Correctness of Communication Protocols

A Case Study

Jorgen F. Sggaard-Andersen

Department of Computer Science
Technical University of Denmark

DK-2800 Lyngby, Denmark

Nancy A. Lynch

Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, MA 02139
USA

Butler W. Lampson

Cambridge Research Laboratory
Digital Equipment Corporation
Cambridge, MA 02139
USA

November 1993

Appears as Technical Report MIT/LCS/TR-589, Laboratory for Computer Science, Massa-
chusetts Institute of Technology, Cambridge, MA 02139, USA, and as Technical Report ID-TR:
1993-129, Department of Computer Science, Technical University of Denmark, DK-2800 Lyngby,
Denmark.

Contents

1 Introduction

I The Formal Framework

2 The Model

2.1 The Model for Untimed Systems,
2.1.1 SafeI/O Automata.
2.1.2 Live I/O Automata
2.1.3 Correctness oL e e e
2.1.4 Substitutivityo

2.2 The Model for Timed Systems
2.2.1 Safe Timed I/O Automata
2.2.2 Live Timed I/O Automata
2.2.3 Correctnesso e e e
2.2.4 Substitutivity

2.3 Embedding Results L

3 A Temporal Logic with Step Formulas

3.1 Stuttering o L e

3.2 States, State Functions, and State Predicates

3.3 State Transition Functions L o oo

3.4 Step Formulas Lo
3.4.1 State Predicates

3.5 Temporal Formulas L o

3.6 More Temporal Formulas o
3.6.1 Precedence

3.7 Functions and Temporal Formulas over Automata

3.8 Satisfaction and Validity o o oo

3.9 Finite vs. Infinite Executions o o o o

3.10 Stuttering-Insensitive Temporal Formulas

3.11 Comparison with Manna and Pnueli’s Temporal Logic

3.12 Rules and Meta Rules

4 Specifying Systems
4.1 Specifying Untimed Systems o o
4.1.1 SafeI/O Automata. L

11

4.1.2 Live I/O Automata
4.2 Specifying Timed Systems Lo e
4.2.1 Safe Timed I/O Automata
4.2.2 Live Timed I/O Automata
4.3 Embedding e
Proof Techniques
5.1 Untimed Systems oL L e
5.1.1 Simulation Proof Techniques
5.1.2 Execution Correspondence oo
5.1.3 Proving Safe Implementation 0L,
5.1.4 Proving Correct Implementation
5.1.5 History and Prophecy Variables
5.2 Timed Systems oo
5.2.1 Timed Simulation Proof Techniques
5.2.2 Execution Correspondence L oo
5.2.3 Proving Safe Timed Implementation
5.2.4 Proving Correct Timed Implementation
5.2.5 History and Prophecy Variables L.
Example: Reliable At-Most-Once Message Delivery Protocols
Specification S
6.1 The Specification of S Lo
6.1.1 States and Start States o Lo oo
6.1.2 Actions e e
6.1.3 Steps . . . L e
6.1.4 Liveness o e e e e e e e e e e e e
Delayed-Decision Specification D
7.1 The Specification of D L L
7.1.1 States and Start States L L o oL
7.1.2 Actionso e
T3 Steps « o o e
714 Liveness o . Lo e e e e e
7.2 Correctness of D oL
7.2.1 Invariants L L e e e e e e
7.2.2 Safety o
7.2.3 Correctness o o v v vt e e e e e
The Generic Protocol G
8.1 Message Identifiers L L
8.2 The Channels e
8.2.1 States and Start Stateso Lo
8.2.2 Actions e e
8.2.3 Steps . . L e e
8.2.4 Liveness i e e e e e e e e e e e e

63
63
64
66
67
68
69
72
72
74
74
75
76

79

81
82
82
83
83
85

87
88
88
88
89
91
91
91
92
105

10

8.3

8.4
8.5

The
9.1
9.2

9.3
9.4

The
10.1

10.2

10.3

10.4
10.5

The Sender/Receiver Process 114

8.3.1 States and Start States L 114
8.3.2 Partial Order of Identifiers, 116
R.3.3 Actions s 117
8.3.4 Steps ... 117
8.3.0 Liveness e e e e e e e 122
The Specification of G o 123
Correctness of G 124
8.5.1 Invariants e e e e e e e 124
8.50.2 Safety 128
8.5.3 Correctness v v v v e e 145
Five-Packet Handshake Protocol H 151
The Channels 152
The Sender and the Receiver, 152
9.2.1 States and Start States L 152
09.2.2 Actions s 154
0.2.3 Steps . ..o 155
9.2.4 LIVENESS i e e e e e e e e e e e e 158
The Specification of H o o 159
Correctness of H 160
9.4.1 Adding History Variables to H' 161
9.4.2 Invariants e e e e e e e 162
9.4.3 Safety 165
9.4.4 CorrectNess . . . o v v v v v e e 174
Clock-Based Protocol C 191
The Clock Subsystem 192
10.1.1 States and Start States 192
10.1.2 Actions e e e e e e 192
10.1.3 Steps . o o o o e e 193
10.1.4 Laveness o o i e e e e e e e e e e e e e e 193
The Timed Channels 194
10.2.1 States and Start States 194
10.2.2 Actions e e e e e e 195
10.2.3 Steps o o o o e e e e 195
10.2.4 LAveness o o i e e e e e e e e e e e e e 195
The Sender and the Receiver, 195
10.3.1 States and Start States 196
10.3.2 Actions e e e e e 197
10.3.3 Steps o o o e e e 198
10.3.4 Timing Constraints. e 201
10.3.5 The Sender and Receiver Safe Timed I/O Automata 202
10.3.6 Derived Timing Constants o oo 202
10.3.7 Liveness o o o e e e e e e e e e e e e 204
The Specification of Co o L 205
Correctness of C 206

iii

11

10.5.1 Adding History Variables
10.5.2 Invariants o Lo L e e e
10.5.3 Safety oL
10.5.4 Correctness o e e e e
10.6 A “Weak” Clock-Based Protocol o o oL
10.7 The Clock-Based Protocol With One Receiver and Multiple Senders

Conclusion
111 Summary oo o e e e e e e e e
11.2 Evaluation o e e e

11.3 Further Work o e e
11.4 Conclusions 0 0 e e e e e

Bibliography

Basic Definitions

A1 Record Notation o e
A2 Sets o oo o e e e
A3 Bags (Multisets)
A4 Lists and Sequenceso Lo e
A5 Functions and Mappings o 0oL o

Proofs from Part 1

B.1 Proofsin Chapter 3 e

B.2 Proofsin Chapter 4 o e
B.2.1 Untimed Systems e
B.2.2 Timed Systems e e e
B.2.3 Embedding

B.3 Proofsin Chapter 5 o
B.3.1 Untimed Systems e
B.3.2 Timed Systems e e e

Invariance Proofs
C.1 Proof of Invariants at the G Level,
C.2 Proof of Invariants at the C Level,

v

231
231
232
233
233

234

237
237
237
238
238
239

Chapter 1

Introduction

During the past few years, the technology for formal specification and verification of commu-
nication protocols has matured to the point where we believe that it now provides practical
agsistance for protocol design and validation. Several models for distributed systems in gen-
eral and communication protocols in particular have been developed, and recent advances in-
clude formal models that allow reasoning about untimed systems as well as timed systems, e.g.,
[AL92a, GSSL93, LV93a, LVI3h].

In connection with these models a host of proof techniques have been developed for proving
that one protocol implements another. One class of proof techniques is the simulation techniques
(including refinement mappings, and forward and backward simulations) [AL91, GSSL93, Jon91,
LV92, 1LV93a, LVI3b].

In this work, we show how one approach to formal specification and verification of distributed
systems—the live (timed) I/O automata of [GSSL93]—can be used to verify an important class
of communication protocols—those for reliable at-most-once message delivery.

Thus, the report has two main parts: first, the formal framework of [GSS1.93] is presented
and augmented with additional theory (including a new temporal logic). Second, we consider the
verification example. The purpose of our work is to provide better understanding, documentation
and proof for the relaible at-most-once message delivery protocols, and to test the adequacy of
the formal framework.

Formal Framework

When formally developing new protocols or proving correctness of existing ones with respect
to some specification, a stepwise approach is usually used: the specification is given in a very
abstract manner in which abstract data types are used and where possibly no distributed struc-
ture is present. In a series of development steps this specification is refined (or implemented)
by introducing more low-level data types and by introducing a distributed view of the system,
where different nodes (protocol entities) are connected by more or less reliable channels.

By using a formal approach to systems specification, it is possible to prove formally that a
low-level (concrete) protocol correctly implements the high-level (abstract) specification. Such
a proof is performed by proving that each level in the step-wise development is correct with
respect to (i.e., implements) the next more abstract level. This approach to verification implies
that the task of proving correctness of a complicated protocol is split into more managerable
subtasks, and this greatly reduces the complexity of the overall proof.

The models of [GSSLI3] for untimed and timed systems use an automaton (or state machine)

1

2 1. Introduction

to express safety properties. A safety property ensures that the system never does anything
wrong by specifying the steps the system is allowed to perform during execution. However, a
safety requirement does not guarantee that the system does anything at all. For that purpose
the models of [GSSL93] contain an extra liveness condition. The liveness condition restricts
the long-term behavior of the system by specifying what must eventually happen. An example
of a liveness condition is the requirement that each process in a parallel system be given fair
chances to proceed. In timed systems it is furthermore possible to specify timing requirements
like deadlines, response times, etc..

The models of [GSSLI3] are entirely semantic: they describe an abstract view of how dis-
tributed systems behave when executed. Thus, they do not offer any syntaz for writing down
objects of the models. Such a syntax is presented in this work:

e For writing down the automaton part of the models we use a Pascal-like notation which
makes our specifications look close to traditional ways of describing protocols for dis-
tributed systems.

e The liveness part of the models is specified using the language of an extended temporal logic
that we develop. This approach has the advantage that parts of the proofs of correctness
can be performed using rules of the logic.

An important property of the models of [GSS1.93] is that they are compositional. This means
that each component (e.g., node) in a complex system can be specified separately and that
we can implement each component separately and yet obtain an implementation of the entire
system. This enables a modular approach to systems specification and verification.

We test the adequacy of the models and proof techniques by formalizing two existing protocols
for solving the at-most-once message delivery problem and showing how these protocols can be
proved correct.

The At-Most-Once Message Delivery Problem

The at-most-once message delivery problem is that of delivering a sequence of messages submit-
ted by a user at one location to a user at another location. Ideally, we would like to insist that
all messages be delivered in the order in which they are sent, each exactly once, and that an
acknowledgement be returned for each delivered message.!

Unfortunately, it is expensive to achieve these goals in the presence of failures (e.g., node
crashes). In fact, it is impossible to achieve them at all unless some change is made to the
stable state (i.e., the state that survives a crash) each time a message is delivered. To permit
less expensive solutions, we weaken the statement of the problem slightly. We allow some
messages to be lost when a node crash occurs; however, no messages should otherwise be lost,
and those messages that are delivered should not be reordered or duplicated. (The specification
is weakened in this way because message loss is generally considered to be less damaging than
duplicate delivery.) Now it is required that the user receive either an acknowledgement that the
message has been delivered, or in the case of crashes, an indication that the message might have
been lost.

There are various ways to solve the at-most-once message delivery problem. All are based on
the idea of tagging a message with an identifier and transmitting it repeatedly to overcome the

'Our definition of at-most-once message delivery is different from what some people call at-most-once message
delivery in that we include acknowledgements and require messages to be delivered in order.

unreliability of the channel. The receiver? keeps a stock of “good” identifiers that it has never
accepted before; when it sees a message tagged with a good identifier, it accepts it, delivers
it, and removes that identifier from the set. Otherwise, the receiver just discards the message,
perhaps after acknowledging it. In order for the sender to be sure that its message will be
delivered rather than discarded, it must tag the message with a good identifer. What makes
the implementations tricky is that the receiver will be keeping track of at least some of its good
identifiers in volatile (non-stable) memory, which gets lost in case the receiver node crashes. But
the sender does not immediately learn about the crash, so it may go on using these identifers and
thus transmit messages that the receiver will reject. Different protocols use different methods
to keep the sender and the receiver more or less in agreement about what identifiers to use.

A desirable property, which is not directly related to correctness, is that the implementations
offer a way of cleaning up “old” information when this cannot affect the future behavior.

