
TIMESTAMP ORDERING AND NESTED TRANSACTIONS

by

James D. Aspnes

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL
ENGINEERING AND COMPUTER SCIENCE IN

PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

MASTER OF SCIENCE
IN ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 1987

Copyright (c) 1987 James D. Aspnes

The Author hereby grants to M.I.T. permission to reproduce and to
distribute publicly copies of this thesis document in whole or in part.

Signature of Author
VDpafrnet of Electrical Engineering and Computer Science

May 8, 1987

Certified by

Accepted by

Nancy Lynch
Thesis Supervisor

A. C. Smith
Chairman, Committee on Graduate Students

ItAS1. TECH.

d * Archives
fL EB3RA

TIMESTAMP ORDERING AND NESTED TRANSACTIONS

by

James D. Aspnes

Submitted to the Department of Electrical Engineering and Computer
Science on May 8, 1987 in partial fulfillment of the requirements for the

degree of Master of Science in Electrical Engineering and Computer
Science.

Abstract

Using the [LM] model for database concurrency control and recovery, we describe a
general method for proving serial correctness of concurrency control algorithms which use
timestamp ordering. This method is then used to prove serial correctness of Reed's
[R] object history mechanism.

Thesis Supervisor:
Title:

Nancy Lynch
Professor of Computer Science, Massachusetts Institute of
Technology

-3-

Table of Contents

Abstract- 2
Table of Contents 3

1. Introduction 4

2. The Model 6
2.1 I/O Automata 6
2.2 Serial Systems 8

2.2.1 Transactions 9
2.2.2 Basic Objects 11
2.2.3 Serial Controller 12
2.2.4 Serial Schedules 15

2.3 Correctness Condition 16
2.4 Events 17
2.5 Sibling Orders 19

3. Timestamp Ordering in Generic Systems 20
3.1 Generic Systems 20

3.1.1 Generic Controller 20
3.1.2 Generic Objects 23
3.1.3 Generic Schedules 26

3.2 The Affects Ordering 27
3.2.1 Affects and Sibling Orders 30

3.3 Serial Correctness 33
3.3.1 Removing Extraneous Events 33
3.3.2 Virtual Aborts 36
3.3.3 Reordering 38

4. The Pseudotime System 44
4.1 Pseudotime Controller 45
4.2 Pseudotime Objects 51

4.2.1 Well-formedness 51
4.2.2 Correctness Condition 52
4.2.3 Reads and Writes 53
4.2.4 Object Implementation 54

4.3 Pseudotime Schedules 62
4.4 Serial Correctness 63

5. Conclusions 64

6. Acknowledgments 65

-4-

Chapter 1

Introduction

Much work in the theory of database concurrency control has focused on the question

of whether particular algorithms guarantee serializability, in the sense that some (usually

external) observer cannot distinguish between the effects of executions in which

transactions are run concurrently or serially. The notion of serializability has recently been

generalized [LM]to produce a correctness condition for systems of nested transactions; in

this model, a particular execution of a system is said to be serially correct if, for each

transaction, the execution "looks like" an execution of a serial system.

In this paper we describe a general method for proving serial correctness for

executions of nested transaction systems which use timestamp ordering algorithms for

concurrency control. Timestamp ordering algorithms are interesting in that they require the

system to construct explicitly the order in which transactions could appear in a serial

execution. The existence of the explicit ordering allows more concurrency than is usually

possible with locking algorithms; in particular, it allows a transaction to commit at any

time, regardless of the state of its subtransactions. On the other hand, the presence of this

additional concurrency means that we need to construct a sophisticated theoretical

framework before we can begin to prove that it does not violate correctness.

Some of the work of building this framework has already been done, in [LM]. We

present several significant additions to this work which are of particular use in proving

serial correctness for timestamp ordering algorithms, but which should also be useful in

proving properties of other concurrency control algorithms. Principle among these is an

affects ordering based on causal dependencies in the serial system; from this ordering we

obtain both a mechanism for determining precisely what part of any execution of a system

can be detected by a particular transaction, and a simple method of testing an arbitrary

-5-

ordering on transactions to determine if it yields a reordering of a particular execution

which is consistent with the behavior of the serial system.

The organization of the paper is as follows. Chapter 2 reviews those parts of the

model described in [LM] and [FLMW] which are relevant to nested transaction systems

using timestamp ordering. Chapter 3 describes a general method for proving serial

correctness of timestamp ordering algorithms, independent of the mechanism used to

generate and communicate the timestamp order; we close the chapter with a statement and

proof of a theorem which clearly defines the essential properties of any correct timestamp

ordering algorithm. Finally, Chapter 4 proves rigorously, for the first time, that the object

history mechanism of Reed [R] guarantees serial correctness.

-6-

Chapter 2

The Model

In this chapter, we will describe the basic concepts and definitions which will be

necessary for our discussion of timestamp-ordered systems. The first three sections are

mostly a restatement of material found in [LM] and [FLMW]. The last sections describe

some terminology which will we need to describe the effects of timestamp ordering.

2.110 Automata

We represent the components of a nested transaction system by I/O automata. An

I/O automaton A consists of five components: states(A), start(A), out(A), in(A), and

steps(A). In this model, states(A) is a set of states, of which a subset start(A) are designated

as start states. In(A) and out(A) represent the set of input and output operations,

respectively; we require these sets to be disjoint, and refer to their union as the set of

operations of the automaton. Steps(A) is the transition relation of A, consisting of triples of

the form (s',i,s), where s' and s are states, and n is an operation. Each triple (s',n,s), called

a step of A, means that A, when in state s', may atomically perform the operation n and

change to state s. n is said to be enabled in s' if (s',t,s) is in steps(A) for some s.

Output operations are intended to represent those actions which the automaton

triggers itself; the input operations represent those which are triggered by the automaton's

environment. We require that an I/O automaton be able to receive any input at any time,

which we express formally as the following condition.

Input Condition:

For each input operation n and state s', n is enabled in s.

An execution of A is a finite alternating sequence s0,7c1 ,s1 ,...,sn of states and

-7-

operations of A, where so is a start state of A, and each consecutive subsequence (s',n,s) is

in steps(A). From any execution, we may extract a schedule, which is the subsequence of

the execution which contains only the operations. Since transitions to different states may

have the same operation, different executions may have the same schedule. For the

purposes of this paper, we will assume that all schedules are finite.

If P is a property of schedules, then A is said to preserve P if, for any a = a'n which

is a schedule of A where a' has property P and 7c is an output operation, then a has property

P.

We describe systems as collections of interacting components, each of which is an

I/O automaton. It is convenient and natural to view systems as I/O automata as well. Thus

we define a composition operation for I/O automata.

A set of I/O automata may be composed to create a system S, provided that the sets of

output operations of the automata are disjoint. The states of S are tuples of states, one for

each component; the start states of S are those tuples consisting of start states of the

components. The set of operations of S, ops(S), is the union of the sets of operations of the

component automata. Similarly the set of output operations, out(S), is the union of the sets

of output operations of the components. The set of input operations, in(S), is simply ops(S)

- out(S). As with a single automaton, the output operations represent actions which are

triggered by some part of the system, and the input operations represent actions which are

triggered externally.

The triple (s',n,s) is in the transaction relation of S if and only if for each component

automaton A, one of the following two conditions holds. Either 7cis an operation of A, and

the projection of the step onto A is a step of A, or else 7ris not an operation of A, and the

states corresponding to A in the two tuples s' and s are identical. Thus each operation of the

composed automaton is an operation of a subset of the component automata. During an

operation n of S, each of the components which has operation 7c carries out the operation,

while the remainder stay in the same state.

-8-

An execution of a system is defined to be an execution of the automaton composed of

the individual automata of the system. If (x is a sequence of operations of a system with

component A, then the projection of ax on A, alA, is the subsequence of a containing only

the operations of A. Clearly, if a is a schedule of S, alA is a schedule of A.

The following lemma expresses formally the principle that an operation of the system

is under the control of the component of which it is an output. The proof is given in [LM].

Lemma 2.1: Let a' be a schedule of a system S, and let a = a'7t, where 7C
is an output operation of component A. If alA is a schedule of A, then a is a
schedule of S.

2.2 Serial Systems

In this section, we define serial systems, which consist of transactions, basic objects,

and a serial controller. Transactions and basic objects represent user programs and data,

respectively; the controller controls all communication among the other components, and

thereby restricts the orders in which transactions may execute. Each component of the

serial system is modeled as an I/O automaton.

The nesting of transactions is specified by a system type. A system type is a four-

tuple <Tparent,O,V>. T is the set of transaction names; parent is a mapping from T to T

which organizes T into a tree. In referring to this tree, we use traditional terminology, such

as child, leaf, least common ancestor (1ca), ancestor, and descendant. (A transaction is its

own ancestor and descendant). The leaves of T are called accesses. The set 0 is a partition

of the set of accesses, where each element of 0 contains the accesses to a particular object.

For convenience, we will denote the objects of the system by the elements of 0

corresponding to them. Lastly, V is the set of values that transactions may return.

We assume that the transaction tree is known in advance to all components of the

system. T can be thought of as a predefined naming scheme for all transactions which

might ever be executed. It will, in general, be infinite, but only finitely many transactions

will take steps in any particular execution.

-9-

The classical transactions of concurrency control (without nesting) appear in this

model as the children of a "mythical" transaction T0 , the root of the transaction tree. To

itself represents the environment in which the rest of the transaction system runs, and has

operations which represent the invocation and return of the classical transactions. In

practice, we will not distinguish between T0, its children, and other internal nodes of T.

2.2.1 Transactions

We consider it important not to place unnecessary constraints on the behavior of

transactions. Thus, rather than require that this behavior be expressible in a particular high-

level programming language, we represent transactions as (possibly infinite-state) I/O

automata. This approach allows us to state precisely those properties that are relevant to the

behavior of transactions as part of a transaction system, while avoiding any restrictions on,

or need to describe, the actual computations being performed by the transactions.

We model each non-access transaction T as an I/O automaton with the following

operations:

Input:
CREATE(T)
REPORT-COMMIT(T',v), for each T' e children(T) and v e V
REPORT-ABORT(T'), for each T' e children(T)

Output:
REQUEST-CREATE(T'), for each T' e children(T)
REQUEST-COMMIT(T,v), for each v e V

The CREATE(T) operation "wakes up" the transaction. The REPORT-COMMIT

and REPORT-ABORT operations, which we refer to together as reports, are the

mechanism by which the controller informs transactions of the state of their offspring. The

REQUEST-CREATE operation requests the creation of a particular child transaction; it is

distinct from the corresponding CREATE to allow the controller to delay or even deny the

request. Similarly, the REQUEST-COMMIT operation only requests that the transaction

be committed, with the actual COMMIT of the transaction being controlled by the

controller.

-10-

For the most part, we do not specify the executions of particular transaction

automata. The choices of which children to create, when to create them, and when to

request to return are left up to the particular implementation of the transaction. We will be

concerned only that the transaction preserve well-formedness, which we define recursively

as follows.

Definition 2.2: Let T be a transaction, and let a be a schedule of T. If a is
the empty sequence, a is well-formed. Alternatively, let a = a'n, where 7t is a
single operation. Then a is well-formed provided a' is well-formed, and the
following hold:

" If 7c is CREATE(T), then
1. CREATE(T) does not appear in a'.

* If n is REPORT-COMMIT(T',v) for a child T' of T, then
1. REQUEST-CREATE(T') appears in a',

2. REPORT-ABORT(T') does not appear in a', and

3. REPORT-COMMIT(T',v') does not appear in a' for any v' # v.

" If 7c is REPORT-ABORT(T') for a child T' of T, then
1. REQUEST-CREATE(T') appears in a', and

2. no REPORT-COMMIT for T appears in a'.

" If 7t is REQUEST-CREATE(T') for a child T' of T, then
1. REQUEST-CREATE(T') does not appear in a',

2. REQUEST-COMMIT(T) does not appear in a', and

3. CREATE(T) appears in a'.

" If c is REQUEST-COMMIT(T,v), then
1. there is no REQUEST-COMMIT for T in a', and

2. CREATE(T) appears in a'.

These restrictions are very basic. They say simply that a transaction is never created

more than once, does not receive reports from children it has not requested, makes no

requests more than once, and takes no action before it is created or after it requests to

commit. Except for these minimal conditions, we place no restrictions on the behavior of

transactions. For example, a transaction may request to commit without yet knowing the

status of subtransactions whose creation it has requested, and may request to create new

subtransactions without regard to its state of knowledge about subtransactions whose

-11-

creation it has previously requested. It may be that a particular programming language or

system might place additional restrictions on the behavior of transactions. However, our

results do not require such restrictions.

The following easy lemma summarizes some properties of well-formed sequences of

transaction operations.

Lemma 2.3: Let cc be a well-formed sequence of operations of transaction
T. Then the following conditions hold.

1. The first operation of a is a CREATE(T) operation, and there are no
other CREATE operations in cx.

2. If a REQUEST-COMMIT operation occurs in cc, then there are no later
output operations in (x.

3. cc contains at most one REQUEST-CREATE(T') operation for each
child T' of T.

4. For every report operation in a, there is an earlier REQUEST-CREATE
operation in ac for the same child transaction.

2.2.2 Basic Objects

We use basic object automata to represent user data. Recall that each basic object X

is associated with a set of access transactions which is an element of 0. We refer to this set

as accesses(X); these transactions correspond to the operations provided for manipulating

and examining a particular basic object. As with transaction automata, we leave much of

the specific behavior of basic objects unspecified. The limited well-formedness conditions

we place on the behavior of basic automata will stem primarily from our desire that access

transactions satisfy the same well-formedness conditions as non-access transactions.

A basic object X has the following operations:

Input:
CREATE(T), for each T e accesses(X).

Output:
REQUEST-COMMIT(T,v), for each T e accesses(X) and v e V.

We will abuse our notation by letting alT refer to the subsequence of a consisting

only of operations of T, even when T is a non-access transaction. We may then use the

following simple definition for a well-formed sequence of basic object operations.

-12-

Definition 2.4: Let a be a sequence of operations of a basic object X. Then
a is well-formed if and only if alT is a well-formed sequence of operations of T
for each T in accesses(X).

The following lemma describes well-formed sequences of basic object operations in a

slightly more convenient form.

Lemma 2.5: Let a be a sequence of operations of a basic object X. If a is
the empty sequence, then a is well-formed. Otherwise let a = a'n; a is well-
formed if a' is well-formed and the following conditions hold:

" If n is CREATE(T), then
1. CREATE(T) does not appear in a'.

" If 7r is REQUEST-COMMIT(T,v), then
1. CREATE(T) appears in a', and

2. REQUEST-COMMIT(T,v') does not appear in a', for any value
v'.

Proof: Immediate from Definitions 2.2 and 2.4.

We require that each basic object preserve well-formedness.

2.2.3 Serial Controller

The third component of the serial system is the serial controller. Unlike the

transactions and basic objects, the serial controller is a fully-specified automaton. It runs

transactions according to a depth-first traversal of the transaction tree, and has the power to

abort any transaction whose creation has been requested, as long as it has not already been

created. The serial controller also waits for children to return before allowing their parent

to commit. A formal description of the serial controller, adapted from [LM, FLMW),

follows.

The serial controller has the following operations, for each T e T and v e V:

Input:
REQUEST-CREATE(T), T # To
REQUEST-COMMIT(T,v)

Output:
CREATE(T)
ABORT(T), T # To
COMMIT(T,v), T # To
REPORT-ABORT(T), T # To

-13-

REPORT-COMMIT(T,v), T # To

Each serial controller state s has components s.create-requested, s.created, s.aborted,

s.commit-requested, and s.committed. The s.create-requested component lists those

transactions for which the controller has received a REQUEST-CREATE; s.created stores

the names of all transactions which have actually been created. Similarly, s.committed and

s.aborted are the set of all transactions which have committed or aborted, respectively. The

component s.commit-requested is a set of <transaction,value> pairs; it records all

REQUEST-COMMITs. In the initial state of the controller, s.created = {TO}, and all of the

other components are empty.

