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Abstract

We present dynamic I/O automata (DIOA), a compositional model of dynamic systems, based on I/O
automata. In our model, automata can be created and destroyed dynamically, as computation proceeds.
In addition, an automaton can dynamically change its signature, that is, the set of actions in which it
can participate. This allows us to model mobility, by enforcing the constraint that only automata at the
same location may synchronize on common actions.

Our model features operators for parallel composition, action hiding, and action renaming. It also
features a notion of automaton creation, and a notion of trace inclusion from one dynamic system to
another, which can be used to prove that one system implements the other. Our model is hierarchical:
a dynamically changing system of interacting automata is itself modeled as a single automaton that is
“one level higher.” This can be repeated, so that an automaton that represents such a dynamic system
can itself be created and destroyed. We can thus model the addition and removal of entire subsystems
with a single action.

We establish fundamental compositionality results for DIOA: if one component is replaced by another
whose traces are a subset of the former, then the set of traces of the system as a whole can only be reduced,
and not increased, i.e., no new behaviors are added. That is, parallel composition, action hiding, and
action renaming, are all monotonic with respect to trace inclusion. We also show that, under certain
technical conditions, automaton creation is monotonic with respect to trace inclusion: if a system creates
automaton Ai instead of (previously) creating automaton A′

i, and the traces of Ai are a subset of the
traces of A′

i, then the set of traces of the overall system is possibly reduced, but not increased. Our
trace inclusion results imply that trace equivalence is a congruence relation with respect to parallel
composition, action hiding, and action renaming.

Our trace inclusion results enable a design and refinement methodology based solely on the notion of
externally visible behavior, and which is therefore independent of specific methods of establishing trace
inclusion. It permits the refinement of components and subsystems in isolation from the entire system,
and provides more flexibility in refinement than a methodology which is, for example, based on the
monotonicity of forward simulation with respect to parallel composition. In the latter, every automaton
must be refined using forward simulation, whereas in our framework different automata can be refined
using different methods.

The DIOA model was defined to support the analysis of mobile agent systems, in a joint project with
researchers at Nippon Telegraph and Telephone. It can also be used for other forms of dynamic systems,
such as systems described by means of object-oriented programs, and systems containing services with
changing access permissions.
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1 Introduction

Many modern distributed systems are dynamic: they involve changing sets of components, which are created
and destroyed as computation proceeds, and changing capabilities for existing components. For example,
programs written in object-oriented languages such as Java involve objects that create new objects as needed,
and create new references to existing objects. Mobile agent systems involve agents that create and destroy
other agents, travel to different network locations, and transfer communication capabilities.

To describe and analyze such distributed systems rigorously, one needs an appropriate mathematical founda-
tion: a state-machine-based framework that allows modeling of individual components and their interactions
and changes. The framework should admit standard modeling methods such as parallel composition and
levels of abstraction, and standard proof methods such as invariants and simulation relations. As dynamic
systems are even more complex than static distributed systems, the development of practical techniques for
specification and reasoning is imperative. For static distributed systems and concurrent programs, compo-
sitional reasoning is proposed as a means of reducing the proof burden: reason about small components and
subsystems as much as possible, and about the large global system as little as possible. For dynamic systems,
compositional reasoning is a priori necessary, since the environment in which dynamic software components
(e.g., software agents) operate is continuously changing. For example, given a software agent B, suppose we
then refine B to generate a new agent A, and we prove that A’s externally visible behaviors are a subset
of B’s. We would like to then conclude that replacing B by A, within any environment does not introduce
new, and possibly erroneous, behaviors.

One issue that arises in systems where components can be created dynamically is that of clones. Suppose
that a particular component is created twice, in succession. In general, this can result in the creation of two
(or more) indistinguishable copies of the component, known as clones. We make the fundamental assumption
in our model that this situation does not arise: components can always be distinguished, for example, by a
logical timestamp at the time of creation. This absence of clones assumption does not preclude reasoning
about situations in which an automaton A1 cannot be distinguished from another automaton A2 by the other
automata in the system. This could occur, for example, due to a malicious host which “replicates” agents
that visit it. We distinguish between such replicas at the meta-theoretic level by assigning unique identifiers
to each. These identifiers are not available to the other automata in the system, which remain unable to
tell A1 and A2 apart, for example in the sense of the “knowledge” [16] about A1 and A2 which the other
automata possess.

Static mathematical models like I/O automata [23] could be used to model dynamic systems, with the
addition of some extra structure (special Boolean flags) for modeling dynamic aspects. For example, in
[24], dynamically-created transactions were modeled as if they existed all along, but were “awakened” upon
execution of special create actions. However, dynamic behavior has by now become so prevalent that it
deserves to be modeled directly. The main challenge is to identify a small, simple set of constructs that can
be used as a basis for describing most interesting dynamic systems.

In this paper, we present our proposal for such a model: the Dynamic I/O Automaton (DIOA) model . Our
basic idea is to extend I/O automata with the ability to change their signatures dynamically, and to create
other I/O automata. We then combine such extended automata into global configurations. Our model
provides:

1. parallel composition, action hiding, and action renaming operators;

2. the ability to dynamically change the signature of an automaton; that is, the set of actions in which
the automaton can participate;

3. the ability to create and destroy automata dynamically, as computation proceeds; and

4. a notion of externally visible behavior based on sets of traces.
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Our notion of externally visible behavior provides a foundation for abstraction, and a notion of behavioral
subtyping by means of trace inclusion. Dynamically changing signatures allow us to model mobility, by
enforcing the constraint that only automata at the same location may synchronize on common actions. This
capability is not present in a static model with extra structure (e.g., boolean flags). Modeling a mobile agent
in a static setting would be difficult at best, and would result in a contrived and over-complicated model
(how would you simulate location and signature change?) that would lose the benefits of simple and direct
representation that our model affords.

Our model is hierarchical: a dynamically changing system of interacting automata is itself modeled as a
single automaton that is “one level higher.” This can be repeated, so that an automaton that represents
such a dynamic system can itself be created and destroyed. This allows us to model the addition and removal
of entire subsystems with a single action. This would also be quite difficult to represent naturally in a static
model.

As in I/O automata [23, 22], there are three kinds of actions: input, output, and internal. A trace of an
execution results by removing all states and internal actions. We use the set of traces of an automaton
as our notion of external behavior. We show that parallel composition is monotonic with respect to trace
inclusion: if we have two systems A = A1 ‖ · · · ‖ Ai ‖ · · · ‖ An and A′ = A1 ‖ · · · ‖ A′i ‖ · · · ‖ An consisting
of n automata, executing in parallel, then if the traces of Ai are a subset of the traces of A′i (which it
“replaces”), then the traces of A are a subset of the traces of A′. We also show that action hiding (convert
output actions to internal actions) and action renaming (change action names using an injective map) are
monotonic with respect to trace inclusion, and, finally, we show that, if we have a system X in which an
automaton A is created, and a system Y in which an automaton B is created “instead of A”, and if the
traces of A are a subset of the traces of B, then the traces of X will be a subset of the traces of Y , but only
under certain conditions. Specifically, in the system Y , the creation of automaton B at some point must
be correlated with the finite trace of Y up to that point. Otherwise, monotonicity of trace inclusion can be
violated by having the system X create the replacement A in more contexts than those in which Y creates
B, resulting in X possessing some traces which are not traces of Y . This phenomenon appears to be inherent
in situations where the creation of new automata can depend upon global conditions (as in our model) and
can be independent of the externally visible behavior (trace). Our monotonicity results imply that trace
equivalence is a congruence with respect to parallel composition, action hiding, and action renaming.

Our results enable a refinement methodology for dynamic systems that is independent of specific methods of
establishing trace inclusion. Different automata in the system can be refined using different methods, e.g.,
different simulation relations such as forward simulations or backward simulations, or by using methods not
based on simulation relations. This provides more flexibility in refinement than a methodology which, for
example, shows that forward simulation is monotonic with respect to parallel composition, since in the latter
every automaton must be refined using forward simulation.

We defined the DIOA model initially to support the analysis of mobile agent systems, in a joint project with
researchers at Nippon Telephone and Telegraph. Creation and destruction of agents are modeled directly
within the DIOA model. Other important agent concepts such as changing locations and capabilities are
described in terms of changing signatures, using additional structure.

This paper is organized as follows. Section 2 presents signature I/O automata (SIOA), which are I/O
automata that also have the ability to change their signature, and also defines a parallel composition, action
hiding, and action renaming operators for them. Section 3 shows that parallel composition of SIOA is
monotonic with respect to trace inclusion. Section 4 establishes that action hiding and action renaming are
monotonic with respect to trace inclusion. It also shows that trace equivalence is a congruence with respect
to parallel composition, action hiding, and action renaming. Section 5 presents configuration automata
(CA), which have the ability to dynamically create SIOA as execution proceeds. Section 5 also extends the
parallel composition, action hiding, and action renaming operators to configuration automata, and shows
that configuration automata inherit the trace monotonicity results of SIOA. Section 6 shows that SIOA
creation is monotonic with respect to trace inclusion, under certain technical conditions. Section 7 discusses
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how mobility and locations can be modeled in DIOA. Section 8 presents an example: an agent whose purpose
is to traverse a set of databases in search of a satisfactory airline flight, and to purchase such a flight if it
finds it. Section 9 discusses related work. Section 10 discusses further research and presents our conclusions.

2 Signature I/O Automata

We introduce signature input-output automata (SIOA). We assume the existence of a set Autids of unique
SIOA identifiers, an underlying universal set Auts of SIOA, and a mapping aut : Autids 7→ Auts. aut(A) is
the SIOA with identifier A. We use “the automaton A” to mean “the SIOA with identifier A”. We use the
letters A,B, possibly subscripted or primed, for SIOA identifiers.

The executable actions of an SIOAA are drawn from a signature sig(A)(s) = 〈in(A)(s), out(A)(s), int(A)(s)〉,
called the state signature, which is a function of the current state s. in(A)(s), out(A)(s), int(A)(s) are pair-
wise disjoint sets of input, output, and internal actions, respectively. We define ext(A)(s), the external
signature of A in state s, to be ext(A)(s) = 〈in(A)(s), out(A)(s)〉.

For any signature component, generally, the ̂ operator yields the union of sets of actions within the signature,
e.g., ŝig(A)(s) = in(A)(s) ∪ out(A)(s) ∪ int(A)(s). Also define acts(A) =

⋃
s∈states(A) ŝig(A)(s), that is

acts(A) is the “universal” set of all actions that A could possibly execute, in any state.

Definition 1 (SIOA) An SIOA aut(A) consists of the following components

1. A set states(A) of states.

2. A nonempty set start(A) ⊆ states(A) of start states.

3. A signature mapping sig(A) where for each s ∈ states(A), sig(A)(s) = 〈in(A)(s), out(A)(s), int(A)(s)〉,
where in(A)(s), out(A)(s), int(A)(s) are sets of actions.

4. A transition relation steps(A) ⊆ states(A)× acts(A)× states(A)

and satisfies the following constraints on those components:

1. ∀(s, a, s′) ∈ steps(A) : a ∈ ŝig(A)(s).

2. ∀s ∈ states(A) : ∀a ∈ in(A)(s),∃s′ : (s, a, s′) ∈ steps(A).

3. ∀s ∈ states(A) : in(A)(s) ∩ out(A)(s) = in(A)(s) ∩ int(A)(s) = out(A)(s) ∩ int(A)(s) = ∅.

Constraint 1 requires that any executed action be in the signature of the initial state of the transition.
Constraint 2 extends the input enabling requirement of I/O automata to SIOA. Constraint 3 requires that in
any state, an action cannot be both an input and an output, etc. However, the same action can be an input
in one state and an output in another. This is in contrast to ordinary I/O automata, where the signature of
an automaton is fixed once and for all, and cannot vary with the state. Thus, an action is either always an
input, always an output, or always an internal.

If (s, a, s′) ∈ steps(A), we also write s
a−→A s

′. For the sake of brevity, we write states(A) instead of
states(aut(A)), i.e., the components of an automaton are identified by applying the appropriate selector
function to the automaton identifier, rather than the automaton itself.

Definition 2 (Execution, trace of SIOA) An execution fragment α of an SIOA A is a nonempty (finite
or infinite) sequence s0a1s1a2 . . . of alternating states and actions such that (si−1, ai, si) ∈ steps(A) for each
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triple (si−1, ai, si) occurring in α. Also, α ends in a state if it is finite. An execution of A is an execution
fragment of A whose first state is in start(A). execs(A) denotes the set of executions of SIOA A.

Given an execution fragment α = s0a1s1a2 . . . of A, the trace of α in A (denoted traceA(α)) is the sequence
that results from

1. remove all ai such that ai 6∈ êxt(A)(si−1), i.e., ai is an internal action of A in state si−1, and then

2. replace each si by its external signature ext(A)(si), and then

3. replace each maximal block ext(A)(si), . . . , ext(A)(si+k) such that
(∀j : 0 ≤ j ≤ k : ext(A)(si+j) = ext(A)(si)) by ext(A)(si), i.e., replace each maximal block of
identical external signatures by a single representative. (Note: also applies to an infinite suffix of
identical signatures, i.e., k = ω.)

Thus, a trace is a sequence of external actions and external signatures that starts with an external signature.
Also, if the trace is finite, then it ends with an external signature. When the automaton A is understood
from context, we write simply trace(α). We need to indicate the automaton, since it is possible for two
automata to have the same executions, but difference traces, e.g., when one results from the other by action
hiding (see Section 2.2 below).

Traces are our notion of externally visible behavior. A trace β of an execution α exposes the external actions
along α, and the external signatures of states along α, except that repeated identical external signatures
along α do not show up in β. Thus, the external signature of the first state of α, and then all subsequent
changes to the external signature, are made visible in β. This includes signature changes caused by internal
actions, i.e., these signature changes are also made visible. traces(A), the set of traces of an SIOA A, is the
set {β | ∃α ∈ execs(A) : β = trace(α)}.

Notation. We write s
α−→A s

′ iff there exists an execution fragment α of A starting in s and ending in
s′. If a state s lies along some execution, then we say that s is reachable. Otherwise, s is unreachable. The
length |α| of a finite execution fragment α is the number of transitions along α. The length of an infinite
execution fragment is infinite (ω). If |α| = 0, then α consists of a single state. When we write, for example,
0 ≤ i ≤ |α|, it is understood that when α is infinite, that i = |α| does not arise, i.e., we consider only
finite indices for states and actions along an execution. If execution fragment α = s0a1s1a2 . . ., then for
0 ≤ i ≤ |α|, define α|i = s0a1s1a2 . . . aisi, and for 0 ≤ i, j ≤ |α| ∧ j < i, define j |α|i = sjaj+1 . . . aisi.
We define a concatenation operator _ for execution fragments as follows. If α′ = s0a1s1a2 . . . aisi is a
finite execution fragment and α′′ = t0b1t1b2 . . . is an execution fragment, then α′_α′′ is defined to be the
execution fragment s0a1s1a2 . . . ait0b1t1b2 . . . only when si = t0. If si 6= t0, then α′_α′′ is undefined. We
also use α′_ (a, s) to mean s0a1s1a2 . . . aisia s, i.e., we concatenate a transition to the end of α′. Let α, α′

be execution fragments. Then α is a proper prefix of α′ iff there exists an execution fragment α′′ such that
α = α′ _ α′′. We write α < α′ in this case. If α < α′ or α = α′, then we write α ≤ α′, and say that α
is a prefix of α′. We also overload _ and use it for concatenating traces and parts of traces (i.e., single
signatures and actions), in the obvious manner.

Throughout the paper, we will use a superscript, i.e., sj , to mean the j’th state along an execution, and we
will use a subscript, i.e., si, to mean the state of SIOA Ai (e.g., in a parallel composition A = A1 ‖ · · · ‖
Ai ‖ · · · ‖ An). When we require both usages, we will use sji , which means the Ai-component of the j’th
state along an execution. For consistency of notation, we also use a superscript, i.e., aj , to mean the j’th
action along an execution.

Let [k : `]
df
== {i | k ≤ i ≤ `}. We use (Qi, r(i) : e(i)) to indicate quantification with quantifier Q, bound

variable i, range r(i), and quantified expression e(i). For compactness, we sometimes give the bound variable
and range as a subscript.
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2.1 Parallel Composition of Signature I/O Automata

The operation of composing a finite number n of SIOA together gives the technical definition of the idea
of n SIOA executing concurrently. As with ordinary I/O automata, we require that the signatures of the
SIOA be compatible, in the usual sense that there are no common outputs, and no internal action of one
automaton is an action of another.

Definition 3 (Compatible signatures) Let S be a set of signatures. Then S is compatible iff, for all
sig ∈ S, sig′ ∈ S, where sig = 〈in, out, int〉, sig′ = 〈in′, out′, int′〉 and sig 6= sig′, we have:

1. (in ∪ out ∪ int) ∩ int′ = ∅, and

2. out ∩ out′ = ∅.

Since the signatures of SIOA vary with the state, we require compatibility for all possible combinations of
states of the automata being composed. Our definition is “conservative” in that it requires compatibility for
all combinations of states, not just those that are reachable in the execution of the composed automaton.
This results in significantly simpler and cleaner definitions, and does not detract from the applicability of
the theory.

Definition 4 (Compatible SIOA) Let A1, . . . , An, be SIOA. A1, . . . , An are compatible if and only if
for every 〈s1, . . . , sn〉 ∈ states(A1) × · · · × states(An), {sig(A1)(s1), . . . , sig(An)(sn)} is a compatible set of
signatures.

Definition 5 (Composition of Signatures) Let Σ = (in, out, int) and Σ′ = (in′, out′, int′) be compatible
signatures. Then we define their composition Σ× Σ′ = (in ∪ in′ − (out ∪ out′), out ∪ out′, int ∪ int′).

Signature composition is clearly commutative and associative. We therefore use
∏

for the n-ary version of ×.
As with I/O automata, SIOA synchronize on same-named actions. To devise a theory that accommodates
the hierarchical construction of systems, we ensure that the composition of n SIOA is itself an SIOA.

Definition 6 (Composition of SIOA) Let A1, . . . , An, be compatible SIOA. Then A = A1 ‖ · · · ‖ An is
the state-machine consisting of the following components:

1. A set of states states(A) = states(A1)× · · · × states(An).

2. A set of start states start(A) = start(A1)× · · · × start(An).

3. A signature mapping sig(A) as follows. For each s = 〈s1, . . . , sn〉 ∈ states(A), sig(A)(s) = sig(A1)(s1)×
· · · × sig(An)(sn).

4. A transition relation steps(A) ⊆ states(A)×acts(A)×states(A) which is the set of all (〈s1, . . . , sn〉, a, 〈t1, . . . , tn〉)
such that

(a) a ∈ ŝig(A1)(s1) ∪ . . . ∪ ŝig(An)(sn), and

(b) for all i ∈ [1 : n] : if a ∈ ŝig(Ai)(si), then (si, a, ti) ∈ steps(Ai), otherwise si = ti.

If s = 〈s1, . . . , sn〉 ∈ states(A), then define s�Ai = si, for i ∈ [1 : n].

Since our goal is to deal with dynamic systems, we must define the composition of a variable number of SIOA
at some point. We do this below in Section 5, where we deal with creation and destruction of SIOA. Roughly
speaking, parallel composition is intended to model the composition of a finite number of large systems,
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for example a local-area network together with all of the attached hosts. Within each system however, an
unbounded number of new components, for example processes, threads, or software agents, can be created.
Thus, at any time, there is a finite but unbounded number of components in each system, and a finite, fixed,
number of “top level” systems.

Proposition 1 Let A1, . . . , An, be compatible SIOA. Then A = A1 ‖ · · · ‖ An is an SIOA.

Proof: We must show that A satisfies the constraints of Definition 1. We deal with each constraint in turn.

Constraint 1: Let (s, a, s′) ∈ steps(A). Then, s can be written as 〈s1, . . . , sn〉. From Definition 6, clause 4,

a ∈ ŝig(A1)(s1) ∪ . . . ∪ ŝig(An)(sn) From Definition 6, clause 3, ŝig(A1)(s1) ∪ . . . ∪ ŝig(An)(sn) = ŝig(A)(s).

Hence a ∈ ŝig(A)(s).

Constraint 2: Let s ∈ states(A), a ∈ in(A)(s). Then, s can be written as 〈s1, . . . , sn〉. From Definition 6,
clause 3, a ∈ (

⋃
1≤i≤n in(Ai)(si))−out(A)(s). Hence, there exists ϕ ⊆ [1 :n] such that ∀i ∈ ϕ : a ∈ in(Ai)(si),

and ∀i ∈ [1 :n]− ϕ : a 6∈ ŝig(Ai)(si). Since each Ai satisfies Constraint 2 of Definition 1, we have:

∀i ∈ ϕ : ∃ti : (si, a, ti) ∈ steps(Ai)

By Definition 6, Clause 4,

∃t : (s, a, t) ∈ steps(A), where ∀i ∈ ϕ : t�i = ti, and ∀i ∈ [1 :n]− ϕ : t�i = si.

Hence Constraint 2 is satisfied.

Constraint 3: From Definitions 5 and 6, it follows that the sets of input and output actions of A in any state
are disjoint. Each Ai is an SIOA and so satisfies Constraint 3 of Definition 1. From this and Definitions 3,
4, 5, and 6, it follows that the set of internal actions of A in any state has no action in common with either
the input actions or the output actions. Hence A satisfies Constraint 3.

2.2 Action Hiding for Signature I/O Automata

The operation of action hiding allows us to convert output actions into internal actions, and is useful in
specifying the set of actions that are to be visible at the interface of a system.

Definition 7 (Action hiding for SIOA) Let A be an SIOA and Σ a set of actions. Then A \ Σ is the
state-machine given by:

1. A set of states states(A \ Σ) = states(A).

2. A set of start states start(A \ Σ) = start(A).

3. A signature mapping sig(A) as follows. For each s ∈ states(A),
sig(A \ Σ)(s) = 〈in(A \ Σ)(s), out(A \ Σ)(s), int(A \ Σ)(s)〉, where

(a) out(A \ Σ)(s) = out(A)(s)− Σ,

(b) in(A \ Σ)(s) = in(A)(s), and

(c) int(A \ Σ)(s) = int(A)(s) ∪ (out(A)(s) ∩ Σ).

4. A transition relation steps(A \ Σ) = steps(A).

Proposition 2 Let A be an SIOA and Σ a set of actions. Then A \ Σ is an SIOA.

6



Proof: We must show that A \ Σ satisfies the constraints of Definition 1. We deal with each constraint in
turn.

Constraint 1: From Definition 7, we have, for any s ∈ states(A \ Σ): ŝig(A \ Σ)(s) = (out(A)(s) − Σ) ∪
in(A)(s) ∪ (int(A)(s) ∪ (out(A)(s) ∩ Σ)) = ((out(A)(s) − Σ) ∪ (out(A)(s) ∩ Σ)) ∪ in(A)(s) ∪ int(A)(s) =

out(A)(s) ∪ in(A)(s) ∪ int(A)(s) = ŝig(A)(s).

Since A is an SIOA, we have ∀(s, a, s′) ∈ steps(A) : a ∈ ŝig(A)(s). From Definition 7, steps(A \ Σ) =

steps(A). Hence, ∀(s, a, s′) ∈ steps(A \ Σ) : a ∈ ŝig(A \ Σ)(s). Thus, Constraint 1 holds for A \ Σ.

Constraint 2: From Definition 7, states(A \ Σ) = states(A), steps(A \ Σ) = steps(A), and for all s ∈
states(A \ Σ), in(A \ Σ)(s) = in(A)(s).

Since A is an SIOA, we have Constraint 2 for A:

∀s ∈ states(A),∀a ∈ in(A)(s),∃s′ : (s, a, s′) ∈ steps(A).

Hence, we also have

∀s ∈ states(A \ Σ),∀a ∈ in(A \ Σ)(s),∃s′ : (s, a, s′) ∈ steps(A \ Σ).

Hence Constraint 2 holds for A \ Σ.

Constraint 3: A is an SIOA and so satisfies Constraint 3 of Definition 1. Definition 7 states that, in every
state s, some actions are removed from the output action set and added to the internal action set. Hence
the sets of input, output, and internal actions remain disjoint. So A \ Σ also satisfies Constraint 3.

2.3 Action Renaming for Signature I/O Automata

The operation of action renaming allows us to rename actions uniformly, that is, all occurrences of an action
name are replaced by another action name, and the mapping is also one-to-one, so that different actions are
not identified (mapped to the same action). This is useful in defining “parameterized” systems, in which
there are many instances of a “generic” component, all of which have similar functionality. Examples of this
include the servers in a client-server system, the components of a distributed database system, and hosts in
a network.

Definition 8 (Action renaming for SIOA) Let A be an SIOA and let ρ be an injective mapping from
actions to actions whose domain includes acts(A). Then ρ(A) is the state machine given by:

1. start(ρ(A)) = start(A).

2. states(ρ(A)) = states(A).

3. for each s ∈ states(A), sig(ρ(A))(s) = 〈in(ρ(A))(s), out(ρ(A))(s), int(ρ(A))(s)〉, where

(a) out(ρ(A))(s) = ρ(out(A)(s)),

(b) in(ρ(A))(s) = ρ(in(A)(s)), and

(c) int(ρ(A))(s) = ρ(int(A)(s)).

4. A transition relation steps(ρ(A)) = {(s, ρ(a), t) | (s, a, t) ∈ steps(A)}.

Here we write ρ(Σ) = {ρ(a) | a ∈ Σ}, i.e., we extend ρ to sets of actions element-wise.

Proposition 3 Let A be an SIOA and let ρ be an injective mapping from actions to actions whose domain
includes acts(A). Then, ρ(A) is an SIOA.
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Proof: We must show that ρ(A) satisfies the constraints of Definition 1. We deal with each constraint in
turn.

Constraint 1: From Definition 8, we have, for any s ∈ states(ρ(A)): ŝig(ρ(A))(s) = out(ρ(A))(s)∪in(ρ(A))(s)∪
int(ρ(A))(s) = ρ(out(A)(s)) ∪ ρ(in(A)(s)) ∪ ρ(int(A)(s)) = ρ(ŝig(A)(s)).

Since A is an SIOA, we have ∀(s, a, s′) ∈ steps(A) : a ∈ ŝig(A)(s). From Definition 8, steps(ρ(A)) =
{(s, ρ(a), t) | (s, a, t) ∈ steps(A)}

Hence, if (s, ρ(a), t) is an arbitrary element of steps(ρ(A)), then (s, a, t) ∈ steps(A), and so a ∈ ŝig(A)(s).

Hence ρ(a) ∈ ρ(ŝig(A)(s)). Since ρ(ŝig(A)(s)) = ŝig(ρ(A))(s), we conclude ρ(a) ∈ ŝig(ρ(A))(s). Hence,

∀(s, ρ(a), s′) ∈ steps(ρ(A)) : ρ(a) ∈ ŝig(ρ(A))(s). Thus, Constraint 1 holds for ρ(A).

Constraint 2: From Definition 8, states(ρ(A)) = states(A), steps(ρ(A)) = {(s, ρ(a), t) | (s, a, t) ∈ steps(A)},
and for all s ∈ states(ρ(A)), in(ρ(A))(s) = ρ(in(A)(s)).

Let s be any state of ρ(A), and let b ∈ in(ρ(A))(s). Then b = ρ(a) for some a ∈ in(A)(s). We have (s, a, t) ∈
steps(A) for some t, by Constraint 2 for A. Hence (s, ρ(a), t) ∈ steps(ρ(A)). Hence (s, b, t) ∈ steps(ρ(A)).
Hence Constraint 2 holds for ρ(A).

Constraint 3: A is an SIOA and so satisfies Constraint 3 of Definition 1. From this and Definition 8 and the
requirement that ρ be injective, it is easy to see that ρ(A) also satisfies Constraint 3.

2.4 Example: mobile phones

We illustrate SIOA using the mobile phone example from Milner [26, chapter 8]. There are four SIOA:

1. Car : a car containing a mobile phone

2. Trans1 ,Trans2 : two transmitter stations

3. Control : a control station

Control , Trans1 , and Car are given in Figures 1, 2, and 3 respectively. Trans2 results by applying renaming
to Trans1 , and changing the initial state appropriately, since initially Car is communicating with Trans1 .