In this work, we consider two protocols that are important in practice: the Clock-Based
Protocol (which we call C) of Liskov, Shrira and Wroclawski [LSW91] and the Five-Packet
Handshake Protocol (which we call H) of Belsnes [Bel76]. The latter is the standard protocol for
setting up network connections, used in TCP, ISO TP-4, and many other transport protocols.
It is sometimes called the three-way handshake, because only three packets are needed for
message delivery; the additional packets are required for acknowledgement and cleaning up the
state. The former protocol was developed as an example to show the usefulness of clocks in
network protocols [Lis91] and has been implemented at M.I.T.. Both protocols are sufficiently
complicated that formal specification and proof seem useful.

Survey of the Example

We express both protocols, H and C, as well as the formal specification S of the at-most-once
message delivery problem, in terms of the models of [GSS1.93].

Although the two protocols appear to be quite different, we have found that both can be
expressed formally as implementations of a common Generic Protocol G, which, in turn, is an
implementation of the problem specification. To prove that G implements the specification, for
proof-technical reasons we introduce an additional level of abstraction, the Delayed-Decision
Specification D. This is depicted in Figure 1.1. Introducing intermediate levels of abstraction,
like G and D, is a general proof strategy that allows large, complicated proofs to be split into
smaller and more managerable subproofs.

The specification S is stated in the untimed model of [GSSLI3] whereas the Clock-Based
Protocol C uses the timed model. This apparent model inconsistency is resolved by considering
S to be a timed system that does not put any constraints in real time. In [GSSL93] certain
embedding results provide the formal basis for moving between the timed and untimed model.

In this report we provide almost complete proofs of correctness. Some parts of the proofs
are omitted however but we treat all different kinds of proofs and provide informal justification
for the missing parts.

Outline of the Report

The report is structured as follows. In Part I we consider the formal framework: Chapter 2
gives a brief introduction to the models of [GSS1.93] and the embedding results. Chapters 3 and

2We denote by “receiver” the protocol entity that is situated on the receiver node, and use phrases like “the
user at the receiver end” to denote the user that communicates with the receiver. Correspondingly for “sender”.

4 1. Introduction

S Specification

D Delayed-Decision Specification

G Generic Protocol

O\

Clock-Based Protocol C H

Five-Packet Handshake
Protocol

Figure 1.1

Overview of the levels of abstraction.

4 describe the syntax we use for specifying systems: first, in Chapter 3, we define an extended
temporal logic, and then, in Chapter 4, we specifically show how this temporal logic is used
to specify liveness conditions. Chapter 5 describes the proof techniques we use when proving
correctness of the protocols. These techniques are mainly taken from [GSSL93].

The remaining part of the report Part II deals with the at-most-once message delivery
example. First, in Chapter 6, we present the formal specification S of the at-most-once message
delivery problem. In Chapter 7 we present the Delayed-Decision Specification D and show that
it correctly implements S. Chapters 8—10 then formally specify the G, H, and C levels and
consider their correctness.

Finally, in Chapter 11, we give concluding remarks.

The report contains three appendices. Appendix A introduces some basic notation and
should be read before the rest of the report. Appendix B and Appendix C contain proofs of
certain results in the main parts of the report.

Acknowledgements

We thank Hans Henrik Lgvengreen for his valuable criticism and useful comments on this report,
and for his contribution to the definition of the temporal logic developed in this report.

This work is supported in part at the Technical University of Denmark by the Danish Research
Academy and the Danish Technical Research Council. Supported at MIT by NSF grants CCR-
89-15206 and 9225124-CCR, by DARPA contracts N00014-89-J-1988 and N00014-92-J-4033, and
by ONR contract N00014-91-J-1046.

Part 1

The Formal Framework

Chapter 2

The Model

To make this report self-contained, we give a brief presentation of the operational models for
distributed systems that are developed in [GSSL93]. We give all formal definitions and results
that are needed but refer to [GSSL93] for details about, e.g., proofs and for a more thorough
treatment of the models.

We first present the model for untimed systems. Then the model for timed systems is
presented, and finally we show how an untimed system can be thought of as a timed system
that allows time to pass arbitrarily.

2.1 The Model for Untimed Systems

The model for untimed systems, called live I/O automata, which is developed in [GSSL93]
consists of an automaton part (or state machine), with a labeled transition relation, and a
liveness condition. The automaton specifies the possible steps of the system, i.e., it specifies
what is allowed to happen, thus, the safety of the system. The liveness condition restricts the
long-term behavior of the system by specifying what must eventually happen.

The liveness condition can be seen as a way of restricting the way the automaton is “executed”
whenever it is working properly. A liveness condition for a system of two parallel processes might
require that each component be given the possibility of making progress infinitely often. In this
way executions where one component wishes to proceed but is never given a chance are ruled
out. This kind of liveness is known as weak fairness and is implemented on a physical machine
by executing the parallel processes on separate processors or by using a fair scheduler. In the
examples in this work we will see examples of more complicated liveness requirements.

As mentioned above the automaton part has a labeled transition relation. This means that
each step of the automaton is labeled by a name, called an action. The set of actions are
partitioned into external and internal actions, where only the external actions are visible from
the environment. The model is event-based in the sense that communication between parallel
components of a system or between system and environment is modeled by joint actions. That
is, communication is modeled as the joint executions of steps labeled by the same action. Thus,
the states cannot be observed. For this reason correctness is based on the sequences of external
actions (called traces) that can occur when the system is working properly, i.e., when its liveness
condition is satisfied.

To express a notion of system vs. environment, the external actions are partitioned into in-
put and output actions, i.e., an I/O distinction is introduced. Intuitively output (and internal)

8 2. The Model

actions are controlled by the system, and are thus called locally-controlled actions, whereas input
actions are controlled by the environment of the system. Since a system cannot control its envi-
ronment, live I/O automata are required to be environment-free which intuitively means that no
matter which inputs the environment provides during execution, the system can perform locally-
controlled actions and in this way satisfy its liveness condition. Thus, the environment-freedom
requirement ensures that live I/O automaton do not have liveness conditions like: “sooner or
later input a arrives”.

The environment-freedom requirement also implies that the automaton part of a live I/0O
automaton must be input-enabled which means that the automaton should be able to receive
any input in any state.

Even though our live I/O automaton model is not as general as a model without I/O dis-
tinction and the environment-freedom requirement, a large number of systems can be specified
using this model. In particular many distributed systems have a clear distinction between the
output from the system and the input from the environment, and furthermore such systems are
usually designed to be able to receive input at any time since processes are usually connected
by networks that are not capable of buffering messages. In [GSSL93] a technical justification of
environment-freedom is offered. This justification deals with the fact that without I/O distinc-
tion and environment-freedon, a trace-based correctness notion as the one mentioned above is
not adequate in that it cannot form the base of a notion of implementation that corresponds to
our intuition. Furthermore, there exists simpler proof techniques for live I/O automata than for
more general models.

We first present the automaton part, called safe 1/O automata. Then we add the liveness
condition, discuss the notion of implementation, and state an important substitutivity property
of the model.

2.1.1 Safe I/O Automata

Definition 2.1 (Safe I/O Automaton)

A safe I/O automaton A consists of four components:
o A set states(A) of states.
o A nonempty set start(A) of start states (start(A) C states(A)).

e An action signature sig(A) = (in(A), out(A), int(A)) of disjoint sets of input, output, and
internal actions, respectively. Denote by ext(A) the set in(A)Uout(A) of external actions,
by local(A) the set out(A)U int(A) of locally-controlled actions, and by acts(A) the set
ext(A) U int(A) of actions.

o A transition relation steps(A) C states(A) x acts(A) X states(A). The transition relation
steps(A) must have the property that for each state s € states(A) and each input action
a € in(A) there exists a state s’ € states(A) such that (s,a,s") € steps(A). A is said to be
input-enabled.

An action a is enabled in a state s if there exists a state s’ such that (s,a,s’) is a step, i.e.,
(s,a,s') € steps(A). A set A of actions is said to be enabled in state s if there exists an action

2.1. The Model for Untimed Systems 9

a € A such that a is enabled in s. An action or set of actions which is not enabled in a state s
is said to be disabled in s.

An ezecution fragment o of a safe I/O automaton A is a (finite or infinite) sequence of alternating
states and actions starting with a state and, if the execution fragment is finite, ending in a state

Q = 5918510289 -

where each (s;,a,41,5,41) € steps(A). Denote by fstate(a) the first state of o and, if « is finite,
denote by Istate(«) the last state of a. Furthermore, denote by frag™(A), frag”(A), and frag(A)
the sets of finite, infinite and all execution fragments of A, respectively. An ezecution is an
execution fragment whose first state is a start state. Denote by exec*(A), exec”(A) and exec(A)
the sets of finite, infinite and all execution of A, respectively. A state s of A is reachable if there
exists a finite execution of A that ends in s.

A finite execution fragment a; = sgays;---a,s, of A and an execution fragment o, =
Splny1Sn41 -+ of A can be concatenated. In this case the concatenation, written a; = as, is
the execution fragment spa 5 -+ - 4y Spy 115041 - - - Clearly, oy © a5 is an execution iff oy is an
execution.

An execution fragment a; of A is a prefiz of an execution fragment as of A, written a; < as,,
if either a; = a5 or «y is finite and there exists an execution fragment «) of A such that
ay = a; " al.

Let o = spa181a985 -+ - be an execution fragment. The length of a is the number of actions
occurring in a. Thus,

la| 2 n if « is finite and ends in s,
o) =
oo if « is infinite

Define the ith prefiz and ith suffiz of a, for 0 < i < |a]!, as

2
al; = Spa181 a8

o 2 Sitip1Sip1 - 1 1< |
’ S)a if « is finite and i = |«

The trace of an execution fragment o of A, written trace(a), or just trace(a) when A is clear,
is the list obtained by restricting o to the set of external actions of A4, i.e., trace(a) = o [ext(A).
For a set F of executions of A, denote by traces,(FE), or just traces(F) when A is clear from
context, the set of traces of the executions in £. We say that J is a trace of A if there exists an
execution a of A with trace(a) = 3. Denote by traces*(A), traces”(A) and traces(A) the sets of
finite, infinite and all traces of A, respectively. Note, that a finite trace might be the trace of an
infinite execution. Furthermore, for any list [of actions of A, define trace (1), or just trace(l)
when A is clear from context, to be [| ext(A).

When specifying complex distributed systems, it is important to be able to specify each process
separately and then obtain the specification of the entire system as the parallel composition of
the specifications of the processes. This modular approach greatly reduces the complexity of
specifying large systems. The parallel composition operator in this model uses a synchronization
style where automata synchronize on their common actions and evolve independently on the
others. It is required that each external action be under the control of at most one automaton,

!The index i ranges over the natural numbers so if |a| = oo, then ¢ < | is the same as i < |a].

10 2. The Model

thus, parallel composition is defined only for compatible safe 1/O automata. Compatibility
requires that each action be an output action of at most one safe I/O automaton. Furthermore,
to avoid action name clashes, compatibility requires that internal action names be unique.

Definition 2.2 (Parallel composition of safe I/O automata)

Safe I/O automata Ay, ..., Ay are compatible if for all 1 <i,7 < N with i # j

L. out(A;)Nout(A;) =10
2. int(A;) Nacts(A4;) =10
The parallel composition A, || --- || Ax of compatible safe I/O automata A;,..., Ay is the safe

I/O automaton A such that
1. states(A) = states(A;) x - -+ X states(Ay)
2. start(A) = start(A;) X --- X start(An)
3. out(A) = out(A;)U---Uout(An)
4. in(A) = (in(A;)U---Uin(Ay)) \ out(A)
5. int(A) = int(A;) U---Uint(An)
6. ((S15...,8n),a,(8),...,8y)) € steps(A) iff forall 1 <i:< N

(a) if a € acts(A;) then (s;,a,s)) € steps(A;)
(b) if a ¢ acts(A;) then s; = s/

The executions of the parallel composition of compatible safe I/O automata A = Ay||...||A.
can be projected to the component automata. First, for any state s of A, denote by s[A; the
state of A; obtained by projecting s to A;. Then, for any execution a of A denote by a[A; the
execution of A; obtained from a by projecting the states in o to A; and by removing each action
not in acts(A;) together with the state preceding the action.

