, S, R) is given directly, then we
assume that all initial states of M satisfy h. In other words, all initial states that
violate the initial state specification h are a priori removed from S0. In particular,
if h is derived from M as shown in Figure 4, then all initial states of M will satisfy
h by construction.) Hence s |= h, since h is purely propositional. Since s is an
arbitrarily chosen state of S ′′′0 , we have M ′′′, S′′′0 |= h by CTL semantics.

Case 2 : f is of the form AGh, where h ∈ LO(AP ,¬,∧). Let s be an arbitrary
reachable state of M ′′ such that s 6|= h. Since AGh is a conjunct of the specification,
h will be added to label(s) in Phase 4 (by construction of Phase 4—see Figure 5).
Hence s will be deleted or made unreachable in Phase 4 (by construction of Phase 4,
in particular, the Prop-rule—see Figure 7). Thus, every reachable state of M ′′′

satisfies h. Hence M ′′′, S′′′0 |= AGh by CTL semantics.

Case 3 : f is of the form AG(p⇒ A[qUr]), where p, q, r ∈ LO(AP ,¬,∧). Let s be
an arbitrary reachable state ofM ′′ such that s |= p∧¬A[qUr]. Since AG(p⇒ A[qUr])
is a conjunct of the specification, A[qUr] will be added to label(s) in Phase 4 (by
construction of Phase 4—see Figure 5). Hence, in Phase 4, by application of the
AU-rule (Figure 7), every fullpath π starting in s such that π 6|= [qUr] will have one
of its transitions deleted, and so M ′′′ will not contain fullpath π. When Phase 4 has
terminated, every fullpath starting in s (if any) will satisfy [qUr]. If there are no
fullpaths starting in s, then s will be made unreachable inM ′′′ (or will be deleted) by
repeated applications of the EX-rule (Figure 7), since every path from s terminates
in a state with no successors. Hence we conclude that every reachable state in M ′′′

which satisfies p also satisfies A[qUr]. Thus M ′′′, S′′′0 |= AG(p ⇒ A[qUr]) by CTL
semantics.

Case 4 : f is of the form AG(pi ⇒ EXiqi), where pi, qi ∈ LO(AP i,¬,∧). Let s be
an arbitrary reachable state of M ′′ such that s |= pi∧¬EXi(pi∨qi). Since AG(pi ⇒
EXiqi) is a conjunct of the specification, EXi(pi ∨ qi) will be added to label(s)
in Phase 4 (by construction of Phase 4—see Figure 5). Hence, by application
of the EXi-rule (Figure 7), s will be deleted or made unreachable in Phase 4.
Hence we conclude that every reachable state in M ′′′ which satisfies pi also satisfies
EXi(pi ∨ qi). Thus M ′′′, S′′′0 |= AG(pi ⇒ EXi(pi ∨ qi)) by CTL semantics.

Case 5 : f is of the form AG(pi ⇒ AYiqi), where pi, qi ∈ LO(AP i,¬,∧). By the
soundness of the Emerson and Clarke [1982] synthesis method, M,S0 |= AG(pi ⇒
AYiqi), since f is a conjunct of the specification, and M is produced by applying
the Emerson and Clarke [1982] synthesis method to the specification. By Proposi-
tion 4.1.2.1, M and M ′ satisfy the same CTL formulae. Hence M ′, S′0 |= AG(pi ⇒
AYiqi). Also, since M is in reachable form and M , M ′ are bisimilar (see the proof
of Proposition 4.1.2.1), we conclude that M ′ is in reachable form.

It is easy to see that a global state s satisfies pi, qi iff its Pi-projection s↑i satisfies
pi, qi respectively (since satisfaction of pi, qi depends only on the values assigned
to atomic propositions in AP i, and s, s↑i agree, by definition, on these values).
Now P = P1‖ · · · ‖PK is extracted from M ′, and so, by the program extraction
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definition (2.3), every i-state si of Pi which satisfies pi has as local successors in
Pi i-states ti which satisfy qi. In Phase 2, an arc (si, B → //m∈[1:n]A

m, ti) of
Pi is decomposed into arcs having the forms (si, B → skip, um0

i ), (um0

i , true →
Am1 , um1

i ), . . ., (u
mk−1

i , true → Amk , umki ), . . ., (u
mn−1

i , true → Amn , ti). From
the construction of Phase 2, (in particular, the way the local atomic proposition
valuations of the “new” states um0

i , . . . , u
mn−1

i are chosen) we see that each umki ,
k ∈ [0 : n−1], satisfies either pi or qi. Since ti satisfies qi, and si is chosen arbitrarily,
we have that every i-state in P ′′i which satisfies pi (namely, si and possibly some
of the umki ) has as local successors in P ′′i i-states which either satisfy pi or satisfy
qi (the i-states satisfying qi being ti and possibly some of the umki ).

Now M ′′ is the global-state transition diagram of P ′′ = P ′′1 ‖ · · · ‖P ′′K . Thus, by
the global-state transition diagram definition (2.2.2) and CTL semantics, M ′′, S′0 |=
AG(pi ⇒ AYi(pi ∨ qi)). We can easily see, by CTL semantics, that removing transi-
tions from M ′′ cannot cause AG(pi ⇒ AYi(pi ∨ qi)) to be violated. This is because
AYi is the weak nexttime operator. It does not actually require the existence of
any transitions per se, but only requires that those transitions that leave a state
satisfying pi enter a state satisfying pi ∨ qi. Since S′′′0 ⊆ S′0 and R′′′ ⊆ R′′ (by
construction of Phase 4), we conclude M ′′′, S′′′0 |= AG(pi ⇒ AYi(pi ∨ qi)).

B. GLOSSARY OF SYMBOLS

|= Satisfies relation of CTL
{||} State to formula operator
↑i State projection onto process i
↓i State projection onto all shared variables and

all processes except i
M1,M2 Kripke structure
M,M ′,M ′′,M ′′′,M iv The specific Kripke structures involved in the

synthesis method
P, P ′, P ′′, P ′′′ The specific concurrent programs involved in the

synthesis method
R,R1, R2, R′′, R′′′, Riv Transition relation
S Set of global states
S0, S

′
0, S
′′′
0 Set of initial global states

AP The set of atomic propositions
AP i The set of atomic propositions of process i
LO Constructor of sets of propositional formulae
SH The set of shared variables
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