We use the usual I/O automata “precondition effect” pseudocode [22], augmented by additional constructs
to describe signature changes and SIOA creation, as follows. We use “state variables” in, out , and int to
denote the current sets of input, output, and internal actions in the SIOA state signature. The Signature
section of the pseudocode for each SIOA describes acts(A), i.e., the “universal” set of all actions that A could
possibly execute, in any state. We partition this description into the input, output, and internal components
of the signature. We indicate the signature components in every start state using an “initially” keyword at
the end of the “Input,” “Output,” and “Internal” sections, followed by the actions present in the signature
of every start state. This convention restricts all start states to have the same signature. We emphasize
that this is a restriction of the pseudocode only, and not of the underlying SIOA model. When a signature
component does not change, we replace the keyword “initially” by the keyword “constant” as a convenient
reminder of this.

At any time, Car is connected to either Trans1 or Trans2 . Normal conversation is conducted using a talk
action. Under direction of Control (via lose and gain actions) the transmitters transfer Car between them,
using switch actions. Upon receiving a lose input from Control , a transmitter goes on to send a switch to Car ,
and also removes the talk and switch actions from its signature. Upon receiving a switch from a transmitter,
Car will remove the talk and switch actions for that transmitter from its signature, and add the talk and
switch actions for the other transmitter to its signature.
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Control

Signature
Input:
∅
constant

Output:
lose1, gain1, lose2, gain2
constant

Internal:
∅
constant

State

assigned ∈ {1, 2}, transmitter that Car is assigned to, initially 1

transferring ∈ {true, false}, true iff in the middle of a transfer of Car from one transmitter to another, initially false

Actions
Output lose1
Pre: assigned = 1 ∧ ¬transferring
Eff: assigned ← 2;

transferring ← true

Output gain2
Pre: assigned = 1 ∧ transferring
Eff: transferring ← false

Output lose2
Pre: assigned = 2 ∧ ¬transferring
Eff: assigned ← 1;

transferring ← true

Output gain1
Pre: assigned = 1 ∧ transferring
Eff: transferring ← false

Figure 1: The Control SIOA

Trans1

Signature
Input:

lose1, gain1, talk1 initially: lose1, gain1, talk1
Output:

switch1 initially: switch1
Internal:
∅
constant

State

transferring ∈ {true, false}, true iff in the middle of a transfer of Car to the other controller

active ∈ {true, false}, true iff this transmitter is currently handling the Car , initially false

Actions
Input lose1
Eff: if active then

transferring ← true;
active ← false

Input gain1
Eff: in ← in ∪ {talk1};

out ← out ∪ {switch1};
active ← true

Output switch1
Pre: transferring
Eff: transferring ← false;

in ← in − {talk1};
out ← out − {switch1}

Input talk1
Eff: skip

Figure 2: The Trans1 SIOA
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Car

Signature
Input:

switch1, switch2 initially: switch1
Output:

talk1, talk2 initially: talk1
Internal:
∅
constant

State

transmitter ∈ {1, 2}, the identity of the transmitter that Car is currently connected to

Actions
Output talk1
Pre: transmitter = 1
Eff: skip

Input switch1
Eff: in ← in − {switch1} ∪ {switch2};

out ← out − {talk1} ∪ {talk2};

Output talk2
Pre: transmitter = 2
Eff: skip

Input switch2
Eff: in ← in − {switch2} ∪ {switch1};

out ← out − {talk2} ∪ {talk1};

Figure 3: The Car SIOA

3 Compositional Reasoning for Signature I/O Automata

To confirm that our model provides a reasonable notion of concurrent composition, which has expected
properties, and to enable compositional reasoning, we establish execution “projection” and “pasting” results
for compositions. We deal with both execution projection/pasting and with trace pasting. The main goal is
to establish that parallel composition is monotonic with respect to trace inclusion: if an SIOA in a parallel
composition is replaced by one with less traces, then the overall composition cannot have more traces than
before, i.e., no new behaviors are added.

3.1 Execution Projection and Pasting for SIOA

Given a parallel composition A = A1 ‖ · · · ‖ An of n SIOA, we define the projection of an alternating
sequence of states and actions of A onto one of the Ai, i ∈ [1 : n], in the usual way: the state components
for all SIOA other than Ai are removed, and so are all actions in which Ai does not participate.

Definition 9 (Execution projection for SIOA) Let A = A1 ‖ · · · ‖ An be an SIOA. Let α be a sequence

s0a1s1a2s2 . . . sj−1ajsj . . . where ∀j ≥ 0, sj = 〈sj1, . . . , sjn〉 ∈ states(A) and ∀j > 0, aj ∈ ŝig(A)(sj−1). Then,
for i ∈ [1 : n], define α�Ai to be the sequence resulting from:

1. replacing each sj by its i’th component sji , and then

2. removing all ajsji such that aj 6∈ ŝig(Ai)(s
j−1
i ).

sji is the component of sj which gives the state of Ai. sig(Ai)(s
j−1
i ) is the signature of Ai when in state

sj−1
i . Thus, if aj 6∈ ŝig(Ai)(s

j−1
i ), then the action aj does not occur in the signature sig(Ai)(s

j−1
i ), and

Ai does not participate in the execution of aj . In this case, aj and the following state are removed from
the projection, since the idea behind execution projection is to retain only the state of Ai, and only the
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actions which Ai participates in. Note that we do not require α to actually be an execution of A, since this
is unnecessary for the definition, and also facilitates the statement of execution pasting below.

Our execution projection result states that the projection of an execution of a composed SIOA A = A1 ‖
· · · ‖ An onto a component Ai, is an execution of Ai.

Theorem 4 (Execution projection for SIOA) Let A = A1 ‖ · · · ‖ An be an SIOA, and let i ∈ [1 :n]. If
α ∈ execs(A) then α�Ai ∈ execs(Ai) for all i ∈ [1 :n].

Proof: Let α = u0a1u1a2u2 . . . ∈ execs(A), and let s0 = u0�Ai. Then, by Definition 9, s0 ∈ start(Ai) and
α�Ai = s0b1s1b2s2 . . . for some b1s1b2s2 . . ., where sj ∈ states(Ai) for j ≥ 1.

Consider an arbitrary step (sj−1, bj , sj) of α�Ai. Since bjsj was not removed in Clause 2 of Definition 9, we
have

(1) sj = uk�Ai for some k > 0 and such that ak ∈ ŝig(Ai)(u
k−1�Ai)

(2) bj = ak, and
(3) sj−1 = u`�Ai for the smallest ` such that

` < k and ∀m : `+ 1 ≤ m < k : am 6∈ ŝig(Ai)(u
m−1�Ai)

From (3) and Definitions 6 and 9, u`�Ai = uk−1�Ai. Hence sj−1 = uk−1�Ai. From uk−1 ak−→A u
k, ak ∈

ŝig(Ai)(u
k−1�Ai), and Definition 6, we have uk−1�Ai

ak−→Ai
uk�Ai. Hence sj−1 bj−→Ai

sj from sj−1 = uk−1�Ai
established above and (1), (2). Now sj−1, sj ∈ states(Ai), and so (sj−1, bj , sj) ∈ steps(Ai).

Since (sj−1, bj , sj) was arbitrarily chosen, we conclude that every step of α�Ai is a step of Ai. Since the first
state of α�Ai is s0, and s0 ∈ start(Ai), we have established that α�Ai is an execution of Ai.

Execution pasting is, roughly, an “inverse” of projection. If α is an alternating sequence of states and
actions of a composed SIOA A = A1 ‖ · · · ‖ An such that (1) the projection of α onto each Ai is an actual
execution of Ai, and (2) every action of α not involving Ai does not change the state of Ai, then α will be an
actual execution of A. Condition (1) is the “inverse” of execution projection. Condition (2) is a consistency
condition which requires that Ai cannot “spuriously” change its state when an action not in the current
signature of Ai is executed.

Theorem 5 (Execution pasting for SIOA) Let A = A1 ‖ · · · ‖ An be an SIOA. Let α be a sequence

s0a1s1a2s2 . . . sj−1ajsj . . . where ∀j ≥ 0, sj = 〈sj1, . . . , sjn〉 ∈ states(A) and ∀j > 0, aj ∈ ŝig(A)(sj−1).
Furthermore, suppose that, for all i ∈ [1 :n]:

1. α�Ai ∈ execs(Ai), and

2. ∀j > 0 : if aj 6∈ ŝig(Ai)(s
j−1
i ) then sj−1

i = sji .

Then, α ∈ execs(A).

Proof: We shall establish, by induction on j:

∀j ≥ 0 : α|j ∈ execs(A). (*)

From which we can conclude s0 ∈ start(A) and ∀j ≥ 0 : (sj−1, aj , sj) ∈ steps(A). Definition 2 then implies
the desired conclusion, α ∈ execs(A).

Base case: j = 0.
So α|j = s0. Now s0 = 〈s0

1, . . . , s
0
n〉 by assumption. By Definition 9, s0

i is the first state of α�Ai, for 1 ≤ i ≤ n.
By clause 1, α�Ai ∈ execs(Ai), and so s0

i ∈ start(Ai), for 1 ≤ i ≤ n. Thus, by Definition 6, s0 ∈ start(A).
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Induction step: j > 0.
Assume the induction hypothesis:

α|j−1 ∈ execs(A) (ind. hyp.)

and establish α|j ∈ execs(A). By Definition 2, it is clearly sufficient to establish sj−1 aj−→A s
j .

By assumption, aj ∈ ŝig(A)(sj−1). Let ϕ ⊆ [1 :n] be the unique set such that ∀i ∈ ϕ : aj ∈ ŝig(Ai)(s
j−1�Ai)

and ∀i ∈ [1 :n]− ϕ : aj 6∈ ŝig(Ai)(s
j−1�Ai). Thus, by Definition 9:

∀i ∈ ϕ : (sj−1�Ai, aj , sj�Ai) lies along α�Ai.

Since ∀i ∈ [1 :n] : α�Ai ∈ execs(Ai) and Ai is an SIOA,

∀i ∈ ϕ : sj−1�Ai
aj−→Ai

sj�Ai.

Also, by clause 2,

∀i ∈ [1 :n]− ϕ : sj−1�Ai = sj�Ai.

By Definition 6

〈sj−1�A1, . . . , s
j−1�An〉

aj−→A 〈sj�A1, . . . , s
j�An〉

Hence

sj−1 aj−→A s
j .

From the induction hypothesis (α|j−1 ∈ execs(A)), sj−1 aj−→A s
j , and Definition 2, we have α|j ∈ execs(A).

3.2 Trace Pasting for SIOA

We deal only with trace pasting, and not trace projection. Trace projection is not well-defined since a trace
of A = A1 ‖ · · · ‖ An does not contain information about the Ai, i ∈ [1 : n]. Since the external signatures
of each Ai vary, there is no way of determining, from a trace β, which Ai participate in each action along
β. Thus, the projection of β onto some Ai cannot be recovered from β itself, but only from an execution
α whose trace is β. Since there are in general, several such executions, the projection of β onto Ai can be
different, depending on which execution we select. Hence, the projection of β onto Ai is not well-defined as a
single trace. It could be defined as the set β�Ai = {βi | (∃α ∈ execs(A) : trace(α) = β ∧ βi = trace(α�Ai))},
i.e., all traces of Ai that can be generated by taking all executions α whose trace is β, projecting those
executions onto Ai, and then taking the trace. We do not pursue this avenue here.

We find it sufficient to deal only with trace pasting, since we are able to establish our main result, trace
substitutivity, which states that replacing an SIOA in a parallel composition by one whose traces are a
subset of the former’s, results in a parallel composition whose traces are a subset of the original parallel
composition’s. In other words, trace-containment is monotonic with respect to parallel composition.

Let Σ = (in, out, int) and Σ′ = (in′, out′, int′) be signatures. We define Σ̂ = in ∪ out ∪ int, and Σ ⊆ Σ′ to
mean in ⊆ in′ and out ⊆ out′ and int ⊆ int′.

Definition 10 (Pretrace) A pretrace γ = γ(1)γ(2) . . . is a nonempty sequence such that

1. For all i ≥ 1, γ(i) is an external signature or an action

2. γ(1) is an external signature

3. No two successive elements of γ are actions

4. For all i > 1, if γ(i) is an action a, then γ(i− 1) is an external signature containing a (a ∈ γ̂(i− 1))
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5. If γ is finite, then it ends in an external signature

The notion of a pretrace is similar to that of a trace, but it permits “stuttering”: the (possibly infinite)
repetition of the same external signature. This simplifies the subsequent proofs, since it allows us to “stretch”
and “compress” pretraces corresponding to different SIOA so that they “line up” nicely. Our definition of
a pretrace does not depend on a particular SIOA, i.e, we have not defined “a pretrace of an SIOA A,” but
rather just a pretrace in general. We define “pretrace of an SIOA A” below.

Definition 11 (Reduction of pretrace to a trace) Let γ be a pretrace. Then r(γ) is the result of re-
placing all maximal blocks of identical external signatures in γ by a single representative. In particular, if
γ has an infinite suffix consisting of repetitions of an external signature, then that is replaced by a single
representative.

If γ = r(γ), then we say that γ is a trace. This defines a notion of trace in general, as opposed to “trace
of an SIOA A.” We now define stuttering-equivalence (≈) for pre-traces. Essentially, if one pretrace can be
obtained from another by adding and/or removing repeated external signatures, then they are stuttering
equivalent.

Definition 12 (≈) Let γ, γ′ be pretraces. Then γ ≈ γ′ iff r(γ) = r(γ′).

It is obvious that ≈ is an equivalence relation. Note that every trace is also a pretrace, but not necessarily
vice-versa, since repeated external signatures (stuttering) are disallowed in traces. The length |γ| of a finite
pretrace γ is the number of occurrences of external signatures and actions in γ. The length of an infinite
pretrace is ω. Let pretrace γ = γ(1)γ(2) . . .. Then for 1 ≤ i ≤ |γ|, define γ|i = γ(1)γ(2) . . . γ(i). We
define concatenation for pretraces as simply sequence concatenation, and will usually use juxtaposition to
denote pretrace concatenation, but will sometimes use the _ operator for clarity. The concatenation of two
pretraces is always a pretrace (note that this is not true of traces, since concatenating two traces can result
in a repeated external signature). We use <,≤ for proper prefix, prefix, respectively, of a pretrace: γ < γ′

iff there exists a pretrace γ′′ such that γ = γ′γ′′, and γ ≤ γ′ iff γ = γ′ or γ < γ′. If γ′ is a pretrace and
γ < γ′, then γ satisfies clauses 1–4 of Definition 10, but may not satisfy clause 5. For a finite sequence γ

that does satisfy clauses 1–4 of Definition 10, define the predicate ispretrace(γ)
df
== (last(γ) is an external

signature), where last(γ) is the last element of γ.

We now define a predicate zips(γ, γ1, . . . , γn) which takes n + 1 pretraces and holds when γ is a possible
result of “zipping” up γ1, . . . , γn, as would result when γ1, . . . , γn are pretraces of compatible SIOA A1, . . . , An
respectively, and γ is the corresponding pretrace of A = A1 ‖ · · · ‖ An.

Definition 13 (zip of pretraces) Let γ, γ1, . . . , γn be pretraces (n ≥ 1). The predicate
zips(γ, γ1, . . . , γn) holds iff all the following hold:

1. |γ| = |γ1| = · · · = |γn|.

2. For all i > 1: if γ(i) is an action a, then there exists nonempty ϕi ⊆ [1 : n] such that

(a) ∀k ∈ ϕi : γk(i) = a, and

(b) ∀` ∈ [1 : n]− ϕi: γ`(i− 1) = γ`(i) = γ`(i+ 1), γ`(i) is an external signature Γ`, and a 6∈ Γ̂`.

3. For all i > 0: if γ(i) is an external signature Γ, then for all j ∈ [1 : n], γj(i) is an external signature
Γj, and Γ =

∏
j∈[1:n] Γj.

4. For all i > 0, if γ(i − 1) and γ(i) are both external signatures, then there exists k ∈ [1 : n] such that
∀` ∈ [1 : n]− k : γ`(i− 1) = γ`(i).
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Clause 1 requires that γ, γ1, . . . , γn all have the same length, so that they “line up” nicely. Clause 2 requires
that external actions a appearing in γ are executed by a nonempty subset of the corresponding SIOA, and
that the γj corresponding to automata that do not execute a are unchanged in the corresponding positions.
Clause 3 requires that an external signature appearing in γ is the product of the external signatures in the
same position in all the γj , which moreover cannot have an external action at that position. Clause 4 requires
that, whenever there are two consecutive external signatures in γ, that this corresponds to the execution of
an internal action by one particular SIOA k, so that the γ` for all ` 6= k are unchanged in the corresponding
positions.

Proposition 6 Let γ, γ1, . . . , γn all be pretraces (n ≥ 1). Suppose, zips(γ, γ1, . . . , γn). Then, for all i such
that 1 ≤ i ≤ |γ| and ispretrace(γ|i) (i.e., γ(i) is an external signature): (1) (∀j ∈ [1 :n] : ispretrace(γj |i)),
and (2) zips(γ|i, γ1|i, . . . , γn|i).

Proof: Immediate from Definition 13.

We use the zips predicate on pretraces together with the ≈ relation on pretraces to define a “zipping”
predicate for traces: the trace β is a possible result of “zipping up” the traces β1, . . . , βn if there exist
pretraces γ, γ1, . . . , γn that are stuttering-equivalent to β, β1, . . . , βn respectively, and for which the zips
predicate holds. The predicate so defined is named zip. Thus, zips is “zipping with stuttering,” as applied
to pretraces, and zip is “zipping without stuttering,” as applied to traces.

Definition 14 (zip of traces) Let β, β1, . . . , βn be traces (n ≥ 1). The predicate
zip(β, β1, . . . , βn) holds iff there exist pretraces γ, γ1, . . . , γn such that γ ≈ β, (∀j ∈ [1 : n] : γj ≈ βj),
and zips(γ, γ1, . . . , γn).

Define pretraces(A) = {γ | ∃β ∈ traces(A) : β ≈ γ}. That is, pretraces(A) is the set of pretraces which
are stuttering-equivalent to some trace of A. An equivalent definition which is sometimes more conve-
nient is pretraces(A) = {γ | ∃α ∈ execs(A) : trace(α) ≈ γ}. We also define pretraces∗(A) = {γ | γ ∈
pretraces(A) and γ is finite }.

Given γ ∈ pretraces(A), we define texecs(A)(γ) = {α | α ∈ execs(A) ∧ trace(α) ≈ γ}. In other words,
texecs(A)(γ) is the set of executions (possibly empty) of A whose trace is stuttering-equivalent to γ. Also,
execs∗(A)(γ) = {α | α ∈ execs∗(A) ∧ trace(α) ≈ γ}, i.e., the set of finite executions (possibly empty) of A
whose trace is stuttering-equivalent to γ.

Theorem 7 states that if a set of finite pretraces consisting of one γj ∈ pretraces(Aj) for each j ∈ [1 : n], can
be “zipped up” to generate a finite pretrace γ, then γ is a pretrace of A1 ‖ · · · ‖ An, and furthermore, any
set of executions corresponding to the γj can be pasted together to generate an execution of A1 ‖ · · · ‖ An
corresponding to γ. Theorem 7 is established by induction on the length of γ, and the explicit use of
executions corresponding to the pretraces γ, γ1, . . . , γn, is needed to make the induction go through.

Theorem 7 (Finite-pretrace pasting for SIOA) Let A1, . . . , An be compatible SIOA, and let A = A1 ‖
· · · ‖ An. Let γ be a finite pretrace. If, for all j ∈ [1 : n], a finite pretrace γj ∈ pretraces∗(Aj) can be chosen
so that zips(γ, γ1, . . . , γn) holds, then

∀α1 ∈ execs∗(A1)(γ1), . . . ,∀αn ∈ execs∗(An)(γn),
∃α ∈ execs∗(A)(γ) : (∀j ∈ [1 :n] : α�Aj = αj).

Proof: Let γj ∈ pretraces∗(Aj) for j ∈ [1 : n] be the pretraces given by the antecedent of the theorem. Also
let γ be the finite pretrace such that zips(γ, γ1, . . . , γn). Hence execs∗(Aj)(γj) 6= ∅ for all j ∈ [1 : n]. Fix αj
to be an arbitrary element of execs∗(Aj)(γj), for all j ∈ [1 : n]. The theorem is established if we prove

∃α ∈ execs∗(A)(γ) : (∀j ∈ [1 :n] : α�Aj = αj). (*)
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The proof is by induction on |γ|, the length of γ. We assume the induction hypothesis for all prefixes of γ
that are pretraces.

Base case: |γ| = 1. Hence γ consists of a single external signature Γ. For the rest of the base case, let j
range over [1 : n]. By zips(γ, γ1, . . . , γn) and Definition 13, we have that each γj consists of a single external
signature Γj , and Γ =

∏
j∈[1:n] Γj . Since γ1, . . . , γn contain no actions, α1, . . . , αn must contain only internal

actions (if any). Furthermore, all the states along αj , j ∈ [1 : n], must have the same external signature,
namely Γj .

By Definition 6, we can construct an execution α of A by first executing all the internal actions in α1 (in
the sequence in which they occur in α1), and then executing all the internal actions in α2, etc. until we
have executed all the actions of αn, in sequence. It immediately follows, by Definition 9, that ∀j ∈ [1 : n] :
α�Aj = αj . The external signature of every state along α is

∏
j∈[1:n] Γj , i.e., Γ, since the external signature

component contributed by each Aj is always Γj . Hence, by Definition 2, trace(α) ≈ Γ. Thus, trace(α) ≈ γ.
We have thus established trace(α) ≈ γ and (

∧
j∈[1:n] α�Aj = αj). Hence (*) is established.

Induction step: |γ| > 1. There are two cases to consider, according to Definition 13.

Case 1: γ = γ′aΓ, γ′ is a pretrace, a is an action, and Γ is an external signature.
Hence, by Definition 13, we have

∃ϕ : ∅ 6= ϕ ∧ ϕ ⊆ [1 : n] ∧
(∀k ∈ ϕ : γk = γ′kaΓk ∧ a ∈ l̂ast(γ′k)) ∧
(∀` ∈ [1 : n]− ϕ : γ` = γ′`Γ`Γ` ∧ Γ` = last(γ′`) ∧ a 6∈ Γ̂`) ∧
zips(γ′, γ′1, . . . , γ

′
n) ∧

Γ = (
∏
k∈ϕ Γk)× (

∏
`∈[1:n]−ϕ Γ`). (a)

For the rest of this case, let j range over [1 : n], k range over ϕ, and ` range over [1 : n] − ϕ. Figure 4
gives a diagram of the relevant executions, pretraces, and external signatures for this case. Horizontal solid
lines indicate executions and pretraces, and vertical dashed ones indicate the zips relation. Bullets indicate
particular states that are used in the proof.

In (a), we have that γ′j ∈ pretraces∗(Aj) for all j, since γ′j < γj and γj ∈ pretraces∗(Aj) for all j, Since we
also have γ′ < γ and zips(γ′, γ′1, . . . , γ

′
n), we can apply the inductive hypothesis for γ′ to obtain

∀α′1 ∈ execs∗(A1)(γ′1), . . . ,∀α′n ∈ execs∗(An)(γ′n) :
∃α′ ∈ execs∗(A)(γ′) : (∀j ∈ [1 :n] : α′�Aj = α′j) (b)

By assumption, αk ∈ execs∗(Ak)(γk). Hence, we can find a finite execution α′k, and finite execution fragment

α′′k such that αk = α′k _ (sk
a−→Ak

tk) _ α′′k , where sk = last(α′k), ext(Ak)(tk) = Γk, and tk = first(α′′k).
Furthermore, α′k ∈ execs∗(Ak)(γ′k), since αk ∈ execs∗(Ak)(γk), γk = γ′kaΓk, and ext(Ak)(tk) = Γk. Also, α′′k
consists entirely of internal actions, and trace(α′′k) ≈ Γk, i.e., every state along α′′k has external signature Γk.

By assumption, α` ∈ execs∗(A`)(γ`). For all `, let α′` = α`, and let s` = t` = last(α′`). Hence α′` ∈
execs∗(A`)(γ

′
`), since γ′` ≈ γ` (from γ` = γ′`Γ`Γ` ∧Γ` = last(γ′`) in (a)). Instantiating (b) for these choices of

α′k, α
′
`, we obtain, that some α′ exists such that:

(∀j ∈ [1 :n] : α′�Aj = α′j) ∧
α′ ∈ execs∗(A)(γ′) ∧
(∀k ∈ ϕ : (sk, a, tk) ∈ steps(Ak) ∧ ext(Ak)(tk) = Γk). (c)

By α′` ∈ execs∗(A`)(γ
′
`) and s` = last(α′`), we have ext(A`)(s`) = last(γ′). Hence, by (a), we have

ext(A`)(s`) = Γ`. Also, by (a), a 6∈ Γ̂`. Thus,

(∀` ∈ [1 :n]− ϕ : a 6∈ êxt(A`)(s`) ∧ ext(A`)(s`) = Γ`). (d)

Also, since A1, . . . , An are compatible SIOA, we have (∀` ∈ [1 : n] − ϕ : a 6∈ int(A`)(s`)). Hence (∀` ∈ [1 :

n]−ϕ : a 6∈ ŝig(A`)(s`)). Now let s = 〈s1, . . . , sn〉, and let t = 〈t1, . . . , tn〉. By (b) and Definition 9, we have
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s = last(α′). By (b), (∀` ∈ [1 :n]− ϕ : a 6∈ int(A`)(s`)), and Definition 6, we have (s, a, t) ∈ steps(A). Now
let α′′ be a finite execution fragment of A constructed as follows. Let t be the first state of α′′. Starting
from t, execute in sequence first all the (internal) transitions along αk1 , where k1 is some element of ϕ, and
then all the (internal) transitions along αk2 , where k1 is another element of ϕ, etc. until all elements of ϕ
have been exhausted. Since all the transitions are internal, Definition 6 shows that α′′ is indeed an execution
fragment of A. Furthermore, since no external signatures change along any of the α′′k , it follows that the
external signature does not change along α′′, and hence must equal ext(A)(t) at all states along α′′. Hence
trace(α′′) ≈ ext(A)(t). Finally, by its construction, we have α′′�Ak = α′′k for all k.

Let α = α′_ (s
a−→A t)_α′′. By the above, α is well defined, and is an execution of A.

We now have

ext(A)(t)
= (

∏
k ext(Ak)(tk))× (

∏
` ext(A`)(t`)) definition of t

= (
∏
k Γk)× (

∏
` ext(A`)(t`)) (c)

= (
∏
k Γk)× (

∏
` Γ`) (d)

= Γ (a)

Also,

trace(α)
≈ trace(α′)_a_ trace(α′′) definition of α
≈ trace(α′)_a_ ext(A)(t) trace(α′′) ≈ ext(A)(t)
≈ trace(α′)_a_ Γ ext(A)(t) = Γ established above
≈ γ′aΓ α′ ∈ execs∗(A)(γ′), hence trace(α′) ≈ γ′
≈ γ case condition

For all k ∈ ϕ,

α�Ak
= (α′�Ak)_ (sk

a−→Ak
tk)_ (α′′�Ak) Definition 9 and definition of α

= α′k_ (sk
a−→Ak

tk)_ (α′′�Ak) by (c), α′�Ak = α′k
= α′k_ (sk

a−→Ak
tk)_α′′k by the preceding remarks, α′′�Ak = α′′k

= αk by definition of α′k, α′′k : αk = α′k_ (sk
a−→Ak

tk)_α′′k

For all ` ∈ [1 : n]− ϕ,

α�A`
= α′�A` Definition 9 and definition of α
= α′` by (c), α′�A` = α′`
= α` by our choice of α′`, α` = α′`

We have just established α ∈ execs∗(A), α�j = αj for all j ∈ [1 : n], and trace(α) ≈ γ. Hence (*) is
established for case 1.