Parallel composition is typically used to build complex systems based on simpler components.
Some actions are meant to represent internal communications between the subcomponents of
the complex system. The action hiding operator allows us to change some external actions into
internal ones.

Definition 2.3 (Action hiding)

Let A be a safe I/O automaton and let A be a set of actions such that A C local(A). Then
define A\ A to be the safe [/O automaton such that

1. states(A\ A) = states(A)
2. start(A\ A) = start(A)
3. in(A\ A) =in(A)

2.1. The Model for Untimed Systems 11

4. out(A\ A) = out(A)\ A
5. int(A\ A) =int(A)U.A
6. steps(A\ A) = steps(A)

The final operator on safe I/O automatais action renaming. Several processes might be identical
except for their actions’ names. A classical example is given by the processes of a token ring
communication network. Such processes could be easily specified by first defining a generic
process and then creating an instance for each process through renaming of the actions. Action
renaming can also be used to resolve name clashes that lead to incompatibilities in Definition 2.2.

Definition 2.4 (Action renaming)

A mapping p from actions to actions is applicable to a safe /O automaton A if it is injective
and acts(A) C dom(p). Given a safe I/O automaton and a mapping p applicable to A, we define
p(A) to be the safe I/O automaton such that

1. stales(p(A)) = states(A)
2. start(p(A)) = start(A)
)= plin(A))

1. out(p(A)) = plout(A))

5. int(p(A)) = p(int(A))

6. steps(p(A)) = {(s.pla). &) | (s,a,5') € steps(A)}

3. in(p(A

2.1.2 Live I/O Automata

We have now described the safety component of a live I/O automaton. The liveness condition
should specify which executions of a safe I/O automaton are considered to represent a properly
working system. For this reason a liveness condition, in this model, is a subset of the executions of
the safe I/O automaton. However, a liveness condition is used to restrict the long-term behavior
of a system, i.e., to specify what must happen sooner or later. Thus, any finite execution of
the safe I/O automaton should have an extension in the liveness condition. In other words, no
matter what the safe I/O automaton has done up to some time, there is still a way for it to
behave properly according to the liveness condition.

This definition of a liveness condition only ensures that the liveness condition does not
introduce more safety than is already specified by the safe I/O automaton. It does not, however,
capture the fact that a live I/O automaton must not constrain its environment. To express this
idea (the environment-freedom condition) formally, we set up a game between the system and
its environment, and the system is then environment-free if it can win the game no matter what
moves the environment performs, i.e., if the system has a winning strategy. The environment
moves by providing any finite number of input actions, and the system moves by performing a
local step, i.e., a step labeled by a locally-controlled action, or by making no step (a L move).

12 2. The Model

The fact that the environment is allowed to provide any finite number of input actions at any
move expresses that the environment can be arbitrarily but not infinitely fast compared to the
system. Note also that the environment provides actions and not steps. This is because the
environment has no control over the state of the system: the environment provides the action
and the system decides which of the possible states it should reach in response.

The behavior of the system during the game is determined by a strategy. A strategy is a
pair (g, f) of functions, where g determines which state to reach in response to an input action,
and [determines the moves of the system. The notion of strategy is formalized as follows.

Definition 2.5 (Strategy)
Consider any safe I/O automaton A. A strategy defined on A is a pair of functions (g, f) where
g :exec*(A) X in(A) — states(A) and f : exec*(A) — (local(A) X states(A)) U {L} such that

1. g(a,a) = s implies (Istate(a),a,s) € steps(A)

2. f(a) = (a,s) implies (lstate(a),a,s) € steps(A)

The moves of the environment during the game are represented as an infinite sequence 7, called
an environment sequence, of input actions interleaved with infinitely many A symbols. The
symbol A is used to represent the points at which the system is allowed to move. The occurrence
of infinitely many A symbols in an environment sequence guarantees that each environment move
consists of only finitely many input actions.

Remember from the discussion above that after any finite execution the system should still
have a way of behaving properly. This is reflected in the following definition of the outcome of
a strategy.

Definition 2.6 (Outcome of a strategy)

Let A be a safe I/O automaton and (g, f) a strategy defined on A. Define an environment
sequence for A to be any infinite sequence of symbols from in(A) U {A} with infinitely many
occurrences of A. Then define R, s, the next-function induced by (g, f), as follows: for any
finite execution a of A and any environment sequence 7 for A,

(aas, ') ifZ =XT', f(a)=(a,s)
Ry pla,) =< (a,1') ifZ7=M", fla)=1

(aas, ') ifZ =al’, g(a,a)=s

Let a be any finite execution of A and 7 any environment sequence for A. The outcome sequence
of (g, f) given a and T is the unique infinite sequence (a",Z"),>o that satisfies:

e (& 7% = (a,7) and

e Forall n >0, (a",I") = Ry, p(a"" 1, 1771,

2.1. The Model for Untimed Systems 13

Note, that (a"),> forms a chain ordered by prefiz.

The outcome O, ;y(a,T) of the strategy (g, f) given a and 7 is the execution lim,_ ., a”, where
(a”,I"),>0 is the outcome sequence of (g, f) given a and Z and the limit is taken under prefix
ordering.

It is easy to see that any outcome of a strategy is an execution of the safe I/O automaton.
The concepts of strategies and outcomes are used to define formally the environment-freedom-

property.

Definition 2.7 (Environment-freedom)

A pair (A, L), where A is a safe I/O automaton and L C exec(A), is environment-free if there
exists a strategy (g, f) defined on A such that for any finite execution a of A and any environment
sequence I for A, the outcome O, ;y(@,Z) is an element of L. The strategy (g, f) is called an
environment-free strategy for (A, L).

Clearly, if a pair (A, L) is environment-free, then any finite execution of A has an extention in
L. Finally we can present the notion of live I/O automaton.

Definition 2.8 (Live I/O automata)

A live 1I/O automaton is a pair (A, L) where A is a safe I/O automaton and L C exec(A) such
that (A, L) is environment-free. We refer to the executions in L as the live executions of (A, L).
Similarly the traces in traces(L) are referred to as the live traces of (A, L).

In Chapter 4 we will define some standard liveness conditions, like weak fairness, for safe I/0
automata and show once and for all that the resulting pairs are environment-free.

The operators on safe [/O automata can now be extended to live I/O automata. For parallel
composition the liveness condition for a composed system consists of all those executions whose
projection to the components yield live executions of the components. That corresponds to the
intuitive idea that a composed system works properly if all components work properly.

Definition 2.9 (Parallel composition of live I/O automata)

Live I/O automata (Ay, Ly),...,(An, Lx) are compatible if the safe I/O automata A,,..., Ay
are compatible.

The parallel composition (A, L) || -+ || (An, Ln) of compatible live I/O automata (A, L;),
..., (An, Ly) is defined to be the pair (A, L) where A = A, || --- || Ay and L = {a € exec(A) |
alA; € Ly,...,a[Ay € Ly}.

Definition 2.10 (Action hiding of live I/O automata)

14 2. The Model

Let (A, L) be a live I/O automaton and let A be a set of actions such that A C local(A). Then
define (A, L)\ A to be the pair (A\ A, L).

Definition 2.11 (Action renaming of live I/O automata)

A mapping p from actions to actions is applicable to a live I/O automaton (A, L) if it is applicable
to A. Let a be any execution of A. Define p(«) to be the sequence that results from replacing
each occurrence of every action @ in a by p(a). Given a live /O automaton (A, L) and a mapping

p applicable to (A, L), we define p((A, L)) to be the pair (p(A), p(L)).?

An important property of the operators is that they are closed for live 1/O automata in the
sense that they produce new live I/O automata.

Proposition 2.12 (Closure of parallel composition)

Let (Ay, Ly),...,(An, Ly) be compatible live 1/O automata. Then (Ay, L) || --- || (Ay, Ln) is
a live 1/O automaton.

Proposition 2.13 (Closure of action hiding)
Let (A, L) be a live 1/O automaton and let A C local(A). Then (A,L)\ A is a live 1/O

automaton.

Proposition 2.14 (Closure of action renaming)

Let (A, L) be a live 1/0 automaton and let p be a mapping applicable to (A, L). Then p((A, L))
is a live 1/O automaton.

2.1.3 Correctness

The notion of correct implementation between live I/O automata is based on their live traces.
A live I/O automaton (A, L) is said to correctly implement a live I/O automaton (B, M), with
the same input and output actions, if all live traces of (A, L) are also live traces of (B, M).
This correctness notion ensures that whatever (A, L) does, (B, M) could have done the same.
That is, (A, L) does nothing wrong which in other words means that (A, L) satisfies the safety
specified by (B, M). Furthermore, the correctness notion also guarantees that (A, L) in fact
does something because the correctnotion is based on live traces, i.e., traces where something
“good” happens.

Sometimes one is not interested in the liveness of a system and therefore specifies a system
as a safe I/O automaton. One safe I/O automaton is said to safely implement a safe 1/0

2As notational convention we allow a function to be applied to subsets of elements from the domain of the
function. The result is then the set obtained by applying the function to each element of the subset. Thus,

p(L) = {p(S)| T € L}.

2.1. The Model for Untimed Systems 15

automaton B, with the same input and output actions, if all traces of A are also traces of B.
This notion of safe implementation does not guarantee that A does anything at all. In fact, a
safe I/O automaton A with one state, no local steps, and “self-loop” steps for each of its input
actions, is a safe implementation of any safe I/O automaton with the same input and output
actions. The notion of safe implementation trivially extends to live I/O automata.

Definition 2.15 (Implementation relations)

Given two live I/O automata (A, L) and (B, M) such that in(A) = in(B) and out(A) = out(B),
define the following implementation relations:

Safe: ACq B iff traces(A) C traces(B)
Safe: (A,L)Cg(B,M) iff ALCgsB

Correct: (A, L)Cy, (B, M) iff traces(L) C traces(M)
|

The symbol Cg indicates that this relation is based on Safe traces. Similarly Ci, is based on
Live traces. All implementation relations are clearly preorders.

2.1.4 Substitutivity

An important property of the model is that it allows a modular approach to systems specification
and verification. If, for instance, a system S is made up of several parallel components, it is
possible to implement separately each component of § and yet obtain an implementation of 5.
This is usually referred to as the substitutivity of the implementation relations with respect to
the parallel composition operator. Similar results exist for the other two operators as stated in
the following proposition.

Proposition 2.16 (Substitutivity)
Let (A;, L;), (B, M;), t = 1,...,N, be live 1/O automata with in(A;) = in(B;) and out(A;) =
out(B;), and let Cx be one relation among Cg and Cy,. If, for each i, (A;, L;) Cx (B:, M;),
then
1. if (A1, Ly), ..., (AN, L) are compatible and (By, M,),...,(Bx, My) are compatible then
(A, L]+ [[(Ax, L) Ex (B, Myl - [[(By, My).
2. if A Clocal(Ay) and A C local(By) then
(A, L) \NACx (B, M)\ A

3. if p is a mapping applicable to both A, and By then

p((A1, L)) Ex p((By, My))
n

Note, in Part 1 of the proposition, that even though (A, L;),...,(Ax, Ly) are compatible, then
the specifications (B, My),...,(By,My) are not compatible if they contain internal actions
that collide with already existing actions of other components. Thus, we must require that also
(By, My),...,(By, My) be compatible. However, in practice the problem is usually solved by
choosing brand new names for new internal actions in an implementation. Similar considerations
apply to Parts 2 and 3.

16 2. The Model

2.2 The Model for Timed Systems

The timed model, called live timed 1/0 automata, is very similar to the untimed model in that it
consists of an automaton part (safe timed 1/0O automaton) and a liveness condition. Each state
of the safe timed I/O automaton has an associated time, returned by the mapping .now, and a
certain time-passage action v representing the passage of time. The steps of a safe timed 1/0
automaton are restricted such that time-passage steps must increase time and all other steps
must not change time. Thus, all other steps than time-passage steps are thought of as occurring
instantaneously. There are a few other restrictions representing natural properties of time.