Although it is not an actual component of the controller state, we will write s.retumed

as shorthand for s.committed u s.aborted. The steps of the controller will be exactly those

triples (s',n,s) satisfying the following pre- and postconditions. Note that not all of the

components of s are specified in the postconditions for each operation. Unspecified

components are assumed not to change between s' and s.

" REQUEST-CREATE(T)
Postcondition:
s.create-requested = s'.create-requested u {T}

" REQUEST-COMMIT(T,v)
Postcondition:
s.commit-requested = s'.commit-requested u I(T,v)}

" CREATE(T)
Preconditions:
T e s'.create-requested
T e s'.created u s'.aborted
siblings(T) n s'.created c s'.returned
Postcondition:
s.created = s'.created u {T}

" ABORT(T)
Precondition:
T e s'.create-requested
T e s'.created u s'.aborted
Postconditions:
s.aborted = s'.aborted u {TI

" REPORT-ABORT(T)

-14-

Precondition:
T e s'.aborted

" COMMIT(T,v)
Preconditions:
(T,v) e s'.commit-requested
T s'.returned
children(T) rn s'.create-requested c s'.retumed
Postcondition:
s.committed = s'.committed u {T}

" REPORT-COMMIT(T,v)
Preconditions:
(T,v) E S'.commit-requested
T e s'.committed

Some details of this controller are worth noting. The preconditions on CREATE(T)

guarantee that no transaction will be created until all of its siblings that have already been

created have returned. This condition yields a depth-first traversal of the transaction tree,

which we claim is the natural notion of serial execution in a nested transaction system.

We have separated both the act of creating a transaction and the act of committing a

transaction into several operations. This separation prevents a parent transaction from

specifying or detecting the order in which its children are run unless it waits for a report

from each before starting the next, or the children interact by accessing the same basic

object. While the flexibility we have given the controller is not really necessary in the

serial system, it will become important when we use the serial system as the basis for a

correctness condition for more sophisticated systems.

A pleasant feature of the serial controller is the simplicity of its postconditions. It is

not difficult to reconstruct the state of the controller at the end of an execution from the

schedule of that execution.

Lemma 2.6: Let cc be a schedule of the serial controller which can lead to a
state s from the initial state. Then all of the following are true:

1. T e s.create-requested if and only if T = To or REQUEST-CREATE(T)
appears in a.

2. (T,v) e s.commit-requested if and only if REQUEST-COMMIT(T,v)
appears in a.

-15-

3. T e s.created if and only if CREATE(T) appears in a.

4. T e s.aborted if and only if ABORT(T) appears in a.

5. T e s.committed if and only if COMMIT(T,v) appears in a for some v.

Proof: By induction on a using the controller postconditions.

2.2.4 Serial Schedules

The serial system is the composition of the transactions, basic objects, and the serial

controller. In this section we present some terminology which will be useful for talking

about the serial system.

We refer to the operations of the serial system as serial operations. Similarly, a

serial schedule is a schedule of the serial system. For an arbitrary sequence of operations

a, serial(a) is that subsequence of a consisting of only the serial operations.

We call the transactions and basic objects of the serial system the system primitives.

A sequence of serial operations is well-formed if its projection on each of the system

primitives is well-formed. A proof of the well-formedness of serial schedules is given in

[FLMW]; we will not reproduce it here.

The operations ABORT(T) and COMMIIT(T,v), for all v e V, are the return

operations for T. Similarly, REPORT-ABORT(T) and REPORT-COMMIT(T,v) constitute

the report operations for T. A serial operation 4 mentions T if 5 is an operation of T, or $ is

a return operation for T; for example, CREATE(T), REQUEST-COMMIT(Tv), and

COMMIT(T,v) all mention T, while REQUEST-CREATE(T) and REPORT-

COMMIT(T,v) mention parent(T). Every serial operation mentions some transaction.

If a is an arbitrary sequence of operations, and T a transaction, we say T is committed

in a if a contains a COMMIT for T; we say T is aborted in a if a contains an ABORT for

T. T is an orphan in a if any ancestor of T is aborted in a.

-16-

2.3 Correctness Condition

The serial system has the advantage of simplicity. Transactions are run sequentially,

and are atomic in the sense that aborted transactions were never created, and thus can have

no effect on the system, and committed transactions must have run to completion.

Unfortunately, the serial controller's simplicity carries a price of inefficiency. It is

impossible to run transactions concurrently, even when they do not affect each other in any

way, and it is impossible for the system to abort transactions once are running. We would

like, then, to be able to build a more capable system, which would nonetheless appear to

retain the simplicity of the serial system.

It is not immediately clear what conditions we would need to place on a more

powerful system to preserve the appearance of the serial system. One possibility is to

define a notion of database consistency, and require that the data in the system satisfy

consistency at specified points in its execution. 1 This approach has the drawback of

constraining ways in which the database can be represented in the system, and of reducing

the applicability of results obtained in one system to other systems with radically different

mechanisms for storing data. We believe that a better condition is that given in [LM],

which requires only that no transaction can detect that the system is not serial.

Definition 2.7: Let a be an arbitrary sequence of operations, some of
which may be serial. Then a is serially correct for a primitive P if its projection
on P is identical to the projection on P of some serial schedule. We say that a
sequence of operations is serially correct if it is serially correct for each non-
access transaction.

From the point of view of a systems implementor, serial correctness has several

desirable properties. As it depends only on the projection of a schedule on non-access

transactions, it places no restraints on the interface to or nature of the objects of the system.

Thus the correctness condition is applicable, without modification, to algorithms which use

1An example of the use of a consistency predicate can be found in [BHG].

-17-

multiple copies of objects, which provide additional information to objects, or which share

the functions of a basic object across several automata, so long as the interface to

transactions is maintained in the same form as in the serial system. In fact, because the

correctness condition allows different transactions to see different serial schedules, the

correctness condition allows us to consider systems in which it is impossible to construct a

meaningful global state. Thus serial correctness gives great leeway to a system and its

designer.

On the other hand, serial correctness is not as weak a condition as it may seem. If all

schedules of a system are serial correct, no transaction can tell that the system is not the

serial system. But the set of transactions includes the mythical transaction To, which

represents the outside environment of the system. So serial correctness guarantees the

appearance of serial execution not only to the transactions, but to the outside world as well.

It is often convenient to further weaken serial correctness. For example, some

systems may have schedules which are serially correct only for To or for transactions whose

ancestors have not been aborted. We will demonstrate that Reed's algorithm satisfies the

latter condition (and thus the former, since To has no ancestors besides itself, and cannot be

aborted). In fact, it is possible to make slight modifications to any system which satisfies

the weaker condition to produce a system which is serially correct for all transactions; see

[HLMW].

2.4 Events

For the concurrent and weak concurrent systems of [LM], it is possible to construct a

serial schedule from a concurrent schedule by taking a subsequence. For timestamp-

ordered systems, however, it is in general necessary to reorder a schedule in order to obtain

a serial schedule, as will become clear later. Thus we will need to be able to specify

orderings on operations.

-18-

Unfortunately, it is possible for a schedule of even the serial controller to contain

duplicate operations, and we will need to be a little careful in defining our orderings. We

refer to a specific instance of an operation in a sequence of operations as an event. We will

not define events formally; it is sufficient for our purposes to assume that all instances of an

operation in any sequence of operations are distinct events, and our use of the term will not

be sophisticated enough to require any explicit naming scheme. We denote the set of

events occurring in a particular sequence of operations a as the events of a.

We will abuse our terminology somewhat by referring to an event in terms of the

operation of which it is an instance. So, for example, by a serial event we will mean an

event which is an instance of a serial operation, and by an event of T, where T is a

transaction, we will mean an event which is an instance of an operation of T.

We now define some terminology which will be useful in discussing orderings on

events. Let E be a binary relation on events. Then, if a is a sequence of operations, we say

a is E-ordered provided E partially orders the events of a,2 and for any pair of events ($,7t)

in E, $ precedes n in a. A sequence P is a reordering of a if the set of events of P is equal

to the set of events of a. If E partially orders the events of a, we denote by reorder(a,E) an

arbitrary E-ordered reordering of a. We say a subsequence $ of a is E-closed if, for any

event n in f and $ in a such that ($,n) e E, $ is in $. If $ is an arbitrary subsequence of a,

we denote the smallest E-closed subsequence of a containing f by closure(p, a, E).

Note that in the above discussion we have not required E to be a relation solely on the

events of a. Occasionally it will be useful to restrict E to a particular set of events.

Accordingly, if S is a set of events, we write EIS for the restriction of E to S. We will also

write Ela, where a is a sequence of operations, for the restriction of E to the events of a.

2By which we mean E is a strict partial order when restricted to the events of cc; we will assume throughout
that all partial orders are strict, i.e. irreflexive.

-19-

2.5 Sibling Orders

The essential feature of timestamp ordering algorithms is the explicit definition of an

ordering on transactions which corresponds to the order of execution in the serial system.

In the most general case we will specify this ordering by a sibling order, as defined below.

Definition 2.8: Let SIB be the set {(T1 ,T2) I T, # T2 , T, is a sibling of
T2 1. Then R c SIB is a sibling order just in case R is a partial order. R is a total
sibling order if, for any (T1 ,T2) in SIB, either (T1 ,T2) or (T2 ,Tl) is in R.

If R is a sibling order, we define R*, the descendant closure of R, to be the set

{<T1 ,T2> I there exists <U1 ,U2> e R, T, e descendants(Ul), T2 e descendants(U 2)}

Clearly, R* is a partial order on the set of transactions. The descendant closure of a total

sibling order has some useful properties.

Lemma 2.9: Let R be a total sibling order. Then if T, T' are transactions
neither of which is an ancestor of the other, either (TT') or (T',T) is in R*.

Proof: If neither T nor T' is an ancestor of the other, there must exist
distinct ancestors U and U' of T and T' which are children of lca(TT'). Since R
is a total sibling order, either (U,U') or (U',U) is in R; thus either (T,T') or (T',T)
is in R*.

If R is an arbitrary binary relation on transactions, we can define a corresponding

relation RE on events.

Definition 2.10: Let R be a binary relation on transactions. Then we define
the relation RE to be the set {<$,7> I 5 mentions T1, n mentions T2 , and
<T ,T2> E R}.

If R is a partial order on transactions, it is not difficult to see that RE must be a partial

order on events. When R is a sibling order, we will primarily be interested in R*, the event

order defined by the descendant closure of R.

-20-

Chapter 3

Timestamp Ordering in Generic Systems

In this chapter, we will define a generic system, and describe conditions under which

a general form of timestamp ordering can yield serial correctness in this system.

3.1 Generic Systems

The generic system consists of a generic controller, generic objects, and the

transactions of the serial system.

3.1.1 Generic Controller

The generic controller has the following operations, for each object X, transaction T,

and value v:

Input:
REQUEST-CREATE(T), T # To
REQUEST-COMMIT(T,v)

Output:
CREATE(T)
ABORT(T), T # To
COMMIT(T,v), T # To
REPORT-ABORT(T), T # To
REPORT-COMMIT(T,v), T # To
INFORM-ABORT-AT(X)OF(T), T To
INFORM-COMMIT-AT(X)OF(T), T # To

These operations include all of the operations of the serial controller, and add only

the INFORM-ABORT and INFORM-COMMIT operations. States of the generic controller

have the same components as states of the serial controller, and the initial state is also the

same.

The steps of the generic controller are exactly those transitions (s',n,s) satisfying the

following pre- and postconditions:

-21-

* REQUEST-CREATE(T)
Postcondition:
s.create-requested = s'.create-requested u {T}

e REQUEST-COMMIT(T,v)
Postcondition:
s.commit-requested = s'.commit-requested u {(Tv)}

" CREATE(T)
Preconditions:
T E s'.create-requested - s'.created
Postcondition:
s.created = s'.created u {T}

" ABORT(T)
Precondition:
T e s'.create-requested - s'.retumed
Postconditions:
s.aborted = s'.aborted U {T}

" REPORT-ABORT(T)
Precondition:
T e s'.aborted

" COMMIT(T,v)
Preconditions:
(T,v) e s'.commit-requested
T e s'.returned
Postcondition:
s.committed = s'.committed u {T}

" REPORT-COMMIT(T,v)
Preconditions:
(T,v) e s' .committed-requested
T e s'.committed

" INFORM-ABORT-AT(X)OF(T)
Precondition:
T E s'.aborted

" INFORM-COMMIT-AT(X)OF(T)
Precondition:
T e s'.committed

As with the serial controller, the state of the generic controller following a particular

schedule can be easily deduced.

Lemma 3.1: Let a be a schedule of the generic schedule that can lead to a
state s from the initial state. Then all of the following are true:

1. T e s.create-requested if and only if T = To or REQUEST-CREATE(T)
appears in a.

-22-

2. (T,v) e s.commit-requested if and only if REQUEST-COMMIT(T,v)
appears in a.

3. T e s.created if and only if CREATE(T) appears in a.

4. T e s.aborted if and only if ABORT(T) appears in a.

5. T e s.committed if and only if COMMIT(T,v) appears in a for some v.

Proof: By induction on a using the controller postconditions.

The following lemma describes some of the properties of schedules of the generic

controller.

Lemma 3.2: Let a be a schedule of the generic controller. Then all of the
following hold:

1. If a CREATE(T) event appears in a, a REQUEST-CREATE(T) event
precedes it in a.

2. If a COMMIT(T,v) event appears in a, a REQUEST-COMMIT(T,v)
event precedes it in a.

3. If an ABORT(T) event appears in a, a REQUEST-CREATE(T) event
precedes it in a.

4. If a REPORT-COMMIT(T,v) event or an INFORM-COMMIT-
AT(X)OF(T) event appears in a, a COMMIT(T,v) event precedes it in a.

5. If a REPORT-ABORT(T) event or an INFORM-ABORT-AT(X)OF(T)
event appears in a, an ABORT(T) event precedes it in a.

6. At most one CREATE event appears in a for each transaction.

7. At most one return event appears in a for each transaction.

Proof: By induction on a using Lemma 3.1 and the controller
preconditions.

As can be seen by the preceding lemma, the generic controller embodies those

constraints that we would expect any reasonable controller to satisfy. Thus the generic

controller does not allow CREATEs, ABORTs, or COMMITs without an appropriate

preceding request; does not report returns that never happened; and does not allow any

transaction to return more than once. On the other hand, the generic controller allows

almost any ordering of transactions, and allows arbitrary concurrency. In fact, our generic

controller is even more flexible than the generic controllers of [FLMW] or [HLMW], in

that it allows parents to return before their children do.

-23-

We do not claim that our generic controller produces serially correct schedules in all

executions; instead we use the generic controller as a base on which to build more

sophisticated controllers, such as the pseudotime controller of Chapter , which implement

specific timestamp ordering algorithms. The generic controller provides us with a means of

describing the common features of timestamp ordering algorithms without requiring us to

commit ourselves to a particular method of constructing or using timestamps.

3.1.2 Generic Objects

Each basic object X in the serial system is represented in the generic system by a

generic object G(X). G(X) has the following operations:

Input:
CREATE(T), for each T in accesses(X)
INFORM-ABORT-AT(X)OF(T), for each T # To
INFORM-COMMIT-AT(X)OF(T), for each T # To

Output:
REQUEST-COMMIT(T,v), for each T in accesses(X) and each v in V

The new operations INFORM-ABORT and INFORM-COMMIT are the same as the

new operations of the generic controller, and are intended to allow the generic object to use

additional knowledge about the state of the transactions of the system to behave in a

manner which allows serial correctness even if transactions are executing concurrently, or

are aborted after creation.