Case 2: γ = γ′Γ, γ′ is a pretrace, and Γ is an external signature.
Hence, by Definition 13, we have
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∃k ∈ [1 : n] :
γk = γ′kΓk ∧ last(γ′k) is an external signature ∧
(∀` ∈ [1 :n]− k : γ` = γ′`Γ` ∧ last(γ′`) = Γ`) ∧
zips(γ′, γ′1, . . . , γ

′
n) ∧

Γ = Γk × (
∏
`∈[1:n]−k Γ`). (a)

For the rest of this case, let j range over [1 : n], and ` range over [1 : n] − k. In (a), we have that
γ′j ∈ pretraces∗(Aj) for all j, since γ′j < γj and γj ∈ pretraces∗(Aj) for all j. Since we also have γ′ < γ and
zips(γ′, γ′1, . . . , γ

′
n), we can apply the inductive hypothesis for γ′ to obtain

∀α′1 ∈ execs∗(A1)(γ′1), . . . ,∀α′n ∈ execs∗(An)(γ′n) :
∃α′ ∈ execs∗(A)(γ′) : (∀j ∈ [1 : n] : α′�Aj = α′j) (b)

By assumption, α` ∈ execs∗(A`)(γ`). For all `, let α′` = α`, and let s` = t` = last(α′`). Hence α′` ∈
texecs(A`)(γ

′
`), since γ′` ≈ γ`.

We now have two subcases.

Subcase 2.1: Γk = last(γ′k).
Let α′k = αk. Since α′` = α` for all ` ∈ [1 : n] − k, we get α′j = αj for all j ∈ [1 : n]. Instantiating (b) for
these α′j , we have the existence of an α′ such that α′ ∈ execs∗(A)(γ′) ∧ (∀j ∈ [1 :n] : α′�Aj = α′j). Now let
α = α′. Hence trace(α) = trace(α′) ≈ γ′ since α′ ∈ execs∗(A)(γ′). Figure 5 gives a diagram of the relevant
executions, pretraces, and external signatures for this case.

By the case 2 assumption, γ′ is a pretrace, and so last(γ′) is an external signature. So, we have

last(γ′)
= last(γ′k)× (

∏
` last(γ′`)) zips(γ′, γ′1, . . . , γ

′
n) and Definition 13

= last(γ′k)× (
∏
` Γ`) (a)

= Γk × (
∏
` Γ`) subcase assumption

= Γ (a)

By the case assumption, γ = γ′Γ. Hence γ ≈ γ′. So, trace(α) ≈ γ. We have just established α ∈ execs(A),
α�Aj = αj for all j ∈ [1 : n], and trace(α) ≈ γ. Hence (*) is established for subcase 2.1.

Subcase 2.2: Γk 6= last(γ′k).
In this case, we can find a finite execution α′k, and finite execution fragment α′′k such that αk = α′k _

(sk
τ−→Ak

tk) _ α′′k , where sk = last(α′k), ext(Ak)(tk) = Γk, and tk = first(α′′k). Figure 6 gives a diagram

of the relevant executions, pretraces, and external signatures for this case. The transition sk
τ−→Ak

tk must
exist, since the external signature of Ak changed along γk. Also, α′′k consists entirely of internal actions, and
trace(α′′k) ≈ Γk, i.e., every state along α′′k has external signature Γk.

Hence αk = α′k_ (sk
τ−→Ak

tk)_α′′k , where sk = last(α′k) and ext(Ak)(tk) = Γk and τ ∈ int(Ak)(sk).

Now let s = 〈s1, . . . , sn〉, and let t = 〈t1, . . . , tn〉. For all ` ∈ [1 :n]−k, let α′` = α`. Instantiating (b) for α′k and
the α′`, we have the existence of an α′ such that α′ ∈ execs∗(A)(γ′)∧(∀` ∈ [1 :n]−k : α′�A` = α′`)∧(α′�Ak =
α′k). By (b) and Definition 9, we have s = last(α′). By Definition 6, we have (s, τ, t) ∈ steps(A). Let

α = α′ _ (s
τ−→A t) _ α′′, where α′′ is the finite-execution fragment of A with first state t, and whose

transitions are exactly those of α′′k , with no other SIOA making any transitions. Since all the transitions of
α′′k are internal, Definition 6 shows that α′′ is indeed an execution fragment of A. Furthermore, since the
external signature does not change along α′′k , it follows that the external signature does not change along
α′′, and hence must equal ext(A)(t) at all states along α′′. Hence trace(α′′) ≈ ext(A)(t). Finally, by its
construction, we have α′′�Ak = α′′k .

By the above, α is well defined, and is an execution of A.

We now have
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ext(A)(t)
= ext(Ak)(tk)× (

∏
` ext(A`)(t`)) definition of t

= Γk × (
∏
` ext(A`)(t`)) definition of tk

= Γk × (
∏
` Γ`) t` = last(α′`), (a)

= Γ (a)

And so,

trace(α)
≈ trace(α′)_ trace(α′′) definition of α
≈ trace(α′)_ ext(A)(t) trace(α′′) ≈ ext(A)(t)
≈ trace(α′)_ Γ ext(A)(t) = Γ established above
≈ γ′Γ α′ ∈ execs∗(A)(γ′), hence trace(α′) ≈ γ′
≈ γ case condition

For k,

α�Ak
= (α′�Ak)_ (sk

τ−→Ak
tk)_ (α′′�Ak) Definition 9 and definition of α

= α′k_ (sk
τ−→Ak

tk)_ (α′′�Ak) by (c), α′�Ak = α′k
= α′k_ (sk

τ−→Ak
tk)_α′′k by the preceding remarks, α′′�Ak = α′′k

= αk by definition of α′k, α′′k : αk = α′k_ (sk
τ−→Ak

tk)_α′′k

For all ` ∈ [1 : n]− k,

α�A`
= α′�A` Definition 9 and definition of α
= α′` by (c), α′�A` = α′`
= α` by our choice of α′`, α` = α′`

We have just established α ∈ execs∗(A), α�Aj = αj for all j ∈ [1 : n], and trace(α) ≈ γ. Hence (*) is
established for subcase 2.2. Hence Case 2 of the inductive step is established.

Since both cases of the inductive step have been established, the theorem follows.

We use Theorem 7 and the definition of zip (Definition 14) to establish a similar result for traces.

Corollary 8 (Finite-trace pasting for SIOA) Let A1, . . . , An be compatible SIOA, and let A = A1 ‖
· · · ‖ An. Let β be a finite trace and assume that there exist β1, . . . , βn such that (1) (∀j ∈ [1 : n] : βj ∈
traces∗(Aj)), and (2) zip(β, β1, . . . , βn). Then β ∈ traces∗(A).

Proof: By Definition 14, there exist finite pretraces γ, γ1, . . . , γn such that γ ≈ β, (
∧
j∈[1:n] γj ≈ βj), and

zips(γ, γ1, . . . , γn). By Theorem 7, ∃α ∈ execs∗(A) : trace(α) ≈ γ. Hence trace(α) ≈ β. Since β is a trace,
we obtain trace(α) = β. Since β is finite, β ∈ traces∗(A).

Theorem 9 extends theorem 7 to infinite pretraces. That is, if a set of pretraces γj of Aj , for all j ∈ [1 : n],
can be “zipped up” to generate a pretrace γ, then γ is a pretrace of A = A1 ‖ · · · ‖ An. The proof uses
the result of Theorem 7 to construct an infinite family of finite executions, each of which is a prefix of the
next, and such that the trace of each finite execution is stuttering-equivalent to a prefix of γ. Taking the
limit of these executions under the prefix ordering then yields an infinite execution α of A whose trace is
stuttering-equivalent to γ, as desired.
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Figure 4: Proof of Theorem 7: illustration of case one

α′, γ′
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αk, γk
α′k = αk, γ

′
k

α′` = α`, γ
′
`

Γ

Γk
Γk

Γ` Γ`
α`, γ`

α, γ

Figure 5: Proof of Theorem 7: illustration of subcase 2.1

Theorem 9 (Pretrace pasting for SIOA) Let A1, . . . , An be compatible SIOA, and let A = A1 ‖ · · · ‖
An. Let γ be a pretrace. If, for all j ∈ [1 : n], γj ∈ pretraces(Aj) can be chosen so that zips(γ, γ1, . . . , γn)
holds, then ∃α ∈ execs(A) : trace(α) ≈ γ.

Proof: If γ is finite, then the result follows from Theorem 7. Hence assume that γ is infinite for the remainder
of the proof. By Proposition 6, we have

∀i, i > 0 ∧ ispretrace(γ|i) : (∀j ∈ [1 :n] : ispretrace(γj |i)) ∧ zips(γ|i, γ1|i, . . . , γn|i). (a)

Hence, by γj ∈ pretraces(Aj) and Definition 10, we have

∀i, i > 0 ∧ ispretrace(γ|i),∀j ∈ [1 :n] : γj |i ∈ pretraces(Aj) (b)

By (a,b) and Theorem 7, we have

∀i, i > 0 ∧ ispretrace(γ|i),∃αi ∈ execs(A) : trace(αi) ≈ γ|i (c)

Now let i′, i′′ be such that i′ < i′′, ispretrace(γ|i′), ispretrace(γ|i′′), and there is no i′ < i < i′′ such that
ispretrace(γ|i). By Definition 10, we have that either γ|i′′ = (γ|i′)aΓ or γ|i′′ = (γ|i′)Γ, for some action a
and external signature Γ. We can show that there exist αi

′ ∈ execs(A), αi
′′ ∈ execs(A) such that αi

′
< αi

′′
,

trace(αi
′
) ≈ γ|i′ , trace(αi

′′
) ≈ γ|i′′ . This is established by the same argument as used for the inductive

step in the proof of Theorem 7. In essence, αi
′′

is obtained inductively as an extension of αi
′
. We omit the

(repetitive) details.
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Figure 6: Proof of Theorem 7: illustration of subcase 2.2

Let prefixes(γ) = {i | i > 0 ∧ ispretrace(γ|i)}. By (c), we have

there exists a set {αi | i ∈ prefixes(γ)} such that
∀i ∈ prefixes(γ) : αi ∈ execs(A) ∧ trace(αi) ≈ γ|i
∀i′, i′′ ∈ prefixes(γ), i′ < i′′ : αi

′ ≤ αi′′ (d)

Now let α be the unique minimum sequence that satisfies ∀i ∈ prefixes(γ) : αi < α. α exists by (d). Since
every triple (s, a, s′) along α occurs in some αi, it must be a step of A. Hence α is an execution of A.

We now show, by contradiction, that trace(α) ≈ γ. Suppose not, and let β = trace(α). Then β 6= r(γ) by
Definition 12. Since β and r(γ) are sequences, they must differ at some position. Let i0 be the smallest
number such that β(i0) 6= r(γ)(i0). Hence β|i0 6= r(γ)|i0 . Now the trace of a prefix of α is a prefix of β, by
Definition 2. Hence there can be no prefix of α whose trace is r(γ)|i0 , i.e., ¬(∃i ≥ 0 : trace(α|i) = r(γ)|i0). Let
i1 be such that r(γ|i1) = r(γ)|i0 . Hence ¬(∃i ≥ 0 : trace(α|i) = r(γ|i1)). And so ¬(∃i ≥ 0 : trace(α|i) ≈ γ|i1).
But this contradicts (d), and so we are done.

We use Theorem 9 and the definition of zip (Definition 14) to establish Corollary 10, which extends corollary 8
to infinite traces. Corollary 10 gives our main trace pasting result, and is also used to establish trace
substitutivity, Theorem 17, below.

Corollary 10 (Trace pasting for SIOA) Let A1, . . . , An be compatible SIOA, and let A = A1 ‖ · · · ‖ An.
Let β be a trace and assume that there exist β1, . . . , βn such that (1) (∀j ∈ [1 :n] : βj ∈ traces(Aj)), and (2)
zip(β, β1, . . . , βn). Then β ∈ traces(A).

Proof: By Definition 14, there exist pretraces γ, γ1, . . . , γn such that γ ≈ β,
∧
j∈[1:n] γj ≈ βj , and

zips(γ, γ1, . . . , γn). By Theorem 9, ∃α ∈ execs(A) : trace(α) ≈ γ. Hence trace(α) ≈ β. Since β is a
trace, we obtain trace(α) = β. Hence β ∈ traces(A).

3.3 Trace Substitutivity for SIOA

To establish trace substitutivity, we first need some preliminary technical results. These establish that for
an execution α of A = A1 ‖ · · · ‖ An and its projections α�A1, . . . , α�An, that there exist corresponding (in
the sense of being stuttering equivalent to the trace of) pretraces γ, γ1, . . . , γn respectively which “zip up,”
i.e., zips(γ, γ1, . . . , γn) holds. Our first proposition establishes this result for finite executions.
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Proposition 11 Let A1, . . . , An be compatible SIOA, and let A = A1 ‖ · · · ‖ An. Let α be any finite
execution of A. Then, there exist finite pretraces γ, γ1, . . . , γn such that (1) γ ≈ trace(α), (2) (∀j ∈ [1 :n] :
γj ≈ trace(α�Aj)), and (3) zips(γ, γ1, . . . , γn).

Proof: By induction on |α|. For the rest of the proof, fix α to be an arbitrary finite execution of A.

Base case: |α| = 0. Then α consists of a single state s. By Definition 6, we have ext(A)(s) =
∏
j∈[1:n] ext(Aj)(s�Aj).

Let γ consist of the single element ext(A)(s) and for all j ∈ [1 : n], let γj consist of the single element
ext(Aj)(s�Aj). Hence γ =

∏
j∈[1:n] γj . By Definition 13, zips(γ, γ1, . . . , γn) holds.

Induction step: |α| > 0. There are two cases to consider, according to whether the last transition of α is an
external or internal action of A.

Case 1: α = α′at for some action a and state t, where a ∈ êxt(A)(last(α′)).
We apply the induction hypothesis to α′ to obtain

there exist pretraces γ′, γ′1, . . . , γ
′
n such that

γ′ ≈ trace(α′), (∀j ∈ [1 :n] : γ′j ≈ trace(α′�Aj)), and zips(γ′, γ′1, . . . , γ
′
n). (a)

Let s = last(α′), and for all j ∈ [1 :n], let sj = s�Aj , and tj = t�Aj . Let ϕ = {j | a ∈ êxt(Aj)(sj)}. Let k

range over ϕ and ` range over [1 : n]− ϕ. Hence,
∧
` a 6∈ ŝig(A`)(s`). Hence, by Definition 6,

∧
` s` = t`.

By Definition 9, for all k, we have α�Ak = (α′�Ak)atk. Hence trace(α�Ak) = trace(α′�Ak)_a_ext(Ak)(tk).
For all k, we have γ′k ≈ trace(α′�Ak) by (a). Let γk = γ′k_a_ ext(Ak)(tk). Hence γk ≈ trace(α�Ak).

By Definition 9, for all `, we have α�A` = α′�A`. Hence trace(α�`) = trace(α′�`). Let γ` = γ′` _
ext(A`)(s`) _ ext(A`)(s`). By (a), we have γ′` ≈ trace(α′�A`) for all `. From s = last(α′), we get last(γ′`)
= ext(A`)(last(α′�`)) = ext(A`)(s`). Hence γ` ≈ γ′`. Hence γ` ≈ γ′` ≈ trace(α′�A`) = trace(α�A`). Thus,
γ` ≈ trace(α�A`).

Let γ = γ′_a_ext(A)(t). Now trace(α) = trace(α′at) = trace(α′)_a_ext(A)(t). From (a), γ′ ≈ trace(α′).
Hence γ = γ′_a_ ext(A)(t) ≈ trace(α′)_a_ ext(A)(t) = trace(α). So, γ ≈ trace(α).

From the previous three paragraphs, we have

γ ≈ trace(α) ∧
∧
j∈[1:n] γj ≈ trace(α�Aj). (b)

We now establish zips(γ, γ1, . . . , γn). We show that all clauses of Definition 13 are satisfied for γ, γ1, . . . , γn.
By (a), zips(γ′, γ′1, . . . , γ

′
n). We will use this repeatedly below.

By zips(γ′, γ′1, . . . , γ
′
n), we have |γ′| = |γ′1| = · · · = |γ′n|. By construction |γ| = |γ′|+ 2, and for all j ∈ [1 : n],

|γj | = |γ′j |+ 2. Hence |γ| = |γ1| = · · · = |γn|. So clause 1 is satisfied.

By definition of `, we have
∧
` a 6∈ ext(A`)(s`). By construction, the last three elements of γ` (for all `) are

all ext(A`)(s`). By this and zips(γ′, γ′1, . . . , γ
′
n), we conclude that clause 2 is satisfied.

By Definition 6, we have ext(A)(t) =
∏
j∈[1:n] ext(Aj)(tj). By construction, we have last(γ) = ext(A)(t),∧

k last(γk) = ext(Ak)(tk), and
∧
` last(γ`) = ext(A`)(s`). From

∧
` s` = t` (established above), we get∧

` last(γ`) = ext(A`)(t`). Hence last(γ) =
∏
j∈[1:n] last(γj). By this and zips(γ′, γ′1, . . . , γ

′
n), we conclude

that clause 3 is satisfied.

By zips(γ′, γ′1, . . . , γ
′
n) and the construction of γ, γ1, . . . , γn (specifically, that a is an external action), we

conclude that clause 4 is satisfied.

Hence, we have established zips(γ, γ1, . . . , γn). Together with (b), this establishes the inductive step in this
case.

Case 2: α = α′at for some action a and state t, where a ∈ int(A)(last(α′)).
We can apply the induction hypothesis to α′ to obtain
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there exist pretraces γ′, γ′1, . . . , γ
′
n such that

γ′ ≈ trace(α′), (∀j ∈ [1 :n] : γ′j ≈ trace(α′�Aj)), and zips(γ′, γ′1, . . . , γ
′
n). (a)

Let s = last(α′), and for all j ∈ [1 :n], let sj = s�Aj , and tj = t�Aj . Since a is an internal action of A, it is
executed by exactly one of the A1, . . . , An. Thus, there is some k ∈ [1 : n] such that a ∈ int(Ak)(sk), and

for all ` ∈ [1 : n]− k, a 6∈ ŝig(A`)(s`). Let ` range over [1 : n]− k for the rest of this case. Hence
∧
` s` = t`,

by Definition 6.

By Definition 9, we have α�Ak = (α′�Ak)atk. Hence trace(α�Ak) = trace(α′�Ak) _ ext(Ak)(tk). We have
γ′k ≈ trace(α′�Ak) by (a). Let γk = γ′k_ ext(Ak)(tk). Hence γk ≈ trace(α�Ak).

By Definition 9, for all `, we have α�A` = α′�A`. Hence trace(α�`) = trace(α′�`). Let γ` = γ′`_ ext(A`)(s`).
By (a), γ′` ≈ trace(α′�A`) for all `. From s = last(α′), we get last(γ′`) = ext(A`)(last(α′�`)) = ext(A`)(s`).
Hence γ` ≈ γ′`. Hence γ` ≈ γ′` ≈ trace(α′�A`) = trace(α�A`). Thus, γ` ≈ trace(α�A`).

Let γ = γ′ _ ext(A)(t). Now trace(α) = trace(α′at) = trace(α′) _ ext(A)(t). From (a), γ′ ≈ trace(α′).
Hence γ = γ′_ ext(A)(t) ≈ trace(α′)_ ext(A)(t) = trace(α). So, γ ≈ trace(α).

From the previous three paragraphs, we have

γ ≈ trace(α) ∧
∧
j∈[1:n] γj ≈ trace(α�Aj). (b)

We now establish zips(γ, γ1, . . . , γn). We show that all clauses of Definition 13 are satisfied for γ, γ1, . . . , γn.
By (a), zips(γ′, γ′1, . . . , γ

′
n). We will use this repeatedly below.

By zips(γ′, γ′1, . . . , γ
′
n), we have |γ′| = |γ′1| = · · · = |γ′n|. By construction |γ| = |γ′|+ 1, and for all j ∈ [1 : n],

|γj | = |γ′j |+ 1. Hence |γ| = |γ1| = · · · = |γn|. So clause 1 is satisfied.

By zips(γ′, γ′1, . . . , γ
′
n) and the construction of γ, γ1, . . . , γn (specifically, that a is an internal action), we

conclude that clause 2 is satisfied.

By Definition 6, we have ext(A)(t) =
∏
j∈[1:n] ext(Aj)(tj). By construction, we have last(γ) = ext(A)(t),

last(γk) = ext(Ak)(tk), and
∧
` last(γ`) = ext(A`)(s`). From

∧
` s` = t` (established above), we get∧

` last(γ`) = ext(A`)(t`). Hence last(γ) =
∏
j∈[1:n] last(γj). By this and

zips(γ′, γ′1, . . . , γ
′
n), we conclude that clause 3 is satisfied.

By construction, the last two elements of γ` (for all `) are both ext(A`)(s`). By this and zips(γ′, γ′1, . . . , γ
′
n),

we conclude that clause 4 is satisfied.

Hence, we have established zips(γ, γ1, . . . , γn). Together with (b), this establishes the inductive step in this
case.

Having established both possible cases, we conclude that the inductive step holds.

Proposition 12 Let A1, . . . , An be compatible SIOA, and let A = A1 ‖ · · · ‖ An. Let β be any finite trace
of A. Then, there exist β1, . . . , βn such that (1) (∀j ∈ [1 :n] : βj ∈ traces∗(Aj)), and (2) zip(β, β1, . . . , βn).

Proof: Since β ∈ traces∗(A), there exists α ∈ execs∗(A) such that trace(α) = β. Applying Proposition 11
to α, we have that there exist finite pretraces γ, γ1, . . . , γn such that γ ≈ trace(α), (∀j ∈ [1 : n] : γj ≈
trace(α�Aj)), and zips(γ, γ1, . . . , γn).

For all j ∈ [1 : n], let βj = trace(α�Aj). By Theorem 4, α�Aj ∈ execs(Aj). Hence α�Aj ∈ execs∗(Aj) since
α is finite. Hence βj ∈ traces∗(Aj). Thus, (1) is established.

From γj ≈ trace(α�Aj) and βj = trace(α�Aj), we have βj ≈ γj , for all j ∈ [1 : n]. From γ ≈ trace(α) and
β = trace(α), we have γ ≈ β. Hence, by Definition 14 and zips(γ, γ1, . . . , γn), we conclude zip(β, β1, . . . , βn).
Hence (2) is established.
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Theorem 13 (Finite-trace Substitutivity for SIOA) Let A1, . . . , An be compatible SIOA, and let A =
A1 ‖ · · · ‖ An. For some k ∈ [1 : n], let A1, . . . , Ak−1, A

′
k, Ak+1, . . . , An be compatible SIOA, and let

A′ = A1 ‖ · · · ‖ Ak−1 ‖ A′k ‖ Ak+1 ‖ · · · ‖ An. Assume also that traces∗(Ak) ⊆ traces∗(A′k). Then
traces∗(A) ⊆ traces∗(A′).

Proof: Let β be an arbitrary finite trace of A. Then, by Proposition 12, there exist β1, . . . , βn such that
zip(β, β1, . . . , βn), and (∀j ∈ [1 :n] : βj ∈ traces∗(Aj)). By assumption, traces∗(Ak) ⊆ traces∗(A′k). Hence
βk ∈ traces∗(A′k). Thus, we have βk ∈ traces∗(A′k), (∀` ∈ [1 :n]−k : β` ∈ traces∗(A`)), and zip(β, β1, . . . , βn).
Hence, by Corollary 8, β ∈ traces∗(A′). Since β was chosen arbitrarily, we have traces∗(A) ⊆ traces∗(A′).

To extend Theorem 13 to infinite traces, we start with Proposition 14, which extends the result of Propo-
sition 11 to the (infinite set of) finite prefixes of an infinite execution. That is, for every finite prefix α|i of
an infinite execution α of A = A1 ‖ · · · ‖ An, and its projections (α|i)�A1, . . . , (α|i)�An, there exist corre-
sponding (in the sense of being stuttering equivalent to the trace of) pretraces γi and γi1, . . . , γ

i
n respectively

which “zip up,” i.e., zips(γi, γi1, . . . , γ
i
n) holds. Furthermore, the pretraces γi−1, γi−1

1 , . . . , γi−1
n corresponding

to α|i−1, (α|i−1)�A1, . . . , (α|i−1)�An, respectively are prefixes of the pretraces γi, γi1, . . . , γ
i
n, respectively.

Proposition 14 Let A1, . . . , An be compatible SIOA, and let A = A1 ‖ · · · ‖ An. Let α be any execution of
A. Then, there exists a countably infinite set of tuples of finite pretraces
{〈γi, γi1, . . . , γin〉 | 0 ≤ i ≤ |α| ∧ i 6= ω} such that:

1. ∀i, 0 ≤ i ≤ |α| ∧ i 6= ω : γi ≈ trace(α|i) ∧ (
∧
j∈[1:n] γ

i
j ≈ trace((α|i)�Aj)),

2. ∀i, 0 ≤ i ≤ |α| ∧ i 6= ω : zips(γi, γi1, . . . , γ
i
n), and

3. ∀i, 0 < i ≤ |α| ∧ i 6= ω : γi−1 < γi ∧ (
∧
j∈[1:n] γ

i−1
j < γij).

Proof: By induction on i.

Base case: i = 0. Then, α|0 consists of a single state s. The proof then parallels the base case of the proof
of Proposition 11. We omit the repetitive details.

Induction step: i > 0. Assume the inductive hypothesis for 0 ≤ i < m, and establish it for i = m. By the
inductive hypothesis, we obtain

there exists a set of tuples of finite pretraces {〈γi, γi1, . . . , γin〉 | 0 ≤ i < m} such that:

1. ∀i, 0 ≤ i < m : γi ≈ trace(α|i) ∧ (
∧
j∈[1:n] γ

i
j ≈ trace((α|i)�Aj)),

2. ∀i, 0 ≤ i < m : zips(γi, γi1, . . . , γ
i
n), and

3. ∀i, 0 < i < m : γi−1 < γi ∧ (
∧
j∈[1:n] γ

i−1
j < γij).

(a)

We now establish the inductive hypothesis for i = m, that is:

there exists a tuple of pretraces 〈γm, γm1 , . . . , γmn 〉 such that

1. γm ≈ trace(α|m) ∧ (
∧
j∈[1:n] γ

m
j ≈ trace((α|m)�Aj)),

2. zips(γm, γm1 , . . . , γ
m
n ), and

3. γm−1 < γm ∧ (
∧
j∈[1:n] γ

m−1
j < γmj ).

(*)
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There are two cases.

Case 1: α|m = (α|m−1)at for some action a and state t, where a ∈ êxt(A)(last(α|m−1)).

Case 2: α|m = (α|m−1)at for some action a and state t, where a ∈ int(A)(last(α|m−1)).

To establish Clauses 1 and 2 of (*), the proofs for these cases proceed in exactly the same way as the proofs
for cases 1 and 2 in the proof of Proposition 11, with α|m−1 playing the role of α′, and α|m playing the role
of α.

To establish Clause 3 of (*), we note that, in both cases 1 and 2 in the proof of Proposition 11, γ, γ1, . . . , γn
are constructed as extensions of γ′, γ′1, . . . , γ

′
n, respectively. Our proof here proceeds in exactly the same

way, with γm−1, γm−1
1 , . . . , γm−1

n playing the role of γ′, γ′1, . . . , γ
′
n, respectively, and γm, γm1 , . . . , γ

m
n playing

the role of γ, γ1, . . . , γn, respectively. We omit the details.

Note that we include i 6= ω in the range of i to emphasize that, for infinite executions α, the range 0 ≤ i ≤ |α|
does not include i = ω.

Proposition 15 establishes the result of Proposition 11 for infinite executions. The proof uses Proposition 14
and constructs the required pretraces γ, γ1, . . . , γn by taking the limit under the prefix ordering of the
γi, γi1, . . . , γ

i
n given in Proposition 14, as i tends to ω.

Proposition 15 Let A1, . . . , An be compatible SIOA, and let A = A1 ‖ · · · ‖ An. Let α be any execution of
A. Then, there exist pretraces γ, γ1, . . . , γn such that (1) γ ≈ trace(α), (2) (∀j ∈ [1 :n] : γj ≈ trace(α�Aj)),
and (3) zips(γ, γ1, . . . , γn).