2.2.1 Safe Timed I/O Automata

Times are specified using a dense time domain T = RZ%, i.e., the set of non-negative reals.
Definition 2.17 (Safe timed I/O automata)
A safe timed 1/0 automaton A consists of five components

o A set states(A) of states.

o A nonempty set start(A) of start states (start(A) C states(A)).

e A mapping .now, : states(A) — T (called .now when A is clear from context), indicating
the current time in a given state.

e An action signature sig(A) = (in(A), out(A), int(A)) of disjoint sets of input, output, and
internal actions, respectively. Denote by ext(A) the set in(A) U out(A) U {r} of external
actions, where v is a special time-passage action, by vis(A) the set in(A)Uout(A) of visible
actions, by local(A) the set out(A) U int(A) of locally-controlled actions, and by acts(A)
the set ext(A)U int(A) of actions.

o A transition relation steps(A) C states(A) X acts(A) X states(A).
A must be input-enabled and satisfy the following five axioms
S1 If s € start(A) then s.now = 0.
S2 If (s,a,s) € steps(A) and a # v, then s'.now = s.now.
S3 If (s,v,s') € steps(A) then s'.now > s.now.
S4 If (s,v,s') € steps(A) and (s',v,s"”) € steps(A), then (s,v,s"”) € steps(A).

To be able to state the last axiom, the following auxiliary definition is needed. Let I be an
interval of T. Then a function w : I — states(A) is an A-trajectory, sometimes called trajectory
when A is clear from context, if

1. w(t).now =t for all t € I, and

2. (w(t),v,w(t)) € steps(A) for all ¢,¢' € I with t < t'.

2.2. The Model for Timed Systems 17

That is, w assigns to each time ¢ in the interval I a state having the given time ¢ as its now
component. The assignment is done in such a way that time-passage steps can span between any
pair of states in the range of w. Denote inf(/) and sup(l) by ftime(w) and ltime(w), respectively.
If I is left closed, then denote w(ftime(w)) by fstate(w). Similarly, if I is right closed, then denote
w(ltime(w)) by Istate(w). If I is closed, then w is said to be an A-trajectory from fstate(w) to
Istate(w). An A-trajectory w whose domain dom(w) is a singleton set [¢,?] is also denoted by

the set {w(t)}.
The final axiom then becomes
S5 If (s,v,s") € steps(A) then there exists an A-trajectory from s to s'.

Axiom S1 states that time must be 0 in any start state. Axiom S2 says that non-time-passage
steps occur instantaneously, at a single point in time. In this framework, operations with some
duration in time are modeled by a start action and an end action. Axiom S3 says that time-
passage steps cause time to increase. Axiom S4 gives a natural property of time, namely that if
time can pass in two steps, then it can also pass in a single step. Finally, Axiom S5 says that if
time can pass from time ¢ to time ¢/, then it is possible to associate states with all times in the
interval in a consistent way. This axiom opens the possibility of specifying hybrid systems, i.e.,
systems where the state can change coutinuously when time passes. However, in the systems we
will look at in this work the states consists of a “basic” state and a now variable, and the basic
state does not change during time-passage.

2.2.1.1 Timed Executions

The notions of executions and traces and operations on these carry over from the untimed
setting. However, executions do not adequately capture the behavior of a system since they do
not tell us what states the system goes through during time-passage. For this reason a notion
of timed ezxecutions is introduced.

A timed execution fragment ¥ of a safe timed I/O automaton A is a (finite or infinite) sequence
of alternating A-trajectories and actions in vis(A) U int(A), starting in a trajectory and, if the
sequence is finite, ending in a trajectory

Y= WoA1W1 oy =« *
such that the following holds for each index i:

1. If w; is not the last trajectory in X, then its domain is a closed interval. If w; is the last
trajectory of ¥ (when ¥ is a finite sequence), then its domain is a left-closed interval (and
either open or closed to the right).

2. If w; is not the last trajectory of X, then (Istate(w;), a; 1, fstate(w;y1)) € steps(A).

A timed execution is a timed execution fragment wyaiw,asws - - - for which fstate(wy) is a start
state.

If ¥ is a timed execution fragment, then define ftime(X) and fstate(X) to be ftime(wy) and
fstate(wy), respectively, where wy is the first trajectory of X. Also, define ltime(¥) to be the
supremum of the union of the domains of the trajectories of ¥. Finally, if ¥ is a finite sequence
where the domain of the last trajectory w is a closed interval, define Istate(X) to be Istate(w).

18 2. The Model

2.2.1.2 Finite, Admissible, and Zeno Timed Executions

The timed executions and timed execution fragments of a safe timed I/O automaton can be
partitioned into finite, admissible, and Zeno timed executions and timed execution fragments.

A timed execution (fragment) ¥ is defined to be finite, if it is a finite sequence and the domain
of the last trajectory is closed. A timed execution (fragment) ¥ is admissible if ltime(X) = cc.
Finally, a timed execution (fragment) ¥ is Zeno if it is neither finite nor admissible.

There are basically two types of Zeno timed executions: those containing infinitely many
occurrences of non-time-passing actions but for which there is a finite upper bound on the times
in the domains of the trajectories, and those containing finitely many occurrences of non-time-
passing actions and for which the domain of the last state set is right-open. Thus, Zeno timed
executions represent executions of a safe timed I/O automaton where an infinite amount of
activity occurs in a bounded period of time. (For the second type of Zeno timed executions, the
infinitely many time-passage steps needed to span the right-open interval should be thought of
a the “infinite amount of activity”.)

There are idealized processes that natually exhibit Zeno behaviors. As an example consider
a ball which is bouncing on the floor and is losing a fraction of its energy at each bounce. Ideally
the ball will bounce infinitely many times within a finite amount of time. Note, however, that
the safe timed 1/O automaton model cannot suitably model this process since there is no way
of specifying what happens after the ball stops bouncing. On the other hand, Zeno behaviors
will not occur in the computer systems we usually want to specify.

Below we will be mostly interested in the admissible timed executions since they correspond
to our intuition that time is a force beyond our control that happens to approach infinity.

Denote by t-frag*(A), t-frag™(A), t-frag”(A), and t-frag(A) the sets of finite, admissible,
Zeno, and all timed execution fragments of A. Similarly, denote by t-exec*(A), t-exec™(A),
t-evec”(A), and t-evec(A) the sets of finite, admissible, Zeno, and all timed executions of A.

A finite timed execution fragment ¥, = wgaw; - - -a,w, of A and a timed execution fragment
Yo = SW Gy 1 1Why1QnpowWnia -+ of A can be concateneted if Istate(X,) = fstate(X,). The con-
catenation, written X, ~ X, is defined to be ¥ = wpaw; -+ a4, (wWy 7 W) p1Wn 11 GnpoWnyo -
where (w ™ w’) is defined to be w(t) if ¢ is in dom(w), and w'(¢) if ¢ is in dom(w’)\dom(w). It is
easy to see that Y is a timed execution fragment of A.

The notion of timed prefix, called t-prefiz, for timed execution fragments is defined as follows.
A timed execution fragment 3, of A is a t-prefiz of a timed execution fragment ¥, of A, written
Yy < Yo, if either Xy = X5 or Xy is finite and there exists a timed execution fragment ¥} of A
such that ¥, = ¥; = X/. Likewise, ¥, is a t-suffiz of ¥, if there exists a finite timed execution
fragment X/ such that ¥, = ¥ 7 Y.

Define ¥ < ¢, read “Y before t”, for all ¢t > ftime(X), to be the t-prefix of ¥ that includes
exactly all states with times not bigger than .

Likewise, define ¥ o ¢, read “X after ¢7, for all ¢ < ltime(X) or all ¢ < ltime(X) when ¥ is
finite, to be the t-suffix of ¥ that includes exactly all states with times not smaller than t.

2.2.1.3 Timed Traces

In the untimed setting automata are compared based on their traces. This turns out to be
inadequate in the timed setting because traces do not capture the invisible nature of time-
passage actions and furthermore do not contain information about the time of occurrence of the
visible actions. For this reason a notion of timed traces is introduced. We first define the notion

2.2. The Model for Timed Systems 19

of timed sequence.

A timed sequence over a set K is defined to be a (finite or infinite) sequence § over K x T in
which the second components (the time components) are nondecreasing. Define ¢ to be Zeno if
it is infinite and the limit of the time components is finite. For any nonempty timed sequence
4, define ftime(§) to be the time component of the first pair in 6.

Now, let ¥ = wya wiasws - - - be a timed execution fragment of a safe timed I/O automaton
A. For each a;, define the time of occurrence t; to be ltime(w;_,), or equivalently, ftime(w;).
Then, define t-seq(X) to be the timed sequence consisting of the actions in ¥ paired with their
time of occurrence:

t-seq(X) = (ar,t1)(as, ta) - -
Then t-trace(X), the timed trace of X, is defined to be the pair
t-trace(Z) = (t-seq() I (vis(A) x T), ltime(X))

Thus, ¢-trace(X) records the occurrences of visible actions together with their time of occurrence,
and the limit time of the timed execution fragment. The timed trace suppresses both internal
and time-passage actions.

Let t-traces*(A), t-traces®(A), t-traces”(A), and t-traces(A) denote the sets of timed traces
of A obtained from finite, admissible, Zeno, and all timed executions of A, respectively.

2.2.1.4 Operations on Safe Timed I/O Automata

As in the untimed setting, there are three operators defined on safe (timed) I/O automata. These
are parallel composition, action hiding, and action renaming. The definitions are similar to the
ones in the untimed setting except that special care has to be taken concerning the handling of
time. For instance, in the parallel composition, all components must agree on real time.

Definition 2.18 (Parallel composition)
Safe timed 1/0O automata Ay,..., Ay are compatible if for all 1 <i,7 < N with i # j
L. out(A;)Nout(A;) =10
2. int(A;) Nacts(A4;) =10
The parallel composition A,||---||Ayx of compatible safe timed I/O automata A;,..., Ay is the
safe timed I/O automaton A such that
1. states(A) = {(s1,...,5n) € states(A;) X -+ X states(Ay) | s1.nowy, = -+ = sy.now,,, }
2. start(A) = start(A;) X -+ - X start(An)
3. (81,...,5N).N0W4 = $1.N0W4, (= $2.N0W4, = -+ = SN.NOW4,)
4. out(A) = out(A)U---Uout(Ay)
5. in(A) = (in(A) U ---Uin(Ay)) \ out(A)
6. int(A) = int(A;)U---Uint(An)

20 2. The Model

7. (8150 0y88),0, (8], ..., 8y)) € steps(A) iff forall 1 <i< N
(a) if a € acts(A;) then (s;,a,s}) € steps(A;)
(b) if a ¢ acts(A;) then s; = s}
|
Note, how Condition 7 of the definition captures both time-passage steps (where all components
participate) and other steps (where a subset of the components participate).

Just like (ordinary) execution fragments can be projected to components in a composed
system, it is possible to define projection on timed execution fragments. If ¥ = woaw aqws - - -
is a timed execution fragment of a safe timed I/O automaton A = A,||---||Ax, define X[A; to
be the timed execution fragment of A; obtained by first projecting each state in the range of
each trajectory to A;, and then, for each action a; ¢ acts(A,;), removing a; and merging the two
(projected) trajectories to the left and right of a;. (Thus, if none of the actions belongs to A;,

the result is one big trajectory representing time-passage of A;.)
Action hiding and action renaming for safe timed 1/O automata can also be defined.

Definition 2.19 (Action hiding)

Let A be a safe timed I/O automaton and let A be a set of actions such that A C local(A).
Then define A\ A to be the safe timed I/O automaton such that

1. states(A\ A) = states(A)
2. start(A\ A) = start(A)
3. .nowa4 = .now,

4. in(A\ A) = in(A)

5. out(A\ A) = out(A)\ A
6. int(A\ A) = int(A) U A
7. steps(A\ A) = steps(A)

Definition 2.20 (Action renaming)

A mapping p from actions to actions is applicable to a safe timed 1/O automaton A if it is
injective, acts(A) C dom(p), and p(v) = v. Given a safe timed I/O automaton and a mapping
p applicable to A, define p(A) to be the safe timed I/O automaton with

1. stales(p(A)) = states(A)
2. starl(p(A)) = start(A)
3. 0w, (a) = NOW4

1. in(p(A)) = p(in(A))

5. out(p(A)) = plout(A))

2.2. The Model for Timed Systems 21

6. int(p(A)) = p(int(A))
7. steps(p(A)) = {(s.p(a). &) | (s,a,5') € steps(A)}

2.2.2 Live Timed I/O Automata

In the untimed setting a liveness condition for a safe I/O automaton A is a subset of the
executions of A such that a special environment-freedom condition is satisfied. Similarly, in the
timed setting a liveness condition for a safe timed I/O automaton is a set of timed executions
such that a special timed version of the environment-freedom condition is satisfied.