Well-formedness for sequences of generic object operations is slightly more

complicated than for basic objects. We define well-formedness recursively, as follows:

Definition 3.3: Let a be a sequence of operations of the generic object
G(X). Then a is well-formed if a is the empty sequence, or if a = a'n, where n
is a single operation, and the following conditions hold.

1. If 7c is CREATE(T), for T in accesses(X), then
a. CREATE(T) does not appear in a'.

2. If n is REQUEST-COMMIT(T,v), then
a. CREATE(T) appears in a', and

b. REQUEST-COMMIT(T,v') does not appear in a' for any value
of v'.

-24-

3. If 7 is INFORM-ABORT-AT(X)OF(T), then
a. INFORM-COMMIT-AT(X)OF(T) does not appear in a'.

4. If 7r is INFORM-COMMIT-AT(X)OF(T), then
a. INFORM-ABORT-AT(X)OF(T) does not appear in a', and

b. if T e accesses(X), REQUEST-COMMIT(T,v) appears in a' for
some v.

Lemma 3.4: Let a be a well-formed sequence of operations of a generic
object G(X). Then serial(a) is a well-formed sequence of operations of X.

Generic objects are required to preserve well-formedness.

A generic object's view of the system is necessarily rather limited. It has the

advantage over basic objects of being able to receive INFORM-COMMIT and INFORM-

ABORT operations; unfortunately, the controller is not required ever to send these

operations, so the knowledge of the system so received will often be incomplete.

Nonetheless, the generic object must make do with what information is available to it. We

will define some terms to describe the state of a generic object's knowledge of the system;

these will be useful later, when we actually construct a generic object.

Let G(X) be a generic object and let a be a sequence of operations of G(X). If T is

an access of X and T' a proper ancestor of T, we say that T is committed at X to T' in a if,

for every U which is an ancestor of T and a proper descendant of T', a contains an instance

of INFORM-COMMIT-AT(X)OF(U). 3 If T' is any transaction, then T is visible at X to T'

in a if T is committed at X to 1ca(TT') in a. We write visiblex(a,T') for the subsequence

of serial(a) consisting only of operations whose transactions are visible at X to T'; it is not

difficult to see that, when a is well-formed, visiblex(a,T') is a well-formed sequence of

operations of the basic object X. Finally, we say that a transaction T is an orphan at X in a

if, for some ancestor T' of T, a contains INFORM-ABORT-AT(X)OF(T').

In many schedules a of G(X), there will be accesses which cannot be visible to any

3This definition differs slightly from a similar definition in [FLMW], in that we do not require the
INFORM-COMMIT-AT operations to appear in any particular order.

-25-

other transaction which is not an orphan at X, either because they are orphans at X in a, or

because no REQUEST-COMMIT appears for them in a and thus no INFORM-COMMIT

for them can appear without violating well-formedness. If we remove all of the operations

of such accesses from serial(a), we obtain a sequence which will prove useful in defining

correctness conditions for generic objects, in that it extracts that part of serial(a) which can

have any effect on non-orphaned transactions.

Definition 3.5: Let x be a sequence of operations of a generic object G(X).
Let done(a) be the subsequence of serial(a) consisting of the operations of all
accesses T to G(X) which meet the following two criteria:

1. A REQUEST-COMMIT for T appears in a.

2. T is not an orphan at X.

If a is a well-formed sequence of operations of G(X), then done(a) will be a well-

formed sequence of operations of X.

Lemma 3.6: Let a be a well-formed sequence of operations of G(X). Then
done(a) is a well-formed sequence of operations of X.

Proof: Suppose otherwise. Then there is some access T such that
done(a)IT is not well-formed. Now, done(a)IT = serial(a)IT, and serial(a) is
well-formed by Lemma 3.4. But then done(a)IT is well-formed, by Definition
2.4. Thus done(a) is well-formed.

We will use done to define a condition on schedules of G(X) which describes

whether they can be reordered according to a particular sibling order R to produce

schedules of X. First we define the effect of R on a schedule of G(X). If a is a well-formed

sequence of operations of G(X) and R a binary relation on transactions which totally orders

the transactions mentioned in a, we write rearrange(a,R) for the unique well-formed

RE-ordered reordering of done(a).

We would like rearrange(a,R) to be a schedule of X. What we will actually require is

somewhat stronger. Because done(a) uses only the information that is available in a, it is

possible that G(X) might yet receive INFORM-ABORT operations which would alter

done(a). Accordingly, we define our condition on schedules of G(X) in such a way as to

allow G(X) to receive an INFORM-ABORT for any transaction for which no INFORM-

COMMIT appears in a.

-26-

Definition 3.7: Let a be a schedule of a generic object G(X), and let R be a
binary relation on transactions which totally orders the transactions mentioned in
a. Then R timestamp-orders a if, for any sequence of INFORM-ABORT-AT(X)
operations 0 such that a$ is well-formed, rearrange(a$,R) is a schedule of the
basic object X.

The following rather trivial lemma will be useful later on.

Lemma 3.8: Let a be a well-formed sequence of operations of a generic
object G(X), and let T be any access of G(X). Let R be a binary relation on
transactions which totally orders the accesses of G(X). Then if done(a)IT is
nonempty, done(a)IT = rearrange(a,R)IT
= CREATE(T)REQUEST-COMMIT(T,v) for some value v.

Proof: If done(a)IT is nonempty, then a must contain REQUEST-
COMMIT(T,v) for some value v. Then by well-formedness a CREATE(T) must
precede this REQUEST-COMMIT(T,v) in a, and no other operations of T may
appear in a. Thus done(a)IT = CREATE(T)REQUEST-COMMIT(T,v). Now,
rearrange(a,R) is a well-formed reordering of done(a); thus it must contain both
a CREATE(T) event and a REQUEST-COMMIT(T,v) event, in the same order as
in done(a). Thus done(a)IT = rearrange(a,R)IT.

3.1.3 Generic Schedules

The generic system is the composition of the transactions, generic objects, and the

generic controller. As with the serial system, we define a generic schedule to be a schedule

of the generic system. Generic operations are operations of the generic system. If a is an

arbitrary sequence of operations, generic(a) is defined to be the subsequence of a

consisting only of the generic operations.

A generic schedule is well-formed if its projection on each transaction and generic

object is well-formed. We show in the following lemma that all generic schedules are well-

formed.

Lemma 3.9: Let a be a generic schedule. Then a is well-formed.

Proof: If a is the empty sequence, then a is trivially well-formed.
Otherwise, let a = a'n, and suppose that a is well-formed. If n is an output
operation of a transaction or a generic object, then a is well-formed by the
requirements that transactions and generic objects preserve well-formedness. If 7c
is not an output of a transaction or generic object, n must be an output of the
generic controller, and one of the following conditions must hold.

Sit is CREATE(T), where T is a non-access transaction. Then by Lemma
3.2, CREATE(T) cannot appear in a'. Thus a is well-formed.

-27-

" 7r is CREATE(T), where T is an access transaction. Again by Lemma 3.2,
CREATE(T) cannot appear in c'. Thus a is well-formed.

" 7r is ABORT(T) or COMMIT(T,v). Then ir is not an operation of any
transaction or generic object, and a is well-formed.

" 7 is REPORT-ABORT(T). Then by Lemma 3.2, an ABORT(T) event
occurs in a'. But then by the same lemma REQUEST-CREATE(T) must
appear in a'. Now suppose that REPORT-COMMIT(T,v) appears in c'
for some v; then COMMIT(Tv) also appears in a'. But then there would
be more than one return for T in a', which contradicts Lemma 3.2. Thus
a is well-formed.

" 27 is REPORT-COMMIT(T,v). Then COMMIT(T,v) appears in a', so
REQUEST-COMMIT(T,v) appears in a', and (by well-formedness of a'),
CREATE(T) appears in a'. Hence REQUEST-CREATE(T) must appear
in a'. Now suppose some different report for T appears in a'; then some
return for a' other than COMMIT(T,v) appears in a', which contradicts
Lemma 3.2. Thus a is well-formed.

Sn is INFORM-ABORT-AT(X)OF(T). Then ABORT(T) appears in a'.
Suppose that INFORM-COMMIT-AT(X)OF(T) appears in a'; then some
COMMIT for T appears in a'. But then there is more than one return for
T in a', which contradicts Lemma 3.2. Thus INFORM-COMMIT-
AT(X)OF(T) does not appear in a', and a is well-formed.

" i7 is INFORM-COMMIT-AT(X)OF(T). By an argument similar to that
used for INFORM-ABORT-AT(X)OF(T), INFORM-ABORT-
AT(X)OF(T) cannot occur in a'. There are now two cases, depending on
whether or not T is an access of X. If it is not, then a is well-formed.
Otherwise, we note that COMMIT(T,v) appears in a' for some v; thus
REQUEST-COMMIT(T,v) must appear in a'. Thus a is well-formed.

3.2 The Affects Ordering

In order to construct a serial schedule for a particular transaction from a generic

schedule using a sibling order, we will need first to remove events which cannot be detected

by the given transaction, and then to reorder the resulting subsequence by R*. For the first

step, we will need some mechanism to determine which events to remove; for the second,

we will need some finer ordering than R* to preserve the ordering of events within

transactions, and to order events of transactions which are not comparable by R*. We can

accomplish both tasks using the affects ordering, which we now define.

Definition 3.10: Let a be a sequence of serial operations, and let $ and n

-28-

be events of a. Then $ directly affects n in a (or, equivalently,
($,i) e directly-affects(a)) if one of the following conditions holds for some
transaction T:

0 $ and n are both events of T and $ precedes n in a.

0 $ is an instance of REQUEST-CREATE(T) and n is an instance of
CREATE(T).

0 $ is an instance of REQUEST-CREATE(T) and n is an instance of
ABORT(T).

e $ is an instance of REQUEST-COMMIT(Tv), and n is an instance of
COMMIT(T,v).

0 $ is a return event for T, and n is a COMMIT event for parent(T).

0 $ is an instance of COMMIT(T,v) and n is an instance of REPORT-
COMMIT(T,v).

*0$ is an instance of ABORT(T) and n is an instance of REPORT-
ABORT(T).

Affects(a) is the transitive closure of directly-affects(a). We will often say $
affects n in a for ($,n) e affects(a).

Our definition is by cases, as that form is the easiest for us to actually use. This

choice of definition should not, however, obscure the underlying rationale behind the

structure of affects(a). Affects(a) is intended to capture a basic property of the serial

system, which is that the appearance of certain events in a serial schedule necessitates the

prior appearance of certain other events. This requirement stems partly from the algorithm

specified for the serial controller, partly from well-formedness, and partly from the

behavior of transactions in the system. The first case of definition 3.10 stems from our

assumption that we have no special knowledge of the possible schedules of any transaction;

thus our only indication that a schedule of T is possible is that it is a prefix of cdT. The

other cases can easily be seen to follow from our construction of the serial controller.

We have not yet demonstrated that, when a is a well-formed sequence of serial

operations, affects(a) is a partial order. First we will prove two lemmas which describe the

relationship between affects(a) and the creation and return of transactions.

Lemma 3.11: Let a be a sequence of serial operations and T a transaction.
Let $ and i be events of a such that $ mentions a descendant of T and it does not.
Then if $ affects n in a, either 0 is a return event for T, or $ affects a return event
for T which affects n.

-29-

Proof: By definition of affects(a), if $ affects 7r in a there must exist a
sequence ,1,$2,.,n in which each adjoining pair is in directly-affects(a). Since

$ mentions a descendant of T and n does not, there must be some first pair ,,
On+1 where $n mentions a descendant of T and $n+1 does not. We note from

Definition 3.10 that $n must be a return event for T, and $n+1 is either a
corresponding report event or a COMMIT event for parent(T). Either On = 5, in
which case 5 is a return event for T; or $ affects 5,, which affects 7C.

Lemma 3.12: Let a be a sequence of serial operations and T a transaction.
Let $ and 7r be events of a such that $ does not mention a descendant of T and 7r
does. Then if $ affects it in a, either $ is an instance of REQUEST-CREATE(T),
or $ affects an instance of REQUEST-CREATE(T) in a.

Proof: By definition of affects(a), if 5 affects n in a there must exist a
sequence $,$ 1,$2 ,...,n in which each adjoining pair is in directly-affects(x). As $
does not mention a descendant of T and it does, there must be some first pair $,,

#n+1 where $n does not mention a descendant of T and $n+1 does. We note from

Definition 3.10 that $n must be an instance of REQUEST-CREATE(T), and $n+1
must be an instance of CREATE(T). Either $n = $, in which case $ is an instance
of REQUEST-CREATE(T); or 4 affects $n, which affects n.

We may now show that affects(a) is a partial order on the events of a whenever a is

well-formed.

Lemma 3.13: Let a be a well-formed sequence of serial operations. Then
affects(a) is a partial order on the events of a.

Proof: Suppose otherwise. We know that affects(a) must be transitive, as
it is a transitive closure; thus either it is not irreflexive or it is not antisymmetric.
If it is not antisymmetric, there exists a pair ($,n) in affects(a) such that (7r,$) is
also in affects(a). But then (n,n) E affects(a) by transitivity, and affects(a) is
not irreflexive. Thus if affects(a) is not a partial order, it is not irreflexive.

Suppose, then, that there exists some event 4 in a which affects itself in a.
Then 4 mentions some transaction. Let T be a transaction such that some event
of T in a affects itself in a, and no event of any proper ancestor of T affects itself
in a. Let $ be the latest event mentioning T in a which affects itself in a. We
note that, as affects(a) is the transitive closure of directly-affects(a), which is
irreflexive, there must then exist some event n in a such that ($,n) e
directly-affects(a) and (n,$) e affects(a); furthermore, it must also affect itself
in a. We now consider the possible values of n.

If 5 is a return event, then it must either be a report event of parent(T) or a
return event for parent(T); in either case n mentions parent(T), which contradicts
our choice of T.

Alternatively, if 4 is a CREATE, REPORT-ABORT, REPORT-COMMIT,
or REQUEST-COMMIT event, then n is either a later event of T or a COMMIT
event for T. If n is a later event of T, $ is not the latest event mentioning T which
affects itself, contrary to choice. If it is a COMMIT event for T, then it directly-
affects only events mentioning parent(T); thus there is some event p mentioning
parent(T) which affects itself, contradicting our choice of T.

-30-

Lastly, if $ is an instance of REQUEST-CREATE(T') for some child T' of
T, then n is either a later event of T, an instance of ABORT(T'), or an instance of
CREATE(T'). The first case contradicts our choice of $ as latest. In the second
case, n must precede $ in (x, so an instance of ABORT(T') precedes an instance
of REQUEST-CREATE(T') in a, and c would not be well-formed, a
contradiction. In the third case, 7c mentions a descendant of T' and $ does not; so
by Lemma 3.11, n affects a COMMIT event p for T' and p affects $. Now, p
does not directly-affect $, so p must directly-affect some event a which affects $
in cc. By examination of Definition 3.10, a can be either a COMMIT for T or a
REPORT-COMMIT for T'. We have already shown that no COMMIT event for
T can affect itself in a. If c is a REPORT-COMMIT for T', well-formedness
requires that it follow $; but then 0 would not be the latest event mentioning T
which affects itself in (x, contrary to choice.

Thus affects(a) is irreflexive; it is therefore also antisymmetric, and, being
transitive, must be a partial order.

The following lemma will be useful later, when we derive a sibling order from

affects.

Lemma 3.14: Let ac be a well-formed sequence of serial operations. Then
if $ is a return event for T, and n is an instance of REQUEST-CREATE(T), $
does not affect 7c in a.