Proof: If α is finite, then the result follows from Proposition 11. Hence, assume that α is infinite in the rest
of the proof. By Proposition 14, we have

there exists a countably infinite set of tuples of finite pretraces {〈γi, γi1, . . . , γin〉 | 0 ≤ i} such that:

1. ∀i, 0 ≤ i : γi ≈ trace(α|i) ∧ (
∧
j∈[1:n] γ

i
j ≈ trace((α|i)�Aj)),

2. ∀i, 0 ≤ i : zips(γi, γi1, . . . , γ
i
n), and

3. ∀i, 0 < i : γi−1 < γi ∧ (
∧
j∈[1:n] γ

i−1
j < γij).

(a)

Since the set of tuples {〈γi, γi1, . . . , γin〉 | 0 ≤ i} is countably infinite, and γi−1 is a proper prefix of γi for all
i > 0, we can define γ to be the unique sequence such that ∀i, 0 ≤ i : γi < γ. Likewise, for all j ∈ [1 :n], we
can define γj to be the unique sequence such that ∀i, 0 ≤ i : γij < γj . From clause 2 of (a) and Definition 13,
we conclude zips(γ, γ1, . . . , γn).

We now show, by contradiction, that trace(α) ≈ γ. Suppose not, and let β = trace(α). Then β 6= r(γ) by
Definition 12. Since β and r(γ) are sequences, they must differ at some position. Let i0 be the smallest
number such that β(i0) 6= r(γ)(i0). Hence β|i0 6= r(γ)|i0 . Now the trace of a prefix of α is a prefix of β, by
Definition 2. Hence there can be no prefix of α whose trace is r(γ)|i0 , i.e., ¬(∃i ≥ 0 : trace(α|i) = r(γ)|i0). Let
i1 be such that r(γ|i1) = r(γ)|i0 . Hence ¬(∃i ≥ 0 : trace(α|i) = r(γ|i1)). And so ¬(∃i ≥ 0 : trace(α|i) ≈ γ|i1).
But this contradicts (a), and so we are done. In a similar manner, we show γj ≈ trace(α�Aj)) for all j ∈ [1 :n].
Hence, the proposition is established.

Proposition 16 “lifts” the result of Proposition 15 from executions to traces; it shows that if β is a trace of
A = A1 ‖ · · · ‖ An then there exist traces β1, . . . , βn of A1, . . . , An respectively which zip up to β, that is
zip(β, β1, . . . , βn) holds. The proof is a straightforward application of Proposition 15.
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Proposition 16 Let A1, . . . , An be compatible SIOA, and let A = A1 ‖ · · · ‖ An. Let β be an arbitrary
element of traces(A). Then, there exist β1, . . . , βn such that (1) for all j ∈ [1 : n] : βj ∈ traces(Aj), and (2)
zip(β, β1, . . . , βn).

Proof: Since β ∈ traces(A), there exists α ∈ execs(A) such that trace(α) = β. Applying Proposition 15 to
α, we have that there exist pretraces γ, γ1, . . . , γn such that γ ≈ trace(α), (

∧
j ∈ [1 : n] : γj ≈ trace(α�Aj)),

and zips(γ, γ1, . . . , γn).

For all j ∈ [1 : n], let βj = trace(α�Aj). By Theorem 4, α�Aj ∈ execs(Aj). Hence βj ∈ traces(Aj). Thus,
(1) is established.

From γj ≈ trace(α�Aj) and βj = trace(α�Aj), we have βj ≈ γj , for all j ∈ [1 : n]. From γ ≈ trace(α) and
β = trace(α), we have γ ≈ β. Hence, by Definition 14 and zips(γ, γ1, . . . , γn), we conclude zip(β, β1, . . . , βn).
Hence (2) is established.

Theorem 17 gives one of our main results: trace substitutivity. This states that, in a composition of n SIOA,
if one of the SIOA is replaced by another whose traces are a subset of those of the SIOA that was replaced,
then this cannot increase the set of traces of the entire composition.

Theorem 17 (Trace Substitutivity for SIOA) Let A1, . . . , An be compatible SIOA, and let A = A1 ‖
· · · ‖ An. For some k ∈ [1 : n], let A1, . . . , Ak−1, A

′
k, Ak+1, . . . , An be compatible SIOA, and let A′ = A1 ‖

· · · ‖ Ak−1 ‖ A′k ‖ Ak+1 ‖ · · · ‖ An. Assume also that traces(Ak) ⊆ traces(A′k). Then traces(A) ⊆ traces(A′).

Proof: Let β be an arbitrary trace of A. Then, by Proposition 16, there exist β1, . . . , βn such that
zip(β, β1, . . . , βn), and (∀j ∈ [1 : n] : βj ∈ traces(Aj)). By assumption, traces(Ak) ⊆ traces(A′k). Hence
βk ∈ traces(A′k). Thus, we have βk ∈ traces(A′k), (∀` ∈ [1 :n] − k : β` ∈ traces(A`)), and zip(β, β1, . . . , βn).
Hence, by Corollary 10, β ∈ traces(A′). Since β was chosen arbitrarily, we have traces(A) ⊆ traces(A′).

4 Trace Substitutivity under Hiding and Renaming

We now proceed to show that action hiding and renaming are monotonic with respect to trace inclusion.

Theorem 18 (Trace Substitutivity for SIOA w.r.t Action Hiding) Let A,A′ be SIOA such that
traces(A) ⊆ traces(A′). Let Σ a set of actions. Then traces(A \ Σ) ⊆ traces(A′ \ Σ).

Proof: From traces(A) ⊆ traces(A′), we have

∀α ∈ execs(A) : ∃α′ ∈ execs(A′) : traceA(α) = traceA(α′).

By Definition 7, start(A \ Σ) = start(A) and steps(A \ Σ) = steps(A), and so execs(A) = execs(A \ Σ).
Likewise execs(A′) = execs(A′ \ Σ). Hence

∀α ∈ execs(A \ Σ) : ∃α′ ∈ execs(A′ \ Σ) : traceA(α) = traceA′(α′).

Choose arbitrarily α ∈ execs(A \ Σ) and α′ ∈ execs(A′ \ Σ) such that traceA(α) = traceA′(α′). Let β =
traceA(α) = traceA′(α′). Let β \ Σ be the trace obtained from β by removing all actions in Σ, and then
replacing each maximal block of identical external signatures by a single representative. From Definition 2,
we see that β \ Σ = traceA\Σ(α) = traceA′\Σ(α′). Since α, α′ were chosen arbitrarily, we have

∀α ∈ execs(A \ Σ) : ∃α′ ∈ execs(A′ \ Σ) : traceA\Σ(α) = traceA′\Σ(α′).

This implies traces(A \ Σ) ⊆ traces(A′ \ Σ), and we are done.
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Theorem 19 (Trace Substitutivity for SIOA w.r.t Action Renaming) Let A,A′ be SIOA such that
traces(A) ⊆ traces(A′). Let ρ be an injective mapping from actions to actions whose domain includes
acts(A) ∪ acts(A′). Then traces(ρ(A)) ⊆ traces(ρ(A′)).

Proof: For α ∈ execs(A), define ρ(α) to result from α by replacing each action a along α by ρ(a). Since ρ is
an injective mapping from actions to actions, its extension to executions is also injective. For β ∈ traces(A),
define ρ(β) to result from β by replacing each action a along β by ρ(a), and each external signature Γ
along β by ρ(Γ), where ρ(Γ) results from Γ by replacing each action a by ρ(a). Since ρ is an injective
mapping from actions to actions, its extension to executions and traces is also injective. We also extend ρ
to the set of executions and traces of A element-wise: ρ(execs(A)) = {ρ(α) : α ∈ execs(A)}, ρ(traces(A)) =
{ρ(β) : β ∈ traces(A)}.

By Definition 8, start(ρ(A)) = start(A), and steps(ρ(A)) = {(s, ρ(a), t) | (s, a, t) ∈ steps(A)}. Hence

execs(ρ(A)) = ρ(execs(A)) and traces(ρ(A)) = ρ(traces(A)).

From traces(A) ⊆ traces(A′), we have ρ(traces(A)) ⊆ ρ(traces(A′)), since ρ is monotonic with respect to a
set of traces. Hence traces(ρ(A)) ⊆ traces(ρ(A′)), and we are done.

4.1 Trace Equivalence as a Congruence

SIOA A and A′ are trace equivalent iff traces(A) = traces(A′). A straightforward corollary of our mono-
tonicity results is that trace equivalence is a congruence relation with respect to parallel composition, action
hiding, and action renaming.

Theorem 20 (Trace equivalence is a congruence) Let A1, . . . , An be compatible SIOA, and let A =
A1 ‖ · · · ‖ An. For some k ∈ [1 : n], let A1, . . . , Ak−1, A

′
k, Ak+1, . . . , An be compatible SIOA, and let

A′ = A1 ‖ · · · ‖ Ak−1 ‖ A′k ‖ Ak+1 ‖ · · · ‖ An.

1. If traces(Ak) = traces(A′k), then traces(A) = traces(A′).

2. If traces(Ak) = traces(A′k), then traces(Ak \ Σ) = traces(A′k \ Σ).

3. If traces(Ak) = traces(A′k), then traces(ρ(Ak)) = traces(ρ(A′k)).

Proof: Clauses 1, 2, and 3 follow from Theorems 17, 18, and 19 respectively, by application with respect to
both directions of trace inclusion.

5 Configurations and Configuration Automata

Suppose that a is an action of SIOA A whose execution has the side-effect of creating another SIOA B. To
model this, we keep track of the set of “alive” SIOA, i.e., those that have been created but not destroyed (we
consider the automata that are initially present to be “created at time zero”). Thus, we require a transition
relation over sets of SIOA. We also keep track of the current global state, i.e., the tuple of local states of
every SIOA that is alive. Thus, we replace the notion of global state with the notion of “configuration,” i.e.,
the set A of alive SIOA, and a mapping S with domain A such that S(A) is the current local state of A, for
each SIOA A ∈ A.

A configuration contains within it a set of SIOA, each of which embodies a transition relation. Thus,
the possible transitions out of a configuration cannot be given arbitrarily, as when defining a transition
relation over “unstructured” states. Rather, these transitions should be “intrinsically” determined by the
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SIOA in the configuration. Below we define the intrinsic transitions between configurations, and then
define a “configuration automaton” as an SIOA whose transition relation respects these intrinsic transitions.
Configuration automata are our principal semantic objects.

Definition 15 (Configuration, Compatible configuration) A configuration is a pair 〈A,S〉 where

• A is a finite set of signature I/O automaton identifiers, and

• S maps each A ∈ A to an s ∈ states(A).

A configuration 〈A,S〉 is compatible iff, for all A ∈ A, B ∈ A, A 6= B:

1. ŝig(A)(S(A)) ∩ int(B)(S(B)) = ∅, and

2. out(A)(S(A)) ∩ out(B)(S(B)) = ∅.

The compatibility condition is the usual I/O automaton compatibility condition [23], applied to a configu-
ration. If C = 〈A,S〉 is a configuration, then we use (A, s) ∈ C as shorthand for A ∈ A ∧ S(A) = s, and we
also qualify A and S with the notation C.A, C.S, where needed.

A configuration is a “flat” structure in that it consists of a set of SIOA (identifier, local-state) pairs, with
no grouping information. Such grouping could arise, for example, by the composition of subsystems into
larger subsystems. This grouping will be reflected in the states of configuration automata, rather than the
configurations themselves, which are not states, but are the semantic denotations of states. We defined a
configuration to be a set of SIOA identifiers together with a mapping from identifiers to SIOA states. Hence,
every SIOA is uniquely distinguished by its identifier. Thus our formalism does not a priori admit the
existence of clones, as discussed in the introduction.

Definition 16 (Intrinsic attributes of a configuration) Let C = 〈A,S〉 be a compatible configuration.
Then we define

• auts(C) = A.

• map(C) = S.

• out(C) =
⋃
A∈A out(A)(S(A)).

• in(C) = (
⋃
A∈A in(A)(S(A)))− out(C).

• int(C) =
⋃
A∈A int(A)(S(A)).

• ext(C) = 〈in(C), out(C)〉.

• sig(C) = 〈in(C), out(C), int(C)〉.

We call sig(C) the intrinsic signature of C, since it is determined solely by C. Define reduce(C) = 〈A′,S�A′〉,
where A′ = {A | A ∈ A and ŝig(A)(S(A)) 6= ∅}. C is a reduced configuration iff C = reduce(C).

A consequence of this definition is that an empty configuration cannot execute any transitions. Also, we do
not define transitions from a non-compatible configuration. Thus, the initial configuration of a transition is
guaranteed to be compatible. However, the final configuration of a transition may not be compatible. This
may arise, for example, when two SIOA are involved in executing an action a, and their signatures in their
final local states may contain output actions in common. Another possibility is when a new SIOA is created,
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and its signature in its initial state violates the compatibility condition (Definition 15) with respect to an
already existing SIOA.

We now define the intrinsic transitions
a

=⇒ϕ that can be taken from a given configuration 〈A,S〉. Our
definition is parametrized by a set ϕ of SIOA identifiers which represents SIOA which are to be “created”
by the execution of the transition. This set is not determined by the transition itself, but rather by the
configuration automaton which has 〈A,S〉 as the semantic denotation of one of its states. Thus, it has to be
supplied to the definition as a parameter.

Definition 17 (Intrinsic transition,
a

=⇒ϕ ) Let 〈A,S〉, 〈A′,S ′〉 be arbitrary reduced compatible configu-

rations, and let ϕ ⊆ Autids. Then 〈A,S〉 a
=⇒ϕ 〈A′,S ′〉 iff there exists a compatible configuration 〈A′′,S ′′〉

such that all of the following hold:

1. a ∈ ŝig(〈A,S〉).

2. A′′ = A ∪ ϕ.

3. For all A ∈ A′′ −A : S ′′(A) ∈ start(A).

4. For all A ∈ A: if a ∈ ŝig(A)(S(A)) then S(A)
a−→A S ′′(A), otherwise S(A) = S ′′(A).

5. 〈A′,S ′〉 = reduce(〈A′′,S ′′〉).

All the SIOA with identifiers in ϕ−A (= A′′ −A) are “created” in some start state (Clause 3). The SIOA
identifiers in ϕ∩A have no effect, since the SIOA with these identifiers are already alive. We apply the reduce
operator to the intermediate configuration 〈A′′,S ′′〉 to obtain the final configuration 〈A′,S ′〉 resulting from
the transition. This removes all SIOA which have an empty signature, and is our mechanism for destroying
SIOA. An SIOA with an empty signature cannot execute any transition, and so cannot change its state.
Thus it will remain forever in its current state, and will be unable to interact with any other SIOA. Thus, an
SIOA “self-destructs” by moving to a state with an empty signature. This is the only mechanism for SIOA
destruction. In particular, we do not permit one SIOA to destroy another, although an SIOA can certainly
send a “please destroy yourself” request to another SIOA.

Definition 18 (Configuration Automaton) A configuration automaton X consists of the following com-
ponents

1. A signature I/O automaton sioa(X).
For brevity, we define states(X) = states(sioa(X)), start(X) = start(sioa(X)), sig(X) = sig(sioa(X)),
steps(X) = steps(sioa(X)), and likewise for all other (sub)components and attributes of sioa(X).

2. A configuration mapping config(X) with domain states(X) and such that config(X)(x) is a reduced
compatible configuration for all x ∈ states(X).

3. For each x ∈ states(X), a mapping created(X)(x) with domain ŝig(X)(x) and such that created(X)(x)(a) ⊆
Autids for all a ∈ ŝig(X)(x).

and satisfies the following constraints

1. If x ∈ start(X) and (A, s) ∈ config(X)(x), then s ∈ start(A).

2. If (x, a, y) ∈ steps(X) then config(X)(x)
a

=⇒ϕ config(X)(y), where ϕ = created(X)(x)(a).

3. If x ∈ states(X) and config(X)(x)
a

=⇒ϕD for some action a, ϕ = created(X)(x)(a), and reduced
compatible configuration D, then ∃y ∈ states(X) : config(X)(y) = D and (x, a, y) ∈ steps(X).
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4. For all x ∈ states(X)

(a) out(X)(x) ⊆ out(config(X)(x)),

(b) in(X)(x) = in(config(X)(x)),

(c) int(X)(x) ⊇ int(config(X)(x)), and

(d) out(X)(x) ∪ int(X)(x) = out(config(X)(x)) ∪ int(config(X)(x)).

The above constraints are needed to properly reflect the connection between the behavior of a configuration
automaton and the configurations in each state. Constraint 1 requires that configurations corresponding
to start states of X must map their constituent SIOA to start states. Constraint 2 admits as transitions
of X only transitions that can be generated as intrinsic transitions of the corresponding configurations.
Constraint 3 requires that all the intrinsic transitions

a
=⇒ϕ that a configuration is capable of must be

represented in X: all the successor configurations generated by such transitions must be represented in the
states and transitions of X. Constraint 4 states that the signature of a state x of X must be the same as the
signature of its corresponding configuration config(X)(x), except for the possible effects of hiding operators,
so that some outputs of config(X)(x) may be internal actions of X in state x.

These constraints represent a significant difference with the basic I/O automaton model: there, states are
either “atomic” entities, or tuples of tuples of . . . of atomic entities. Thus, states, in and of themselves,
embody no information about their possible successor states. That information is given by the transition
relation, and there are no constraints on the transition relation itself: any set of triples (state, action, state)
which respects the input enabling requirement can be a transition relation.

Since an SIOA that is created “within” a configuration automaton always remains within that automaton,
we see that configuration automata serve as a natural encapsulation boundary for component creation. Even
if an SIOA migrates and changes its location, it always remains a part of the same configuration automaton.
Migration and location are not primitive notions in our model, in contrast with, for example, the Ambient
Calculus [8], but are built on top of configuration automata and variable signatures, see Section 7 below.

In the sequel, we write config(X)(x)
a

=⇒X,x config(X)(y) as an abbreviation for

“config(X)(x)
a

=⇒ϕ config(X)(y) where ϕ = created(X)(x)(a).”

Definition 19 Let X be a configuration automaton. For each x ∈ states(X), define the abbreviations
auts(X)(x) = auts(config(X)(x)) and map(X)(x) = map(config(X)(x)).

Definition 20 (Execution, trace of configuration automaton) A configuration automaton X inherits
the notions of execution fragment and execution from sioa(X). Thus, α is an execution fragment (execution)
of X iff it is an execution fragment (execution) of sioa(X). execs(X) denotes the set of executions of
configuration automaton X. X also inherits the notion of trace from sioa(X). Thus, β is a trace of x iff it
is a trace of sioa(X). traces(X) denotes the set of traces of configuration automaton X.

5.1 Parallel Composition of Configuration I/O Automata

We now deal with the composition of configuration automata.

Definition 21 (Union of configurations) Let C1 = 〈A1,S1〉 and C2 = 〈A2,S2〉 be configurations such
that A1 ∩ A2 = ∅. Then, the union of C1 and C2, denoted C1 ∪ C2, is the configuration C = 〈A,S〉 where
A = A1 ∪ A2, and S agrees with S1 on A1, and with S2 on A2.

It is clear that configuration union is commutative and associative. Hence, we will freely use the n-ary
notation C1 ∪ · · · ∪ Cn (for any n ≥ 1) whenever

∧
i,j∈[1:n],i6=j auts(Ci) ∩ auts(Cj) = ∅.
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Definition 22 (Compatible configuration automata) Let X1, . . . , Xn, be configuration automata.
X1, . . . , Xn are compatible iff, for every 〈x1, . . . , xn〉 ∈ states(X1) × · · · × states(Xn), all of the follow-
ing hold:

1. ∀i, j ∈ [1 : n], i 6= j: auts(config(Xi)(xi)) ∩ auts(config(Xj)(xj)) = ∅.

2. config(X1)(x1) ∪ · · · ∪ config(Xn)(xn) is a reduced compatible configuration.

3. {sig(X1)(x1), . . . , sig(Xn)(xn)} is a set of compatible signatures.

4. ∀i, j ∈ [1 :n], i 6= j : ∀a ∈ ŝig(Xi)(xi) ∩ ŝig(Xj)(xj) : created(Xi)(xi)(a) ∩ created(Xj)(xj)(a) = ∅.

Definition 23 (Composition of configuration automata) Let X1, . . . , Xn, be compatible configuration
automata. Then X = X1 ‖ · · · ‖ Xn is the state machine consisting of the following components:

1. sioa(X) = sioa(X1) ‖ · · · ‖ sioa(Xn).

2. A configuration mapping config(X) given as follows. For each x = 〈x1, . . . , xn〉 ∈ states(X), config(X)(x) =
config(X1)(x1) ∪ · · · ∪ config(Xn)(xn).

3. For each x = 〈x1, . . . , xn〉 ∈ states(X), a mapping created(X)(x) with domain ŝig(X)(x) and given as

follows. For each a ∈ ŝig(X)(x), created(X)(x)(a) =
⋃
a∈ŝig(Xi)(xi),i∈[1:n] created(Xi)(xi)(a).

As in Definition 18, we define states(X) = states(sioa(X)), start(X) = start(sioa(X)), sig(X) = sig(sioa(X)),
steps(X) = steps(sioa(X)), and likewise for all other (sub)components and attributes of sioa(X).

Proposition 21 Let X1, . . . , Xn, be compatible configuration automata. Then X = X1 ‖ · · · ‖ Xn is a
configuration automaton.

Proof: We must show that X satisfies the constraints of Definition 18. Since X1, . . . , Xn are configuration
automata, they already satisfy the constraints. The argument for each constraint then uses this together
with Definition 23 to show that X itself satisfies the constraint. The details are as follows, for each constraint
in turn.

Constraint 1. Let x ∈ start(X) and (A, s) ∈ config(X)(x). Then, x = 〈x1, . . . , xn〉 where xi ∈ start(Xi)
for 1 ≤ i ≤ n. By Definition 23, config(X)(x) = config(X1)(x1) ∪ · · · ∪ config(Xn)(xn). Hence (A, s) ∈
config(Xj)(xj) for some j ∈ [1 : n]. Also, xj ∈ start(Xj). Since Xj is a configuration automaton, we apply
Constraint 1 to Xj to conclude s ∈ start(A). Hence, Constraint 1 holds for X.

Constraint 2. Let (x, a, y) be an arbitrary element of steps(X). We will establish

config(X)(x)
a

=⇒X,x config(X)(y).

For brevity, let Ai = sioa(Xi) for i ∈ [1 : n]. Now (x, a, y) ∈ steps(X). So (x, a, y) ∈ steps(sioa(X))
by Definition 23. Also by Definition 23, sioa(X) = sioa(X1) ‖ · · · ‖ sioa(Xn) = A1 ‖ · · · ‖ An. So,
(x, a, y) ∈ steps(A1 ‖ · · · ‖ An). Since x, y ∈ states(A1 ‖ · · · ‖ An), we can write x, y as 〈x1, . . . , xn〉,
〈y1, . . . , yn〉 respectively, where xi, yi ∈ states(Ai) for i ∈ [1 : n]. From Definition 6, there exists a nonempty
ϕ ⊆ [1 : n] such that

(
∧
i∈ϕ a ∈ ŝig(Ai)(xi) ∧ (xi, a, yi) ∈ steps(Ai)) ∧ (

∧
i∈[1:n]−ϕ a 6∈ ŝig(Ai)(xi) ∧ xi = yi) (a)

Each Xi, i ∈ [1 : n], is a configuration automaton. Hence, by (a) and constraint 2 applied to each Xi, i ∈ ϕ,

∧
i∈ϕ
(
config(Xi)(xi)

a
=⇒Xi,xi config(Xi)(yi)

)
. (b)
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Also by (a), ∧
i∈[1:n]−ϕ

(
config(Xi)(xi) = config(Xi)(yi)

)
. (c)

Since X1, . . . , Xn are compatible, we have, by Definition 22, that config(X1)(x1) ∪ · · · ∪ config(Xn)(xn) and
config(X1)(y1) ∪ · · · ∪ config(Xn)(yn) are both reduced compatible configurations.

By Definition 23, created(X)(x)(a) =
⋃
a∈ŝig(Xi)(xi),i∈[1:n] created(Xi)(xi)(a). By this, (a,b,c), and Defini-

tion 17, we obtain (⋃
i∈[1:n] config(Xi)(xi)

) a
=⇒X,x

(⋃
i∈[1:n] config(Xi)(yi)

)
. (d)

By Definition 23, config(X)(x) =
⋃
i∈[1:n] config(Xi)(xi) and config(X)(y) =

⋃
i∈[1:n] config(Xi)(yi). Hence

config(X)(x)
a

=⇒X,x config(X)(y),

and we are done.

Constraint 3. Let x be an arbitrary state in states(X) and D an arbitrary reduced compatible configuration

such that config(X)(x)
a

=⇒X,xD. We must show ∃y ∈ states(X) : (x, a, y) ∈ steps(X) and config(X)(y) =
D.

We can write x as 〈x1, . . . , xn〉 where xi ∈ states(Xi) for i ∈ [1 : n].

SinceX1, . . . , Xn are compatible, we have, by Definition 22, that auts(config(Xi)(xi)) ∩ auts(config(Xj)(xj)) =
∅ forall i, j ∈ [1 : n], i 6= j, (thus, all SIOA in these configurations are unique) and that config(X1)(x1) ∪
· · · ∪ config(Xn)(xn) is a reduced compatible configuration. Also, from Definition 23, config(X)(x) =⋃
i∈[1:n] config(Xi)(xi). Hence from config(X)(x)

a
=⇒X,xD,(⋃

i∈[1:n] config(Xi)(xi)
) a

=⇒X,xD. (a)

Hence, from Definition 17, there exists a nonempty ϕ ⊆ [1 : n] such that(∧
i∈ϕ a ∈ ŝig(Xi)(xi)

)
∧
(∧

i∈[1:n]−ϕ a 6∈ ŝig(Xi)(xi)
)
. (b)

We now define Di, 1 ≤ i ≤ n, as follows.
For i ∈ [1 : n]− ϕ, Di = config(Xi)(xi).
For i ∈ ϕ, Di = 〈DAi,map(D)�DAi〉, where

DAi = {A : A ∈ D and [A ∈ auts(config(Xi)(xi)) or A ∈ created(Xi)(xi)(a)]}.

Hence, by definition of Di, Definition 17, (a), and the compatibility of X1, . . . , Xn, we have∧
i∈ϕ(config(Xi)(xi)

a
=⇒Xi,xi

Di). (c)

Now each Xi, i ∈ [1 : n], is a configuration automaton. Hence, from (c) and constraint 3 applied to Xi,
i ∈ ϕ, ∧

i∈ϕ ∃yi ∈ states(Xi) : config(Xi)(yi) = Di and (xi, a, yi) ∈ steps(Xi). (d)

Let y = 〈y1, . . . , yn〉 where, for i ∈ ϕ, yi is given by (d), and for i ∈ [1 : n]−ϕ, yi = xi. Hence, for i ∈ [1 : n],
yi ∈ states(Xi). Since X1, . . . , Xn are compatible configuration automata, we get, by Definitions 18 and 22,

auts(config(Xi)(yi)) ∩ auts(config(Xj)(yj)) = ∅ for all i, j ∈ [1 : n], i 6= j, and
config(X1)(y1) ∪ · · · ∪ config(Xn)(yn) is a reduced compatible configuration. (e)

Thus, in particular, all SIOA in the configurations config(X1)(y1), . . . , config(Xn)(yn) are unique. From (d),
for i ∈ ϕ, config(Xi)(yi) = Di. By definition of Di, for i ∈ [1 : n]− ϕ, config(Xi)(xi) = Di. By definition of
yi, for i ∈ [1 : n]− ϕ, yi = xi. Hence, for i ∈ [1 : n]− ϕ, config(Xi)(yi) = Di. Combining these, we get∧

i∈[1:n] config(Xi)(yi) = Di. (f)

From the definition of Di and Definition 17, we have that D = D1 ∪ · · · ∪ Dn. Also, by Definition 23,
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config(X)(y) =
⋃
i∈[1:n] config(Xi)(yi). By this, (f), and D = D1 ∪ · · · ∪Dn,

config(X)(y) = D. (g)

By definition of yi, for i ∈ [1 : n]− ϕ, yi = xi. By (d), for i ∈ ϕ, (xi, a, yi) ∈ steps(Xi). From these and (b),
we get ∧

i∈ϕ a ∈ ŝig(Xi)(xi) ∧ (xi, a, yi) ∈ steps(Xi)∧
i∈[1:n]−ϕ a 6∈ ŝig(Xi)(xi) ∧ yi = xi.