As in the untimed setting the environment-freedom condition is stated in terms of a game
between the system and its environment.

The notion of strategy is similar to the one used for the untimed case. However, the presence
of time has a strong impact on the kind of interactions that can occur between an automaton
and its environment.

In the untimed case the environment is allowed to provide any finite number of input actions
at each move, whereas the system is allowed to perform at most one of its locally-controlled
steps at each move. In this way it is taken into account that the environment can be arbitrarily
fast with respect to a system, however, not infinitely fast. In the timed case there is no need
to assume the environment to be arbitrarily fast because each action occurs at a specific time.
Therefore, the relative speeds of the system and the environment are given by their timing
constraints. As a consequence the moves of the environment in the timed setting are input
actions associated with their time of occurrence. Thus, the behavior of the environment during
the game can be represented as a timed sequence over input actions.

If a strategy in the timed setting decides to let time pass, it has to specify explicitly all
intermediate states since the system must be able to respond to possible inputs during such
a time-passage phase. Remember, that in our model it is generally not possible to deduce
deterministically states at intermediate times given a time-passage step.

Definition 2.21 (Strategy)

Consider any safe timed I/O automaton A. A strategy defined on A is a pair of functions (g, f)
where g : t-exzec™(A) X in(A) — states(A) and f : t-exec™(A) — (traj(A) x local(A) x states(A))U
traj(A), where traj(A) denotes the set of A-trajectories, such that

1. g(¥,a) = s implies Ya{s} € t-exec*(A)
2. f(¥)=(w,a,s)implies ¥ "~ wa{s} € t-exec*(A)
3. f(¥) =w implies ¥~ w € t-exec™(A)

4. fis consistent, i.e., if f(¥) = (w,a,s), then, for each ¢, ftime(w) < t < ltime(w), f(X 7
(wot)) = (wet,a,s), and, if f(¥) = w, then, for each ¢, ftime(w) < t < ltime(w),
f(E"(wot))=wot.

w,a,s)
w

R {w if £(2)

For notational convenience define f(X).trj = o if f(3)

22 2. The Model

A strategy is a pair of function (g, f). Function f takes a finite timed execution and decides how
the system behaves till its next locally-controlled action under the assumption that no input are
received in the meantime, whereas function ¢ decides what state to reach whenever some input
is received. Condition 1 states that ¢g returns a “legal” next state given the input. Conditions
2 and 3 give two possibilities for the system moves given by f: either f specifies time-passage
followed by a local step, or f specifies that the system simply lets time pass forever. Note, that
[specifies all states during time passage. This is because, as mentioned above and as we shall
see formally below, a move given by f might be interrupted by input actions, and in that case
it is necessary to know the current state when the inputs arrive. The consistency condition
(Condition 4) for f says that, whenever after a finite timed execution ¥ the system decides to
behave according to wa{s} or w, after performing a part of w the system would decide to behave
according to the rest of the step wa{s} or w. The consistency condition is fundamental for the
substitutivity results below.

The game between the system and the environment works as follows. The environment can
provide any input at any time, while the system lets time pass and provides locally-controlled
actions according to its strategy. If an input arrives, the system will perform its current step
till the time at which the input occurs, and then use function ¢ to compute the state to reach
after the input has occurred.

In the timed setting the system might decide to perform a step at the same time at which
the environment provides some input. Such situations are modeled as nondeterministic choices.
As a consequence, the outcome, i.e., the result of the game, for a timed strategy is a set of timed
executions.

Definition 2.22 (Outcome of a strategy)

Let A be a safe timed I/O automaton and (g, f) a strategy defined on A. Define a timed
environment sequence for A to be a timed sequence over in(A), and define a timed environ-
ment sequence Z for A to be compatible with a timed execution fragment 3 of A if either 7 is
empty, or X is finite and ltime(X) < ftime(Z). Then define R, f, the next-relation induced by
(g, f), as follows: for any X,% € t-exec(A) and any Z,Z’' compatible with ¥, Y’ respectively,
((%,7),(%.,1") € Ry g ift

(X~ wa{s},T) where Y is finite, Z = ¢, f(¥) = (w,a, s),
(X" w,7) where Y is finite, Z = ¢, f(¥) = w,

(¥~ wa{s},7) where X is finite, Z = (b,1)Z", f(¥) = (w, a, 5),
(X¥,7") = ltime(w) < t,

(X~ w'a{s'},7") where X is finite, Z = (a,t)Z”, f(¥).trj = w,
ltime(w) > 1, W =wot, g(¥"w,a)=2s, or

(X,7) where ¥ is not finite.

Let X be a finite timed execution of A, and Z be a timed environment sequence for A compatible
with Y.

An outcome sequence of (g,) given ¥ and T is an infinite sequence (X",72"),>, that satisfies:

o (X°.7% =(X,7) and

2.2. The Model for Timed Systems 23

o forall n >0, (X", 777", (¥",1")) € Ry p)-
Note, that (X"),>¢ forms a chain ordered by t-prefiz.

The outcome O, (X, 1) of the strategy (g, f) given ¥ and 7 is the set of timed executions
Y’ for which there exists an outcome sequence (X",77),5q of (g, f) given ¥ and Z such that
Y o= lim, e X"

In the definition of outcome of a strategy (g, f), the next-relation R, ;) determines allowable
moves based on incoming inputs or performance of locally-controlled actions. In this way the
outcome sequences of (g, f) given some ¥ and Z are determined step by step.

In the definition of R, s, the first, second, and third cases deal with different situations
where no input occurs during the system move chosen by f; the fourth case, instead, takes care
of new incoming inputs; finally, the fifth case of the above definition is needed for technical
reasons to generate a fixpoint in the outcome sequences since the second case generates an
admissible timed execution. Note, that the third and fourth cases might both be applicable
whenever an input occurs exactly at the same time at which the system decides to perform a
locally-controlled action. This is the reason for which the outcome is a set of timed executions.

Assume that the liveness condition for a safe timed I/O automaton could consist of Zeno timed
executions only. If another safe timed I/O automaton has a liveness condition consisting of
admissible timed executions, both of these systems could never work properly when composed
in parallel since the first system would keep time from passing beyond some bound, which could
never yield live timed execitions of the second system. (Remember that all components in a
parallel composition have to agree on real time.)

In this model this problem is solved by restricting attention to admissible timed executions
since these timed executions correspond to our intuition that time grows unboundedly. Thus, in
a live timed I/0O automaton a liveness condition is a nonempty subset of the admissible timed
executions.

However, a problem arises as illustrated by the following example, which is due to Lamport:
Consider two almost identical safe timed 1/O automata with the following characteristics. They
both have one input action and one output action, and if they receive an input before 12 o’clock
they will issue an output after exactly half the time between the input was received and 12
o’clock. Otherwise no output will be issued. To break the symmetry, one of the safe timed
I/0O automata will unconditionally issue an output some time before 12 o’clock. Both of these
safe timed 1/O automata have a nonempty set of admissible timed executions, so adopt these
sets to be the liveness conditions of the safe timed I/O automata, respectively. Now, compose
these systems in parallel by connecting the output of one system to the input of the other,
and vice versa. Then the resulting system has no admissible timed executions but only Zeno
timed executions where time is constrained from passing beyond 12 o’clock. Seen from any of
the components the other component prevents time from passing, and none of the components
will behave properly in the parallel composition. Thus, the parallel composition would not be
an element of the model (since it has no admissible timed executions), which contradicts the
requirement that the parallel composition operator be closed for live timed I/O automata.

The problem illustrated in the example arises because the two components collaborate on
performing the Zeno timed executions. To solve the problem, systems that can collaborate in
this fashion need to be excluded from the model. We do this by identifying a special class of

24 2. The Model

Zeno timed executions, the Zeno-tolerant timed executions. A Zeno-tolerant timed execution is
a Zeno timed execution containing infinitely many input actions but only finitely many locally-
controlled actions. We denote by t-ezec?!(A) the set of Zeno-tolerant timed executions of a safe
time I/O automaton A.

The Zeno-tolerant timed executions represent Zeno behaviors that are exclusively due to a
Zeno environment. Thus, there is no collaboration between system and environment. This gives
rise to a notion of Zeno-tolerant strategy.

Definition 2.23 (Zeno-tolerant strategy)

A strategy (g, f) defined on a safe timed I/O automaton A is said to be Zeno-tolerant if, for
every finite timed execution ¥ € t-exec”(A) and every timed environment sequence 7 for A
compatible with ¥, O, 1(2,7) C t-exec™(A) U t-exec”'(A).

Thus, any Zeno timed execution in an outcome of a Zeno-tolerant strategy is Zeno-tolerant and
thus represents a behavior that is Zeno only because of Zeno inputs from the environment. Note,
that in the Lamport example above it is not possible to find a Zeno-tolerant strategy defined on
any of the two components: if one component behaves in a Zeno fashion, the other component
will collaborate, and the resulting outcome cannot contain Zeno-tolerant timed executions.

We are now ready to present the timed definition of environment-freedom.

Definition 2.24 (Environment-freedom)

A pair (A, L), where A is a safe timed I/O automaton and L C t-exec(A), is environment-free iff
there exists a Zeno-tolerant strategy (g, f) defined on A such that for each finite timed execution
¥ of A and each timed environment sequence Z for A compatible with ¥, O, ¢(X,Z) C L. The
pair (g, f) is called an environment-free strategy for (A, L).

A pair (A, L) is environment-free if, after any finite timed execution and with any (Zeno or non-
Zeno) sequence of input actions, it can behave according to some admissible or Zeno-tolerant
timed execution in A.

This leads to the definition of live timed 1/O automata, where the liveness condition con-
tains only admissible timed executions, but where the strategy is allowed to yield Zeno-tolerant
outcomes when given a Zeno timed environment sequence.

Definition 2.25 (Live timed I/O automata)

A live timed I/O automaton is a pair (A, L), where A is a safe timed I/O automaton and
L C t-ezec™(A), such that the pair (A, L U t-exzec”?'(A)) is environment-free.

2.2.2.1 Operations on Live Timed I/O Automata

The parallel composition, action hiding, and action renaming operators defined for safe timed
I/O automata are now extended to live timed I/O automata in a fashion similar to the way the
operators were extended in the untimed setting.

2.2. The Model for Timed Systems 25

Definition 2.26 (Parallel composition of live timed I/O automata)

Live timed I/O automata (Ay, L1),...,(An, Ly) are compatible iff the safe timed I/O automata
A, ..., Ay are compatible.

The parallel composition (A, Ly)||---||(An, Ly) of compatible live timed I/O automata
(A1, Ly),...,(An, Ly) is defined to be the pair (A, L) where A = Ay||---||Ay and L = {¥ €
t-exec®(A) | X[A; € Ly,...,X[Ay € Ly}.

Definition 2.27 (Action hiding of live timed I/O automata)

Let (A, L) be a live timed I/O automaton and let A be a set of actions such that A C local(A).
Then define (A, L)\ A to be the pair (A \ A, L).

Definition 2.28 (Action renaming of live timed I/O automata)

A mapping p from actions to actions is applicable to a live timed 1/O automaton (A, L) if it
is applicable to A. Let ¥ be a timed execution of (A, L). Define p(X) to be the sequence that
results from replacing each occurrence of every action a in ¥ by p(a). Given a live timed 1/0
automaton and a mapping p applicable to (A, L), define p((A, L)) to be the pair (p(A), p(L)).

As expected the three operators above are closed for live timed 1/0O automata in the sense that
they produce a new live timed I/O automaton. This is a consequence of the environment-freedom

property.

Lemma 2.29 (Closure of timed parallel composition)

Let (Ay, Ly),...,(An, Ln) be compatible live timed 1/0 automata. Then the parallel composition
(A, L)l - . [|(AN, Ly) is a live timed 1/O automaton.

Lemma 2.30 (Closure of action hiding)

Let (A, L) be a live timed 1/0 automaton and let A C local(A). Then (A, L)\ A is a live timed
1/0 automaton.

Lemma 2.31 (Closure of action renaming)

Let (A, L) be a live timed 1/O automaton and let p be a mapping applicable to (A, L). Then
p((A, L)) is a live timed 1/0 automaton.