Proof: If $ is an ABORT, then n affects $ in cx; thus if $ also affects n,
affects(a) is not antisymmetric, contradicting Lemma 3.13.

Alternatively, 4 must be a COMMIT for T. We assume without loss of
generality that there is no ancestor U of T such that a COMMIT for U affects an
instance of REQUEST-CREATE(U). Now, $ directly-affects only COMMIT
events for parent(T) and REPORT-COMMIT events for T. Suppose that there is a
COMMIT event p for parent(T) which affects n. Then p directly-affects only
COMMIT events for parent(parent(T)) and REPORT-COMMIT events for
parent(T). None of these events mention a descendant of parent(T), and n does,
so if p affects n, p affects an instance of REQUEST-CREATE(parent(T)) by
Lemma 3.12, contradicting our choice of T.

Alternatively, suppose there is a REPORT-COMMIT Cr for T which affects
n. Then (Y must precede 7cin cx, as both are events of parent(T). But then a
would not be well-formed. Thus $ cannot affect n in cx.

3.2.1 Affects and Sibling Orders

When we actually construct a serial schedule from a generic schedule, we will need

to combine the affects ordering with an appropriate sibling order. Unfortunately, there will

be some sibling orders which cannot be combined with affects without producing cycles.

Fortunately, we can easily characterize the conditions which must be met by a sibling order

-31-

in order for it to be compatible with affects. First, we define what we mean for two partial

orders to be consistent.

Definition 3.15: Two partial orders R and S are consistent if the transitive
closure of R u S is a partial order.

We define affectsT(a) to be the binary relation on transactions derived from

affects(a) by the following rule: for any pair of distinct sibling transactions (T1 ,T2),

(T1 ,T2) e affectsT(a) if and only if there is a pair of events ($,n) in affects(a) such that $

mentions a descendant of T1 , and n mentions a descendant of T2.

When a is well-formed, there is a simple method for extracting a superset of

affectsT(a) from affects(a).

Lemma 3.16: Let a be a well-formed sequence of serial operations. Then
if (TI ,T2) E affectsT(a), there is a report event for T, which affects an instance
of REQUEST-CREATE(T 2) in a.

Proof: Let (T1 ,T2) e affects(a). Then there exists a pair of events
($,n) e affects(ci) such that $ mentions a descendant of T, and n mentions a
descendant of T2. By Lemma 3.11, either $ is a return event for T, or $ affects a
return event for T1 , p, which affects 7cin a. Now p directly affects only
COMMIT events for parent(TI) and report events for T1. In the first case, if a is
a COMMIT event for parent(T) which affects 7t, then by Lemma 3.12 a affects an
instance of REQUEST-CREATE(parent(T 1)), contradicting Lemma 3.14.

Thus the alternative must hold, and there is a report event yi for T1 in a
which affects n. V does not mention a descendant of T2, and 7r does; thus by
Lemma 3.12, y affects an instance of REQUEST-CREATE(T2) in a.

Lemma 3.16 will be mostly useful later, when we wish to describe affectsT(a) for

specific schedules a. It does, however allow us to prove that affectsT(a) is a sibling order

when a is well-formed.

Lemma 3.17: Let a be a well-formed sequence of serial operations. Then
affectsT(a) is a sibling order.

Proof: Clearly, affectsT(a) ; SIB. We therefore need only prove that it is
a partial order. Because it is a subset of SIB, non-siblings are incomparable; thus
if we can prove affectsT(a) partially orders any set of siblings we will have
proven that it partially orders all of T.

That affectsT(a) is irreflexive is immediate from the definition. To prove
antisymmetry, suppose there exist two distinct siblings T1 , T2 such that both
(T1,T2) and (T2 ,Tj) are in affectsT(a). Then by Lemma 3.16 there exists a
REPORT event $ for T, which affects a REQUEST-CREATE event n for T2 , and

-32-

a REPORT event p for T2 which affects a REQUEST-CREATE event a for T1.
All four of these events are events of the common parent of T, and T2 , so by
well-formedness of (xn must affect p and a must affect $. But then n,p,a,$,R is a
cycle in affects(c), which contradicts Lemma 3.13.

Finally we must prove transitivity. Suppose (T1 ,T2) and (T2 ,T3) are both in
affectsT(a). Then there exist events $, t, and p of a mentioning descendants of
T1, T2 , and T3, respectively, such that ($,n) and (7t,p) are both in affects(cx). But
then ($,p) is in affects(a), and thus (T1,T3) is in affectsT(a) provided T, # T3-
But if T 1= T3 , then affectsT(a) is not antisymmetric, a contradiction. Thus
affectsTr(x) is a partial order, and thus a sibling order.

The following lemma shows that, when a is a well-formed sequence of serial

operations, and R a sibling order, it is sufficient for affectsT(a) to be consistent with R for

affects(cx) to be consistent with R*.

Lemma 3.18: Let x be a well-formed sequence of serial operations, and let
R be a sibling order. Then if affectsT(a) is consistent with R, affects(a) is

consistent with RE.

Proof: We assume without loss of generality that R is a total sibling order.
It will be helpful to think of the transitive closure of affects(cx) u R* as a graph G
whose vertices are the events of (x and whose edges are the elements of R* and
directly-affects(x). Suppose that G contains a cycle. By Lemma 3.13 affects(a)
is irreflexive, so some edge ($,n) of the cycle must be in R*. Let T1 and T2 be
the transactions mentioned by 4 and t, respectively.

We now divide G into two parts. Let G1 be the subgraph of G which

contains all events t such that (t,it) e R*. Let G2 be the subgraph of G which

contains the rest of the events in a. Clearly, $) e Gj; since R* is irreflexive, n 0
G1 , so t e G2 . By Definition 2.10, an operation r is in G1 if and only if there
exists a pair of siblings (U,V) in R such that -T mentions a descendant of U and V
is an ancestor of T2. Thus the least common ancestor of two vertices from
different subgraphs must mention a proper ancestor of T2 -

Now, if P is a path from t to $ in G, it must contain an edge (y,a) such that
N is a vertex in G2 and a is a vertex in G1. Furthermore, N and a must mention

different transactions (as R* does not distinguish between different events
mentioning the same transaction). Let (y,,a) be the first such edge in P.

Suppose (y,a) e R*. As a is in G1 , (a,n) must be in R. Then by
transitivity of R, (,) is also in R. But then y is in G1, contrary to choice.

Alternatively, (Ny,a) e directly-affects(a). Then N, mentions a proper
ancestor U of T2, and a mentions a child V of U. Consider the longest subpath P'
of P which ends in (y,,a) and contains only vertices which mention ancestors of
T2. Then P' is directly preceded by an edge (p,t) where t mentions an ancestor
of T2 and p does not.

There are three cases: either (pt) = (y,a), (p) e R, or (p) E

-33-

directly-affects(x). In the first case, y would not mention an ancestor of T2, a
contradiction. In the second case, p would be in G1, contradicting our choice of
(y,a). In the third case, the transaction Z mentioned by p affects V in a; by our
observation 1ca(Z,V) is an ancestor of T2 with children Z',V' which are ancestors

of Z and V, respectively. If (Z',V') e R, then (p,a) e R* and p is in G1, a
contradiction. On the other hand, if (V',Z') e R, then R is not consistent with
affectsT(a)-

3.3 Serial Correctness

In this section, we describe a general method for constructing serial schedules from

schedules of the generic system given a transaction and a sibling order which is consistent

with affectsT. Starting from a generic schedule a, a sibling order R, and a designated

transaction T, our method will have three steps. First, we remove all events from a which

cannot affect T, either through the serial controller and transactions (as revealed by

affects(a)), or through objects (as revealed by R). Second, we add in ABORT operations to

this subsequence to mask transactions which were created in a, but whose returns either

had not yet occurred, or were removed in the first step. Finally, we reorder the resulting

sequence according to affects(a) U R*lm. Provided R* timestamp-orders alG(X) for each

generic object G(X), the final product will be a serial schedule.

3.3.1 Removing Extraneous Events

Let a be a generic schedule and T a transaction. We already have, in affects(a), a

tool for detecting what events must be in any well-formed schedule of the serial controller

containing alT. Unfortunately affects(a) cannot detect those events which, because they

are revealed to T through the actions of a generic object, must also appear in a serial

schedule containing T.

It is not difficult to construct an example which illustrates this problem. Suppose that

T, and T2 are siblings mentioned in a generic schedule a, and that a COMMIT but no

REPORT-COMMIT for T, appears in a. Now, because no report for T, appears in a, we

-34-

know by Lemma 3.16 that (T1 ,T2) is not in affectsT(X), and thus that no event of T, affects

any event of T2. On the other hand, T, has committed, and may be visible to T2 at some

object X in the system. If descendants of both T, and T2 are accesses of G(X), both of

which are mentioned in done(a)tG(X), then it is possible that any serial schedule containing

the events of T2 (and, through closure under affects(a), the events of its descendant) would

also need to contain the events of the descendant of T1 , and thus some or all of the events of

Ti itself. Whether or not it would depends on whether T, precedes T2 in the sibling order

whose descendant closure is used to timestamp-order G(X). In general, this difficulty can

arise whenever a transaction has committed, but its COMMIT has not been reported to its

parent before a REQUEST-CREATE is issued for one of its siblings. We resolve it by

combining affects(a) with a narrowly-defined event order based on the sibling order.

If R is a sibling order, we define RC-C to be the binary relation on events given by the

rule ($,r) e RC-C if and only if
1. $ is a COMMIT event for a transaction T1,

2. n is a CREATE event for a transaction T2 , and

3. (T ,T2) is in R.

It is not difficult to see that RC-C is a subset of Rj, so by Lemma 3.18 RC-C is

consistent with affects(a) if R is consistent with affectsT(a). The transitive closure of

affects(a) u RC-C retains some of the properties of affects(a), as described below.

Lemma 3.19: Let a be a sequence of serial operations, R a sibling order,
and T a transaction. Let $ and n be events of a such that $ mentions a descendant
of T and 7c does not. Then if ($,n) is in the transitive closure of affects(a) u
RC-c, there is a return event p for T such that either = p, or ($,p) and (p,n) are

both in the transitive closure of affects(a) u RC-C.

Proof: If (5,n) is in the the transitive closure of affects(a) u RC-C there
must exist a sequence 5,$1,$2,...,X in which each adjoining pair is in either
directly-affects(a) or RC-C. Since 0 mentions a descendant of T and n does not,
there must be some first pair $n, $n+1 where $. mentions a descendant of T and

On+1 does not. If (5,,$n+1 in directly-affects(a) then on must be a return event for
T, and 4n+1 is either a corresponding report event or a COMMIT event for
parent(T). Alternatively, if ($a,$n+i) is in RC-C, then 0 must be a COMMIT
event for T and $n+1 must be a CREATE event for some other transaction. In

-35-

either case, let p = $n; either p = $, or ($,p) and (p,n) are both in the the transitive
closure of affects(a) u RC-C. Thus the result holds.

The following lemma differs slightly from Lemma 3.12, in that the addition of RC-C

allows us to bypass REQUEST-CREATE events in paths to CREATE events.

Lemma 3.20: Let a be a sequence of serial operations, R a sibling order,
and T a transaction. Let $ and n be events of a such that $ does not mention a
descendant of T and 7c does. Then if (0,n) is in the transitive closure of affects(a)
u RC-C, there is an instance p of CREATE(T) such that either n = p, or ($,p) and
(p,n) are both in the transitive closure of affects(a) u RC-C-

Proof: If ($,n) is in the the transitive closure of affects(a) u RC there
must exist a sequence $,$1,$2,-.., in which each adjoining pair is in either
directly-affects(a) or RC-C. Since $ does not mention descendant of T and n
does, there must be some first pair $n, $n+1 where $n does not mention a
descendant of T and On+1 does. If ($n,$n+1 in directly-affects(a) then $. must be
an instance of REQUEST-CREATE(T), and $n+1 must be an instance of
CREATE(T). Alternatively, if ($n,$n+1) is in RCC, then $ must be a COMMIT
event for some transaction other than T and On+1 must be an instance of
CREATE(T). In either case, let p = $n+1; either p = n, or (0,p) and (p,n) are both
in the the transitive closure of affects(a) u RC.C. Thus the result holds.

When a is a generic schedule, T a transaction, and R a sibling order consistent with

affects(a), we will denote closure(alT, a, affects(a) u RC-C) by core(a,T,R). Certain

properties of core(a,T,R) will be important to our proof of serial correctness, and are

summarized in the following lemma.

Lemma 3.21: Let a be a generic schedule, R a sibling order consistent with
affectsT(a), and T a transaction. Then all of the following conditions are true.

1. Let T' be a transaction which is not an ancestor of T. Then if no return
event for T' appears in a, no event mentioning a descendant of T'
appears in core(a,TR).

2. Let T' be an arbitrary transaction. Then core(a,T,R)IT' is a prefix of
alT'.

3. core(a,T,R) contains only serial events.

Proof:
1. Let $ be an event mentioning a descendant of T'. T is not a descendant

of T'; so if no return for T' appears in a, by Lemma 3.19, there cannot
be any event n of T such that ($,7c) is in the transitive closure of
affects(a) u RC-C. Thus 5 is not in core(a,T,R).

2. If $ and n are events of T' and $ precedes n in a, $ affects n in a. Thus
if any event of T' is in core(a,TR), all previous events of T' are also in
core(a,T,R).

-36-

3. Suppose that some non-serial operation $ appears in core(a,TR). Then
either $ appears in alT, or there is some event 7t in alT such that ($,71) is
in the transitive closure of affects(a) u RC-C. But any event of T is
serial, and the domain of the transitive closure of affects(a) u RC-C
includes only serial events. Thus $ cannot appear in core(a,T,R).

3.3.2 Virtual Aborts

As the generic controller allows transactions to return before their children, it is

possible that core(a,T,R) contains REQUEST-CREATE events for transactions which do

not return in core(a,T,R). The presence of these REQUEST-CREATE events will create

difficulties with the serial controller, which requires a return from all transactions whose

creation has been requested before their parent may return. We may not remove any

REQUEST-CREATEs, because that would disrupt core(a,TR)IT' for some T'; instead we

add ABORT events to core(a,T,R).

Let core+(a,T,R) be the sequence

core(a,T,R)ABORT(Ti)ABORT(T2)...ABORT(Tn), where T1 through Tn enumerate the

transactions which satisfy the following criteria:
1. Ti is not an ancestor of T.

2. An instance of REQUEST-CREATE(Ti) appears in core(a,TR).

3. No return event for Ti appears in core(a,T,R).

Lemma 3.22: Let a be a generic schedule, R a sibling order consistent with
affectsT(a), and T a transaction. Then all of the following conditions are true.

1. If T' is an ancestor of T, core+(a,T,R) contains no return event for T'.

2. If T' is not an ancestor of T and core+(a,T,R) contains any event
mentioning T', then core+(aT,R) contains exactly one return event for
T'.

3. If core+(a,TR) contains an instance of ABORT(T'), core+(a,T,R)
contains no other events mentioning T'.

4. For any T', core+(a,T,R)lT' is a prefix of alT'.

5. core+(a,T,R) is well-formed for transactions and basic objects.

6. affects(core+(a,TR)) is consistent with R*la.

Proof:

-37-

1. Suppose core+(a,T,R) contains a return event $ for an ancestor T' of
T. Then $ affects in a some event n of T; but $ directly-affects only
events which do not mention a descendant of T'. By Lemma 3.12 $
affects an instance of CREATE(T'). Then $ affects itself in a, and
affects(cx) is not a partial order. But a is well-formed by Lemma 3.9,
and thus affects(ax) is a partial order by Lemma 3.13.