From this, x = 〈x1, . . . , xn〉, y = 〈y1, . . . , yn〉, and Definitions 6 and 23, we conclude (x, a, y) ∈ steps(X).
From this and (g), we have

(x, a, y) ∈ steps(X) and config(X)(y) = D,

and we are done.

Constraint 4. We treat each subconstraint in turn.

Constraint 4a: out(X)(x) ⊆ out(config(X)(x)).
By Definitions 6 and 23,

out(X)(x) =
⋃
i∈[1:n] out(Xi)(xi). (a)

Since the Xi are configuration automata, they all satisfy constraint 4a. Hence∧
i∈[1:n] out(Xi)(xi) ⊆ out(config(Xi)(xi)).

Taking the unions of both sides, over all i ∈ [1 : n], we obtain(⋃
i∈[1:n] out(Xi)(xi)

)
⊆
(⋃

i∈[1:n] out(config(Xi)(xi))
)
. (b)

By Definition 23, config(X)(x) =
⋃
i∈[1:n] config(Xi)(xi). By assumption, X1, . . . , Xn, are compatible con-

figuration automata. Hence, by Definition 22,
⋃
i∈[1:n] config(Xi)(xi) is a reduced compatible configuration.

So, from Definition 16, we obtain

out(config(X)(x)) =
⋃
i∈[1:n] out(config(Xi)(xi)). (c)

From (a,b,c), we obtain out(X)(x) =
⋃
i∈[1:n] out(Xi)(xi) ⊆ (

⋃
i∈[1:n] out(config(Xi)(xi))) =

out(config(X)(x)), as desired.

Constraint 4b: in(X)(x) = in(config(X)(x)). By Definitions 6 and 23,

in(X)(x) = (
⋃
i∈[1:n] in(Xi)(xi))− (

⋃
i∈[1:n] out(Xi)(xi)). (a)

Since the Xi are configuration automata, they all satisfy constraints 4a and 4b. Hence∧
i∈[1:n] in(Xi)(xi) = in(config(Xi)(xi)),∧
i∈[1:n] out(Xi)(xi) ⊆ out(config(Xi)(xi)). (b)

Since the Xi are configuration automata, they all satisfy constraint 4d. Hence∧
i∈[1:n] out(Xi)(xi) ∪ int(Xi)(xi) = out(config(Xi)(xi)) ∪ int(config(Xi)(xi)). (c)

And so, ∧
i∈[1:n] out(config(Xi)(xi)) ⊆ out(Xi)(xi) ∪ int(Xi)(xi). (d)

Since out(Xi)(xi) ∩ int(Xi)(xi) = ∅ for all i ∈ [1 : n], by the partitioning of actions into input, output, and
internal, we have, by (b,d)∧

i∈[1:n] out(Xi)(xi) = out(config(Xi)(xi))− int(Xi)(xi). (e)

Taking the unions of both sides, over all i ∈ [1 : n], in (b) and (e), we obtain(⋃
i∈[1:n] in(Xi)(xi)

)
=
(⋃

i∈[1:n] in(config(Xi)(xi))
)
,(⋃

i∈[1:n] out(Xi)(xi)
)

=
(⋃

i∈[1:n] out(config(Xi)(xi))− int(Xi)(xi)
)
. (f)
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From (a, f), we obtain

in(X)(x) =
(⋃

i∈[1:n] in(config(Xi)(xi))
)
−
(⋃

i∈[1:n] out(config(Xi)(xi))− int(Xi)(xi)
)
. (g)

From (c), ∧
i∈[1:n] int(Xi)(xi) ⊆ out(config(Xi)(xi)) ∪ int(config(Xi)(xi)). (h)

Now (out(config(Xi)(xi))∪ int(config(Xi)(xi)))∩ in(config(Xi)(xi)) = ∅, for all i ∈ [1 : n], by the partition-
ing of actions into input, output, and internal. Hence, by (h),∧

i∈[1:n] int(Xi)(xi) ∩ in(config(Xi)(xi)) = ∅. (i)

From (b,i), and the compatibility of X1, . . . , Xn, we get(⋃
i∈[1:n] int(Xi)(xi)

)
∩
(⋃

i∈[1:n] in(config(Xi)(xi))
)

= ∅. (j)

From (g,j)

in(X)(x) =
(⋃

i∈[1:n] in(config(Xi)(xi))
)
−
(⋃

i∈[1:n] out(config(Xi)(xi))
)
. (k)

By Definition 23, config(X)(x) =
⋃
i∈[1:n] config(Xi)(xi). By assumption, X1, . . . , Xn, are compatible con-

figuration automata. Hence, by Definition 22,
⋃
i∈[1:n] config(Xi)(xi) is a reduced compatible configuration.

So, from Definition 16, we obtain

in(config(X)(x)) =
(⋃

i∈[1:n] in(config(Xi)(xi))
)
−
(⋃

i∈[1:n] out(config(Xi)(xi))
)
. (l)

Finally, from (k,l), we obtain in(X)(x) =
(⋃

i∈[1:n] in(config(Xi)(xi))
)
−
(⋃

i∈[1:n] out(config(Xi)(xi))
)

=

in(config(X)(x)), as desired.

Constraint 4c: int(X)(x) ⊇ int(config(X)(x)).
By Definitions 6 and 23,

int(X)(x) =
⋃
i∈[1:n] int(Xi)(xi). (a)

Since the Xi are configuration automata, they all satisfy constraint 4c. Hence∧
i∈[1:n] int(Xi)(xi) ⊇ int(config(Xi)(xi)).

Taking the unions of both sides, over all i ∈ [1 : n], we obtain(⋃
i∈[1:n] int(Xi)(xi)

)
⊇
(⋃

i∈[1:n] int(config(Xi)(xi))
)
. (b)

By Definition 23, config(X)(x) =
⋃
i∈[1:n] config(Xi)(xi). By assumption, X1, . . . , Xn, are compatible con-

figuration automata. Hence, by Definition 22,
⋃
i∈[1:n] config(Xi)(xi) is a reduced compatible configuration.

So, from Definition 16, we obtain

int(config(X)(x)) =
⋃
i∈[1:n] int(config(Xi)(xi)). (c)

From (a,b,c), we obtain int(X)(x) =
⋃
i∈[1:n] int(Xi)(xi) ⊇ (

⋃
i∈[1:n] int(config(Xi)(xi))) =

int(config(X)(x)), as desired.

Constraint 4d: out(X)(x) ∪ int(X)(x) = out(config(X)(x)) ∪ int(config(X)(x)).
By Definitions 6 and 23,

out(X)(x) =
⋃
i∈[1:n] out(Xi)(xi),

int(X)(x) =
⋃
i∈[1:n] int(Xi)(xi). (a)

Since the Xi are configuration automata, they all satisfy constraint 4d. Hence∧
i∈[1:n](out(Xi)(xi) ∪ int(Xi)(xi)) = (out(config(Xi)(xi)) ∪ int(config(Xi)(xi))).

Taking the unions of both sides, over all i ∈ [1 : n], we obtain

(
⋃
i∈[1:n] out(Xi)(xi) ∪ int(Xi)(xi)) = (

⋃
i∈[1:n] out(config(Xi)(xi)) ∪ int(config(Xi)(xi))). (b)

By Definition 23, config(X)(x) =
⋃
i∈[1:n] config(Xi)(xi). By assumption, X1, . . . , Xn, are compatible con-

figuration automata. Hence, by Definition 22,
⋃
i∈[1:n] config(Xi)(xi) is a reduced compatible configuration.
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So, from Definition 16, we obtain

out(config(X)(x)) =
⋃
i∈[1:n] out(config(Xi)(xi)),

int(config(X)(x)) =
⋃
i∈[1:n] int(config(Xi)(xi)). (c)

From (a,b,c), we obtain (out(X)(x) ∪ int(X)(x)) = (
⋃
i∈[1:n] out(Xi)(xi) ∪ int(Xi)(xi)) =

(
⋃
i∈[1:n] out(config(Xi)(xi)) ∪ int(config(Xi)(xi))) = out(config(X)(x)) ∪ int(config(X)(x)), as desired.

Since we have established that X satisfies all the constraints, the proof is done.

5.2 Action Hiding for Configuration Automata

Definition 24 (Action hiding for configuration automata) Let X be a configuration automaton and
Σ a set of actions. Then X \ Σ is the state machine consisting of the following components:

1. A signature I/O automaton sioa(X \ Σ) = sioa(X) \ Σ.

2. A configuration mapping config(X \ Σ) = config(X).

3. For each x ∈ states(X \ Σ), a mapping created(X \ Σ)(x) = created(X)(x).

As in Definition 18, we define states(X \ Σ) = states(sioa(X \ Σ)), start(X \ Σ) = start(sioa(X \ Σ)),
sig(X \ Σ) = sig(sioa(X \ Σ)), steps(X \ Σ) = steps(sioa(X \ Σ)), and likewise for all other components
and attributes of sioa(X).

Proposition 22 Let X be a configuration automaton and Σ a set of actions. Then X \Σ is a configuration
automaton.

Proof: We must show that X \ Σ satisfies the constraints of Definition 18. Since X is a configuration
automaton, constraints 1, 2, and 3 hold for X. From Definitions 7 and 24, we see that the only components
of X and X \ Σ that differ are the signature and its various subsets. Now constraints 1, 2, and 3 do not
involve the signature. Hence, they also hold for X \ Σ.

We deal with each subconstraint of Constraint 4 in turn.

Constraint 4a: out(X \ Σ)(x) ⊆ out(config(X \ Σ)(x)).
By Definition 24, out(X \ Σ)(x) = out(sioa(X \ Σ))(x) = out(sioa(X) \ Σ)(x). By Definition 7,
out(sioa(X) \ Σ)(x) = out(sioa(X))(x) − Σ. By Definition 18, which is applicable since X is a configu-
ration automaton, out(sioa(X))(x) = out(X)(x). Hence, out(sioa(X))(x) − Σ = out(X)(x) − Σ. Putting
the above equalities together, we obtain

out(X \ Σ)(x) = out(X)(x)− Σ. (a)

Since X is a configuration automaton, it satisfies constraint 4a. Hence

out(X)(x) ⊆ out(config(X)(x)). (b)

By Definition 24, config(X \ Σ) = config(X). Hence,

out(config(X)(x)) = out(config(X \ Σ)(x)). (c)

From (a,b,c), we obtain out(X \ Σ)(x) ⊆ out(X)(x) ⊆ out(config(X)(x)) = out(config(X \ Σ)(x)), as de-
sired.

Constraint 4b: in(X \ Σ)(x) = in(config(X \ Σ)(x)).
By Definition 24, in(X \ Σ)(x) = in(sioa(X \ Σ))(x) = in(sioa(X) \ Σ)(x). By Definition 7,
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in(sioa(X) \ Σ)(x) = in(sioa(X))(x). By Definition 18, which is applicable since X is a configuration
automaton, in(sioa(X))(x) = in(X)(x). Putting the above equalities together, we obtain

in(X \ Σ)(x) = in(X)(x). (a)

Since X is a configuration automaton, it satisfies constraint 4b. Hence

in(X)(x) = in(config(X)(x)). (b)

By Definition 24, config(X \ Σ) = config(X). Hence,

in(config(X)(x)) = in(config(X \ Σ)(x)). (c)

From (a,b,c), we obtain in(X \ Σ)(x) = in(X)(x) = in(config(X)(x)) = in(config(X \ Σ)(x)), as desired.

Constraint 4c: int(X \ Σ)(x) ⊇ int(config(X \ Σ)(x)).
By Definition 24, int(X \ Σ)(x) = int(sioa(X \ Σ))(x) = int(sioa(X) \ Σ)(x). By Definition 7,
int(sioa(X) \ Σ)(x) = int(sioa(X))(x) ∪ (out(sioa(X))(x) ∩ Σ). By Definition 18, which is applicable since
X is a configuration automaton, int(sioa(X))(x) = int(X)(x) and out(sioa(X))(x) = out(X)(x). Hence,
int(sioa(X) \ Σ)(x) = int(X)(x) ∪ (out(X)(x) ∩ Σ). Putting the above equalities together, we obtain

int(X \ Σ)(x) = int(X)(x) ∪ (out(X)(x) ∩ Σ). (a)

Since X is a configuration automaton, it satisfies constraint 4c. Hence

int(X)(x) ⊇ int(config(X)(x)). (b)

By Definition 24, config(X \ Σ) = config(X). Hence,

int(config(X)(x)) = int(config(X \ Σ)(x)). (c)

From (a,b,c), we obtain int(X \ Σ)(x) ⊇ int(X)(x) ⊇ int(config(X)(x)) = int(config(X \ Σ)(x)), as desired.

Constraint 4d: out(X \ Σ)(x) ∪ int(X \ Σ)(x) = out(config(X \ Σ)(x)) ∪ int(config(X \ Σ)(x)).
In the proofs for Constraints 4a and 4c above, we established (the equations marked “(a)”)

out(X \ Σ)(x) = out(X)(x)− Σ,
int(X \ Σ)(x) = int(X)(x) ∪ (out(X)(x) ∩ Σ).

Now (out(X)(x)− Σ) ∪ (out(X)(x) ∩ Σ) = out(X)(x), and so

out(X \ Σ)(x) ∪ int(X \ Σ)(x) = out(X)(x) ∪ int(X)(x). (a)

Since X is a configuration automaton, it satisfies constraint 4d. Hence

out(X)(x) ∪ int(X)(x) = out(config(X)(x)) ∪ int(config(X)(x)). (b)

By Definition 24, config(X \ Σ) = config(X). Hence,

out(config(X)(x)) ∪ int(config(X)(x)) = out(config(X \ Σ)(x)) ∪ int(config(X \ Σ)(x)). (c)

From (a,b,c), we obtain out(X \ Σ)(x) ∪ int(X \ Σ)(x) = out(X)(x) ∪ int(X)(x) = out(config(X)(x)) ∪
int(config(X)(x)) = out(config(X \ Σ)(x)) ∪ int(config(X \ Σ)(x)), as desired.

Since we have established that X satisfies all the constraints, the proof is done.

5.3 Action Renaming for Configuration Automata

Definition 25 Let C = 〈A,S〉 be a compatible configuration and let ρ be an injective mapping from
actions to actions whose domain includes

⋃
A∈A acts(A). Then we define ρ(C) = 〈ρ(A), ρ(S)〉 where

ρ(A) = {ρ(A) | A ∈ A}, and ρ(S)(ρ(A)) = S(A) for all A ∈ A.

Definition 26 (Action renaming for configuration automata) Let X be a configuration automaton
and let ρ be an injective mapping from actions to actions whose domain includes⋃
C∈states(X) ŝig(X)(C). Then ρ(X) consists of the following components:
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1. A signature I/O automaton sioa(ρ(X)) = ρ(sioa(X)).

2. A configuration mapping config(ρ(X)) with domain states(ρ(X)) (= states(X)) and such that config(ρ(X))(x) =
ρ(config(X)(x)).

3. For each x ∈ states(ρ(X)), a mapping created(ρ(X))(x) with domain ŝig(ρ(X))(x) and such that

created(ρ(X))(x)(ρ(a)) = {ρ(A) | A ∈ created(X)(x)(a)} for all a ∈ ŝig(X)(x).

Proposition 23 Let X be a configuration automaton and let ρ be an injective mapping from actions to
actions whose domain includes

⋃
C∈states(X) ŝig(X)(C). Then ρ(X) is a configuration automaton.

Proof: We must show that ρ(X) satisfies the constraints of Definition 18. Since X is a configuration
automaton, constraints 1, 2, and 3 hold for X. From Definitions 8 and 26, we see that the states of ρ(X)
and the configurations in config(ρ(X))(x) are unchanged by applying ρ, with the exception of the signatures
of the configurations. Hence constraint 1 also holds for ρ(X).

Constraints 2, and 3 hold since ρ is injective, so we can simply replace a by ρ(a) uniformly in the transition
relation of both ρ(X) and the configurations in config(ρ(X))(x). The constraints for ρ(X) then follow from
the corresponding ones for X.

From Definitions 25 and 26, we have out(config(ρ(X))(x)) = ρ(out(config(X)(x))) and
out(ρ(X))(x) = ρ(out(X)(x)). Since constraint 4a holds for X, we have out(X)(x) ⊆
out(config(X)(x)). Hence ρ(out(X)(x)) ⊆ ρ(out(config(X)(x))). We thus conclude out(ρ(X))(x) ⊆
out(config(ρ(X))(x)). Hence constraint 4a holds for ρ(X).

The other subconstraints of constraint 4 can be established in a similar manner.

5.4 Multi-level Configuration Automata

Since a configuration automaton is an SIOA, it is possible for a configuration automaton to create another
configuration automaton. This leads to a notion of “multi-level,” or “nested” configuration automata. The
nesting structure is well-founded, that is, the binary relation “X is created by Y ’ is well-founded in all global
states.

This ability to nest entire configuration automata makes our model flexible. For example, administrative
domains can be modeled in a natural and straightforward manner. It may also be possible to emulate the
motion of ambients in the ambient calculus [8]. If two configuration automata X,Y are such that neither is
“included” in the other, then X can “move into” Y by first destroying itself, and then having Y re-create X.
This however would require some book-keeping to re-create X in the same state it was in before it destroyed
itself. Development of these ideas, including the precise notion of “is included in,” is a topic for a subsequent
paper.

5.5 Compositional Reasoning for Configuration Automata

We now establish compositionality results for configuration automata analogous to those established previ-
ously for SIOA. The notions of execution and trace of a configuration automaton X depend solely on the
SIOA component sioa(X). Furthermore, the SIOA component of a composition of configuration automata
depends only on the SIOA components of the individual configuration automata (see Definition 23). It
follows that the results of Sections 3 and 4 carry over for configuration automata with no modification. We
restate them for configuration automata solely for the sake of completeness.
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5.5.1 Execution Projection and Pasting for Configuration Automata

Definition 27 (Execution projection for configuration automata) Let X = X1 ‖ · · · ‖ Xn be a con-
figuration automaton. Let α be a sequence x0a1x1a2x2 . . . xj−1ajxj . . . where ∀j ≥ 0, xj = 〈xj1, . . . , xjn〉 ∈
states(X) and ∀j > 0, aj ∈ ŝig(X)(xj−1). For i ∈ [1 :n], define α�Xi to be the sequence resulting from:

1. replacing each xj by its i’th component xji , and then

2. removing all ajxji such that aj 6∈ ŝig(Xi)(x
j−1
i ).

Our execution projection result states that the projection of an execution (of a composed configuration
automaton X = X1 ‖ · · · ‖ Xn) onto a component Xi, is an execution of Xi.

Theorem 24 (Execution projection for configuration automata) Let X = X1 ‖ · · · ‖ Xn be a con-
figuration automaton. If α ∈ execs(X) then α�Xi ∈ execs(Xi) for all i ∈ [1 :n].

Our execution pasting result requires that a candidate execution α of a composed automaton X = X1 ‖
· · · ‖ Xn must project onto an actual execution of every component Xi, and also that every action of α not
involving Xi does not change the configuration of Xi. In this case, α will be an actual execution of X.

Theorem 25 (Execution pasting for configuration automata) Let X = X1 ‖ · · · ‖ Xn be a configura-
tion automaton. Let α be a sequence x0a1x1a2x2 . . . xj−1ajxj . . . where ∀j ≥ 0, xj = 〈xj1, . . . , xjn〉 ∈ states(X)

and ∀j > 0, aj ∈ ŝig(X)(xj−1). Furthermore, suppose that, for all i ∈ [1 :n]:

1. α�Xi ∈ execs(Xi), and

2. ∀j > 0 : if aj 6∈ ŝig(Xi)(x
j−1
i ) then xj−1

i = xji .

Then, α ∈ execs(X).

5.5.2 Trace Pasting for Configuration Automata

Corollary 26 (Trace pasting for configuration automata) Let X1, . . . , Xn be compatible configuration
automata, and let X = X1 ‖ · · · ‖ Xn. Let β be a trace and assume that there exist β1, . . . , βn such that (1)
(∀j ∈ [1 :n] : βj ∈ traces(Xj)), and (2) zip(β, β1, . . . , βn). Then β ∈ traces(X).

The definition of zip(β, β1, . . . , βn) remains unchanged for configuration automata, since it does not refer to
the internal structure of automata, only to external actions and external signatures.

5.5.3 Trace Substitutivity and Equivalence for Configuration Automata

Theorem 27 (Trace substitutivity for configuration automata) Let X1, . . . , Xn be compatible con-
figuration automata, and let X = X1 ‖ · · · ‖ Xn. For some k ∈ [1 : n],
let X1, . . . , Xk−1, X

′
k, Xk+1, . . . , Xn be compatible configuration automata, and let X ′ = X1 ‖ · · · ‖ Xk−1 ‖

X ′k ‖ Xk+1 ‖ · · · ‖ Xn. Assume also that traces(Xk) ⊆ traces(X ′k). Then traces(X) ⊆ traces(X ′).

Theorem 28 (Trace Substitutivity for Configuration Automata w.r.t Action Hiding) Let X,X ′

be configuration automata such that traces(X) ⊆ traces(X ′). Let Σ a set of actions. Then traces(X \ Σ) ⊆
traces(X ′ \ Σ).
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Theorem 29 (Trace Substitutivity for Configuration Automata w.r.t Action Renaming) Let X,X ′

be configuration automata such that traces(X) ⊆ traces(X ′). Let ρ be an injective mapping from actions to
actions whose domain includes acts(X) ∪ acts(X ′). Then traces(ρ(X)) ⊆ traces(ρ(X ′)).

Theorem 30 (Trace equivalence is a congruence) Let X1, . . . , Xn be compatible configuration automata,
and let X = X1 ‖ · · · ‖ Xn. For some k ∈ [1 :n], let X1, . . . , Xk−1, X

′
k, Xk+1, . . . , Xn be compatible configu-

ration automata, and let X ′ = X1 ‖ · · · ‖ Xk−1 ‖ X ′k ‖ Xk+1 ‖ · · · ‖ Xn.

1. If traces(Xk) = traces(X ′k), then traces(X) = traces(X ′).

2. If traces(Xk) = traces(X ′k), then traces(Xk \ Σ) = traces(X ′k \ Σ).

3. If traces(Xk) = traces(X ′k), then traces(ρ(Xk)) = traces(ρ(X ′k)).

6 Creation Substitutivity for Configuration Automata

We now show that trace inclusion is monotonic with respect to process creation, under certain conditions.
Our intention is that, if a configuration automaton Y creates an SIOA B when executing some particular
actions in some particular states, then, if configuration automaton X results from modifying Y by making
it create an SIOA A instead, and if traces(A) ⊆ traces(B), then we can prove traces(X) ⊆ traces(Y ). In
the rest of this section, let X be a configuration automaton that creates SIOA A in some actions, but never
creates SIOA B. Also let Y be a configuration automaton that creates SIOA B in some actions, but never
creates SIOA A.

Definition 28 ( [B/A],�AB ) Let ϕ ⊆ Autids, and A,B be SIOA identifiers. Then we define ϕ[B/A] =
(ϕ− {A}) ∪ {B} if A ∈ ϕ, and ϕ[B/A] = ϕ if A 6∈ ϕ.

Let C,D be configurations. We define C�ABD iff (1) auts(D) = auts(C)[B/A], (2) for every A′ ∈ auts(C)−
{A}: map(D)(A′) = map(C)(A′), and (3) ext(A)(s) = ext(B)(t) where s = map(C)(A), t = map(D)(B).
That is, in �AB-corresponding configurations, the SIOA other than A,B must be the same, and must be in
the same state. A and B must have the same external signature.

In the sequel, when we write ψ = ϕ[B/A], we always assume that B 6∈ ϕ and A 6∈ ψ.

Proposition 31 Let C,D be configurations such that C �AB D. Then ext(C) = ext(D).

Proof: If A 6∈ C then C = D by Definition 28, and we are done. Now suppose that A ∈ C, so that
C = 〈A ∪ {A} ,S〉 for some set A of SIOA identifiers, and let s = S(A). Then, by Definition 16, out(C) =
(
⋃
A′∈A out(A′)(S(A′))) ∪ out(A)(s).

From C �AB D and Definition 28, we have D = 〈A ∪ {B} ,S ′〉, where S ′ agrees with S on all A′ ∈ A, and
S ′(B) = t such that ext(A)(s) = ext(B)(t). Hence out(A)(s) = out(B)(t) and in(A)(s) = in(B)(t). By
Definition 16, out(D) = (

⋃
A′∈A out(A′)(S ′(A′)))∪out(B)(t). Finally, (

⋃
A′∈A out(A′)(S ′(A′)))∪out(B)(t) =

(
⋃
A′∈A out(A′)(S(A′))) ∪ out(A)(s), since S ′ agrees with S on all A′ ∈ A, and out(A)(s) = out(B)(t).

Putting the above equalities together, we obtain out(C) = (
⋃
A′∈A out(A′)(S(A′))) ∪ out(A)(s) =

(
⋃
A′∈A out(A′)(S ′(A′))) ∪ out(B)(t) = out(D). We establish in(C) = in(D) in the same manner, and

omit the repetitive details. Hence ext(C) = ext(D).

To obtain monotonicity, the start configurations of Y must include a configuration corresponding to every
configuration of X, i.e., ∀x ∈ start(X),∃y ∈ start(Y ) : config(X)(x) �AB config(Y )(y). Together with
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traces(A) ⊆ traces(B), we might expect to be able to establish traces(X) ⊆ traces(Y ). However, suppose
that X has an execution α in which A is created exactly once, terminates some time after it is created, and
after A’s termination, X executes an input action a. Let β = traceX(α) and let βA be the trace that A
generates during the execution of α by X. Since traces(A) ⊆ traces(B), we can construct (by induction) using
conditions 1, 2, and 3 of Definition 18, a corresponding execution α′ of Y , up to the point where A terminates.
Since traces(A) ⊆ traces(B), we have βA ∈ traces(B). Define B as follows. B emulates A faithfully up to
but not including the point at which A terminates (i.e., self-destructs). Then, B sets it’s external signature
to empty but keeps some internal actions enabled. This allows B to export an empty signature at this point.
After executing an internal action, B permanently enters a state in which it’s signature has action a as an
output, but a is never actually enabled. Thus, no trace of Y from this point onwards can contain action
a. Hence, β cannot be a trace of Y , and so traces(X) 6⊆ traces(Y ), since β ∈ traces(X). This example is a
consequence of the fact that an SIOA can prevent an action a from occurring, if a is an output action of the
SIOA which is not currently enabled, and it shows that we also need to relate the traces of A that lead to
termination with those of B that lead to termination.

We therefore also require that the terminating traces of A (see formal definition below) are a subset of the
terminating traces of B. This however, is still insufficient, since we have so far only required that X create A
“whenever” Y creates B. We have not prevented X from creating A in more situations than those in which
Y creates B. This can cause traces(X) 6⊆ traces(Y ), as the following example shows.

Example 1 Let A,B,C be the SIOA and X,Y be the configuration automata given in Figure 7, as indicated
by the automaton name followed by “::”. Each node represents a state and each directed edge represents a
transition, and is labeled with the name of the action executed. All the automata have a single start state.
A,B,C, have start state s0, t0, u0 respectively, and out(A)(s0) = out(B)(t0) = {a, b}. Note that A has b in
the signature of s0 but does not enable b in s0. All the states of X,Y , except the terminating states, are
labeled with their corresponding configurations. The start states of X,Y are the states with configuration
{(C, u0)}.

By inspection, ∀x ∈ start(X),∃y ∈ start(Y ) : config(X)(x) �AB config(Y )(y). traces(A) ⊆ traces(B), and
ttraces(A) ⊆ ttraces(B). Also by inspection, traces(X) = {c, ca, cd, cad, cda} and traces(Y ) = {c, ca, cb, cd},
and so traces(X) 6⊆ traces(Y ) (we omit the external signatures in the traces). This is because X creates
A along the transition which is generated by the (u0, c, u′′) transition of C (according to constraint 3 of
Definition 18), whereas Y does not.

We now impose a restriction which precludes scenarios such as in Example 1.