2.2.3 Correctness

In the timed setting the safe and correct implementation relations are based on timed traces.

26 2. The Model

Definition 2.32 (Timed implementation relations)

Given two live timed I/O automata (A, L) and (B, M) such that in(A) = in(B) and out(A) =
out(B), define the following implementation relations:

Safe: ACq B iff t-traces(A) C t-traces(B)
Safe: (A, L)Cs (B,M) iff ALCg B

Correct: (A, L)Cyr (B,M) iff t-traces(L) C t-traces(M)
|

2.2.4 Substitutivity

The timed model, like the untimed model, offers a modular approach to systems specification
and verification as stated by the following substitutivity results.

Proposition 2.33 (Substitutivity)

Let (A;, L;),(B;, M;), i = 1,...,N, be live timed 1/O automata with in(A;) = in(B;) and
out(A;) = out(B;), and let Cx be one relation among Cs; and Cy. If, for each i, (A;, L;) Cx
(BZ',MZ'), then

1. if (A1, Ly), ..., (AN, Ln) are compatible and (By, M,),...,(Byx,My) are compatible then
(A, L) - -[[(An, L) Ex (B, My)l| - - [[(By, My).

2. if A C local(Ay) and A C local(By) then
(A1, L)\ ACx (B, M)\ A

3. if p is a mapping applicable to both A, and B then
p((A1, L)) Ex p((By, My))

2.3 Embedding Results

The untimed model is used to specify systems where the actual amount of time that passes
between actions is considered unimportant. Many problems in distributed computing can be
stated and solved using this model. However, it is not possible to state anything about, e.g.,
response times. It is implicitly assumed that the final implementation on a physical machine is
“fast enough” for practical usage.

An untimed system can be thought of as a timed system that allows arbitrary time-passage,
as long as possible liveness restrictions are satisfied. This indicates that our timed model is, in
some sense, more general than our untimed model, and that we could use the timed model for
all purposes. However, the timed model is more complicated than the untimed model due to
the time-passage action, the .now component, etc., and furthermore it does not seem natural to
have to deal with time, when the problem to be solved does not mention time at all.

Thus, it is preferable to work within the untimed model as much as possible and only switch to
the timed model when it is needed. The work in this report shows how the untimed specification
(of the at-most-once message delivery problem) is implemented by a system that assumes upper
time bounds on certain process steps and channel delays. Figure 2.1 depicts such a stepwise

2.3. Embedding Results 27

SPEC

Untimed

: Timed
'
IMPL

Figure 2.1

A stepwise development from an untimed specification to a timed implementation.

development. The question is of course what it means to implement an untimed specification
by a timed implementation. Qur approach is to convert the untimed levels to the timed model
by applying an operator, called patient, that adds arbitrary time-passage steps as mentioned
above. We then have an Fmbedding Theorem which states that if a concrete level implements an
abstract level in the untimed model, then the patient version of the concrete level implements
the patient version of the abstract level in the timed model, and vice versa. Thus, the first part
of the stepwise development of Figure 2.1 can be carried out entirely in the simpler untimed
model, and the last part in the timed model. In the intermediate development step which goes
from untimed to timed, one must prove that the timed level implements the patient version of
the untimed level. The embedding lemma can then be applied to show that the implementation
IMPL implements the patient version of the specification SPEC.
We start by defining a patient safe 1/0 automaton.

Definition 2.34 (Patient safe I/O automaton)

Let A be a safe I/O automaton where v ¢ acts(A). Then define patient(A) to be the safe timed
I/O automaton with

o states(patient(A)) = states(A) X T

If s = (s,t) is a state of patient(A), we let s.basic denote s'.

start(patient(A)) = start(A) x {0}

[.n0wpatient(A)(87t) =1

ext(patient(A)) = ext(A) U {v}
o in(patient(A)) = in(A)

28 2. The Model

o out(patient(A)) = out(A)
o nt(patient(A)) = int(A)
o steps(patient(A)) consists of the steps

= {((s,1),a,(s,1)) | (s,a,5") € steps(A)}
- {((Svt)vl/v(svt/)) | > t}

In order to state what it means to apply the patient operator to a live I/O automaton, we need
the following auxiliary definition of what it means to untime a timed execution: Let A be a safe
I/O automaton with v ¢ acts(A) and let ¥ = wya,wiasws - - - be a timed execution of patient(A).

Then define
untime(X) = (fstate(wy).basic)ay(fstate(w,).basic)as(fstate(ws).basic) - - -
Similarly, let v = ((a1,t1)(as2,t2) -+, t) be a timed trace of patient(A). Then define
untime(y) = ajay - - -

The notion of a patient live /O automaton can now be defined. For any live I/O automaton
(A, L), the patient live I/O automaton of (A, L) should be the live timed I/O automaton whose
safety part is patient(A) and whose liveness part consists of all those admissible executions that,
when being made untimed, are live according to L. Thus, the liveness condition of the patient
live I/O automaton allows time to pass arbitrarily, as long as the liveness prescribed by L is
satisfied.

Definition 2.35 (Patient live I/O automaton)

Let (A,L) be a live I/O automaton with v ¢ acts(A). Then, define patient, (L) = {¥ €
t-exec™ (patient(A)) | untime(X) € L} and define patient(A, L), the patient live 1/O automaton
of (A, L), to be the pair (patient(A), patient ,(L)).

It can be proved that for any live I/O automaton (A, L), patient(A, L) is a live timed I/0
automaton.

Lemma 2.36
Let (A, L) be a live 1/O automaton. Then patient(A, L) is a live timed 1/0O automaton.

We now state the Embedding Theorem, thus that the safe and correct implementation relations
for live I/O automata coincide with the safe and correct implementation relations for the patient
versions of the live I/O automata.

Theorem 2.37 (Embedding Theorem)
Let (A, L) and (B, M) be live 1/O automata with v ¢ (acts(A)U acts(B)). Then

2.3. Embedding Results 29

1. (A, L) Cs (B, M) iff patient(A, L) Cg; patient(B, M).
2. (A, L)Cy, (B, M) iff patient(A, L) Cys patient(B, M).

Finally we state a result which is important when doing specification and verification in a
modular fashion. Namely, the patient operator commutes with the three operators on safe and
live (timed) I/O automata. First, let =g, and =, denote the kernels of the preorders Cg; and
Cr., respectively.?

Proposition 2.38
Let (A, L) and (A1, Ly),...,(An, Ly) be live I/O automata and let =x be one of =g, and =p;.

1. Let (A1, Ly),....,(Ay, Lx) be compatible. Then,
patient((Ay, L1)|| - - - ||(An, Ln)) =x patient(Ay, Ly)|| - - - ||patient(An, Ly)

2. Let A Clocal(A). Then,
patient((A, L)\ A) =x patient(A, L)\ A

3. Let p be an action mapping applicable to A and let p, be p U [v — v]. Then,
patient(p(A, L)) =x p,(patient(A, L))

This concludes the introduction to the basic models of untimed and timed systems that we will
use in this work.

paN

®The kernel of a preorder C is defined to be the equivalence = defined by z =y rCynyLCx.

Chapter 3

A Temporal Logic with Step
Formulas

Chapter 2 defined the models of distributed systems we use in this work. One component of the
models is the liveness condition which is a set of (timed) executions. Since such sets may be
infinite (and each execution in the set may be an infinite sequence), it is necessary to have some
way of denoting them without explicitly having to write down any executions. For this purpose
we shall use a temporal logic which will be able to express properties of (ordinary) executions of
safe (timed) I/O automata. Exactly how this temporal logic is used to specify liveness conditions
for timed and untimed systems will be one of the issues of Chapter 4. This chapter is devoted
to defining the temporal logic.

In [MP92], Manna and Pnueli develop a temporal logic and give several examples of its use.
For two reasons we cannot use their temporal logic directly. First, Manna and Pnueli evaluate
temporal formulas over sequences of states and not over sequences of alternating states and
actions. Second, they only deal with infinite sequences of states whereas (even live) executions
of our systems may be finite. In a section below we show, however, how our temporal logic is
related to that of [MP92].

The first reason suggests that maybe Lamport’s Temporal Logic of Actions (TLA) [Lam91]
could be used. However, TLA is still state based in the sense that the semantics of a TLA
formula is a set of sequences of states. Actions are in TLA merely state changes. It is possible
that by having special TLA variables ranging over action names we could use TLA. However,
due to the inherent importance of actions in our approach, we chose to develop our own temporal
logic dealing with actions in a more intuitive manner.

The rest of this chapter is organized as follows: In order to be able to state and prove results in
this and later chapters, we start by introducing notions of stuttering and stuttering-equivalence
in Section 3.1. Sections 3.2-3.4 then introduce the basic building blocks of our temporal logic:
first, in Section 3.2, we introduce the notion of state functions and the special notion of state
predicates. Section 3.3 then describes the notion of state transition functions, which are state
functions that are evaluated over pairs of states. Finally, in Section 3.4, we introduce the
important notion of step formulas. A step formula is a boolean valued function which is evaluated
over steps. Thus, step formulas can express properties of both the states and the action of a
step.

Sections 3.5 and 3.6 now introduce the formulas of our temporal logic, i.e., the temporal

31

32 3. A Temporal Logic with Step Formulas

formulas, by first, in Section 3.5, giving some basic temporal operators and then, in Section 3.6,
defining some important derived operators. In Section 3.7 we see how temporal formulas can be
seen as formulas over safe (timed) I/O automata, and Section 3.8 deals with satisfaction and
validity as well as validity with respect to safe (timed) I/O automata or sets of executions.

Sections 3.9 and 3.10 provide results, mainly about special stuttering-insensitive formulas,
which will prove very important in the next chapter.

Then, in Section 3.11 we compare out temporal logic with that of Manna and Pnueli [MP92].
Finally, in order for our temporal logic to be useful for proving correctness of the protocols in
the second part of this report, Section 3.12 provides certain rules of the logic. We do not in this
work attempt to develop a completely axiomatized temporal logic, but merely state the rules we
have found useful. Further research should investigate a basic set of rules of our temporal logic.

Even though, strictly speaking, executions are only defined with respect to specific automata,
we will in this chapter use the term “execution” to denote any alternating sequence of states
and actions. As usual we let o range over executions.

3.1 Stuttering

For technical reasons which will become clear below, we introduce a notion of stuttering steps
and stuttering-equivalence of executions.

Denote by (a special stuttering action. We will assume that { cannot be used as an ordinary
action of any safe (timed) I/O automaton. Below we will let A denote an arbitrary set of actions
and, hence, it will always be the case that (¢ A. A stuttering step is any triple of the form
(s,(,s), where s is a state.

Since ¢ can never be an action of a safe (timed) I/O automaton A, it can never occur in
any execution of A. However, we will allow stuttering steps to occur in the more broad sense of
executions used in this chapter. As we shall see below, we will not be able in temporal formulas
to refer to the stuttering actions in executions, but it turns out to be important to be able to
evaluate temporal formulas over executions possibly containing stuttering.

Define fa to be the execution obtained by replacing every maximal (finite or infinite) sequence
s(s(s--- in a by the single state s. Thus, the § operator removes all stuttering. Now, define
two executions a; and as to be stuttering-equivalent, written a; ~ aw, if fo; = fas.

For any execution o = spa;81a498- - - - define

. a Ja if « is infinite
“ = S0181G98s + + (S, (8, (S, - -+ if « is finite and ends in s,

Thus, if « is finite, @ is the infinite execution obtained by concatenating infinite stuttering at
the end of a. Clearly, a ~ a.

3.2 States, State Functions, and State Predicates

In Chapter 2 we defined the state space of a safe (timed) I/O automaton to be any set of
individual states. We did not assume any structure of these states but merely assumed that
states are names. In practical examples, especially those presented in this work, the state space
will be described as a mapping from state variables to their values. Thus, a safe (timed) I/O
automaton is assumed to contain a number of (typed) state variables, and the individual states
are then distinguished by having different assignments of values to these state variables. For this

3.3. State Transition Functions 33

reason the temporal logic defined below will reference states using variable names. This approach
is also used in [MP92, Lam91]. Below we will let V denote a set of variables. Furthermore, in
order to avoid the complexity of carrying around the types of the variables, we assume that the
type of a variable is given implicitly by the name of the variable. For example, ¢, j and k& will
typically range over the natural numbers.