2. As core(a,T,R) is a subsequence of a, a schedule of the generic system,
core(a,T,R) can contain at most one return event for T'. If core(a,TR)
contains no return event for T', by Lemma 3.21 core(a,T,R) contains no
events which mention a descendant of T'. Then either core(a,T,R) does
not contain an instance of REQUEST-CREATE(T'), in which case our
claim holds; or it does, in which case core+(a,TR) will add in an
instance of ABORT(T'), and our claim will still hold.

3. Suppose core+(a,TR) contains an instance $ of ABORT(T'). If $ is not
in core(a,T,R), then core(a,T,R) contains no return event for T'; thus
core(a,T,R) contains no events mentioning a descendant of T' by
Lemma 3.21, and the only event of core+(a,T,R) which mentions T' will
then be $. Alternatively, if $ is in core(a,T,R), $ must be in a. Now, a
is a well-formed schedule of the generic system, so by Lemma 3.2 a
cannot contain any other return operation for T'; in particular, a cannot
contain a COMMIT for T'. Thus by Lemma 3.19 no event of T' other
than $ can affect any event of T in a, and $ is thus the only event
mentioning T' in core+(a,T,R).

4. Core+(a,T,R) contains all of the events of core(a,T,R); furthermore, all
new events in core+(a,T,R) are not events of any transaction. Thus
core+(a,T,R)IT' = core(aT,R)IT' for all T', and the claim follows
immediately from Lemma 3.21.

5. By the above, the restriction of core+(a,T,R) to any transaction T' is a
prefix of alT'. Since a is well-formed, alT' is well-formed, and any
prefix of alT' is well-formed. Now, we have made no requirement that
T' not be an access transaction; thus alX is well-formed for X by virtue
of the fact that it is well-formed for every access of X, in accordance
with Definition 2.4. Thus core+(a,T,R) is well-formed.

6. Core+(a,TR) is a well-formed sequence of serial operations. Thus by
Lemma 3.13, affects(core+(a,TR)) is a partial order. Now, all events in
core+(a,T,R) which are not in a are ABORT events which cannot have
any corresponding REPORT-ABORT events, so the only pairs of events
($,7u) in directly-affects(core+(a,T,R)) u R*Ia which are not in

directly-affects(a) u R*a will either have $ be an instance of
ABORT(T'), and n a COMMIT for parent(T'); or $ an instance of
REQUEST-CREATE(T') and n an instance of ABORT(T'), where T' is
a transaction for which an abort was introduced in the formation of
core+(a,T,R) from core(a,T,R). Now, if affects(core+(a,T,R)) is not
consistent with R*la, there must be a cycle in

-38-

directly-affects(core+(a,T,R)) u R*Icx; as affects(x) is consistent with

R* l, this cycle must contain one of the "new" edges in
affects(core+(x,T,R)) - affects(a). Suppose a cycle contains the new
edge from an instance $ of REQUEST-CREATE(T') to an instance n of
ABORT(T'). Then the next edge must be from n to a COMMIT event p
for T'. But (x is a generic schedule, so by Lemma 3.2 if x contains a
COMMIT event for T' it must also contain a corresponding REQUEST-
COMMIT event a for T'. But by well-formedness of X $ must precede
(and thus affects) a, which in turn affects p. Clearly a is in
core+(ct,T,R); thus we can replace the edges ($,n) and (ir,p) in our cycle
with the edges ($,a) and (a,p), both of which are in affects(x). In this
manner we can convert any cycle in affects(core+(x,T,R)) u R*la into a

cycle in affects(x) u R*l. The latter is acyclic; thus the former must
also be acyclic.

3.3.3 Reordering

By the preceding lemma, affects(core+(cT,R)) u R* is a partial order on

core+(ct,T,R). Therefore, reorder(core+(c,T,R),affects(core+(a,T,R)) u R*) exists; for

brevity, we will refer to it as view(a,T,R).

The sequence view(a,T,R) has some useful properties which we state here for

reference.

Lemma 3.23: Let x be a generic schedule, T a transaction, and R a sibling
order consistent with affectsTr(x). Then all of the following hold:

1. For any T', view(c,T,R)IT' = core+(a,T,R)IT'.

2. view(a,T,R) is well-formed for transactions and basic objects.

Proof:

1. Because view(c,T,R) is a reordering of core+(c,T,R), it contains the
same events as core+(a,T,R). Now, if $ and n are events of T' in
core+(cc,T,R), ($,n) e affects(core+(,T,R)) if and only if $ precedes n
in core+(cT,R). But view(a,T,R) is affects(core+(a,T,R))-ordered, so
then $ precedes n in view(a,T,R) if and only if 5 precedes n in
core+(a,T,R). Thus the same events of T' occur in the same order in
view(cx,T,R) and core+(x,T,R), and thus view(a,T,R)IT' =
core+(a,T,R)IT'.

2. By the preceding argument view(a,TR)IT' = core+(a,TR)lT', which is
well-formed for T' by Lemma 3.22. Furthermore, because our choice of
T' did not exclude access transactions, view(ca,T,R)IT' is well-formed for
any access transaction T'. Thus if X is a basic object, view(cx,T,R)IX is
also well-formed.

-39-

Corollary 3.24: If cx is a generic schedule, T a non-access transaction, and
R a sibling order consistent with affectsT(a), then for any non-access transaction
T', view(c,TR)IT' is a schedule of T'.

Proof: By the preceding Lemma, view(cT,R)IT' is equal to
core+(x,T,R)1T'; but by Lemma 3.22 core+(x,T,R)IT' is a prefix of acIT', which is
a schedule of T'.

We now consider the effect of our procedure the schedules of generic objects. The

following definition will be useful in describing the status of accesses in schedules of the

system.

Definition 3.25: Let a be an arbitrary sequence of operations, and let T be
a transaction and U an ancestor of T. Then we say T is committed to U in cc if cc
contains a COMMIT for every ancestor T' of T which is a proper descendant of
U.

Lemma 3.26: Let a be a generic schedule, T a transaction which is not an
orphan in (x, and R a total sibling order consistent with affectsT(cx). Let G(X) be
a generic object. Then there exists a sequence $ of INFORM-ABORT-AT(X)
operations such that (alG(X))$ is well-formed, and, for any access T' of G(X) not
equal to T, done((axlG(X))$)IT' is nonempty if and only if T' is committed to
lca(T,T') in cx.

Proof: Let U1 ,U2 ,...,U, enumerate the set of transactions which satisfy the
following criteria:

1. U is an ancestor of some access U of G(X) which is mentioned in a.

2. U is not an ancestor of T.

3. No COMMIT for Ui appears in a.
Let $ be the sequence

INFORM-ABORT-AT(X)OF(U 1)INFORM-ABORT-AT(X)OF(U 2)...
INFORM-ABORT-AT(X)OF(Un). First we must show that (caG(X))$ is well-
formed. Assume otherwise. By Lemma 3.9 odG(X) is well-formed; thus
(alG(X))$ will be well-formed unless there is an INFORM-ABORT operation in
$ for some transaction Ui for which there is an INFORM-COMMIT in aIG(X).
But if INFORM-COMMIT-AT(X)OF(Ui) appears in a, then by lemma 3.2 a
COMMIT for Ui must appear in cx. Thus no INFORM-ABORT for U can appear
in $, because it does not meet the necessary conditions.

Now suppose T' is an access of G(X) not equal to T which is committed to
lca(T,T') in c. Then a contains a COMMIT for T', and thus by Lemma 3.2 cx
contains a REQUEST-COMMIT for T'. Thus done((alG(X))$)IT' will be
nonempty provided (alG(X))@ contains no INFORM-ABORT operations for any
ancestor U of T'. Suppose that there is actually some such U. There are then two
cases. If U is a proper descendant of lca(T,T'), then INFORM-ABORT-
AT(X)OF(U) cannot appear in @, because a COMMIT for U appears in cx. Thus
INFORM-ABORT-AT(X)OF(U) must appear in x. But then by Lemma 3.2 a
must contain an ABORT for U, which contradicts the result of Lemma 3.2 that a

-40-

contains at most one return for any transaction. Thus U cannot be a proper
descendant of lca(T,T').

The alternative is that U is an ancestor of lca(T,T'), and thus of T. Because
U is an ancestor of T, no INFORM-ABORT for U can appear in J; but if an
INFORM-ABORT for U appears in a, then an ABORT for U must also appear in
(x, which would make T an orphan, contrary to hypothesis. Thus (alG(X))$ does
not contain an INFORM-ABORT for any ancestor U of T', and done((alG(X))$)
is nonempty.

Conversely, suppose there exists some ancestor U of T' which is a proper
descendant of lca(T,T') and for which no COMMIT appears in cx. Then either
WlT' is empty, in which case done((otlG(X))$)IT' is also empty; or U is an
ancestor of an access of G(X) mentioned in (x. But U is not an ancestor of T, and
no COMMIT for U appears in a. Thus an INFORM-ABORT-AT(X)OF(U)
appears in $, and done((alG(X))$)IT' is the empty sequence.

Lemma 3.27: Let a be a generic schedule, T a transaction which is not an
orphan in (x, and R a total sibling order consistent with affectsT(x). Let G(X) be
a generic object, and let [be as in Lemma 3.26. Then if $ is an event of
rearrange((alG(X))$,R*) which appears in view(a,T,R), every event which
precedes $ in rearrange((alG(X))$R*) also appears in view(a,T,R).

Proof: Let Ti = transaction($). Let 7c be an event which precedes $ in

rearrange((alG(X))3,R*). Then either n and $ are events of the same transaction,
in which case 7r affects $ in a and thus ic appears in view(aT,R), or ir is an event
of an access T2 such that (T2 ,Tl) is in R*. Note that, by the conditions of Lemma
3.26, T 1 is committed to lca(T1 ,T) and T2 is committed to lca(T2,T) in a. Now,
either lca(T2 ,Tl) is an ancestor of lca(T1,T) or vice versa. In the first case,
lca(T2 ,T1) = lca(T2,T) and T2 is committed to lca(T2,Tl) in M. In the second
case, lca(T1 ,T) = lca(T2 ,T); T2 is committed to lca(T2 ,T) in o, so it must be
committed to lca(T2 ,T1).

Let U2 be the ancestor of T2 which is a child of lca(T2 ,T1), and U1 the
corresponding ancestor of T1 . Since T2 is committed to lca(T2,T1), there is a
chain of COMMIT events in a for ancestors of T2 up to and including U2 , each of
which is affected by the REQUEST-COMMIT event p for T2 in

rearrange((aIG(X))$,R*). Now, by repeated application of Lemma 3.2 and well-
formedness we can show that there is a similar chain of REQUEST-CREATE and
CREATE events for ancestors of T, up to and including U, each of which affects

the CREATE event a for Ti in rearrange((alG(X))S,R*). Now, since (T2 ,T1) is

in R*, (U2 ,U1) must be in R. Thus there is an edge in RC-C from the COMMIT
for U2 to the CREATE for U, and thus (p,a) is in the the transitive closure of
affects(a) u RC-C. Now, n can either be a or a REQUEST-COMMIT for T1, and
$ can either be p or a CREATE for T2; in each case ($,) is in the the transitive
closure of affects(a) u RC.c Thus $ appears in view(cx,T,R) if 7L does.

Lemma 3.28: Let cc be a generic schedule, T a transaction which is not an
orphan in cx, R a total sibling order which is consistent with affectsT(ax), and G(X)

a generic object. Then view(a,TR)IX is a prefix of rearrange((xlG(X))$,R*),
where $ is as in Lemma 3.26.

-41-

Proof: First we show that view(a,T,R)IX cannot contain any event $ which
does not appear in rearrange((aG(X)),R*). Suppose otherwise. Then $ is an
event of some access T' of G(X) which has an ancestor U which is a proper
descendant of 1ca(T,T') and which is not committed in a. If U is aborted in a,
then $ cannot appear in view(a,TR) by Lemma 3.22. Alternatively, if no return
event for U appears in a, then by Lemma 3.19 there can be no event n of T such
that ($,7c) is in the the transitive closure of affects(a) U RC-C. In either case, $
cannot appear in view(a,T,R).

Now, by Lemma 3.27 if any event in rearrange((alG(X))$,R*) appears in
view(a,T,R), all preceding events in rearrange((alG(X))$,R*) appear in
view(a,T,R). Thus the set of events in view(a,TR)IX is equal to the set of events
of some prefix of rearrange((aG(X))$,R*). But both view(a,T,R)IX and
rearrange((alG(X))$,R*) are ordered by R*; thus view(a,TR)IX) is, in fact, equal

to rearrange((alG(X))$,R*).

Corollary 3.29: Let a, T, R, G(X) and $ be as above. Then if R*
timestamp-orders alG(X), view(a,T,R)IX is a schedule of X.

Proof: If R* timestam -orders aIG(X), then, by Definition 3.7 and Lemma
3.26, rearrange((alG(X))R) is a schedule of X. By Lemma 3.28 view(a,T,R)IX
is a prefix of rearrange((alG(X))$,R*). Thus view(a,T,R)IX is also a schedule of
X.

Finally, we show that view yields a schedule of the serial controller.

Lemma 3.30: Let a be a generic schedule, T a transaction, and R a total
sibling order consistent with affectsT(a). Then view(a,T,R) is a well-formed
schedule of the serial controller.

Proof: Well-formedness is guaranteed by Lemma 3.23. We now proceed
by showing by induction that any prefix of view(a,T,R) is a schedule of the serial
controller.

Let $ be a prefix of view(a,T,R). If S is the empty sequence, 0 is trivially a
schedule of the serial controller. Otherwise, let $ = p'nr where n is a single
operation. By induction hypothesis @' is a schedule of the serial controller. Let
s' be a state of the serial controller which can follow $'. We demonstrate for
each possible value of n that all of the preconditions for a transition whose
operation is n are met in s', and that $ is thus a schedule of the serial controller.

" If n is a REQUEST-CREATE or REQUEST-COMMIT event, then no

preconditions need to be met, and $ is a schedule of the serial controller.

" If n is an instance of CREATE(T'), then there must exist an instance $ of
REQUEST-CREATE(T') in a; 4 affects n in a, so $ appears in
core+(a,T,R). Since $ also affects n in core+(a,T,R), 5 must precede n in
view(a,T,R). Thus $ appears in (', and T' e s'.create-requested. For the
second precondition, suppose that there exists a sibling U of T' such that
an instance of CREATE(U) appears in $' but no return event for U
appears in P'. By Lemma 3.22, view(a,T,R) must contain exactly one
return operation for every transaction mentioned in view(a,TR) which is
not an ancestor of T. There are three possible cases:

-42-

1. Neither T' nor U are ancestors of T. Then by Lemma 3.22
core+(a,T,R) must contain COMMIT events for both T' and
U. Now, R is a total sibling order, so either (T',U) E R or (U,T')
e R. If (T',U) e R, then RC-C contains an edge from any
COMMIT for T' to any CREATE for U, and thus the COMMIT
event for T' must precede the instance of CREATE(U) in P'. But
then the COMNMIT event would precede 7c, and view(a,T,R) would
not be ordered by affects(core+(a,T,R)).

2. T' is an ancestor of T. Then a COMMIT event $ for U appears in
view(a,T,R). By Lemma 3.20, if there is any event p of T such
that (5,p) is in the transitive closure of affects(c) u RC-C, then
there is some instance a of CREATE(T) in core+(a,TR) such that
($,a) is in the transitive closure of affects(a) u RC-C. But
view(a,T,R) is well-formed, so at most one CREATE(T) event
appears in view(a,T,R); thus a = n, and $ must be in $'.

3. U is an ancestor of T. Let $ be the instance of CREATE(U) in $'.
7c is in view(a,T,R); so there is some event p of T such that (x,p) is
in the transitive closure of affects(a) u Rc.c But then by the
argument used in the previous case, (n,$) must be in the transitive
closure of affects(a) u RC-C. But then 7r would precede $ in
view(a,T,R), a contradiction.