Definition 29 (Creation corresponding configuration automata) Let X,Y be configuration automata
and A,B be SIOA. We say that X,Y are creation-corresponding w.r.t. A,B iff

1. X never creates B and Y never creates A.

2. Let β ∈ traces∗(X) ∩ traces∗(Y ), and let α ∈ execs∗(X), π ∈ execs∗(Y ) be such that traceA(α) =
traceB(π) = β. Let x = last(α), y = last(π), i.e., x, y are the last states along α, π, respectively. Then

∀a ∈ ŝig(X)(x) ∩ ŝig(Y )(y) : created(Y )(y)(a) = created(X)(x)(a)[B/A].

Now, in addition to the requirements discussed above in Example 1, we require that the configuration
automata X,Y be creation-corresponding w.r.t. A,B, and that, from the last states of executions with the
same trace, X and Y create the same SIOA, except that Y may create B where X creates A. We will also
restrict A, B so that their internal actions do not create SIOA, and do not lead to an empty signature, i.e.,
to self-destruction. Also B can have only a single start state. We give results for finite trace inclusion and
trace inclusion.

39



{(C, u0)}
a

d
a

d

a

c

c

s′ t′

t′′

a

b

d

c

c

u′′ u′′′

u0

d

c

c

a

b

a

A :: t0 C ::

{(C, u′), (A, s0)}

{(C, u′′), (A, s0)}

B ::

Y :: {(C, u0)}

{(C, u′), (B, t0)}

{(C, u′′)}

s0

u′

X ::

Figure 7: The Automata in Example 1

Let s0a1s1 . . . sn−1ansn be a finite execution of SIOA A such that ŝig(A)(sn) = ∅. Then, without loss of

generality, we assume that, for all t such that (sn−1, an, t) ∈ steps(A), ŝig(A)(t) = ∅. That is, execution
in state sn−1 of an per se, and not the choice of target state, determines that A is destroyed. We also
assume that hiding is not used, so that a state and its configuration have the same signature, i.e., for every
configuration automaton X, ∀x ∈ states(X): out(X)(x) = out(config(X)(x)), in(X)(x) = in(config(X)(x)),
and int(X)(x) = int(config(X)(x)).

Definition 30 (Terminating execution, terminating trace) Let s0a1s1 . . . sn−1ansn be a finite execu-

tion of SIOA A such that ŝig(A)(sn) = ∅, and let α = s0a1s1 . . . sn−1an, i.e., remove the final state sn. Then
we say that α is a terminating execution of A. Define texecs(A) = {α | α is a terminating execution of A}.
If β = trace(α), then we say that β is a terminating trace of A. Define ttraces(A) =
{β | β is a terminating trace of A}.

Note that we define a terminating execution to end in an action (which sets A’s signature to empty), and
not in a state. This is due to Definitions 16 and 18, which remove an SIOA A when it has an empty
signature, and hence the final state s, in which ŝig(A)(s) = ∅, does not appear in any configuration of the
containing configuration automaton X, i.e., there is no reachable state x of X and configuration C such that
config(X)(x) = C and map(C)(A) = s. Thus, to define a notion of projection of an execution of configuration
automaton X onto an SIOA A that is “inside” X, we have to define the terminating executions of A so that
they omit the final state. We also extend the concatenation operator _ so that it appends a single action:
for a finite execution fragment α = s0a1s1a2 . . . aisi we define α_a to be s0a1s1a2 . . . aisia, i.e., α followed
by a.

Definition 31 (Projection of configuration automaton onto a contained SIOA, ��) Let α =
x0a1x1 . . . xiai+1xi+1 . . . be an execution of a configuration automaton X. Then α��A is a sequence of exe-
cutions of A, and results from the following steps:
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1. insert a “delimiter” $ after an action ai whose execution causes A to set its signature to empty,

2. remove each xiai+1 such that A 6∈ auts(X)(xi),

3. remove each xiai+1 such that ai+1 6∈ ŝig(A)(map(config(X)(xi))(A)),

4. if α is finite, x = last(α), and A 6∈ auts(X)(x), then remove x,

5. replace each xi by map(config(X)(xi))(A).

α��A is, in general, a sequence of several (possibly an infinite number of) executions of A, all of which are
terminating except the last. That is, α��A = α1 $ · · · $αk where (∀j, 1 ≤ j < k : αj ∈ texecs(A)) ∧ αk ∈
execs(A).

Definition 32 (Prefix relation among sequences of executions, �,≺) Let α1 $ · · · $αk and
δ1 $ · · · $ δ` be sequences of executions of some SIOA. Define α1 $ · · · $αk � δ1 $ · · · $ δ` iff k ≤ ` ∧ (∀j, 1 ≤
j < k : αj = δj) ∧ αk ≤ δk. If α1 $ · · · $αk � δ1 $ · · · $ δ` and α1 $ · · · $αk 6= δ1 $ . . . $ δ` then we write
α1 $ · · · $αk ≺ δ1 $ · · · $ δ`.

Definition 33 (Trace of a sequence of executions, straceA(α1 $ · · · $αk)) Let α1 $ · · · $αk be a
sequence of executions of some SIOA A. Then straceA(α1 $ · · · $αk) is traceA(α1) $ · · · $ traceA(αk), i.e., a
sequence of traces of A, corresponding to the sequence of executions α1 $ · · · $αk.

Note that we overload the delimiter $ , and use it also in sequences of traces. It follows from Definition 31
that α′ ≤ α implies α′��A � α��A, where α′, α are executions of some configuration automaton. If α =
x0a1x1 . . . xiai+1xi+1 . . . is an execution of some configuration automaton, then define trace(α, j, k) to be
trace(xjaj+1 · · · akxk) if j ≤ k, and to be λ (the empty sequence) if j > k.

Definition 34 (Execution correspondence relation, RAB) Let α, π be executions of configuration au-
tomata X,Y respectively. Then αRAB π iff there exists a nondecreasing mapping
m : {0, . . . , |α|} → {0, . . . , |π|} such that all of the following hold:

1. m(0) = 0.

2. ∀j, 0 ≤ j ≤ |π| ∧ j 6= ω,∃i, 0 ≤ i ≤ |α| ∧ i 6= ω : m(i) ≥ j.

3. ∀i, 0 < i ≤ |α| ∧ i 6= ω : traceY (m(i-1)|π|m(i)) = traceX(i-1 |α|i).

4. ∀i, 0 < i ≤ |α| ∧ i 6= ω : traceB((m(i-1)|π|m(i))��B) = traceA((i-1 |α|i)��A).

5. ∀i, 0 ≤ i ≤ |α| ∧ i 6= ω : config(X)(xi) �AB config(Y )(ym(i)).

Proposition 32 Let α, π be executions of configuration automata X,Y respectively. If αRAB π, then
traceX(α) = traceY (π).

Proof: For finite executions, by induction on the length of α, using Clause 3 of Definition 34 to establish
the inductive step. For infinite executions, apply the finite case for each prefix, and then take the limit with
respect to prefix ordering.

Lemma 33 (Execution correspondence) Let X,Y be configuration automata, and A,B be SIOA. As-
sume that,
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1. B has a single start state, and A, B do not destroy themselves by executing an internal action,

2. internal actions of A,B do not create any SIOA, i.e., have empty create sets,

3. ∀x ∈ start(X),∃y ∈ start(Y ) : config(X)(x) �AB config(Y )(y),

4. traces∗(A) ⊆ traces∗(B),

5. ttraces(A) ⊆ ttraces(B), and

6. X,Y are creation-corresponding w.r.t. A,B.

Then
∀α ∈ execs∗(X),∃π ∈ execs∗(Y ) : αRAB π.

Proof: Fix α = x0a1x1a2x2 . . . x`a`+1x`+1 to be an arbitrary finite execution of X. Let α��A = α1
A $ · · · $αkA

for some k ≥ 0, and where (∀j, 1 ≤ j < k : αjA ∈ texecs(A)) and αkA ∈ execs∗(A). By Assumptions 4 and

5, each such αjA has at least one corresponding execution πjB which has the same trace. Thus there exist
executions π1

B , . . . , π
k
B of B such that

(∀j, 1 ≤ j ≤ k : traceA(αjA) = traceB(πjB)),

(∀j, 1 ≤ j < k : πjB ∈ texecs(B)), and
πkB ∈ execs∗(B).

(AB)

For the rest of the proof, fix these π1
B , . . . , π

k
B . Now define prefixes(α1

A $ · · · $αkA) ={
ξ | ξ � α1

A $ · · · $αkA
}

and prefixes(π1
B $ · · · $πkB) =

{
χ | χ � π1

B $ · · · $πkB
}

. Then it follows, from (AB),
that there exists a mapping mAB : prefixes(α1

A $ · · · $αkA) → prefixes(π1
B $ · · · $πkB) such that, for ξ ∈

prefixes(α1
A $ · · · $αkA), mAB(ξ) = χ, where

1. straceA(ξ) = straceB(χ) and

2. for all χ′ ∈ prefixes(π1
B $ · · · $πkB) such that straceA(ξ) = straceB(χ′), we have χ � χ′. That is, χ is

the least (with respect to the prefix ordering given by �) χ′ such that straceA(ξ) = straceB(χ′).

We now establish (*):

For every prefix α′ of α, there exists a π′ such that

1. π′ is a finite execution of Y ,

2. α′RAB π
′, and

3. π′��B � π1
B $ · · · $πkB and mAB(α′��A) = π′��B

(*)

The proof is by induction on the length of α′.

Base case: α′ = x0. Then π′ = y0 such that y0 ∈ start(Y ) and config(X)(x0) �AB config(Y )(y0). y0

exists by Assumption 3. π′ is a finite (zero-length) execution of Y , since y0 ∈ start(Y ). We now establish
α′RAB π

′, i.e., Definition 34. Let m(0) = 0. Then clause 1 holds. Also clause 2 holds since α′, π′ both
have length 0. Clauses 3 and 4 hold vacuously, because the range 0 < i ≤ |α′| is empty: since α′ = x0, we
have |α′| = 0, as α′ contains zero transitions. Clause 5 holds since config(X)(x0) �AB config(Y )(y0) and
m(0) = 0.

Finally, π′��B is the (unique) start state of B, by Definition 31, and Assumption 1. Hence π′��B �
π1
B $ · · · $πkB . Also, mAB(α′��A) = π′��B, by definition of mAB and config(X)(x0) �AB config(Y )(y0).

42



Induction step: α′ = α′′_ (xiai+1xi+1) where α′′ = x0a1x1a2x2 . . . xi−1aixi. The induction hypothesis
is as follows:

There exists a π′′ such that

1. π′′ is a finite execution of Y ,

2. α′′RAB π
′′, and

3. π′′��B � π1
B $ · · · $πkB and mAB(α′′��A) = π′′��B

(ind. hyp.)

We now extend π′′ to a finite π′ such that α′RAB π
′. The induction step splits into eight cases, treated

below. First, we establish some terminology and assertions that apply to all the cases.

Let Ci = config(X)(xi), Ci+1 = config(X)(xi+1). Also let π′′ = y0b1y1b2y2 . . . yj−1ajyj , and Dj =
config(Y )(yj). By Constraint 2 of Definition 18,

Ci
ai+1

=⇒ϕ Ci+1 where ϕ = created(X)(xi)(ai+1). (a)

Hence

ai+1 ∈ ŝig(X)(xi) and ai+1 ∈ ŝig(Ci), (b)

since ai+1 can be executed from xi, and Ci = config(X)(xi). By α′′RAB π
′′ and Proposition 32,

traceX(α′′) = traceY (π′′), (c)

and hence also

ext(X)(xi) = ext(Y )(yj), (d)

since xi, yj are the last states of α′′, π′′, respectively. In the rest of the proof, let β = traceX(α′′) =
traceY (π′′). By α′′RAB π

′′ and Definition 34, we have

j = m(i) and Ci �AB Dj . (e)

Suppose that ai+1 ∈ ŝig(Y )(yj). Then, by (b, c), Assumption 6, and Definition 29, we have

created(Y )(yj)(ai+1) = created(X)(xi)(ai+1)[B/A] if ai+1 ∈ ŝig(Y )(yj). (f)

We now deal with each case of the induction step, in turn.

Case 1: A 6∈ auts(Ci) and A 6∈ auts(Ci+1).

By (e), Ci �AB Dj . Since A 6∈ auts(Ci), we have, by Definition 34, that Ci = Dj . Since A 6∈ auts(Ci+1),

if follows that A 6∈ created(X)(xi)(ai+1) by Definitions 17 and 18. From (a), we have Ci
ai+1

=⇒ϕ Ci+1, where

ϕ = created(X)(xi)(ai+1). Let Dj+1 = Ci+1. Then we have Dj
ai+1

=⇒ϕDj+1. Hence ai+1 ∈ ŝig(Dj), since

ai+1 can be executed from Dj . Hence ai+1 ∈ ŝig(Y )(yj) by Definition 18. Hence created(Y )(yj)(ai+1) =
created(X)(xi)(ai+1)[B/A] by (f). Since A 6∈ created(X)(xi)(ai+1), we have created(Y )(yj)(ai+1) =

created(X)(xi)(ai+1). So letting ψ = created(Y )(yj)(ai+1), we have ψ = ϕ, and so Dj
ai+1

=⇒ψDj+1.

By ai+1 ∈ ŝig(Y )(yj), ψ = created(Y )(yj)(ai+1), Dj
ai+1

=⇒ψDj+1, and Definition 18, we have

∃yj+1 : yj
ai+1

−→Y y
j+1 and Dj+1 = config(Y )(yj+1).

Now let π′ = π′′ _ (yjai+1yj+1). We now establish α′RABπ
′, π′��B � π1

B $ · · · $πkB , and mAB(α′��A) =
π′��B.

Proof of α′RABπ
′: extend the mapping m by setting m(i + 1) = j + 1. We deal with each clause of

Definition 34 in turn.
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Clause 1: holds since m(0) = 0 remains true.

Clause 2: holds since |π| = j + 1.

Clause 3: from above, traceX(i |α|i+1 ) = ext(X)(xi) _ ai+1 _ ext(X)(xi+1) and
traceY (m(i)|π|m(i+1)) = ext(Y )(ym(i))_ai+1_ext(Y )(ym(i+1)) = ext(Y )(yj)_ai+1_ext(Y )(yj+1). By (d),
ext(X)(xi) = ext(Y )(yj). Also, ext(X)(xi+1) = ext(Ci+1) = ext(Dj+1) = ext(Y )(yj+1), since Dj+1 = Ci+1.
Hence traceX(i |α|i+1 ) = traceY (m(i)|π|m(i+1)). This and the induction hypothesis establishes Clause 3.

Clause 4: since A 6∈ auts(Ci) and A 6∈ auts(Ci+1), A is not a participant in ai+1. Likewise B 6∈ auts(Dj) and
B 6∈ auts(Dj+1), and so B is not a participant in ai+1. Hence by Definition 31, traceA((i |α|i+1 )��A) is empty,
and traceB((j |π|j+1 )��B) is also empty. Since m(i) = j,m(i+1) = j+1, we have traceB((m(i)|π|m(i+1))��B)
is empty. Clause 4 follows from this and the induction hypothesis.

Clause 5: we have, from above, Ci+1 = Dj+1, A 6∈ auts(Ci+1), B 6∈ auts(Dj+1). Hence Ci+1 �AB Dj+1,
by Definition 28. Since Ci+1 = config(X)(xi+1), Dj+1 = config(Y )(yj+1), we have config(X)(xi+1) �AB
config(Y )(yj+1). Since m(i+ 1) = j + 1, we have config(X)(xi+1)�AB config(Y )(ym(i+1)). Clause 5 follows
from this and the induction hypothesis.

Proof of π′��B � π1
B $ · · · $πkB : by the induction hypothesis, π′′��B � π1

B $ · · · $πkB . We showed above
(proof of Clause 4 of α′RABπ

′) that B is not a participant in ai+1, and hence π′��B = π′′��B. Hence
π′��B � π1

B $ · · · $πkB .

Proof of mAB(α′��A) = π′��B: we showed above (proof of Clause 4 of α′RABπ
′) that A is not a participant

in ai+1 and B is not a participant in ai+1. Hence α′��A = α′′��A, and π′��B = π′′��B. By the induction
hypothesis, mAB(α′′��A) = π′′��B. Hence mAB(α′��A) = π′��B.

Case 2: A 6∈ auts(Ci) and A ∈ auts(Ci+1).

By (e), Ci�ABDj . Since A 6∈ auts(Ci), we have, by Definition 34, that Ci = Dj . Since A 6∈ auts(Ci) and A ∈
auts(Ci+1), if follows that A ∈ created(X)(xi)(ai+1) by Definitions 17 and 18. By (b), ai+1 ∈ ŝig(Ci). Hence

ai+1 ∈ ŝig(Dj) since Ci = Dj . Hence ai+1 ∈ ŝig(Y )(yj) by Definition 18. Hence created(Y )(yj)(ai+1) =
created(X)(xi)(ai+1)[B/A] by (f). So letting ψ = created(Y )(yj)(ai+1) and ϕ = created(X)(xi)(ai+1), we
have ψ = ϕ[B/A].

Let s = map(Ci+1)(A). Hence α′��A = α′′��A $ s by Definition 31, and so α′′��A ≺ α′��A. Also α′ ≤ α, and
so α′′��A ≺ α′��A � α��A = α1

A $ · · · $αkA. Hence α′′��A = α1
A $ · · · $α`A for some ` < k, since A 6∈ auts(Ci),

and so the last execution in α′′��A must be a terminating execution in α1
A $ · · · $αkA, and not merely a prefix

of an execution in α1
A $ · · · $αkA. It follows, by Definition 31, that s = first(α`+1

A ), since α`+1
A is the next

execution of A along α1
A $ · · · $αkA. Also, from π′′��B = mAB(α′′��A) and definition of mAB , it follows that

π′′��B = π1
B $ · · · $π`B .

Now defineDj+1 as follows. auts(Dj+1) = auts(Ci+1)[B/A], and for allA′ ∈ auts(Ci+1)−{A} : map(Dj+1)(A′) =
map(Ci+1)(A′), and map(Dj+1)(B) = t where t = first(π`+1

B ). It follows from (AB) that t ∈ start(B) and
ext(B)(t) = ext(A)(s). Hence by Definition 34, Ci+1 �AB Dj+1.

From (a), we have Ci
ai+1

=⇒ϕ Ci+1. Then we have Dj
ai+1

=⇒ψDj+1, by Definition 17, ψ = ϕ[B/A], A ∈ ϕ, and

construction of Dj+1. By ai+1 ∈ ŝig(Y )(yj), ψ = created(Y )(yj)(ai+1), Dj
ai+1

=⇒ψDj+1, and Definition 18,
we have

∃yj+1 : yj
ai+1

−→Y y
j+1 and Dj+1 = config(Y )(yj+1).

Now let π′ = π′′_ (yjai+1yj+1). We now establish α′RABπ
′, π′ � π1

B $ · · · $πkB , and mAB(α′��A) = π′��B.

Proof of α′RABπ
′: extend the mapping m by setting m(i + 1) = j + 1. We deal with each clause of

Definition 34 in turn.
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Clause 1: holds since m(0) = 0 remains true.

Clause 2: holds since |π′| = j + 1.

Clause 3: from above, traceX(i |α|i+1 ) = ext(X)(xi) _ ai+1 _ ext(X)(xi+1) and
traceY (m(i)|π|m(i+1)) = ext(Y )(ym(i)) _ ai+1 _ ext(Y )(ym(i+1)) = ext(Y )(yj) _ ai+1 _ ext(Y )(yj+1).
By (d), ext(X)(xi) = ext(Y )(yj). Also, ext(X)(xi+1) = ext(Ci+1) = ext(Dj+1) = ext(Y )(yj+1), since
Ci+1 �AB Dj+1. Hence traceX(i |α|i+1 ) = traceY (m(i)|π|m(i+1)). This and the induction hypothesis estab-
lishes Clause 3.

Clause 4: traceA((i |α|i+1 )��A) = ext(A)(s), and traceB((j |π|j+1 )��B) = ext(B)(t), by Definition 31. By
choice of t, ext(A)(s) = ext(B)(t), and so traceA((i |α|i+1 )��A) = traceB((j |π|j+1 )��B). Clause 4 follows
from this and the induction hypothesis.

Clause 5: we have, from above, Ci+1 �AB Dj+1. Since Ci+1 = config(X)(xi+1), Dj+1 = config(Y )(yj+1),
we have config(X)(xi+1) �AB config(Y )(yj+1). Since m(i + 1) = j + 1, we have config(X)(xi+1) �AB
config(Y )(ym(i+1)). Clause 5 follows from this and the induction hypothesis.

Proof of π′��B � π1
B $ · · · $πkB : we showed above that π′′��B = π1

B $ · · · $π`B , where ` < k. By Definition of
��, π′��B = π′′��B $ t, where t = first(π`+1

B ). Hence π′��B � π1
B $ · · · $πkB by Definition 32.

Proof of mAB(α′��A) = π′��B: by construction, α′��A = α′′��A $ s and π′��B = π′′��B $ t. By the induction
hypothesis, mAB(α′′��A) = π′′��B. We showed above that ext(A)(s) = ext(B)(t). It follows, from Definition
of mAB , that mAB(α′��A) = π′��B.

Case 3: A ∈ auts(Ci), A ∈ auts(Ci+1), and ai+1 6∈ ŝig(A)(s), where s = map(Ci)(A).

By (e), Ci�ABDj . Hence B ∈ auts(Dj). From (a), we have Ci
ai+1

=⇒ϕ Ci+1, where ϕ = created(X)(xi)(ai+1).

By (b), ai+1 ∈ ŝig(Ci). Let t = map(Dj)(B). Then ext(A)(s) = ext(B)(t), since Ci �AB Dj . By the case

assumption, ai+1 6∈ ŝig(A)(s), and so ai+1 6∈ êxt(A)(s). Hence ai+1 6∈ êxt(B)(t), since ext(A)(s) = ext(B)(t).

Now assume ai+1 ∈ int(B)(t). By signature compatibility, ai+1 is not an action of the current signature of
any SIOA A′ in auts(Dj) other than B. We have B 6∈ auts(Ci), since we assume that X never creates B. So

by Ci�ABDj and ai+1 6∈ ŝig(A)(s), we conclude that ai+1 6∈ ŝig(Ci), since Ci, Dj contain the same SIOA in

the same states, apart from A, B. This contradicts ai+1 ∈ ŝig(Ci) established above. Hence our assumption

is false, i.e., ai+1 6∈ int(B)(t). From this and ai+1 6∈ êxt(B)(t), we infer ai+1 6∈ ŝig(B)(t).

Now defineDj+1 as follows. auts(Dj+1) = auts(Ci+1)[B/A], for allA′ ∈ auts(Ci+1)−{A} : map(Dj+1)(A′) =
map(Ci+1)(A′), and map(Dj+1)(B) = map(Dj)(B) = t. That is, Dj+1 consists of the same SIOA as Ci+1,
except that A is replaced by B. SIOA other than A,B have the same state in Dj+1 as in Ci+1. B has the
same state in Dj+1 as in Dj . Hence Ci+1 �AB Dj+1, by Definitions 17 and 28.

By (b), ai+1 ∈ ŝig(Ci). Since ai+1 6∈ ŝig(A)(s), it follows that ai+1 is in the signature of some SIOA
A′ of Ci. By Ci �AB Dj , A

′ is also an SIOA of Dj , and has the same state in Dj as in Ci, i.e.,

map(Dj)(A
′) = map(Ci)(A

′). Hence ai+1 ∈ ŝig(Dj) by Definition 16. Hence ai+1 ∈ ŝig(Y )(yj) by
Dj = config(Y )(yj) and Definition 18. So created(Y )(yj)(ai+1) = created(X)(xi)(ai+1)[B/A] by (f). So
letting ψ = created(Y )(yj)(ai+1) and ϕ = created(X)(xi)(ai+1), we have ψ = ϕ[B/A].

Since A ∈ auts(Ci) and B ∈ auts(Dj), the presence of A in ϕ, B in ψ, makes no difference to the execution
of transitions from Ci, Dj , respectively, by Definition 17, since A, B are already alive. Now Ci �AB Dj ,

Ci+1 �AB Dj+1, and Ci
ai+1

=⇒ϕ Ci+1. Hence Dj
ai+1

=⇒ψDj+1, by these, ψ = ϕ[B/A], and Definition 17, since
A,B do not participate in the execution of ai+1.

By ai+1 ∈ ŝig(Y )(yj), ψ = created(Y )(yj)(ai+1), Dj
ai+1

=⇒ψDj+1, and Definition 18, we have
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∃yj+1 : yj
ai+1

−→Y y
j+1 and Dj+1 = config(Y )(yj+1).

Now let π′ = π′′ _ (yjai+1yj+1). We now establish α′RABπ
′, π′��B � π1

B $ · · · $πkB , and mAB(α′��A) =
π′��B.

Proof of α′RABπ
′: extend the mapping m by setting m(i + 1) = j + 1. We deal with each clause of

Definition 34 in turn.

Clause 1: holds since m(0) = 0 remains true.

Clause 2: holds since |π′| = j + 1.

Clause 3: from above, traceX(i |α|i+1 ) = ext(X)(xi) _ ai+1 _ ext(X)(xi+1) and
traceY (m(i)|π|m(i+1)) = ext(Y )(ym(i))_ai+1_ext(Y )(ym(i+1)) = ext(Y )(yj)_ai+1_ext(Y )(yj+1). By (d),
ext(X)(xi) = ext(Y )(yj). Now config(X)(xi+1) = Ci+1, config(Y )(yj+1) = Dj+1. Also Ci+1 �ABDj+1, and
so ext(Ci+1) = ext(Dj+1). Hence ext(X)(xi+1) = ext(Ci+1) = ext(Dj+1) = ext(Y )(yj+1). We finally obtain
ext(X)(xi) _ ai+1 _ ext(X)(xi+1) = ext(Y )(yj) _ ai+1 _ ext(Y )(yj+1). Hence traceY (m(i)|π|m(i+1)) =
traceX(i |α|i+1 ). Together with the induction hypothesis, this establishes Clause 3.

Clause 4: from above, traceA((i |α|i+1 )��A) = ext(A)(s), and traceB((j |π|j+1 )��B) = ext(B)(t). By choice
of t, ext(A)(s) = ext(B)(t), and so traceA((i |α|i+1 )��A) = traceB((j |π|j+1 )��B). Clause 4 follows from this
and the induction hypothesis.

Clause 5: from above, Ci+1 �AB Dj+1. Since Ci+1 = config(X)(xi+1), Dj+1 = config(Y )(yj+1), we have
config(X)(xi+1)�ABconfig(Y )(yj+1). Sincem(i+1) = j+1, we have config(X)(xi+1)�ABconfig(Y )(ym(i+1)).
Clause 5 follows from this and the induction hypothesis.

Proof of π′��B � π1
B $ · · · $πkB : ai+1 6∈ ŝig(B)(t) was shown above, and so we have π′��B = π′′��B by

Definition 31. Now π′′��B � π1
B $ · · · $πkB by the induction hypothesis, and so we are done.

Proof of mAB(α′��A) = π′��B: ai+1 6∈ ŝig(A)(s) by assumption, and so we have α′��A = α′′��A by Defi-

nition 31. Since ai+1 6∈ ŝig(B)(t), we have π′��B = π′′��B by Definition 31. By the induction hypothesis,
mAB(α′′��A) = π′′��B, and so we are done.

Case 4: A ∈ auts(Ci), A ∈ auts(Ci+1), and ai+1 ∈ êxt(A)(s), where s = map(Ci)(A).

By (e), Ci �AB Dj . Hence B ∈ auts(Dj). Also, by Proposition 31, ext(Ci) = ext(Dj). By ai+1 ∈
êxt(A)(s), A ∈ auts(Ci), and Definition 16, ai+1 ∈ êxt(Ci). Hence ai+1 ∈ êxt(Dj) since ext(Ci) = ext(Dj).

Hence ai+1 ∈ ŝig(Y )(yj) by Definition 18, since Dj = config(Y )(yj). Hence created(Y )(yj)(ai+1) =
created(X)(xi)(ai+1)[B/A] by (f). So letting ψ = created(Y )(yj)(ai+1) and ϕ = created(X)(xi)(ai+1),
we have ψ = ϕ[B/A].