We assume that we have a language for writing state functions—using variables, constants,
standard operators, boolean connectives, and quantification—that can be evaluated over states.
We will not give a language for writing down state functions since such languages are fairly
standard. We refer to, e.g., [MP92] for a more thorough treatment of state functions.

A state function over V is a state function whose free variables are a subset of V. If f is
a state function over V, then clearly f is also a state function over V U V', where V' is any set
of variables. For any state function f over V and any V-state s (i.e., any assignment of proper
values to all variables in V), we let s[f] denote the value of f in state s.

A state predicate over V is a boolean valued state function over V. Below we shall see that state
predicates are a special case of a more general notion of step formula.

3.3 State Transition Functions

A state transition function f over V is a state function over VU V°, where V° is the set obtained
by tagging each variable in ¥V with °. State transition functions over V are evaluated over pairs
(s,s") of V-states. The variables in V refer to state variables in s and variables in V° refer to
the corresponding state variables in s'. Formally, the value of a state transition function f over
Vin a pair s, s’ of V-states, written (s, s)[f], is defined as

(s.5)f) = (sUfa® = s'(2) [z € VDIS]

Action Functions and State Transition Predicates

An action function f over (V,A) is a state transition function over V that yields a subset of
the actions in A when evaluated in any pair of V-states. Note, that the stuttering action { can
never be in the range of an action function.

A state transition predicate P over V is any boolean valued state transition function over V.

3.4 Step Formulas

A step formula over (V, A)is a formula that can be evaluated over triples (s, a,s’), where s and
s are V-states and a € AU{(}, i.e., step formulas are evaluated over (possibly stuttering) steps.

There are two kinds of step formulas: those based on action functions and those based on
state transition predicates. We consider these two possibilities and in each case we define what
it means for a step formula P to hold in (s, a,s’), written (s,a,s’) E P.

If f is an action function over (V, A), then (f) is a step formula over (V,A), and we define
(sa) B e (sl

Since ¢ can never be in the range of f, the step formula (f) can never hold in a stuttering step.

34 3. A Temporal Logic with Step Formulas

A state transition predicate P over V is also a step formula over (V, A), where A is an arbitrary
set of actions, and we define

(s,a,8YEP iff (s,8)[P] = true

3.4.1 State Predicates

A state predicate P over V can now be seen as a special case of a step formula, namely a state
transition predicate over V that does not mention any variables in V°. Thus, consistent with
the normal semantics of state predicates, we define what it means for a state predicate P over
V to hold in a V-state s, written s E P,

sEP iff (s,8)[P] = true

When defining temporal formulas below, we deal with step formulas and thereby also state
predicates.

3.5 Temporal Formulas

An execution a = sga;s1asss - - - over (V,.A) is an execution where each s; is a V-state and each
a; € AU{C} such that if @; = ¢ then s,_; = s;,. (Thus, stuttering actions can only occur in
executions if they are part of stuttering steps.) Below we define the notion of temporal formulas
P over (V,A), and what it means for such a formula to hold at position j € N in an execution «
over (V, A), written (a,j) E P. (If o is finite, it is thought of as being extended with stuttering
such that we can also define what it means for P to hold at positions 7 > |a].)

A temporal formula over (V, A) contains only free variables in V and can only mention actions
in A. Thus, a temporal formula over (V,.A) is also a temporal formula over (VU V', AU A"),
where V' is any set of variables and A’ is any set of actions.

Let oo = spa181a485 - - - below.

Step Formulas

Any step formula P over (V,.A) is also a temporal formula over (V,.A) and we have,

(a,j)EP iff (0<j<lal and (s;,a41,5741) F P)or
(J = lal and (sja),s 8101) F P)

Thus, for all positions j in a (except the last one if « is finite), P has to hold for the step
starting in state s;. If « is finite and j is greater than or equal to the last position in «, P has
to hold for the step that stutters the last state.

The Next Operator

If P is a temporal formula over (V,.A), then so is) P, read next P.

(@)EOP iff (aj+1)EP

3.5. Temporal Formulas 35

The Unless (Waiting-for) Operator
If P and @) are temporal formulas over (V, A), then sois P W @, read P unless (or waiting-for)
Q.

(a,/))EPWQ iff either there exists a k > j, such that (o, k) | Q,
and for every ¢ with j <i <k, (a,i) E P
or else for all ¢ with ¢ > j, (a,i) E P

b

Quantification

If P is a temporal formula over (V, A), then (V& : P) and (Jz : P) are temporal formulas over
VA {rh,A).

For any V-state s denote by s7, where v is assumed to be in the type of the variable z, the
(V U {a})-state obtained from s by either, if z € V, changing the value of in s to v, or, if
v ¢ V, extending s with a mapping from = to v. Thus, s* £ (s\ {z})U [z — v]. For any
execution @ = $pa18,a255 - - - over (V, A), let a” denote the execution (s¢)%a;(s1)"as(s9)” -« - over
(VU{z}, A). With this definition, we can define the semantics of universal quantification.

(a,j)EVa: P iff for all values v, (af,j) E P

Thus, P must, for arbitrary (proper) values v, hold for the execution where z is assigned the value
v in every state. This is in [MP92] and [Lam91] known as quantification over rigid variables since
the variable has a constant value during the execution. In [MP92] and [Lam91] quantification
over a program variable z allows & to vary during the execution. We do not consider that kind
of quantification in this work.

FEristential quantification is defined in a similar fashion.

(a,j)EJa: P iff there exists a value v such that (af,j) E P

Boolean Operators

We give the standard definition of implication and negation. The remaning boolean operators
will be derived from these below.

If P and @) are temporal formulas over (V, A), then so is P = @), and we have

(,))E(P= Q) iff (a,j)EP implies that (a,j)E Q

If P is a temporal formula over (V,.A), then so is =P, and we have

()P iff (ag) P

Since we allow boolean operators in both state functions and temporal formulas, there might
be an ambiguity as to how such boolean operators should be interpreted in a given temporal
formula. For example, R = ((z = 1 = y = 2) can be regarded as obtained by A) applying
the next operator to the step formula (z = 1 = y = 2), or B) first applying the temporal
implies operator to the two step formulas z = 1 and y = 2, and then applying the next operator
to the result. It turns out that either interpretation leads to the same result as to whether the
formula holds at a certain position in an execution. However, to avoid confusion we adopt the
convention that step formulas in temporal formulas are always “as large as possible”, thus, we
consider R in the example to be produced as described in case A).

36 3. A Temporal Logic with Step Formulas

3.6 More Temporal Formulas

The rest of the temporal operators can be described syntactically from W, — and —. Below
we assume that P and @ are temporal formulas over (V,.A). The formulas we define are then
also temporal formulas over (V,.A).

More Boolean Operators

Disjunction and conjunction are defined in the standard way.
PVQ = (-P)=Q
PAQ = =((=P)V(-Q))

The Inclusive Unless Operator

The W operator defined above requires a formula P to hold forever or, if another formula)
holds at some point, at least up to but not necessarily including the point where () starts to
holds. Often we need to express that P also holds in the state where @) starts to hold. For this
reason we introduce the inclusive unless operator W; defined as

PW,Q 2 PW(PAQ)

The Always Operator

To express that a formula holds forever, we define OP, read always P.

aP = PW false

The Fventually Operator

To express that sooner or later a temporal formula holds, we define &P, read eventually P.

OP 2 -0(-P)

The (Inclusive) Until Operator

The unless operator expresses that a temporal formula P holds at least until another temporal
formula @) starts to hold, but it does not require that ¢ eventually holds. (If @ does not hold
eventually, P should hold forever). To express that () is required to hold eventually, we define
PUQ, read P until Q).

PUQ = (OQ)N(PWQ)
There is also an inclusive version of the until operator.

PU;Q = (OQ)N(PW; Q)

The Leads-To Operator

The leads-to operator is an important temporal operator which expresses that during an execu-
tion, if P holds at some point, then ¢ will hold at a later (or the same) point. Thus, P ~ @,
read P leads to (), is defined as

P~ Q = 0(P = (0Q))

3.7. Functions and Temporal Formulas over Automata 37

3.6.1 Precedence

To avoid excessive use of parentheses, we use the following convention regarding the precedence
(binding power) of the temporal operators. The operators in the group

O o & -

have equal precedence but higher precedence than the operators
AN

which, in turn, have equal precedence but higher precedence than the operators
= W W, U U, -~

which have equal precedence.

3.7 Functions and Temporal Formulas over Automata

For any safe (timed) I/O automata A whose state space is defined by state variables, denote
by wvariables(A) the set of state variables of A. We say that f is a state function or state
transition function over A if f is a state function or state transition function over variables(A),
respectively. Similarly, f is said to be an action function over A if it is an action function over
(variables(A), acts(A)). This notion trivially extends to step formulas and temporal formulas.

3.8 Satisfaction and Validity

An execution a over (V,.A) is said to satisfy a temporal formula P over (V,A), written a | P,
if and only if P holds at position 0 of a, thus

aEP iff (a,0)FP

A temporal formula P over (V,.A) is said to be valid, written = P, if every execution a over

(V, A) satisfies P, thus
E P iff forall wover (V,A),aEP
We also introduce a notion of validity relative to a set E of executions over (V, A). A temporal
formula P over (V, A) is then E-valid, written F | P, if every execution of F satisfies P, thus
EEP iff foralla€e F,alEP

This notion extends to A-validity, where A is a safe (timed) I/O automaton. Then, for any
temporal formula P over A, P is said to be A-valid, written A | P, if every execution of A
satisfies P, thus

AEP ifft ~ forall o € exec(A), a = P

38 3. A Temporal Logic with Step Formulas

3.9 Finite vs. Infinite Executions

Above o has ranged over infinite as well as finite executions. In this section we prove that the
question whether a temporal formula P holds at position j in execution « is equivalent to the
question whether P holds at position 7 in a. This result is, of course, due to the semantics of
step formulas which has a special case dealing with stuttering steps.

Lemma 3.1

Let P be a temporal formula over (V, A). Then, for all executions a over (V, A) and all j > 0,
(,))EP dff (@ j)FP

Proof
In Appendix B.
|

3.10 Stuttering-Insensitive Temporal Formulas

A temporal formula P over (V,.A) is stuttering-insensitive if, for arbitrary executions a; and
ay over (V, A) with a; ~ ay, a; E P if and only if ay | P. Thus, if P is stuttering-insensitive
and holds for a, it holds for all executions that can be obtained from a by adding or removing
stuttering.

Below, in Proposition 3.4, we prove that certain types of temporal formulas are stuttering-
insensitive. However, first we need two technical lemmas.

Lemma 3.2

Let P be a temporal formula over (V, A) and o = sqa;81a455 - - - an arbitrary infinite execution
over (V, A). Then, for all j >0 and all : < j

(w))EP iff Gule,d) P

Proof
In Appendix B.
|

Lemma 3.3

Let a and o' be infinite executions such that o ~ o'. Then, for all k > 0, there exists a k' > 0
such that

1. pla =~ e

2. for all 0 < ¢ < K, there exists an i with 0 < ¢ < k such that ;| ~ ;|a/

Proof
In Appendix B.
|

3.11. Comparison with Manna and Pnueli’s Temporal Logic 39

We can now characterize certain temporal formulas which are stuttering-insensitive. State pred-
icates are always stuttering-insensitive. This is because stuttering-equivalent executions will
always start in the same state. General state transition predicates are not, however, stuttering-
insensitive in general. This is due to the fact that stuttering-equivalent executions do not neces-
sarily agree on the first step. All state transition predicates that hold in all stuttering steps are,
however, stuttering-insensitive. Also, step formulas of the form (f) are not stuttering-insensitive,

but &(f) is.
For the temporal operators, formulas of the form () P are not stuttering-insensitive in gen-
eral. Assume for instance that a; = spa;81a285 -+ and a; = $(S8pa181a98 - --. Then a; ~ as,.

Assume that (ay,j) E P only if j = 1. Then ay E P but ay £ P. Thus, O P is not stuttering-
insensitive. However, all other temporal operators yield stuttering-insensitive temporal formulas
when applied to stuttering-insensitive formulas.

Proposition 3.4
1. Fvery state predicate P is stuttering-insensitive.