Thus both preconditions are met, and [3is a schedule of the serial
controller.

e If n is an instance of ABORT(T'), then either 7r is in core(a,T,R) or it was
added in forming core+(a,T,R). In the first case, a contains 7t, so a must
contain an instance $ of REQUEST-CREATE(T'). $ affects n in a, so4$
is in core(a,TR) and thus in view(a,T,R). Furthermore, $ affects n in
core+(x,T,R); so precedes i in view(a,TR), and $ thus appears in $'.
In the second case, an instance $ of REQUEST-CREATE(T') must appear
in core(a,T,R); otherwise it would not have been added. Again $ must
precede it in view(o,T,R). Thus in either case T' e s'.create-requested.
Now, by Lemma 3.22, core+(a,T,R) can contain no other event
mentioning T'; thus view(a,T,R) contains no CREATE(T') events, and T'
cannot be in s'.created. So the precondition is met.

* If n is an instance of REPORT-ABORT(T'), then it must appear in a.
Thus by Lemma 3.2, an instance $ of ABORT(T') appears in c. As $
affects n in a, 4) must precede i in view(a,T,R). Thus T' e s'.aborted,
the sole precondition on ABORT(T') is met, and P is a schedule of the
serial controller.

* If 7r is an instance of COMMIT(T',v), then it must appear in a. By
Lemma 3.22, T' cannot be an ancestor of T. By Lemma 3.2 an instance $
of REQUEST-COMMIT(T',v) also appears in a. As $ affects 7r in a, 5)
must precede n in view(cz,TR); thus (T',v) e s'.commit-requested. By
Lemma 3.22, exactly one return event for T' appears in core+(a,T,R); thus

-43-

no return event for T' can occur in $', and T' o s'.returned. Finally,
suppose there is some child U of T' such that an instance of REQUEST-
CREATE(U) appears in $', but no return event for U appears in $'. Any
return event for U affects n in a, so if no return event for U appears in $',
none appears in a. Thus there is a REQUEST-CREATE event but no
return event for U in core(a,T,R). Also, U is not an ancestor of T, so
core+(x,T,R) will contain an ABORT event p for U. But p affects ir in
core+(a,T,R), so p must appear in $'. Thus children(T') n s'.create-
requested c s'.retumed, as required by the third and final precondition on
COMMIT(T',v).

e If n is an instance of REPORT-COMMIT(T',v), then n must appear in a.
Then a must contain both an instance $ of COMMIT(T',v) and an
instance p of REQUEST-COMMIT(T',v). As both $ and p affect i in a,
both $ and p must precede n in view(a,T,R). Thus (T',v) e s'.commit-
requested and T' e s'.comnitted, and, all preconditions on REPORT-
COMMIT(T',v) being met, $ is a schedule of the serial controller.

We can now combine our results into a single theorem.

Theorem 3.31: Let a be a generic schedule. If there exists a total sibling
order R which is consistent with affectsT(a), such that R* timestamp-orders
aIG(X) for every generic object G(X), then a is serially correct for all non-orphan
transactions.

Proof: Let T be an arbitrary non-orphan transaction. Then core(a,T,R)IT =
alT, so by Lemma 3.23 view(a,T,R)IT = alT. Now, if T' is any other transaction,
by Corollary 3.24 view(a,T,R)IT' is a schedule of T'. If X is a basic object, then
by Corollary 3.29 view(a,T,R)IX is a schedule of X. Finally, Lemma 3.30
guarantees that view(a,T,R) is a schedule of the serial controller. So, for any
component A of the serial system, view(a,TR)LA is a schedule of A; and thus
view(a,T,R) is a serial schedule.

Because our choice of T was arbitrary, for any non-orphan transaction T,
view(a,T,R)IT = alT and view(a,T,R) is a serial schedule. Consequently, a is
serially correct for any non-orphan transaction T.

-44-

Chapter 4

The Pseudotime System

In this chapter we describe an implementation of a system whose schedules meet all

of the conditions of Theorem 3.31. The system is based on the pseudotime algorithm

described in [R].

The essential feature of Reed's algorithm is the use of a totally-ordered set of

pseudotimes to regulate interaction between concurrently executing transactions. Before a

transaction is created, the system assigns to it a contiguous range of pseudotime which is a

subset of the range of its parent, and which is disjoint from any ranges already assigned to

its siblings. Disjointness allows us to derive a sibling order from the pseudotime ordering

in a natural way; the requirement that a transaction receive a subrange of its parent's range

ensures that comparisons of disjoint pseudotime ranges yields an ordering on transactions

which corresponds to the descendant closure of this sibling order.

Formally, we let P be the set of pseudotimes, ordered by <. We represent pseudotime

ranges as half-open intervals [p,q) in P, and refer to them using capital letters. If P = [p,q),

then we write Pmm for p and Pmax for q. If P and Q are ranges of pseudotime, we write

P < Q if Pmax : Qmu. Clearly, if P < Q, then P and Q are disjoint.

It will be convenient to extend P with two dummy pseudotimes, -oo and +00. We

write P+= P u -oo,oo; if p, q e P+, we let p < q if and only if p < q in P, p = -oo, or

q = +oo. Thus -oo is a pseudotime less than all others, and +oo is a pseudotime greater than

all others. Unless otherwise stated, when we refer to a pseudotime we will be referring to

an element of P+ rather than P.

The pseudotime system will consist of a pseudotime controller, pseudotime objects,

and transactions. The transactions will be the same as in the serial and generic systems; the

pseudotime controller and objects will differ in their external behavior from the ,

-45-

corresponding components of the generic system only by the addition of a new, ASSIGN-

PSEUDOTIME operation. Thus if x is a schedule of the pseudotime system, generic(x)

will be a schedule of the generic system, allowing us to use Theorem 3.31 to prove serial

correctness.

4.1 Pseudotime Controller

A state s of the pseudotime controller, like one of the generic and serial controllers,

has components s.created-requested, s.created, s.commit-requested, s.committed, and

s.aborted; in addition, a state of the pseudotime controller has a component s.range, which

is a partial function from T to the set of pseudotime ranges. In the initial state of the

controller, create-requested = {T0 }, range = {<T0 ,P0> } for some pseudotime range PO, and

all other components are empty. The operations of the pseudotime controller are as

follows:

Input:
REQUEST-CREATE(T), T # To
REQUEST-COMMIT(T,v)

Output:
ASSIGN-PSEUDOTIME(T,P), P a pseudotime range, T TO
CREATE(T)
ABORT(T), T # To
COMMIT(T,v), T # To
REPORT-ABORT(T), T # To
REPORT-COMMlT(T,v), T # To
INFORM-ABORT-AT(X)OF(T), T # To
INFORM-COMMIT-AT(X)OF(T), T # To

The steps of the pseudotime controller are those tuples (s',7c,s) which satisfy the

following pre- and postconditions.

" REQUEST-CREATE(T)
Postcondition:
s.create-requested = s'.create-requested u {T}

" REQJEST-COMMIT(T,v)
Postcondition:
s.commit-requested = s'.commit-requested u {(T,v)}

-46-

" ASSIGN-PSEUDOTIME(T,P)
Preconditions:
T e s'.create-requested
T e domain(s'.range)
P c s'.range(parent(T))
P > s'.range(T') for every T' in siblings(T) r domain(s'.range)
Postconditions:
s.range = s'.range u {<T,P>}

" CREATE(T)
Preconditions:
T e s'.create-requested - s'.created
T E domain(s'.range)
Postcondition:
s.created = s'.created u {T}

" ABORT(T)
Precondition:
T e s'.create-requested - s'.returned
Postconditions:
s.aborted = s'.aborted u {T}

" REPORT-ABORT(T)
Precondition:
T e s'.aborted

" COMMIT(T,v)
Preconditions:
(T,v) e s'.commit-requested
T e s'.returned
Postcondition:
s.committed = s'.committed u {T}

* REPORT-COMMIT(T,v)
Preconditions:
(T,v) e s'.committed-requested
T e s'.conmitted

" INFORM-ABORT-AT(X)OF(T)
Precondition:
T e s'.aborted

" INFORM-COMMIT-AT(X)OF(T)
Precondition:
T E s'.committed

A careful comparison between the pre- and postconditions of the pseudotime and

generic controllers will reveal that the only differences are the addition of the ASSIGN-

PSEUDOTIME operation and the addition of a precondition on CREATE(T) which

-47-

requires that T already have been assigned a pseudotime range. In fact, we can easily prove

that schedules of the pseudotime schedule are reducible to schedules of the generic

schedule by removing all ASSIGN-PSEUDOTIME operations.

Lemma 4.1: Let a be a schedule of the pseudotime controller which leads
to a state s from the initial state. Then generic(a) is a schedule of the generic
controller which leads to a state t from the initial state such that:

s.create-requested = t.create-requested
s.created = t.created

s.commit-requested = t.commit-requested
s.committed = t.committed

s.aborted = t.aborted

Proof: If a is the empty sequence, the result holds by virtue of the fact that
all components of the initial state of the generic controller are equal to the
corresponding components of the initial state of the pseudotime controller.
Otherwise, let a = a'n, where n is a single operation, and suppose that the result
holds for c'. Let s' be the state of the pseudotime controller after a', and s the
state after a. Let t' be the state of the generic controller after generic(a'). Then
if n is a REQUEST-CREATE, REQUEST-COMMIT, ABORT, COMMIT,
REPORT-ABORT, REPORT-COMMIT, INFORM-ABORT, or INFORM-
COMMIT operation, the result holds for a because the pre- and postconditions on
n are the same for both controllers.

Alternatively, n is either ASSIGN-PSEUDOTIME(T,P) for some T,P or
CREATE(T) for some T. In the former case, generic(a) = generic(a'), and s
differs from s' only in its range component; thus the result holds. In the latter
case, the preconditions on n in the pseudotime controller are a superset of the
preconditions on n in the generic controller, thus if n is enabled in t' for the
pseudotime controller, it must also be enabled in s' for the generic controller, and
generic(a) is a schedule of the generic controller. That the state of the
pseudotime controller following a matches the state of the generic controller
following generic(a) follows from the fact that the postconditions on
CREATE(T) in both controllers are the same. Thus in all cases the result holds.

The preceding lemma allows us to infer properties of the pseudotime controller from

properties of the generic controller. For example, Lemma 3.1 describes all but the range

component of a pseudotime controller state following a particular schedule; and all of the

conditions of Lemma 3.2 hold true for pseudotime schedules.

Unfortunately, Lemma 4.1 does not tell us anything about the range component of the

controller state, or about ASSIGN-PSEUDOTIME operations which might appear in

schedules of the generic controller. As can be seen by a quick examination of the

postcondition on the ASSIGN-PSEUDOTIME operation, there is a straightforward

-48-

correspondence between ASSIGN-PSEUDOTIME operations appearing in a schedule of

the pseudotime controller and the transaction-range pairs appearing in the state of the

controller following that schedule. It is more convenient for us to work with schedules than

states; thus we define the following.

Definition 4.2: Let a be a sequence of operations. Then we define the
relation assignx by the rule <T,P> e assigna if and only if ASSIGN-
PSEUDOTIME(T,P) appears in a.

If a is a schedule of the pseudotime controller, assigna allows us to describe the

range component of any state which can follow a without requiring us to actually consider

the entire state.

Lemma 4.3: Let a be a schedule of the pseudotime controller which can
lead to a state s from the initial state. Then s.range = assigna u { <T0 ' 0 > }.

Proof: By induction on a using the controller postconditions.

Lemma 4.3 allows us to use s.range and assign, interchangeably when a is a

schedule which leads to s from the initial state, a fact which we will use extensively when

we prove properties of assign(for schedules of the pseudotime controller. The benefits of

using assigna instead of s.range will become apparent in our discussion of pseudotime

objects, when we consider sequences of operations which might contain ASSIGN-

PSEUDOTIME operations, but which will not, in general, be schedules of the pseudotime

controller.

The following lemmas describe some of the properties of assign, when a is a

schedule of the pseudotime controller.

Lemma 4.4: Let a be a schedule of the pseudotime controller. Then all of
the following conditions hold.

1. If T, and T2 are siblings in the domain of assign(then
assign,(T1) < assigna(T2) if and only if ASSIGN-PSEUDOTIME(Tl)
precedes ASSIGN-PSEUDOTIME(T 2) in a.

2. If T and parent(T) are both in the domain of assigna, then
assigna(T) g; assign,(parent(T)).

Proof: By induction on a using Lemma 4.3 and the pseudotime controller
pre- and postconditions on ASSIGN-PSEUDOTIME.

We have not yet described the relationship between ASSIGN-PSEUDOTIME and

-49-

other operations in a schedule of the pseudotime controller. We do so in the following

lemma.

Lemma 4.5: Let a be a schedule of the pseudotime controller. Then all of
the following conditions hold.

1. If CREATE(T) appears in a, then an ASSIGN-PSEUDOTIME for T
precedes it in (x.

2. If ASSIGN-PSEUDOTIME(T,P) appears in ac, then REQUEST-
CREATE(T) precedes it in cc.

3. If ASSIGN-PSEUDOTIME(T,P) appears in a, and parent(T) # T0 , then
an ASSIGN-PSEUDOTIME for parent(T) precedes it in a.

4. At most one ASSIGN-PSEUDOTIME operation appears in a for each
transaction.

Proof: By induction on a using the controller preconditions.

If x is a schedule of the pseudotime controller, we can use assignx to define a sibling

order on the transactions in domain(assigna) which will be consistent with affectsT(cx).

Definition 4.6: Let a be an sequence of operations such that assignx is a
partial function. Then let Pa be the binary relation on transactions defined by the
rule <T1 ,T2> E Pa if and only if T, and T2 are siblings in the domain of assigna,
and assigna(TI) < assigna(T2).

Lemma 4.7: Let cx be a schedule of the pseudotime controller. Then Pa is
a sibling order consistent with affectsT(X).

Proof: By Lemma 4.4, if T, and T2 are any two siblings in the domain of
assign., assigna(TI) and assign,(T2) must be disjoint. Thus Pa inherits
transitivity, irreflexivity, and antisymmetry from P, and is a sibling order.

Now, suppose that Pa is not consistent with affectsT(a). Then there must
exist some cycle of sibling transactions TIT 2 ,...,T, where each consecutive pair
is either in affectsT(a) or Pa. Because both Pa and affectsT(ax) are transitive, we
may assume without loss of generality that no two consecutive edges are both in
affectsT(X) or Pa. Now, suppose <Ti,Ti+1> is in affectsT(a). Then <Ti.1 ,Ti> and
<Ti+1,Ti+2> are both in Pa, from which we know that Ti and Ti+1 are both in
domain(assign.). By Lemma 3.16, if <Ti,Ti+1> is in affectsT(ac), a report for Ti
must precede REQUEST-CREATE(Ti+1) in (x. Then CREATE(Ti) precedes
REQUEST-CREATE(Ti+1). Now, we know that ASSIGN-PSEUDOTIME
events for both Ti and Ti+1 appear in cx; by Lemma 4.5 the ASSIGN-
PSEUDOTIME for Ti must precede CREATE(TI), and the ASSIGN-
PSEUDOTIME for Ti+ 1 must follow the REQUEST-CREATE(Ti+1). But then
an ASSIGN-PSEUDOTIME for Ti precedes an ASSIGN-PSEUDOTIME for
Ti+1, so by Lemma 4.4 assigna(TJ) < assigna(Ti+1), and thus <Ti,Ti+1> E Pa-
By this means we can replace all edges in affectsT(a) in our cycle with edges in

P., yielding a cycle in Pa. But this would contradict our proof that Pa is a partial
order. Thus P. is consistent with affectsT(a).