Let s′ = map(Ci+1)(A). Hence α′��A = α′′��A_ (s, ai+1, s′) by Definition 31, and so α′′��A ≺ α′��A. Also
α′ ≤ α, and so α′′��A ≺ α′��A � α��A = α1

A $ · · · $αkA. Hence α′′��A = α1
A $ · · · $α`A $ θ`+1

A for some ` < k,

where θ`+1
A < α`+1

A . Note that θ`+1
A ≤ α`+1

A by construction, and that θ`+1
A 6= α`+1

A , since θ`+1
A cannot be a

terminating execution of A, as A ∈ auts(Ci), and so A is still alive at the end of α′′.

From π′′��B = mAB(α′′��A) and definition of mAB , it follows that π′′��B = π1
B $ · · · $π`B $κ`+1

B , where

traceA(θ`+1
A ) = traceB(κ`+1

B ), and κ`+1
B ≤ π`+1

B . Recall that, by (AB), we have traceA(α`+1
A ) = traceB(π`+1

B ).

By definition of mAB , we have κ`+1
B < π`+1

B , since θ`+1
A < α`+1

A .

Let t = map(Dj)(B). Then ext(A)(s) = ext(B)(t) since Ci �AB Dj . Now let δB be the unique execution
fragment of B such that κ`+1

B _δB ≤ π`+1
B (i.e., δB extends κ`+1

B along π`+1
B ) and π′′��B_δB = mAB(α′��A)

(i.e., δB is the unique extension that corresponds to the image of α′��A under mAB—see definition of mAB).
It follows, from the definition of mAB , that first(δB) = t and that δB = δintB _ (ai+1, t′), where δintB consists
entirely of internal actions that do not change the external signature of B, and so traceB(δintB ) = ext(B)(t).
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Also, t′ is such that ext(A)(s′) = ext(B)(t′), by (AB).

Now extend π′′ by executing the actions along δintB , starting from last(π′′). Let y′ be the last state of the
resulting execution. In y′, ai+1 can be executed by Y . This is because, at this point, B can execute ai+1,
since δintB _ (ai+1, t′) is an execution fragment of B. If ai+1 has any other participant SIOA, then these have
the same state in y′ as they do in Ci, since Ci �AB Dj . So ai+1 can be executed from y′. Let the resulting

execution, including ai+1, be π′. Let last(π′) = yj
′
, where j′ = j + |δintB | + 1. Let Dj′ = config(Y )(yj

′
).

Hence, by construction of π′, map(Dj′)(B) = t′. We now show that Ci+1 �ABDj′ . Let A′ ∈ auts(Ci)−{A}.
Then A′ ∈ auts(Dj), and map(Ci)(A

′) = map(Dj)(A
′), since Ci �AB Dj . Also, in transitioning from Ci to

Ci+1, each A′ either does nothing, and so remains in the same state, or it participates in the execution of
ai+1, possibly destroying itself as a result. Likewise, in transitioning from Dj to Dj′ , each A′ either does
nothing, and so remains in the same state, or it participates in the execution of ai+1, since δintB consists
entirely of internal actions of B, and no A′ ∈ auts(Ci) − {A} can be B, by construction. Hence, the local
transitions of the A′ (when executing ai+1) can be chosen to be the same in Y as in X, and so the same A′

destroy themselves in Y as in X, and the surviving A′ have the same final states in Y as in X. Also, δintB

creates no new SIOA, by Assumption 2, since its actions are all internal actions of B. We have ψ = ϕ[B/A]
from above. Hence the same SIOA are created by the transitions (xi, ai+1, xi+1) and (y′, ai+1, yj

′
), since

A, B are present in the configurations of xi, y′, respectively, and executing the actions along δintB does not
change the trace, so that ψ is still the set of SIOA created by ai+1, according to Definition 29. Therefore
we can choose (y′, ai+1, yj

′
) so that it creates these new SIOA in the same start states that (xi, ai+1, xi+1)

does. We conclude that (except for A, B) Ci+1 and Dj′ end up with the same SIOA in the same states, i.e.,
auts(Dj′) = auts(Ci+1)[B/A] and for all A′ ∈ auts(Ci+1) − {A} : map(Ci+1)(A′) = map(Dj′)(A

′). Finally,
map(Ci+1)(A) = s′, map(Dj′)(B) = t′, and ext(A)(s′) = ext(B)(t′) from above. Hence the conditions of
Definition 28 all hold, and so Ci+1 �AB Dj′ .

We now establish α′RABπ
′, π′��B � π1

B $ · · · $πkB , and mAB(α′��A) = π′��B.

Proof of α′RABπ
′: extend the mapping m by setting m(i+1) = j′. We deal with each clause of Definition 34

in turn.

Clause 1: holds since m(0) = 0 remains true.

Clause 2: holds since |π′| = j′.

Clause 3: from above, traceY (m(i)|π|m(i+1)) = ext(Y )(yj) _ ai+1 _ ext(Y )(yj
′
), since δintB is an execu-

tion fragment consisting entirely of internal actions of B which do not change the external signature of
B. Also, traceX(i |α|i+1 ) = ext(X)(xi) _ ai+1 _ ext(X)(xi+1). By (d), ext(X)(xi) = ext(Y )(yj). Now
config(X)(xi+1) = Ci+1, config(Y )(yj

′
) = Dj′ . Also, Ci+1 �AB Dj′ , and so ext(Ci+1) = ext(Dj′). Hence

ext(X)(xi+1) = ext(Ci+1) = ext(Dj′) = ext(Y )(yj
′
). We finally obtain ext(X)(xi)_ai+1_ ext(X)(xi+1) =

ext(Y )(yj)_ai+1 _ ext(Y )(yj
′
). Hence traceY (m(i)|π|m(i+1)) = traceX(i |α|i+1 ). Together with the induc-

tion hypothesis, this establishes Clause 3.

Clause 4: (i |α|i+1 )��A = s, ai+1, s′, so traceA((i |α|i+1 )��A) = ext(A)(s)_ai+1_ext(A)(s′). (j |π|j+1 )��B =
δB = δintB _ (ai+1, t′), so traceB((j |π|j+1 )��B) = traceB(δintB ) _ ai+1 _ ext(B)(t′) = ext(B)(t) _ ai+1 _
ext(B)(t′) since traceB(δintB ) = ext(B)(t). From above, ext(A)(s) = ext(B)(t) and ext(A)(s′) = ext(B)(t′).
Hence traceA((i |α|i+1 )��A) = traceB((j |π|j+1 )��B). Clause 4 follows from this and the induction hypothesis.

Clause 5: we have, from above, Ci+1 �ABDj′ . Since Ci+1 = config(X)(xi+1), Dj′ = config(Y )(yj
′
), we have

config(X)(xi+1) �AB config(Y )(yj
′
). Since m(i+ 1) = j′, we have config(X)(xi+1) �AB config(Y )(ym(i+1)).

Clause 5 follows from this and the induction hypothesis.

Proof of π′��B � π1
B $ · · · $πkB : from above, π′ results by extending π′′ with the actions along δintB , followed

by the transition (y′, ai+1, yj
′
). Hence π′��B = π′′��B _ δB , since δB = δintB _ (ai+1, t′). Also, π′′��B =

π1
B $ · · · $π`B $κ`+1

B , so π′��B = π1
B $ · · · $π`B $κ`+1

B _ δB . We also have κ`+1
B _ δB ≤ π`+1

B by our choice of

δB . Hence π′��B � π1
B $ · · · $π`+1

B , and so π′��B � π1
B $ · · · $πkB .
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Proof of mAB(α′��A) = π′��B: from immediately above, π′��B = π′′��B_δB . Also from above, π′′��B_δB =
mAB(α′��A), by our choice of δB . Hence π′��B = π′′��B _ δB = mAB(α′��A).

Case 5: A ∈ auts(Ci), A ∈ auts(Ci+1), and ai+1 ∈ int(A)(s), where s = map(Ci)(A).

Let s′ = map(Ci+1)(A). Hence α′��A = α′′��A_ (s, ai+1, s′) by Definition 31, and so α′′��A ≺ α′��A. Also
α′ ≤ α, and so α′′��A ≺ α′��A � α��A = α1

A $ · · · $αkA. Hence α′′��A = α1
A $ · · · $α`A $ θ`+1

A for some

` < k, where θ`+1
A ≤ α`+1

A . Note that θ`+1
A 6= α`+1

A , since θ`+1
A cannot be a terminating execution of A, as

A ∈ auts(Ci), and so A is still alive at the end of α′′. Hence θ`+1
A < α`+1

A .

From π′′��B = mAB(α′′��A) and definition of mAB , it follows that π′′��B = π1
B $ · · · $π`B $κ`+1

B , where

traceA(θ`+1
A ) = traceB(κ`+1

B ), and κ`+1
B ≤ π`+1

B . Recall that, by (AB), we have traceA(α`+1
A ) = traceB(π`+1

B ).

By definition of mAB , we have κ`+1
B < π`+1

B , since θ`+1
A < α`+1

A .

By (e), Ci�ABDj . Hence B ∈ auts(Dj). Let t = map(Dj)(B). Then ext(A)(s) = ext(B)(t) since Ci�ABDj .
Now let δB be the unique execution fragment of B such that κ`+1

B _δB ≤ π`+1
B (i.e., δB extends κ`+1

B along

π`+1
B ) and π′′��B_δB = mAB(α′��A) (i.e., δB is the unique extension that corresponds to the image of α′��A

under mAB—see definition of mAB). It follows, from the definition of mAB , that first(δB) = t and that
δB consists entirely of internal actions of B, and that traceB(δB) = traceA((s, ai+1, s′)). Let t′ = last(δB).
Then it also follows by (AB) that ext(A)(s′) = ext(B)(t′).

Now extend π′′ by executing the actions along δB , starting from last(π′′). Let the resulting execution be
π′. Let last(π′) = yj

′
where j′ = j + |δB |. Let Dj′ = config(Y )(yj

′
). Hence, by construction of π′,

map(Dj′)(B) = t′. We now show that Ci+1 �AB Dj′ . Let A′ ∈ auts(Ci)− {A}. Then A′ ∈ auts(Dj), since
Ci �AB Dj . Also, in transitioning from Ci to Ci+1, each A′ does nothing, and so remains in the same state,
since ai+1 is an internal action of A. Likewise, in transitioning from Dj to Dj′ , each A′ does nothing, and
so remains in the same state, since δB consists entirely of internal actions of B. Hence, the A′ have the
same final states in Y as in X, By Assumption 2, no new SIOA are created by executing ai+1 in X, nor
by executing δB in Y , since ai+1 is an internal action of A, and δB consists entirely of internal actions of
B. We conclude that (except for A, B) Ci+1 and Dj′ end up with the same SIOA in the same states, i.e.,
auts(Dj′) = auts(Ci+1)[B/A] and for all A′ ∈ auts(Ci+1)− {A} : map(Ci+1)(A′) = map(Dj′)(A

′). Finally,
map(Ci+1)(A) = s′, map(Dj′)(B) = t′, and ext(A)(s′) = ext(B)(t′) from above. Hence the conditions of
Definition 28 all hold, and so Ci+1 �AB Dj′ .

We now establish α′RABπ
′, π′��B � π1

B $ · · · $πkB , and mAB(α′��A) = π′��B.

Proof of α′RABπ
′: extend the mapping m by setting m(i+1) = j′. We deal with each clause of Definition 34

in turn.

Clause 1: holds since m(0) = 0 remains true.

Clause 2: holds since |π′| = j′.

Clause 3: traceY (m(i)|π|m(i+1)) = r(ext(Y )(yj) _ ext(Y )(yj
′
)), where r is given by Definition 11. This is

because δB is an execution fragment consisting entirely of internal actions of B, and which is trace equal
to (s, ai+1, s′). Hence δB can be partitioned into two parts, each of which has the same external signature
along all its states. Also traceX(i |α|i+1 ) = r(ext(X)(xi)_ ext(X)(xi+1)). By (d), ext(X)(xi) = ext(Y )(yj).
Now config(X)(xi+1) = Ci+1, config(Y )(yj

′
) = Dj′ . Also, Ci+1 �AB Dj′ , and so ext(Ci+1) = ext(Dj′).

Hence ext(X)(xi+1) = ext(Ci+1) = ext(Dj′) = ext(Y )(yj
′
). We finally obtain ext(X)(xi)_ ext(X)(xi+1) =

ext(Y )(yj) _ ext(Y )(yj
′
). Hence traceY (m(i)|π|m(i+1)) = traceX(i |α|i+1 ). Together with the induction

hypothesis, this establishes Clause 3.

Clause 4: from above, (i |α|i+1 )��A = s, ai+1, s′ and (j |π|j+1 )��B = δB . Also from above, traceB(δB) =
traceA((s, ai+1, s′)). Hence traceA((i |α|i+1 )��A) = traceB((j |π|j+1 )��B). Clause 4 follows from this and the
induction hypothesis.
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Clause 5: we have, from above, Ci+1 �ABDj′ . Since Ci+1 = config(X)(xi+1), Dj′ = config(Y )(yj
′
), we have

config(X)(xi+1) �AB config(Y )(yj
′
). Since m(i+ 1) = j′, we have config(X)(xi+1) �AB config(Y )(ym(i+1)).

Clause 5 follows from this and the induction hypothesis.

Proof of π′��B � π1
B $ · · · $πkB : from above, π′ results by extending π′′ with the actions along δB . Hence

π′��B = π′′��B _ δB , since δB consists entirely of internal actions of B. Also, π′′��B = π1
B $ · · · $π`B $κ`+1

B .

Hence π′��B = π1
B $ · · · $π`B $κ`+1

B _ δB . We also have κ`+1
B _ δB ≤ π`+1

B by our choice of δB . Hence

π′��B � π1
B $ · · · $π`+1

B , and so π′��B � π1
B $ · · · $πkB .

Proof of mAB(α′��A) = π′��B: from immediately above, π′��B = π′′��B_δB . Also from above, π′′��B_δB =
mAB(α′��A), by our choice of δB . Hence π′��B = π′′��B _ δB = mAB(α′��A).

Case 6: A ∈ auts(Ci), A 6∈ auts(Ci+1), and ai+1 6∈ ŝig(A)(map(Ci)(A)).

Since A ∈ auts(Ci) and A 6∈ auts(Ci+1), then in the execution of ai+1, A must set its signature to empty.

Hence A must be a participant of ai+1, so that ai+1 ∈ ŝig(A)(map(Ci)(A)). Hence this case is not possible.

Case 7: A ∈ auts(Ci), A 6∈ auts(Ci+1), and ai+1 ∈ êxt(A)(s), where s = map(Ci)(A).

By (e), Ci �AB Dj . Hence B ∈ auts(Dj). Also, by Proposition 31, ext(Ci) = ext(Dj). By ai+1 ∈
êxt(A)(s), A ∈ auts(Ci), and Definition 16, ai+1 ∈ êxt(Ci). Hence ai+1 ∈ êxt(Dj) since ext(Ci) = ext(Dj).

Hence ai+1 ∈ ŝig(Y )(yj) by Definition 18, since Dj = config(Y )(yj). Hence created(Y )(yj)(ai+1) =
created(X)(xi)(ai+1)[B/A] by (f). So letting ψ = created(Y )(yj)(ai+1) and ϕ = created(X)(xi)(ai+1),
we have ψ = ϕ[B/A].

Now α′��A = α′′��A_ (s, ai+1) by Definition 31. Also α′ ≤ α, and so α′′��A � α′��A � α��A = α1
A $ · · · $αkA.

Hence α′′��A = α1
A $ · · · $ θ`+1

A where θ`+1
A _ (s, ai+1) = α`+1

A for some ` < k, since A is destroyed by the
execution of ai+1, and so the last execution in α′��A must be a terminating execution.

From π′′��B = mAB(α′′��A) and definition of mAB , it follows that π′′��B = π1
B $ · · · $π`B $κ`+1

B , where

traceA(θ`+1
A ) = traceB(κ`+1

B ), and κ`+1
B ≤ π`+1

B . Recall that, by (AB), we have traceA(α`+1
A ) = traceB(π`+1

B ).

Let t = map(Dj)(B). Then ext(A)(s) = ext(B)(t) since Ci �AB Dj . Now let δB be the unique execution
fragment of B such that κ`+1

B _δB ≤ π`+1
B (i.e., δB extends κ`+1

B along π`+1
B ) and π′′��B_δB = mAB(α′��A)

(i.e., δB is the unique extension that corresponds to the image of α′��A under mAB—see definition of mAB).
It follows, from the definition of mAB , that δB = δintB _ai+1, where δintB consists entirely of internal actions
that do not change the external signature of B. This is because B must, by assumption, destroy itself using an
external action. Thus, by (AB), the destroying action must be ai+1. Hence also κ`+1

B _δB = π`+1
B , since B is

destroyed at the end of δB . Also by construction of δB and (AB), first(δB) = t and traceB(δintB ) = ext(B)(t).

Now extend π′′ by applying the actions along δB , starting in last(π′′). Let the resulting execution be π′.
Hence last(π′) = yj

′
where j′ = j + |δintB |+ 1. Let Dj′ = config(Y )(yj

′
). We now show that Ci+1 �AB Dj′ .

Let A′ ∈ auts(Ci) − {A}. Then A′ ∈ auts(Dj), since Ci �AB Dj . Also, in transitioning from Ci to Ci+1,
each A′ either does nothing, and so remains in the same state, or it participates in the execution of ai+1,
possibly destroying itself as a result. Likewise, in transitioning from Dj to Dj′ , each A′ either does nothing,
and so remains in the same state, or it participates in the execution of ai+1, since δintB consists entirely of
internal actions of B, and no A′ ∈ auts(Ci) − {A} can be B, by construction. Hence, the local transitions
of the A′ (when executing ai+1) can be chosen to be the same in Y as in X, and so the same A′ destroy
themselves in Y as in X, and the surviving A′ have the same final states in Y as in X. Also, δintB creates
no new SIOA, by Assumption 2, since its actions are all internal actions of B. We have ψ = ϕ[B/A] from
above. Hence the same SIOA are created by the transitions (xi, ai+1, xi+1) and (y′, ai+1, yj

′
), since A,B are

present in the configurations of xi, y′, respectively, and executing the actions along δintB does not change
the trace, so that ψ is still the set of SIOA created by ai+1, according to Definition 29. Therefore we can
choose (y′, ai+1, yj

′
) so that it creates these new SIOA in the same start states that (xi, ai+1, xi+1) does.
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We conclude that (except for A, B) Ci+1 and Dj′ end up with the same SIOA in the same states, i.e.,
auts(Dj′) = auts(Ci+1)[B/A] and for all A′ ∈ auts(Ci+1) − {A} : map(Ci+1)(A′) = map(Dj′)(A

′). Finally,
A 6∈ auts(Ci+1) and B 6∈ auts(Dj′). Hence the conditions of Definition 28 all hold, and so Ci+1 �AB Dj′ .

We now establish α′RABπ
′, π′��B � π1

B $ · · · $πkB , and mAB(α′��A) = π′��B.

Proof of α′RABπ
′: extend the mapping m by setting m(i+1) = j′. We deal with each clause of Definition 34

in turn.

Clause 1: holds since m(0) = 0 remains true.

Clause 2: holds since |π′| = j′.

Clause 3: traceY (m(i)|π|m(i+1)) = ext(Y )(yj) _ ai+1 _ ext(Y )(yj
′
). This is because δintB is an execu-

tion fragment consisting entirely of internal actions of B which do not change the external signature.
Also traceX(i |α|i+1 ) = ext(X)(xi) _ ai+1 _ ext(X)(xi+1). By (d), ext(X)(xi) = ext(Y )(yj). Now
config(X)(xi+1) = Ci+1, config(Y )(yj

′
) = Dj′ . Also, Ci+1 �AB Dj′ , and so ext(Ci+1) = ext(Dj′). Hence

ext(X)(xi+1) = ext(Ci+1) = ext(Dj′) = ext(Y )(yj
′
). We finally obtain ext(X)(xi)_ai+1_ ext(X)(xi+1) =

ext(Y )(yj)_ai+1 _ ext(Y )(yj
′
). Hence traceY (m(i)|π|m(i+1)) = traceX(i |α|i+1 ). Together with the induc-

tion hypothesis, this establishes Clause 3.

Clause 4: (i |α|i+1 )��A = s, ai+1, so traceA((i |α|i+1 )��A) = ext(A)(s) _ ai+1 since A 6∈ auts(Ci+1).
(j |π|j+1 )��B = δB , so traceB((j |π|j+1 )��B) = traceB(δB) = traceB(δintB _ai+1) = ext(B)(t) _ ai+1, since
B 6∈ auts(Dj′). From above, ext(A)(s) = ext(B)(t). Hence traceA((i |α|i+1 )��A) = traceB((j |π|j+1 )��B).
Clause 4 follows from this and the induction hypothesis.

Clause 5: we have, from above, Ci+1 �ABDj′ . Since Ci+1 = config(X)(xi+1), Dj′ = config(Y )(yj
′
), we have

config(X)(xi+1) �AB config(Y )(yj
′
). Since m(i+ 1) = j′, we have config(X)(xi+1) �AB config(Y )(ym(i+1)).

Clause 5 follows from this and the induction hypothesis.

Proof of π′��B � π1
B $ · · · $πkB : from above, π′ is π′′ extended by the actions along δB , and so π′��B =

π′′��B_δB by construction of δB . Also, π′′��B = π1
B $ · · · $π`B $κ`+1

B . Hence π′��B = π1
B $ · · · $π`B $κ`+1

B _

δB We also have κ`+1
B _ δB ≤ π`+1

B by our choice of δB . Hence π′��B � π1
B $ · · · $π`+1

B , and so π′��B �
π1
B $ · · · $πkB .

Proof of mAB(α′��A) = π′��B: from immediately above, π′��B = π′′��B_δB . Also from above, π′′��B_δB =
mAB(α′��A), by our choice of δB . Hence π′��B = π′′��B _ δB = mAB(α′��A).

Case 8: A ∈ auts(Ci), A 6∈ auts(Ci+1), and ai+1 ∈ int(A)(map(Ci)(A)), i.e., ai+1 is an internal action of A.

By Assumption 1, A does not destroy itself by executing an internal action. Hence this case is not possible.

Having established the induction step in all cases, we conclude that (*) holds. Since α′ is any prefix of α,
we can instantiate α′ to α, which gives us that there exists π such that αRAB π, and we are done.

Theorem 34 (Monotonicity of finite-trace inclusion w.r.t. SIOA creation) Let X,Y be configura-
tion automata, and A,B be SIOA. Assume that,

1. B has a single start state, and A, B do not destroy themselves by executing an internal action,

2. internal actions of A,B do not create any SIOA, i.e., have empty create sets,

3. ∀x ∈ start(X),∃y ∈ start(Y ) : config(X)(x) �AB config(Y )(y),

4. traces∗(A) ⊆ traces∗(B),
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5. ttraces(A) ⊆ ttraces(B), and

6. X,Y are creation-corresponding w.r.t. A,B.

Then
traces∗(X) ⊆ traces∗(Y ).

Proof: Immediate from Lemma 33 and Proposition 32.

Theorem 35 (Monotonicity of trace inclusion w.r.t. SIOA creation) Let X,Y be configuration au-
tomata, and A,B be SIOA. Assume that,

1. B has a single start state, and A, B do not destroy themselves by executing an internal action,

2. internal actions of A,B do not create any SIOA, i.e., have empty create sets,

3. ∀x ∈ start(X),∃y ∈ start(Y ) : config(X)(x) �AB config(Y )(y),

4. traces∗(A) ⊆ traces∗(B),

5. ttraces(A) ⊆ ttraces(B), and

6. X,Y are creation-corresponding w.r.t. A,B.

Then
traces(X) ⊆ traces(Y ).

Proof: Let α = x0a1x1a2x2 . . . be an arbitrary execution of X. We show that there exists a “corresponding”
execution π of Y such that αRAB π. Proposition 32 then implies trace(α) = trace(α′), which yields the
desired traces(X) ⊆ traces(Y ).

If α is finite, then the result follows from Lemma 33. So, we assume that α is infinite. Let α1 be an arbitrary
prefix of α. Then, by Lemma 33 there exists a finite execution π1 of Y such that α1RAB π1. Likewise, if
α1 < α2 and α2 < α then there exists a finite execution π2 of Y such that α2RAB π2. Furthermore, we can
show that π1 < π2 since π2 can be chosen to be an extension of π1, as the proof of Lemma 33 constructs π1

and then π2 by induction on their length.

Since α is infinite, there exists an infinite set {αi | i ≥ 0} of finite executions of X such that ∀i ≥ 0 : αi <
αi+1 ∧ αi < α. Repeating the above argument for arbitrary i ≥ 0, we obtain that there exists an infinite
set {πi | i ≥ 0} of finite executions of Y such that ∀i ≥ 0 : πi < πi+1 ∧ αiRAB πi. Now let π be the unique
infinite execution of Y that satisfies ∀i ≥ 0 : πi < π. Then, by Definition 34, αRAB π, and so π is the
required execution of Y .

Corollary 36 (Trace equivalence w.r.t. SIOA creation) Let X,Y be configuration automata, and A,B
be SIOA. Assume that,

1. A, B have a single start state, and A, B do not destroy themselves by executing an internal action,

2. internal actions of A,B do not create any SIOA, i.e., have empty create sets,

3. ∀x ∈ start(X),∃y ∈ start(Y ) : config(X)(x) �AB config(Y )(y) and
∀y ∈ start(Y ),∃x ∈ start(X) : config(Y )(y) �BA config(X)(x),
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4. traces∗(A) = traces∗(B),

5. ttraces(A) = ttraces(B), and

6. X,Y are creation-corresponding w.r.t. A,B.

Then
traces(X) = traces(Y ).

Proof: Immediate by applying Theorem 35 in both directions of trace containment. Note that we use �BA
to mean �AB with the roles of A, B interchanged, and that created(Y )(y)(a) = created(X)(x)(a)[B/A] iff
created(Y )(y)(a)[A/B] = created(X)(x)(a).

In Section 8 below, we present an example of a flight ticket purchase system. A client submits requests to
buy an airline ticket to a client agent. The client agent creates a request agent for each request. The request
agent searches through a set of appropriate databases where the request might be satisfied. Upon booking a
suitable flight, the request agent returns confirmation to the client agent and self-destructs. A typical safety
property is that if a flight booking is returned to a client, then the price of the flight is not greater than
the maximum price specified by the client. The request agent in this example searches through databases
in any order. Suppose we replace it by a more refined agent that searches through databases according to
some rules or heuristics, so that it looks first at the databases more likely to have a suitable flight. Then,
Theorem 34 tells us that this refined system has all of the safety properties which the original system has.

7 Modeling Dynamic Connection and Locations

We stated in the introduction that we model both the dynamic creation/moving of connections, and the
mobility of agents, by using dynamically changing external interfaces. The guiding principle here, adapted
from [26], is that an agent should only interact directly with either (1) another co-located agent, or (2) a
channel one of whose ends is co-located with the agent. Thus, we restrict interaction according to the current
locations of the agents.

We adopt a logical notion of location: a location is simply a value drawn from the domain of “all locations.”
To codify our guiding principle, we partition the set of SIOA into two subsets, namely the set of agent SIOA,
and the set of channel SIOA. Agent SIOA have a single location, and represent agents, and channel SIOA
have two locations, namely their current endpoints. We assume that all configurations are compatible, and
codify the guiding principle as follows: for any configuration, the following conditions all hold, (1) two agent
SIOA have a common external action only if they have the same location, (2) an agent SIOA and a channel
SIOA have a common external action only if one of the channel endpoints has the same location as the agent
SIOA, and (3) two channel SIOA have no common external actions.

8 Extended Example: A Travel Agent System

Our example is a simple flight ticket purchase system. A client requests to buy an airline ticket. The
client gives some “flight information,” f , e.g., acceptable departure and arrival times, departure city and
destination city. The client also specifies a maximum price f .mp they can pay. f contains all the client
information, including mp, as well as an identifier that is unique across all client requests. The request
goes to a static (always existing) “client agent,” who then creates a special “request agent” dedicated to
the particular request. That request agent then visits a (fixed) set of databases where the request might be
satisfied. If the request agent finds a satisfactory flight in one of the databases, i.e., a flight that conforms
to f and has price ≤ mp, then it purchases some such flight, and returns a flight descriptor fd giving the
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flight and the price paid (fd .p) to the client agent, who returns it to the client. The request agent then
terminates. To abstract away from the details of conforming to a clients flight information, we assume a
predicate conforms(fd , f ) that holds when the flight given by fd satisfies the arrival/deprture times and cities
of the client request f . We assume a set F of flight descriptors, and a static set D of database agents. We
also assume that both the client flight information f , and the returned flight descriptor fd , are elements of
F .