-50-

Unfortunately, there will be conditions (such as when we consider schedules of

pseudotime objects), when we will not have access to a complete schedule of the

pseudotime controller. Under these circumstances, the following ordering will be more

useful.

Definition 4.8: Let a be an arbitrary sequence of operations. Then P' is
the relation defined by the rule <T1 ,T2 > E P' if and only if T, and T2 are both in
the domain of assigna, and assigna(TI) < assigna(T2).

When a is not a complete schedule of the pseudotime controller, P' will be the only

ordering on transactions which is readily available. When a is a complete schedule,

however, we would much rather use the sibling order P.. Fortunately, we do not have to

choose between them, as P' will be included in the descendant closure of Pa-

Lemma 4.9: Let a be a schedule of the pseudotime controller. Then P' is
a subset of P*.

Proof: Suppose <T1 ,T2> E P'. Suppose T, is an ancestor of T2 ; then by
Lemma 4.5 every ancestor of T2 which is a descendant of T, is in
domain(assigna). Then by repeated application of Lemma 4.4,
assigna(T2) g assigna(TI). But then assigna(Tl) and assigna(T2) are
incomparable, and <T 1,T2> cannot be in P'.

Alternatively, lca(TI,T 2) is distinct from both T1, and T2. Let U1 and U2
be children of lca(T1 ,T2) which are ancestors of T, and T2 respectively. By
Lemmas 4.5 and 4.4 assigna(T1) g assigna(Ul) and assigna(T2) g assignax(U 2);
since U1 and U2 are siblings, Lemma 4.4 guarantees that assigna(U1) and
assigna(U2) are disjoint. But assignax(TI) < assigna(T2), so assign(1Ul) <
assigna(U2). Thus <U 1 ,U2 > is in Pa,so <T,T2> is inP*

When a is a schedule of the pseudotime controller, we can always extend Pa into a

total sibling order consistent with affectsT(a). To meet the conditions of Theorem 3.31, we

will also need to know that the descendant closure of this sibling order timestamp-orders

generic(a)IG(X) for each object X. We can guarantee this condition is met by a careful

implementation of pseudotime objects.

-51-

4.2 Pseudotime Objects

The pseudotime system represents each basic object X with a pseudotime object

P(X). P(X) has the following operations:

Input:
CREATE(T), T e accesses(X)
ASSIGN-PSEUDOTIME(T,P), T e accesses(X)
INFORM-ABORT-AT(X)OF(T)
INFORM-COMMIT-AT(X)OF(T)

Output:
REQUEST-COMMIT(T,v), T e accesses(X)

4.2.1 Well-formedness

Pseudotime objects possess a well-formedness condition which is an extension of the

condition for generic objects.

Definition 4.10: Let a be a sequence of operations of P(X). Then a is
well-formed if a is the empty sequence, or if a = a'n, where a' is well-formed
and 7c is a single operation, and the following conditions are met:

1. If 7 is CREATE(T), for T in accesses(X), then
a. CREATE(T) does not appear in ', and

b. ASSIGN-PSEUDOTIME(T,P) appears in a' for some
pseudotime range P.

2. If n is REQUEST-COMMIT(T,v), then
a. CREATE(T) appears in a', and

b. REQUEST-COMMIT(T,v') does not appear in ' for any value
of v'.

3. If 7 is INFORM-ABORT-AT(X)OF(T), then
a. INFORM-COMMIT-AT(X)OF(T) does not appear in a'.

4. If 7r is INFORM-COMMIT-AT(X)OF(T), then
a. INFORM-ABORT-AT(X)OF(T) does not appear in a', and

b. if T E accesses(X), REQUEST-COMMIT(T,v) appears in a' for
some v.

5. If 7c is ASSIGN-PSEUDOTIME(T,P), then
a. ASSIGN-PSEUDOTIME(T,P') does not appear in a' for any

pseudotime range P'.

b. For any operation ASSIGN-PSEUDOTIME(T',P') appearing in
a', P' is disjoint from P.

-52-

The additional conditions are straightforward. Essentially, we require only that each

access be assigned a unique pseudotime range, disjoint from those of all other accesses,

before it is created. The other conditions, carried over from Definition 3.3, exist to ensure

that a well-formed sequence of pseudotime object operations may be transformed in to a

well-formed sequence of generic object operations by removing all ASSIGN-

PSEUDOTIME operations. We state this fact, for future reference, as the following lemma.

Lemma 4.11: Let x be a well-formed sequence of operations of a
pseudotime object P(X). Then generic(u) is a well-formed sequence of
operations of the generic object G(X).

Proof: By induction on (x.

Note that Lemma 4.11, together with Lemma 3.4, guarantees that if a is a well-

formed sequence of operations of P(X), then serial(a) is a well-formed sequence of

operations of X. Pseudotime objects are required to preserve well-formedness.

4.2.2 Correctness Condition

When a is a schedule of the pseudotime controller, P. is the obvious order to use

when applying Theorem 3.31; however, because each pseudotime object P(X) has

ASSIGN-PSEUDOTIME operations only for accesses to X, P. is not available in its

entirety to the pseudotime objects, and any correctness condition we define must use only

the information available in clP(X). Fortunately, Lemma 4.9 lets us base our correctness

condition on P'.

Let a be a schedule of P(X). If a transaction T is mentioned in done(a), a

REQUEST-COMMIT for T appears in a; thus by well-formedness an ASSIGN-

PSEUDOTIME for T appears in cc and T is in assigna. Well-formedness also guarantees

that assigna(Tl) and assigna(T2) are disjoint for any T1, T2 mentioned in done(a). Thus P'

totally orders the transactions mentioned in a, and rearrange(generic(a),P') exists. Our

correctness condition for P(X) can thus be stated as the simple requirement that, for all

schedules a of P(X), rearrange(generic(a),P') is a schedule of X.

-53-

4.2.3 Reads and Writes

Our implementation of pseudotime objects is closely modeled after the object history

mechanism described in [R]. In [R], the data objects represented by object histories are

simple memory locations, supporting two atomic operations, READ and WRITE. Though

the basic objects in the serial system may be much more sophisticated, the essential features

of our algorithm will still depend on the identification of accesses with READ-like or

WRITE-like properties.

Let (x and $ be well-formed sequences of operations of a basic object X. Then we say

u. is equieffective to $ if, for every sequence y of operations of X such that both cry and $y

are well-formed, cry is a schedule of X if and only if py is a schedule of X.

Clearly, a is equieffective to @ if and only if $ is equieffective to a; in this situation

we say cc and 0 are equieffective sequences. If neither a nor [is a schedule of X, they are

trivially equieffective. On the other hand, if a is equieffective to $, and [is a schedule of

X, then x must also be a schedule of X.

Well-formed extensions of equieffective sequences are equieffective, as shown in the

following lemma.

Lemma 4.12: Let (x and $ be equieffective sequences of operations of the
basic object X. Then if y is a sequence of operations of X such that cxy and $y are
both well-formed, ay is equieffective to $y.

Proof: Suppose otherwise. Then there exists a sequence of operations 5
such that ay5 and $yS are both well-formed, but only one of ocyS and $yS is a
schedule of X. But then y8 distinguishes cx and $, which contradicts their
equieffectiveness.

We may use equieffectiveness to define the essential properties of a read access in a

natural way.

Definition 4.13: Let T be an access to X. Then T is a read access if, for
any sequence of operations a and value v such
aCREATE(T)REQUEST-COMMIT(T,v) is a well-formed schedule of X,
cxCREATE(T)REQUEST-COMMIT(T,v) is equieffective to cX.

Less formally, a read access is one which cannot be detected by later accesses to

X. We now define a write access, one which obscures all preceding accesses.

-54-

Definition 4.14: Let T be an access to X. Then T is a write access if, for
any schedule a of X and value v such that
aCREATE(T)REQUEST-COMMIT(T,v) is well-formed,
aCREATE(T)REQUEST-COMMIT(T,v) is equieffective to
CREATE(T)REQUEST-COMMIT(T,v).

This definition requires a bit of unraveling. Often, CREATE(T)REQUEST-

COMMIT(T,v) will not be a schedule of X; in this case

aCREATE(T)REQUEST-COMMIT(T,v) will also not be a schedule of X. The more

interesting case is that in which CREATE(T)REQUEST-CREATE(T,v) is a schedule of X;

then aCREATE(T)REQUEST-COMMIT(T,v) is a schedule of X whenever it is well-

formed. Thus whether a write access is possible is independent of any preceding

operations, so long as well-formedness is preserved. Furthermore, a write determines the

future behavior of X, again independently of any preceding operations.

Many accesses will be neither reads nor writes. We refer to accesses in this class as

updates. Updates are interesting primarily for the properties they do not have. Because

they are not reads, they change the state of the object in ways that are detectable by later

accesses; because they are not writes, their effects depend on the results of earlier accesses.

It will be useful to be able to refer to accesses by these inverse properties. Thus we use the

term writer to refer to any access that is either a write or an update, and reader to refer to

any access that is either a read or an update. Using this terminology, updates are both

readers and writers, while other accesses are either readers or writers, but not both.

4.2.4 Object Implementation

We construct a pseudotime object P(X) for each object X. Each state s of P(X) has

components s.created, s.commit-requested, s.committed, and s.aborted, which are sets of

transactions; a component s.versions, consisting of accesses of X; a component s.start

which is a mapping from the accesses of X to P; a component s.state which is a mapping

from accesses of X to states of X; and a component s.end which is a mapping from states of

X to P.

-55-

We will use a dummy transaction Tx, assumed to be always visible to all

transactions, to represent the version associated with the start state of X. In the initial state

so of P(X), so.versions = {TX}, so.start = so.end = {<Tx,-oo>}, and so.state = {<Tx,ro>}'

where r0 is a start state of X. All other components of so are empty.

In a state s, the components s.created, s.aborted, and s.committed keep track of those

transactions for which the object has received a CREATE, INFORM-ABORT, and

INFORM-COMMIT, respectively. The component s.commit-requested records all

transactions for which the object has sent out a REQUEST-COMMIT. The component

s.start records the start of each pseudotime range assigned to accesses of X by ASSIGN-

PSEUDOTIME operations.

The remaining components of the state of P(X) constitute the multi-version history

which P(X) uses to represent the states of X at various points in pseudotime. The

component s.versions holds those writer accesses which have requested to commit and

which are not orphaned in s. The component s.state maps each access T to a state of X

which follows some schedule equieffective to the prefix of rearrange(generic(ct),P') ending

in a REQUEST-COMMIT for T.

It is convenient to treat accesses as occurring at specific points in pseudotime;

because ASSIGN-PSEUDOTIME assigns a range to an access, we obtain a point by

choosing the beginning of the access's assigned range. 4 The principle which underlies the

operation of P(X) is then straightforward. The versions, their states, and their associated

ranges describe a partial history of an execution of X, viewed as taking place in pseudotime

rather than real time. If s is a state of P(X), the fact that a particular version T is in

s.versions represents the idea that the state of X during the interval [s.start(T),s.end(T))

would be equivalent to s.state(T), in the sense that it follows a schedule equieffective to

some schedule which would leave X in s.state(T).

4This choice is, in fact, completely arbitrary; any point in the assigned range will do.

-56-

Regions of P which are not covered by intervals [s.start(T),s.end(T)) represent those

regions in which no particular state must hold; thus writer accesses (which must change the

state of X) can safely occur in those regions. When a reader access occurs in an unmarked

region, we presume that the state of X at the pseudotime of the reader is the state of the

previous writer access, and set the range of that writer access to extend from the pseudotime

of the writer to the pseudotime of the reader, and thereby guarantee that no subsequent

writer access will invalidate our presumption. When a version is initially created, its range

is empty; and it is only through reference by readers that its range is extended. This process

of transforming one partial history into another is described more fully in [R], under the

name eduction.

In describing the pseudotime object algorithm, it will be useful to use some

shorthand. Given a state s and a pseudotime p e P, we define latest(sp) to be that version

in s.versions with the greatest value of s.start less than p. If Ti and T2 are accesses of X,

we say Ti is visible in s to T2 if either T, = TX, or every ancestor of T, which is a proper

descendant of lca(T1 ,T2) is in s.committed. We say a transaction T is orphaned in s if any

ancestor of T is in s.aborted.

We can now state the transition relation for P(X). The transitions of P(X) are exactly

those tuples (s',n,s) satisfying the following pre- and postconditions.

" CREATE(T)
Postcondition:
s.created = s'.created u {T}

" ASSIGN-PSEUDOTIME(T,P)
Postcondition:
s.start = s'.start u {<T,Pn>}
s.end = s'.end u {<T,Pg>}

" INFORM-ABORT-AT(X)OF(T)
Postcondition:
s.aborted = s'.aborted U {T}
s.versions = {T' e s'.versions I T' e descendants(T) }

" INFORM-COMMIT-AT(X)OF(T)
Postcondition:
s.committed = s.committed U {T}

-57-

e REQUEST-COMMIT(T,v), T a write
Preconditions:
T e s'.created - s'.commit-requested
T E domain(s'.start)
s'.aborted n ancestors(T) = 0
If T' = latest(s',s'.start(T)), then

s'.end(T') < s'.start(T)
There exist states rl, r2 of X such that

(ro,CREATE(T),rl) and
(r1 ,REQUEST-COMMIT(T,v),r 2) are both steps of X

Postconditions:
s.commit-requested = s'.commit-requested u {T}
s.versions = s'.versions u {T}
s.state = s'.state u {<T,r2>I

* REQUEST-COMMIT(T,v), T a read
Preconditions:
T e s'.created - s'.commit-requested
T e domain(s'.start)
s'.aborted r ancestors(T)= 0
If T' = latest(s',s'.start(T)), then

there exist states rl, r2 of X such that
(s'.state(T'),CREATE(T),r1) and
(r1 ,REQUEST-COMMIT(T,v),r 2) are both steps of X

T' is visible to T in s'
Postconditions:
s.commit-requested = s'.commit-requested u {T}
s.end(T') = max(s'.end(T'),s.start(T))

* REQUEST-COMMIT(T,v), T an update
Preconditions:
T e s'.created - s'.commit-requested
T E domain(s'.start)
s'.aborted r ancestors(T)= 0
If T' = latest(s',s'.start(T)), then

s'.end(T') < s'.start(T)
there exist states rl, r2 of X such that

(s' .state(T'),CREATE(T),rj) and
(r1 ,REQUEST-COMMIT(T,v),r 2) are both steps of X

T' is visible to T in s'
Postconditions:
s.commit-requested = s'.conmit-requested u {T}
s.versions = s'.versions u {T}
s.state = s'.state U {<T,r2>}
s.end(T') = max(s'.end(T'),s'.start(T))

The pre- and postconditions of REQUEST-COMMIT do most of the real work. The

-58-

postconditions maintain the partial history described by the versions, state, start, and end

components; the preconditions are responsible for guaranteeing that no writers occur in a

marked range, that the value returned by any access is that which would be returned in the

execution of X described in the partial history, and that the writer which created the latest

version at the pseudotime of a reader is always visible to that reader. The precondition on

REQUEST-COMMIT that prevents a REQUEST-COMMIT for any access which is

already orphaned at P(X), together with the second postcondition on INFORM-ABORT,

ensures that no access appears in versions if it is orphaned at X.

The remaining pre- and postconditions of P(X) simply allow P(X) to record the

occurrence of its operations, as described in the following lemma.

Lemma 4.15: Let a be a schedule of P(X) which can lead to a state s from
the initial state. Then all of the following conditions hold.

1. T E s.created if and only if CREATE(T) appears in a.

2. T e s.aborted if and only if INFORM-ABORT-AT(X)OF(T) appears in
a.

3. T e s.committed if and only if INFORM-COMM1T-AT(X)OF(T)
appears in a.

4. T e s.commit-requested if and only if a REQUEST-COMMIT for T
appears in a.

5. <Tp> e s.start if and only if ASSIGN-PSEUDOTIME(T,P) appears in
a for some pseudotime range P such that Pm = p.

Proof: By induction on a using the postconditions of P(X).

The preceding lemma allows us to easily prove that P(X) preserves well-formedness.

Lemma 4.16: Let aREQUEST-COMMIT(T,v) be a schedule of P(X).
Then the following conditions hold:

1. CREATE(T) appears in a.

2. ASSIGN-PSEUDOTIME(T,P) appears in a for some pseudotime range
P.

3. REQUEST-COMMIT(T,v') does not appear in a for any value v'.

4. INFORM-ABORT-AT(X)OF(T') does not appear in a for any value v'.

Proof: By Lemma 4.15 and the preconditions on REQUEST-
COMMIT(T,v).

Corollary 4.17: P(X) preserves well-formedness.

-59-

The following lemma describes the relationship between visible in s and visible at X.

Lemma 4.18: Let ax be a schedule of P(X) which can lead to a state s from
the initial state. Then if T, # TX, Ti is visible to T2 in s if and only if T, is
visible to T2 at X in a.

Proof: From Lemma 4.15 and the definitions of the two notions of
visibility.

We now turn our attention to versions and its associated components.

Lemma 4.19: Let a be a schedule of P(X) which can lead to a state s from
the initial state; let T be an element of accesses(X) u {TX}. Then T e s.versions
if and only if T = Tx, or T is a writer and a REQUEST-COMMIT for T appears
in done(L).

Proof: Suppose T = TX; then T E so.versions. Furthermore, T o
ancestors(T') for any T' for which P(X) might receive an INFORM-ABORT.
Thus T e s.versions.

Alternatively, T # Tx. We consider three cases:

1. No REQUEST-COMMIT for T appears in a. Because T # TX, T e

so.versions. Then a simple induction on a using the postconditions on
P(X) proves that T 0 s.versions. Since no REQUEST-COMMIT for T
appears in cc, no REQUEST-COMMIT for T appears in done(a), and the
condition holds.

2. An INFORM-ABORT for an ancestor of T appears in ot. By Lemma
4.16, if any REQUEST-COMMIT for T appears in a, it precedes all
INFORM-ABORTs for ancestors of T. Thus there are sequences $, y
such that a = y, $ ends in an INFORM-ABORT operation x for an
ancestor of T, and y contains no REQUEST-COMMITs for T. If s' is the
state of P(X) after D, the postcondition on t requires that T o
s' .versions. By the method of the previous case, T cannot then be in
s.versions. Since it appears in Cx, no operation mentioning T appears in
done(a). Thus the condition holds.

3. A REQUEST-COMMIT for T appears in ot, and no INFORM-ABORT
appears in a for any ancestor of T. Then a REQUEST-COMMIT for T
appears in done(a). By a simple induction on Cx using the postconditions
of P(X), T is in s.versions, so the condition holds.

The states of P(X) satisfy certain consistency properties, described in the following

lemma, which we will need in our correctness proof.

Lemma 4.20: Let Cx be a well-formed schedule of P(X) which leads to a
state s from the initial state, and let (x' be a prefix of CL which leads to a state s'.
Then all of the following are true:

1. s'.start c s.start.

2. If T e domain(s'.end), T e domain(s.end) and s.end(T) > s'.end(T).

-60-

3. If T e domain(s'.state), T e domain(s.state) and s.state(T) = s'.state(T).

Proof: By induction on a using the postconditions of P(X).

Reader accesses produce a host of ugly complications. To minimize the resulting

confusion, we define the following notion of the access read by a particular reader.

Definition 4.21: Let a be a well-formed schedule of P(X), and let T be a
reader such that a REQUEST-COMMIT operation 7r for T appears in cc. Let '
be the longest prefix of x which does not contain a REQUEST-COMMIT for T,
and let s' be the state of P(X) after (x'. Then reads(T,X)= latest(s',s'.start(T)).

Fortunately, when (x is a schedule of P(X) such that T is mentioned in done(a), we do

not actually have to reconstruct the earlier state of P(X) to find reads(T,x), as we

demonstrate in the following two lemmas.

Lemma 4.22: Let a be a well-formed schedule of P(X) which can lead to a
state s from the initial state. Let T be an access in s.versions. Then if T =
reads(cx,T') for some reader T', s.end(T) s.start(T').

Proof: Let s' be the state following the REQUEST-COMMIT for T; by the
postconditions on REQUEST-COMMIT, s'.end(T') s'.start(T). Now, using
Lemma 4.20, we know that s'.start(T) = s.start(T) and s.end(T') s'.end(T').
Thus s.end(T') s'.end(T') s.start(T).

Lemma 4.23: Let ac be a well-formed schedule of P(X) which can lead to a
state s from the initial state. Let T be a reader mentioned in done(cc). Then
reads(T,x) = latest(s,s.start(T)).

Proof: Let (x' be the longest prefix of a not containing a REQUEST-
COMMIT for T; let s' be the state of P(X) following cc'. Let T' = reads(T,q).

We begin by showing T' e s.versions. If T = TX, then T' e s.versions by
lemma 4.19. Otherwise, by the preconditions on REQUEST-COMMIT for reads
and updates, T' is visible to T in s'. But then by Lemma 4.18 T' is visible to T at
X in a', so T' is committed at X to lca(T,T') in (x'. Now if T' is not in s.versions,
an INFORM-ABORT must appear in a for some ancestor U of T'. By well-
formedness U cannot be a proper descendant of lca(T,T'), so U is an ancestor of
lca(T,T'). But then T' is an orphan at X in a, and thus cannot be mentioned in
done(cx), a contradiction.

Now suppose that T' e s.versions, but T' # latest(s,s.start(T)). Then there
must exist some other writer U in s.versions such that s.start(T') < s.start(U) <
s.start(T). U cannot be TX; thus a REQUEST-COMMIT 7c for U appears in cx. If

n appears in a', then U e s'.versions and s'.start(T') < s'.start(U) < s'.start(T),
which contradicts T' = reads(T,x). Suppose instead, then, that there is some
writer U such that a REQUEST-COMMIT for U occurs after a REQUEST-
COMMIT for T, and s.start(T') < s.start(U) < s.start(T). Assume without loss of
generality that U is the writer with the least value of s.start(U) which meets the
condition. Let s" be the state of P(X) following the REQUEST-COMMIT for
U. Then T' = latest(s",s".start(U)). Now, by Lemma 4.22, s".end(T')

-61-

s".start(T'); but then s".end(T') > s".start(U), which contradicts the
preconditions for REQUEST-COMMIT. Thus there can be no such U, and T' =
latest(s,s.start(T)).

We now have sufficient resources to prove that P(X) meets its correctness condition.

Lemma 4.24: Let a be a well-formed schedule of P(X) which leads to a
state s. Let $ be an even-length prefix of rearrange(generic(a),P') and let U be
the last writer mentioned in P, or TX if no writer is mentioned in p. Then there
exists a well-formed schedule y of X, which is a subsequence of P equieffective to
$,and which leads to the state s.state(U) from the start state of X.

Proof: We proceed by induction on the length of $. If $ is the empty
sequence, then U = Tx, and y is also the empty sequence. Otherwise, $ =
$'CREATE(T)REQUEST-COMMIT(T,v) for some P', T, and v. By induction
hypothesis, the Lemma holds for $'; let U' and y' be the appropriate access and
schedule for ('. We note that both $ and $', as prefixes of
rearrange(generic(a),P'), must be well-formed. There are then three cases,
depending on T:

" If T is a read access, then U = U' = latest(s,s.start(T)) and y = y'. By
Lemma 4.23, U = reads(T,a) = latest(s',s'.start(T)) where s' is the state of
P(X) immediately preceding REQUEST-COMMIT(T,v) in a. By Lemma
4.20, s'.state(U) = s.state(U). The preconditions on REQUEST-
COMMIT(T,v) thus ensure that y'CREATE(T)REQUEST-COMMIT(T,v)
is a schedule of X; furthermore, by well-formedness of S neither
CREATE(T) nor REQUEST-COMMIT(T,v'), for any v', can occur in y',
so y'CREATE(T)REQUEST-COMMIT(T,v) is well-formed. Thus
because y' and (3' are equieffective, by lemma 4.12
y'CREATE(T)REQUEST-COMMITF(T,v) and S are equieffective.

" If T is a write access, then U = T. Let y = CREATE(T)REQUEST-
COMMIT(T,v). We know that (3=

$'CREATE(T)REQUEST-COMMIT(T,v) is well-formed; thus by
Definition 4.14 $ is equieffective to y. That y leads to s.state(U) follows
immediately from the pre- and postconditions on REQUEST-
COMMIT(T,v).

e If T is an update access, then U = T. Let y=
y'CREATE(T)REQUEST-COMMIT(T,v). By Lemma 4.23, U' =
reads(T,x) = latest(s',s'.start(T)) where s' is the state of P(X) immediately
preceding REQUEST-COMMIT(T,v) in a. By Lemma 4.20, s'.state(U')
= s.state(U'). The preconditions on REQUEST-COMMIT(Tv) thus
ensure that y = y'CREATE(T)REQUEST-COMMIT(T,v) is a schedule of
X; and as above, it is well-formed. Since $' and y' are equieffective, by
Lemma 4.12 $ and y are equieffective. Finally, the postconditions on
REQUEST-COMMIT(T,v) and Lemma 4.20 guarantee that s.state(U) can
follow from y, where s" is the state of P(X) immediately following
REQUEST-COMMIT(T,v) in a.

Corollary 4.25: If a is a well-formed schedule of P(X), then
rearrange(generic(a),P') is a well-formed schedule of X.

-62-

Proof: By the lemma, there exists a well-formed schedule y of X which is
equieffective to rearrange(generic(a),P'). Since rearrange(generic(a),P') is
well-formed, it must also be a schedule of X.

4.3 Pseudotime Schedules

The pseudotime system is the composition of the pseudotime controller, the

transactions of the serial system, and a pseudotime object P(X) for each basic object X in

the serial system. A pseudotime schedule is simply a schedule of the pseudotime system.

A sequence of operations of the pseudotime system is well-forned provided its projection

on transactions and pseudotime objects is well-formed.

Lemma 4.26: Let c be a schedule of the pseudotime system. Then c is
well-formed.

Proof: If c is the empty sequence, the a is well-formed. Otherwise, let x =
W'n, where n is a single operation, and assume by induction hypothesis that a' is

well-formed. There are several cases.

" it is an output of a transaction or pseudotime object. Then a is well-
formed by the requirement that transactions and pseudotime objects
preserve well-formedness.

Sn is an input to a transaction T. Because (x' is well-formed for the
pseudotime system, we know, by Lemma 4.11 and the fact that
generic(W')IT = aIT for all transactions T, that generic(cc') is well-formed
for the generic system. Now, all operations of T are serial, so generic(d)
= generic(a')n. By Lemma 4.1, generic(x) is a schedule of the generic
controller, by Lemma 3.9, generic(a)IT = (LIT is well-formed. Thus (x is
well-formed.

Sn is an input to a pseudotime object P(X). If n is a REQUEST-COMMIT,
INFORM-ABORT, or INFORM-COMMIT operation, then well-
formedness of ClP(X) follows from Lemmas 4.1, 3.9, and 4.11.
Otherwise, either 7c is CREATE(T) for some T or n is ASSIGN-
PSEUDOTIME(T,P) for some T, P. In the former case, by Lemmas 4.1
and 3.2 CREATE(T) does not appear in a'; and by 4.5 ASSIGN-
PSEUDOTIME(T,P) appears in a for some T, P; thus a is well-formed.
In the latter case, 4.5 guarantees that at most one ASSIGN-
PSEUDOTIME for T appears in ; thus no ASSIGN-PSEUDOTIME for
T appears in a', and a is well-formed.

-63-

4.4 Serial Correctness

We can now prove that schedules of the pseudotime system are serially correct for

non-orphans. First, we must show that, for any pseudotime schedule (x and object P(X),

P* a timestamp-orders generic(a)IP(X).

Lemma 4.27: Let a be a pseudotime schedule and P(X) an object. Then
Pa timestamp-orders generic(olP(X)).

Proof: By Lemma 4.26 cxIP(X) is well-formed for P(X); by Lemma 4.11
generic(xlP(X)) is then well-formed for G(X). Now, if $ is any sequence of
INFORM-ABORT operations such that generic(cxlP(X)) is well-formed for
G(X), then (axIP(X))$ will be well-formed for P(X). Furthermore, (0CxP(X))$ will
be a schedule of P(X), since $ contains only input operations of P(X) which must
always be enabled. Thus by Corollary 4.25, rearrange(generic(aP(X))$,P') is a
schedule of X. Now, P' is a subset of P * by Lemma 4.9. Thus
rearrange(generic(alP(X))$,P*x) is a schedule of X for all sequences $ of
INFORM-ABORT operations such that generic(aIP(X))$ is well-formed. Thus
Pa timestamp-orders generic(cIP(X)).

Theorem 4.28: Let a be a pseudotime schedule. Then a is serially correct
for non-orphans.

Proof: By Lemmas 4.1, 4.26, and 4.11, generic(cx) is a generic schedule.
By Lemma 4.7, Pa is a sibling order consistent with affectsT(a); we may then
extend Pa u affectsT(a) into a total sibling order Q. Now, by the preceding

lemma, P*a (and thus Q*) timestamp-orders cxG(X) for every generic object
G(X). Thus we can apply Theorem 3.31, and generic(a) is serially correct for
non-orphans. Since generic(a)IT = alT for any transaction T, a is thus also
serially correct for non-orphans.

-64-

Chapter 5

Conclusions

We have defined, by means of Theorem 3.31, precise correctness properties for

timestamp ordering algorithms, and provided a rigorous proof of the correctness of Reed's

object history mechanism. In the process, we have defined a method for extracting the

"visible" subsequence of a schedule of a non-serial system which refines the transaction-

based notion of visibility of [LM, FLMW] to the level of individual operations. Our results

have been stated in terms of a generic system which closely resembles the generic system

of [FLMW, HLMW]; we hope that this will allow later work to combine timestamp

ordering with other concurrency control algorithms in the same system, while retaining

serial correctness.

-65-

Chapter 6

Acknowledgments

I would like to thank Nancy Lynch for her continued assistance and support

throughout the course of this project. I would also like to extend my thanks to Alan Fekete

for his comments on many drafts of this paper; and to Michael Merritt for providing both

the idea of using a sibling order to represent timestamp ordering and, in a slightly different

form from that used here, the proof of Lemma 3.18.

-66-

References

[BHG] Bernstein, P.A., Hadzilacos, V., and Goodman, N.
Concurrency Control and Recovery in Database Systems.
Addison-Wesley, 1986.

[FLMW] Fekete, A., Lynch, N., Merritt, M., and Weihl, W.
Nested Transactions and Read/Write Locking.
In Proceedings of the Symposium on Principles of Database Systems.

1987.
To appear.

[HLMW] Herlihy, M., Lynch, N., Merritt, M., and Weihl, W.
On the Correctness of Orphan Elimination Algorithms.
Submitted for publication.

[LM] Lynch, N., and Merritt, M.
Introduction to the Theory of Nested Transactions.
Technical Report MIT/LCSfIR-367, MIT Laboratory for Computer

Science, Cambridge, MA, July, 1986.

[R] Reed, D.P.
Naming and Synchronization in a Decentralized Computer System.
Technical Report MIT/LCSJTR-205, MIT Laboratory for Computer

Science, Cambridge, MA, 1978.