The agents in the system are:

1. ClientAgt , who receives all requests from the client,

2. ReqAgt(f ), responsible for handling request f , and

3. DBAgtd, d ∈ D, the agent (i.e., front-end) for database d, where D is the set of all databases in the
system.

We augment the pseudocode used in the mobile phone example by identifying SIOA using a “type name”
followed by some parameters. This is only a notational convenience, and is not part of our model.

Figure 8 presents a specification automaton, Spec, which is a single SIOA that, together with the databases,
specifies the set of correct traces. That is, can take the specification to be Spec ‖ (‖d∈D DBAgtd). However,
as we see below, it is simpler, and just as effective, to take the specification to be Spec, i.e., to exclude the
databases from the specification.

Figures 9, 10, and 11 give the client agent, request agents, and database agent of an implementation,
respectively. When writing sets of actions, we make the convention that all free variables are universally
quantified over their domains, so, e.g., {informd(f ,flts), confd(fd , ok?)} within action selectd(f ) below really
denotes {informd(f ,flts), confd(fd , ok?) | fd ∈ F ,flts ⊆ F , ok? ∈ Bool}.

In the implementation, we enforce locality constraints by modifying the signature of ReqAgt(f ) so that it
can only query a database d if it is currently at location d (we use the database names for their locations).
We allow ReqAgt(f ) to communicate with ClientAgt regardless of its location. A further refinement would
insert a suitable channel between ReqAgt(f ) and ClientAgt for this communication (one end of which would
move along with ReqAgt(f )), or would move ReqAgt(f ) back to the location of ClientAgt .

We now give the client agent and request agents of the implementation. The initial configuration consists
solely of the client agent ClientAgt . We also give the database agents, which we can view as being “external”
to the system, since we do not consider their details in arguing trace inclusion. We provide the databases
for sake of completeness, and to demonstrate that we can reason even in the absence of major components,
i.e., we can reason about “open” systems.

ClientAgt receives requests from a client (not portrayed), via the request input action. ClientAgt accumulates
these requests in reqs, and creates a request agent ReqAgt(f ) for each one, via the output action create. This
is indicated by the pseudocode “creates SIOA ReqAgt(f )”. Upon receiving a response from the request agent,
via input action req-agent-response, the client agent adds the response to the set resps, and subsequently
communicates the response to the client via the response output action. It also removes all record of the
request at this point.

ReqAgt(f ) handles the single request f , and then terminates itself. ReqAgt(f ) has initial location c (the loca-
tion of ClientAgt) traverses the databases in the system, querying each database d using queryd(f ). Database
d returns a set of flights that match the schedule information in f . Upon receiving this (informd(f ,flts)),
ReqAgt(f ) searches for a suitably cheap flight (the ∃fd ∈ flts : fd .p ≤ f .mp condition in informd(f ,flts)).
If such a flight exists, then ReqAgt(f ) attempts to buy it (buyd(f ,flts) and confd(f , fd , ok?)). If successful,
then ReqAgt(f ) returns a positive response to ClientAgt and terminates. ReqAgt(f ) queries each database at
most once, and attempts to buy a ticket from each database at most once. ReqAgt(f ) can return a negative
response if it has queried each database once and failed to buy a ticket.
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Specification: Spec

Signature
Input:

request(f ), where f ∈ F
informd(f ,flts), where d ∈ D, f ∈ F , and flts ⊆ F
confd(f , fd , ok?), where d ∈ D, f , fd ∈ F , and ok? ∈ Bool
selectd(f ), where d ∈ D and f ∈ F
adjustsig(f ), where f ∈ F
initially: {request(f ) : f ∈ F} ∪ {selectd(f ) : d ∈ D, f ∈ F}

Output:
queryd(f ), where d ∈ D and f ∈ F
buyd(f ,flts), where d ∈ D, f ∈ F , and flts ⊆ F
response(f , fd , ok?), where f , fd ∈ F and ok? ∈ Bool
initially: {response(f , fd , ok?) : f , fd ∈ F , ok? ∈ Bool}

Internal:
∅
constant

State

statusf ∈ {notsubmitted, submitted, computed, replied}, status of request f , initially notsubmitted

transf ,d ∈ Bool, true iff the system is currently interacting with database d on behalf of request f , initially false

okfltsf ,d ⊆ F , set of acceptable flights that has been found so far, initially empty

resps ⊆ F × F × Bool, responses that have been calculated but not yet sent to client, initially empty

xf ,d ∈ N , bound on the number of times database d is queried on behalf of request f before a negative reply is returned to the client,
initially any natural number greater than zero

Actions
Input request(f )
Eff: statusf ← submitted

Input selectd(f )
Eff: in ←

(in ∪ {informd(f ,flts), confd(fd, ok?)}) −
{informd′ (f ,flts), confd′ (fd, ok?) : d′ 6= d};

out ←
(out ∪ {queryd(f ), buyd(f , fd)}) −
{queryd′ (f ), buyd′ (f , fd) : d′ 6= d}

Output queryd(f )
Pre: statusf = submitted ∧ xf ,d > 0
Eff: xf ,d ← xf ,d − 1;

transf ,d ← true

Input informd(f ,flts)
Eff: okfltsf ,d ← okfltsf ,d ∪

{fd : fd ∈ flts ∧ fd.p ≤ f .mp}

Output buyd(f ,flts)
Pre: statusf = submitted ∧

flts = okfltsf ,d 6= ∅ ∧ transf ,d

Eff: skip

Input confd(f , fd, ok?)
Eff: transf ,d ← false;

if ok? then
resps ← resps ∪ {〈f , fd, true〉};
statusf ← computed

else
if ∀d : xf ,d = 0 then

resps ← resps ∪ {〈f ,⊥, false〉};
statusf ← computed

else
skip

Output response(f , fd, ok?)
Pre: 〈f , fd, ok?〉 ∈ resps ∧ statusf = computed
Eff: statusf ← replied

Input adjustsig(f )
Eff: in ← in−

{informd(f ,flts), confd(f , fd, ok?)};
out ← out−

{queryd(f ), buyd(f , fd)}

Figure 8: The specification automaton
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Client Agent: ClientAgt

Signature
Input:

request(f ), where f ∈ F
req-agent-response(f , fd , ok?), where f , fd ∈ F , and ok? ∈ Bool
constant

Output:
response(f , fd , ok?), where f , fd ∈ F and ok? ∈ Bool
create(ClientAgt ,ReqAgt(f )), where f ∈ F
constant

Internal:
∅
constant

State

reqs ⊆ F , outstanding requests, initially empty

created ⊆ F , outstanding requests for whom a request agent has been created, but the response has not yet been returned to the
client, initially empty

resps ⊆ F × F × Bool, responses not yet returned to client, initially empty

Actions
Input request(f )
Eff: reqs ← reqs ∪ {〈f 〉}

Output create(ClientAgt,ReqAgt(f ))
Pre: f ∈ reqs ∧ f 6∈ created
Eff: created ← created ∪ {f };

creates SIOA ReqAgt(f )

Input req-agent-response(f , fd, ok?)
Eff: resps ← resps ∪ {〈f , fd, ok?〉};

done ← done ∪ {f }

Output response(f , fd, ok?)
Pre: 〈f , fd, ok?〉 ∈ resps
Eff: resps ← resps − {〈f , fd, ok?〉}

Figure 9: The client agent
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Request Agent: ReqAgt(f ) where f ∈ F

Signature
Input:

informd(f ,flts), where d ∈ D and flts ⊆ F
confd(f , fd , ok?), where d ∈ D, fd ∈ F , and ok? ∈ Bool
terminate(ReqAgt(f ))
initially: {movef (c, d), where d ∈ D}

Output:
queryd(f ), where d ∈ D
buyd(f ,flts), where d ∈ D and flts ⊆ F
req-agent-response(f , fd , ok?), where fd ∈ F and ok? ∈ Bool
initially: ∅

Internal:
movef (c, d), where d ∈ D
movef (d, d

′), where d, d′ ∈ D and d 6= d′

constant

State

location ∈ c ∪ D, location of the request agent, initially c, the location of ClientAgt

status ∈ {purchased, failed, unknown}, status of request f , initially notsubmitted

transd ∈ Bool, true iff ReqAgt(f ) is currently interacting with database d (on behalf of request f ), initially false

D−remaining ⊆ D, databases that have not yet been queried, initially the list of all databases D

tkt ∈ F , the flight ticket that ReqAgt(f ) purchases on behalf of the client, initially ⊥

okfltsd ⊆ F , set of acceptable flights that ReqAgt(f ) has found so far, initially empty

queriedd, boolean flag, true when database d has been queried, initially false.

orderedd, boolean flag, true when a purchase order for a ticket has been submitted to database d, initially false.

Actions
Internal movef (c, d)
Pre: location = c
Eff: location ← d;

transd ← true;
D−remaining← D−remaining − {d};
in ← {informd(f ,flts), confd(f , fd, ok?)};
out ← {queryd(f ), buyd(f , fd),

req-agent-response(f , fd, ok?)};

Output queryd(f )
Pre: location = d ∧ d ∈ D−remaining ∧ ¬queriedd
Eff: queriedd ← true;

Input informd(f ,flts)
Eff: okfltsd ← okfltsd ∪

{fd : fd ∈ flts ∧ fd.p ≤ f .mp};
if okfltsd = ∅ then

transd ← false;

Output buyd(f ,flts)
Pre: location = d ∧ flts = okfltsd 6= ∅ ∧

tkt = ⊥ ∧ transd ∧ ¬orderedd

Eff: orderedd ← true

Input confd(f , fd, ok?)
Eff: transd ← false;

if ok? then
tkt ← fd;
status ← purchased

else
if D−remaining = ∅ then

status ← failed

Internal movef (d, d′)
Pre: location = d ∧ d′ ∈ D−remaining ∧ status = unknown
Eff: location ← d′;

in ← {informd′ (f ,flts), confd′ (f , fd, ok?)};
out ← {queryd′ (f ), buyd′ (f , fd),

req-agent-response(f , fd, ok?)};

Output req-agent-response(f , fd, ok?)
Pre: (status = purchased ∧ fd = tkt 6= ⊥ ∧ ok?) ∨

(status = failed ∧ fd = ⊥ ∧ ¬ok?)
Eff: in ← ∅;

out ← ∅;
int ← ∅

Figure 10: The request agent
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Database: DBAgtd where d ∈ D

Signature
Input:

queryd(f ), where f ∈ F and d ∈ D
buyd(f ,flts), where d ∈ D, f ∈ F , and flts ⊆ F
constant

Output:
informd(f ,flts), where d ∈ D, f ∈ F , and flts ⊆ F
confd(f , fd , ok?), where d ∈ D, f ∈ F , fd ∈ F , and ok? ∈ Bool
constant

Internal:
∅
constant

State

receivedd ⊆ F , set of received and pending queries, initially ∅

availd ⊆ F , set of available flights

ordersd ⊆ F × 2F , set of pending orders, initially ∅

Actions
Input queryd(f )
Eff: receivedd ← receivedd ∪ {f }

Output informd(f ,flts)
Pre: f ∈ received ∧ flts = {fd | conforms(fd, f )}
Eff: skip

Input buyd(f ,flts)
Eff: ordersd ← ordersd ∪ {〈f ,flts〉}

Output confd(f , fd, ok?)
Pre: 〈f ,flts〉 ∈ ordersd ∧

[ (fd ∈ flts ∩ availd ∧ ok?) ∨
(fd =⊥ ∧flts ∩ availd = ∅ ∧ ¬ok?) ]

Eff: availd ← availd − {fd}
ordersd ← ordersd − {〈f ,flts〉}

Figure 11: The databse agent
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Formally, let Impl be the configuration automaton that is “generated” by ClientAgt and all the ReqAgt(f ),
i.e., the configuration automaton whose initial states correspond to the initial states of ClientAgt , and whose
transitions are those generated by the intrinsic transitions of the configurations consisting of ClientAgt and all
created ReqAgt(f ). That is, Impl is our implementation. The implementation Impl refines the specification
Spec (provided that all actions except request(f ) and response(f , fd , ok?) are hidden) since the implementation
queries each database exactly once before returning a negative response, whereas the specification queries
each database some finite number of times before doing so. Thus, the traces of the implementation are a
subset of the traces of the specification: traces(Impl) ⊆ traces(Spec).

We now apply Theorem 17 to infer traces(Impl ‖ (‖d∈D DBAgtd)) ⊆ traces(Spec ‖ (‖d∈D DBAgtd)). That is,
including the databases in the specification and in the implementation does not invalidate the trace inclusion.
This simplifies our reasoning, and also demonstrates our ability to handle “open” systems, in which a major
component (i.e., the database) is left unspecified.

Our results also enable the incremental verification of trace inclusion between specifications and their imple-
mentations. For example, within the context of a larger system, we replace Spec by Impl , and then we apply
Theorem 17 to infer that the traces of the resulting system are a subset of the traces of the initial system. For
example, let Spec2 be a specification for another subsystem that provides hotel booking, and let Impl2 be an
implementation for Spec2 such that traces(Impl2 ) ⊆ traces(Spec2 ). We apply Theorem 17 with antecedent
traces(Impl) ⊆ traces(Spec) to infer traces(Impl ‖ Spec2 ) ⊆ traces(Spec ‖ Spec2 ). We again apply Theo-
rem 17 with antecedent traces(Impl2 ) ⊆ traces(Spec2 ) to infer traces(Impl ‖ Impl2 ) ⊆ traces(Impl ‖ Spec2 ).
Transitivity of ⊆ then yields traces(Impl ‖ Impl2 ) ⊆ traces(Spec ‖ Spec2 ), i.e., the overall implementation is
trace-contained in the overall specification. We can repeat this as often as we like, e.g., if there is a third sys-
tem Spec3 and its implementation Impl3 , say for booking rental cars. Then traces(Impl3 ) ⊆ traces(Spec3 ),
together with the above and Theorem 17, gives us traces(Impl ‖ Impl2 ‖ Impl3 ) ⊆ traces(Spec ‖ Spec2 ‖ Spec3 ).
Thus, we can in turn replace each specification by its implementation, and have trace-containment guaran-
teed.

Now suppose that we replace ReqAgt(f ) by another agent ReqAgt ′(f ) whose behavior is more constrained in
that ReqAgt ′(f ) does not move arbitrarily from one database d to another d′, but selects the destination d′

according to a heuristic function next() that attempts to maximize the probability of finding a suitable flight.
In other words, the precondition of movef (d, d′) action is changed from location = d ∧ d′ ∈ D−remaining ∧
status = unknown to location = d ∧ d′ ∈ D−remaining ∧ status = unknown ∧ d′ = next(). This change
implies that traces(ReqAgt ′(f )) ⊆ traces(ReqAgt(f )) and ttraces(ReqAgt ′(f )) ⊆ ttraces(ReqAgt(f )), since the
behaviors of ReqAgt ′(f ) are more constrained than ReqAgt(f ).

Let Impl ′ be the same as Impl , except that ReqAgt ′(f ) is created instead of ReqAgt(f ). We show that all
assumptions of Theorem 35 are satisfied. From the “initially” statements in the I/O automaton pseudocode
in Figure 10, we see that ReqAgt(f ) has a single initial state. Also, ReqAgt(f ) and ReqAgt ′(f ) destroy
themselves using the output action req-agent-response. Hence Assumption 1 is satisfied. The only action
that creates SIOA is an action of ClientAgt , and so Assumption 2 is satisfied. Since the initial states of
Impl and Impl ′ correspond, Assumption 3 is satisfied. Since traces(ReqAgt ′(f )) ⊆ traces(ReqAgt(f )) and
ttraces(ReqAgt ′(f )) ⊆ ttraces(ReqAgt(f )), we have that Assumptions 4 and 5 are satisfied. Since the SIOA
created by create(ClientAgt ,ReqAgt(f )) depend only on the inputs request(f ), we see that Impl and Impl ′

are creation-corresponding w.r.t. request agents, and hence Assumption 6 is satisfied. Hence we apply
Theorem 35 to conclude traces(Impl ′) ⊆ traces(Impl). The above results together with Theorem 17 now
yield, for example, traces(Impl ′ ‖ Impl2 ‖ Impl3 ) ⊆ traces(Spec ‖ Spec2 ‖ Spec3 ).

This example illustrates one way of satisfying the creation-correspondence requirement: the SIOA created
depend on the sequence of inputs and outputs executed so far (in the case of this example, it depends on
only the inputs, i.e., the client requests).
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9 Related Work

Formalisms for the modeling of dynamic systems can generally be classified as being based on process algebras
or on automata/state transition systems.

The π-calculus [26] is a process algebra that includes the ability to modify the channels between processes:
channels are referred to by names, and a name y can be sent along a known channel to a recipient, which
then acquires the ability to use the channel named by y. The π-calculus adopts the viewpoint that mobility
of processes is modelled by changing the links that a process can use to communicate, to quote from [26,
page 78]: “the location of a process in a virtual space of processes is determined by the links which it has
to other processes; in other words, your neighbors are those you can talk to.” Process creation is given in
the π-calculus by the ! operator: the process !P can create an unlimited number of copies of P . We can
emulate this feature by having a configuration automaton which can create an unlimited number of copies
of an SIOA.

The asynchronous π-calculus [17] is an asynchronous version of the π-calculus where receipt of a name along
a channel occurs after it is sent, rather than synchronously, as in the original π-calculus. The higher-order
π-calculus allows sending processes themselves as messages along channels [27]. In terms of how mobility is
modeled, DIOA is therefore similar to the π-calculus in that we also model mobility in terms of signature
change.

The distributed join-calculus [13] extends the π-calculus with notions of explicit location, failure, and failure
detection. Locations are hierarchical, and are modelled as trees. Locations reside at a physical site and can
move atomically to another physical site, taking their entire subtree of locations with them. A failed location
is tagged by a marker. All sublocations of a failed location are also failed.

The Distributed π-calculus Dπ [30] is another extension of the π-calculus that deals with distribution issues.
Dπ provides tree-structured locations, and each basic process (thread) is located at some location. Channels
are also located, and a process can send a value on a channel only if it is at the same location as the channel.
Channel and locations also have permissions associated with them, and which constrain their use. These
constraints are enforced by a type system.

The ambient calculus [8] takes as primitive notions agents, which execute actions, and ambients. An ambient
is a “space” which agents can enter, leave, and open. Ambients may be nested, and are mobile. A process
in the ambient calculus is either an agent or an ambient. The ambient calculus is intended to model, e.g.,
administrative domains in the world-wide web.

The above process algebras have a formal syntax for process expressions, and a fixed set of reaction rules,
which give the possible reductions between expressions. Reasoning about behaviour is carried out using
notions of equivalence and congruence: observational equivalence, weak and strong bisimulation, barbed
bisimulation, etc.

DIOA makes a different choice of primitive notion, it chooses actions and automata as primitive, and does
not include channels and their transmission as primitive. Our approach is also different in that it is primarily
a (set-theoretic) mathematical model, rather than a formal language and calculus. We expect that notions
such as channel and location will be built upon the basic model using additional layers (as we do for modeling
mobility in terms of signature change). Also, we ignore issues (e.g., syntax) that are important when designing
a programming language. Note that the “precondition effect” notation used in the travel agent example is
informal, and used only for exposition. Reasoning about behaviour is carried out using trace substitutivity:
the monotonicity of parallel composition, action hiding, action renaming, and SIOA creation (subject to
technical conditions) with respect to trace inclusion. A consequence of our results is that trace equivalence
is a congruence with respect to parallel composition, action hiding, and action renaming.

In a joint study [2] with researchers from Nippon Telephone and Telegraph, we compare DIOA with two
languages defined and used at Nippon Telephone and Telegraph: Erdös is a knowledge based environment
for agent programming, and Nepi extends the π-calculus with data types. We construct a simplified version
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of the travel agent example above, in all three formalisms. The version in DIOA appears cleaner and easier
to read, as it is devoid of language and implementation-specific detail. The versions in Nepi and Erdös have
the advantage of executability, and in addition Erdös supports CTL model checking [9] in the finite-state
case. Hence DIOA can be used for the initial specification and implementation of a dynamic system, and
our trace inclusion results used for verification of conformance of the implementation to the specification.
Subsequently, the DIOA implementation can be translated into Nepi or Erdös, or indeed into any other
concrete executable programming notation for dynamic systems. Alternatively, the DIOA can be compiled
directly, as in the IOA project [15]. This approach provides the advantages of a compositional approach to
specification, design, and implementation of dynamic systems.

One key difference between DIOA and process algebras is that most behavioral equivalence notions for
process algebras are based on simulation/bisimulation relations, and so entail examining the state transition
structure of the two systems being compared. DIOA on the other hand uses trace substitutivity and trace
equivalence, which are based only on the externally visible behavior. In practice one would use simulation
relations to establish trace inclusion, so this difference may not matter so much, but it does provide room
for methods of establishing trace inclusion apart from simulation relations.

Bigraphs [28] were introduced by Milner as a model for ubiquitous computing systems containing large
numbers of mobile agents, and are founded on two main notions: placing and linking [28, prologue]. A
bigraph over a given set of nodes V consists of two independent (and independently modifiable) components:
a place graph, which is a forest over V , and a link graph, which is a hypergraph over V . The place graph
models location: nodes in a place graph are similar to ambients, and can move inside other nodes, and out
of nodes that are ancestors in the place graph. The link graph models connectivity: hyperedges in the link
graph represent connectivity. Unlike the process algebras discussed above, bigraphs do not come with a fixed
set of reaction rules, and their behavioral theory is given with respect to a set of unspecified reaction rules
[18].

A rough analogy can be drawn between the structure of Bigraphs and DIOA: the place graph is analogous
to the nesting of a configuration automata inside the configuration automaton which created it, and the
hyperedges of the link graph are analogous to actions, which can have several SIOA as participants. The
input enabling condition destroys this analogy to some extent, but we note that we did not use input enabling
to derive any of our results, and it can possibly be dispensed with. Detailed investigation of the relation
between Bigraphs and DIOA is a topic for future work.

Among state-based formalisms for dynamic models, we mention Dynamic BIP and Dynamic Reactive Mod-
ules. Dynamic Reactive Modules [12] are a dynamic extension of reactive modules [1]. New modules can
be created as instances of module class definitions, using a new command, as in object-oriented languages.
The new command returns a reference to the newly created instance, which can be stored in a reference
variable, and passed to other module instances as a parameter, upon their creation. A module instance that
has a reference to another module instance can then read the other modules externally visible variables.
The semantics of dynamic reactive modules are given by dynamic discrete systems [12], which extend fair
discrete systems [19] to model the creation of module instances.

BIP [5] is a framework for constructing systems by superposing three layers of modeling: behavior, inter-
action, and priority (hence BIP). An atomic component is a labeled transition system extended with ports,
which label its transitions. A (multiparty) interaction is a synchronous event which involves a fixed set of
participating atomic components. Syntactically, an interaction is specified as a set of ports, with at most one
port from each atomic component. Execution of a multiparty interaction involves the synchronous execution
of a transition labeled by the relevant port in each participating component. BIP provides both syntax
and semantics, and has been implemented in the BIP execution Engine [6]. Dynamic BIP, or Dy-BIP, [7]
extends BIP by allowing the set of interactions to change dynamically with the current global state. The
possible interactions in a state are computed as maximal solutions of constraints. Dy-BIP does not include
the dynamic creation and destruction of component instances. This is for simplicity, and is not a fundamen-
tal limitation. Dy-BIP is thus similar to our SIOA, whose signatures are functions of their state. However
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Dy-BIP provides a syntax for writing interaction constraints, and these have been implemented in the BIP
execution Engine.

In summary, our model is based on the I/O automaton model [23], which has been successfully applied to the
design of many difficult distributed algorithms, including ones for resource allocation [22, 31], distributed data
services [10], group communication services [11], distributed shared memory [21, 25], and reliable multicast
[20]. In our model, all processes have unique identifiers, and the notion of a subsystem is well defined.
Subsystems can be built up hierarchically. Together with our results regarding the monotonicity of trace
inclusion, this provides a semantic foundation for compositional reasoning. In contrast, process calculi tend
to use a more syntactic approach, by showing that some notion of simulation or bisimulation is preserved
by the operators that are used to define the syntax of processes (e.g., parallel composition, choice, action
prefixing).

10 Conclusions and Further Research

We presented a model, DIOA, of dynamic computation based on I/O automata. The features of dynamic
computation that DIOA expresses directly are (1) modification of communication and synchronization ca-
pabilities, i.e., SIOA signature change, and (2) creation of new components, i.e., configuration automata
and configuration mappings. Other aspects of dynamic computation, such as location and migration, are
modeled indirectly using the above-mentioned features.

For SIOA, we established standard results of (1) monotonicity of trace inclusion (trace substitutivity), and
(2) trace equivalence as a congruence, both with respect to the operations of concurrent composition, action
hiding, and action renaming. For configuration automata and the operation of SIOA creation, we gave an
example showing that trace inclusion is not always monotonic with respect to SIOA creation. This is in
contrast to most process algebras, where the simulation relation used is shown to be a congruence with
respect to process creation. This somewhat surprising result stems from our use of trace inclusion and trace
equivalence for relating different systems. Trace inclusion and trace equivalence abstract away from the
internal branching structure of the transition system, and this accounts for the violation of trace inclusion
monotonicity. We then presented some technical assumptions under which trace inclusion is monotonic with
respect to SIOA creation. In addition to trace inclusion, we need to also assume inclusion of terminating
traces (traces of terminating executions), along with restrictions on when the substituted SIOA can be
created.

Our model provides a very general framework for modeling process creation: creation of an SIOA A is a
function of the state of the “containing” configuration automaton, i.e., the global state of the “encapsulated
system” which creates A. This generality was useful in enabling us to define a connection between SIOA
creation and external behavior that yielded Theorems 34 and 35.

For future work, the most pressing concern is to devise a notion of forward simulation for DIOA, and to
show that it implies trace inclusion. Clearly, the state correspondence must match not only the outgoing
transitions, but also the external signatures in the corresponding states.

We intend to investigate the relationship between DIOA and π-calculus, and to look into embedding the
π-calculus into DIOA. This should provide insight into the implications of the choice of primitive notion;
automata and actions for DIOA versus names and channels for π-calculus. The work of [29], which provides
a process-algebraic view of I/O automata, could be a starting point for this investigation. We note that the
use of unique SIOA identifiers is crucial to our model: it enables the definition of the execution projection
operator, and the establishment of execution projection/pasting and trace pasting results. This then yields
our trace substitutivity result. The π-calculus does not have such identifiers, and so the only compositionality
results in the π-calculus are with respect to simulation, rather than trace inclusion. Since simulation is
incomplete with respect to trace inclusion, our compositionality result has somewhat wider scope than that
of the π-calculus. When the traces of A are included in those of B, but there is no simulation from A to
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B, our approach will allow B to be replaced by A, and we can automatically conclude that correctness is
preserved, i.e., no new behaviors are introduced in the overall system.

We will explore the use of DIOA as a semantic model for object-oriented programming. Since we can express
dynamic aspects of OOP, such as the creation of objects, directly, we feel this is a promising direction.
Embedding a model of objects into DIOA would provide a foundation for the verification and refinement of
OO programs.

Agent systems should be able to operate in a dynamic environment, with processor failures, unreliable
channels, and timing uncertainties. Thus, we need to extend our model to deal with fault-tolerance and
timing.

Pure liveness properties are given by a set of live traces. A live trace is the trace of a live execution, and a
live execution is one which meets a specified liveness condition [4, 14]. Refinement with respect to liveness
properties is dealt with by inclusion relations amongst the sets of live traces only. In [4], a method is given
for establishing live trace inclusion, by using a notion of forward simulation that is sensitive to liveness
properties. Extending this method to SIOA will enable the refinement and verification of liveness properties
of dynamic systems.
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