2. If P is a state transition predicate such that for all states s, (s,(,s) E P, then P is
stuttering-insensitive.

3. If f is an action function, then O(f) is stuttering-insensitive.
4. If P and Q) are stuttering-insensitive, then

(a) PWQ,
(b) Yo : P,
(c) Jx : P,
(d) =P, and
(¢) P=Q

are all stuttering-insensitive.

Proof
In Appendix B.
|

3.11 Comparison with Manna and Pnueli’s Temporal Logic

The temporal logic of Manna and Pnueli [MP92] is state based in the sense that temporal for-
mulas are evaluated over sequences of states, i.e., with no actions interleaved. These sequences
(computations) must be infinite; terminating computations are made infinite by appending in-
finite stuttering at the end.

As Lemma 3.1 indicates we could also have chosen to deal with infinite executions only: any
temporal formula in our temporal logic is satisfied by a finite execution « if and only if the
temporal formula is satisfied by the infinite execution obtained by appending infinite stuttering
at the end of a. This indicates that the use of infinite computations only in [MP92] as opposed
to our use of both finite and infinite executions is not an important difference between the two
logics.

40 3. A Temporal Logic with Step Formulas

The real difference lies in the important role of actions in our logic. We need to be able to
express properties of the actions occurring in executions. However, as the following discussion
indicates, several results of [MP92] carry over to our logic.

Consider any (infinite) execution
O = S0 A8 - - -
This execution can be encoded as the following state based computation:
0 = (Sg,a1,51)(81,09,89) -
Thus, each state of ¢ is a triple. Specifically, states of ¢ are assignments of the form:

[T = V1,

&
3
1
=

3

2
Q
1

2

z, o~ v,]

where the variable assignments to z,...,x, represent the first state in a triple, the special
variable act holds the action of the triple, and the variable assignments to), ..., 2/ represent

the last state in the triple.

Now, any valid temporal formula of [MP92] holds, in particular, for computations, where
each state has the form (s, a,s’) such that the last state of each triple coincides with the first
pair of the next triple. Thus, valid formulas of [MP92] hold specifically for all computations
that are encodings of our executions.

In order for such validity results of [MP92] to carry over to our temporal logic, it is important
that the operators of [MP92] that we also use have a similar semantics in the two temporal logics,
but this is easy to see. In fact, we have been guided by the temporal logic of [MP92] when defining
the semantics of our temporal operators.

Note, that since our notion of execution in the encoding into computations is more restrictive
than general computations, validities in our logic do not carry over to the temporal logic of

[MP92].

3.12 Rules and Meta Rules

Temporal logics, or any logic for that matter, usually contain inference rules which allow validities
to be inferred from other validities. This is however not the way we shall use our temporal logic
in the verification examples in this work. Typically, we are given a particular execution o which
satisfies a temporal formula P and then have to show that « satisfies another temporal formula
(). Thus, our proofs will be proofs of satisfaction as opposed to proofs of validity.

So, for our purpose inference rules are not very useful. Instead we shall use rules of the form
of valid implications.

FP=0Q

Such a rule (together with the definition of implication) allows us to conclude o E @ from

afE P.

3.12. Rules and Meta Rules 41

We now present the rules that we use in our correctness proofs below. We do not present simple
rule like, e.g., manipulation of Boolean operators or rules like

Par: E(OP)=P

but implicitly use such rules in our proofs. An approach like TLA [Lam91] has invested a lot of
effort in finding rules that are typically used when proving systems correct. Such an investigation
still needs to be done for our temporal logic. Thus, we present the rules we have found a need
for in the particular examples presented in this work and leave the more general investigation
for further research. We do not prove that the rules are actually validities but we note that
this should follow easily from an encoding into the temporal logic of [MP92] as described in
Section 3.11. In the rules we let P(k) denote a formula with k free. Then, e.g., P(0) is the
formula obtained from P(k) by replacing all free occurrences of k with 0.

MP: E((PAN...AP) = Q)NPL N NP)=Q

MP1: E(OWP = Q)NOP)= OQ

Prol: = (Vk 3K (k> K A P(k))~ P(K')) = OP(0)

Pro2: E(OP=(QWR)ANOQ = AN(QAS)~ R)) = (P~ R)

Ind: E ((PO)~ Q)AYk:(k>0= 3k : (K <k A (Pk)~ P(K)VQ)))) =
Ya: (P(n) ~ Q)

Unl: E(OP = -Q)A(PW,;Q)) = OP

Unli: E(@OP = (QW R)AN(0OQ = <8)) = O(P = (CRV OOY))

The rules allow us to prove that a given execution satisfies a formula, provided it satisfies another
formula. We shall be using other rules, called meta rules, which cannot be stated as validities.
For instance, if & F OP and «’ is a suffix of a, then o/ | OP. Again, we present the meta rules
we have found useful in our particular examples, and leave an investigation of a “complete” set
of meta rules as well as proofs of our meta rules for further research. We note, however, that
many of the meta rules can be proved using Lemma 3.2.

Lemma 3.5
1. If o« EOP and o' is a suffiz of o, then o/ = OP.

If, for all suffizes o/ of a, &' = P, then o |= OP.

If a |E OP, then there exists a suffiz o' of a such that o | P.
If there exists a suffix o' of @ and o/ |= P, then a | OP.

If, for any proper constant v, o = P(v), then o |E Yk : P(k).
If a EYE : P, then, for any proper constant v, a | P(v).

If, for some proper constant v, a | P(v), then o = 3k : P(k).

Sl R N O

If o = 3k : P(k), then there exists a proper constant v such that o = P(v).
|

Since, in our proofs below, we shall use the different parts of Lemma 3.5 extensively, sometimes
we use several parts at once and then simply refer to the lemma and not the particular parts.

42 3. A Temporal Logic with Step Formulas

This concludes the introduction to our temporal logic. The temporal logic is especially designed
so that formulas are evaluated over executions of safe (timed) I/O automata. This allows us
to use the temporal logic to specify liveness conditions of live (timed) I/O automata and use
the rules of the temporal logic in correctness proofs. Exactly how we use the temporal logic for
specifying liveness conditions is one of the issues of the next chapter.

Chapter 4
Specifying Systems

Chapter 2 introduced our basic models of timed and untimed systems. The models are entirely
semantic: they describe the operational meaning of a system, that is, how a system behaves
when executed.

A live I/O automaton consists of mathematical objects like sets and lists. However, these
sets and lists may be infinite, which indicates that a direct enumeration is not feasible. Thus, we
need a language or some syntaz, other than standard mathematical notation, for writing down
elements of our models. This chapter describes the syntax we use.

Furthermore, we describe how the effect of semantic operators (like parallel composition) is
reflected in the syntax. For instance, we shall use the language of the temporal logic of Chapter 3
for specifying liveness conditions. We then show, e.g., that under certain circumstances if the
liveness of two systems are described by temporal formulas ()4 and () g, respectively, then the
liveness of the composed system is described by @4 A @ g. This is important since it enables us
to obtain a syntactic specification of the composed system directly from the specification of the
component systems.

The rest of this chapter is organized as follows. We first, in Section 4.1, deal with untimed
systems and then, in Section 4.2, show how timed systems can be specified. Finally Section 4.3
proves important embedding results.

4.1 Specifying Untimed Systems

4.1.1 Safe I/O Automata

Safe I/O automata will be specified using the precondition-effect style normally used for speci-
fying the I/O automata of [LT87, LT89].

This style assumes that the state space of the safe I/O automaton is described as a mapping
from state variable names to their values. Thus, the state space of a safe I/O automaton will
be described by listing the state variable names together with their types. The start states of
a safe [/O automaton are then specified by giving the possible values the state variables can
assume initially.

As an example, consider the specification of a one-place buffer with the following functions:
a message m can be placed in the buffer by the input action send(m) and removed from the
buffer by the output action receiver(m). (The environment is thought of as sending messages
to the buffer and receiving them from the buffer.) If a new message is sent to the buffer before

43

44 4. Specifying Systems

the previous message is passed on to the receiver, a special overflow flag is set, which leads to
an output action overflow. Initially the buffer is empty and the overflow flag is not set. Thus,
the state space and start state of this safe I/O automaton is described as:

‘ Variable ‘ Type ‘ Initially ‘ Description ‘
buf MsguU{Ll} | L The one-place buffer. The symbol L denotes the
empty buffer.
of Bool false The overflow flag. A value of true denotes
overflow.

We denote by variables(A) the set of state variables of the safe I/O automaton A. We use the
normal record-notation for referencing the values of state variables in a given state. For instance,
the value of state variable buf in state s is denoted by s.buf. Formally, since s is a mapping
from variables to values, we have s.buf = s(buf).

The action signature of the one-place buffer is described as follows:

Input:
send(m), m € Msg
Output:
recetve(m), m € Msg
overflow
Internal:
none

Thus, even though there might be infinitely many actions (Msg might be infinite), we use
only finitely many action generator functions to describe these actions. (The action generator
functions are assumed to be disjoint and their union to be injective).

It now only remains to show how to define the transition relation. Generally, for each action
generator function we define one or more step rules. For example, in the case of the action
generator function send above we might want to define two step rules based on some partition
of the messages Msg into Msg, and Msg,. Then one step rule would define steps labeled with
actions from {send(m) | m € Msg, }, and the other would define steps labeled with actions from
{send(m) | m € Msg,}. The sets Msg, and Msg, could even be overlapping, in which case we
introduce nondeterminism of the send steps. A step rule has the form

agf(z,y,...)
Precondition:
P
Effect:
E

where agf is an action generator function over the variables z, y, etc., P is a precondition, and
FE is an effect clause.

The precondition P is a state predicate over the state variables of the system and the variables
z, y, etc.. A particular action, say agf(1,2,...), is then enabled in state s, if P holds in s after
replacing free occurrences of @ with 1, free occurrences of y with 2, and so on.

The effect clause F uses a Pascal-like style of assignments. Thus, the effect clause consists
of a list of assignments (one per line) of the form

vi=€

4.1. Specifying Untimed Systems 45

where v is a state variable and e is an expression (state function)—of the same type as v—over
the state variables and the variables z, y, etc.. Again, for a particular action agf(1,2,...) we
must replace free occurrences of # with 1, free occurrences of y with 2, and so on, in the expression
e. If ¢ denotes this instantiated expression, then if s is the state before the assignment, the
result of executing the assignment is the state s’ obtained by changing the value of v to s[e'].
Thus, s = (s\ {v})U[v+ s[€e']]. The result of executing a list of assignments

assignment,

assignment,,

is obtained by first executing assignment,, then assignment,, and so on. Thus, the state will be
changed in an sequential manner, but remember that this is just a convenient way of describing
the post-state of the step, namely the state after the last assignment. In TLA [Lam91] the
effects of steps are given by directly relating the values of the individual state variables in the
pre- and post-states, but we have chosen this more program-like notation.

To make some assignments conditional we use an if-then-else construct. An example of such
a construct is,

if P then
assignment,
assignment.,

else
assignment,
assignment,

where P is a state predicate. The semantics is of course that if P holds when control has reached
the if-statement, then assignments 1 and 2 are executed (in that order); otherwise assignments
3 and 4 are executed. Note, that we use indentation to indicate the end of the if-then-else
construct. This means that

if P then
assignment,
assignment.,

else
assignments

assignment,

is different from the previous if-then-else construct in that this construct first executes either
assignments 1 and 2 or assignment 3 depending on the value of P, and then, unconditionally,
executes assignment 4. We omit the else part of an if-then-else construct if it contains no
assignments.

The format of the effect-clause described so far does not allow nondeterminism for a particular
action. To specify such nondeterminism we will use optional assignments of the form

optionally =z :=e

with the meaning that nondeterministically either the assignment is or is not executed.

We could have been more formal in defining the syntax and semantics of assignments, etc.,
but since such syntax and semantics are standard, we have chosen to keep the exposition at a
more intuitive level.

46 4. Specifying Systems

Finally, we note that step rules may contain variables which are not state variables or vari-
ables occurring in action generator functions. Such variables can be thought of as constants,
and we then effectively defines a step rule for each proper value of the constant. An example is
the following step rule, where n is such an extra variable.

agf(z,y,...)
Precondition:

LA0< <10
Effect:

[761}::75—1—112

Safe I/O automata must be input-enabled (cf. Definition 2.1). This is ensured by omitting the
preconditions for input actions. This has the same meaning as a precondition of true. The
definition of the transition relation for the one-place buffer now looks like:

send(m) recetve(m)
Effect: Precondition:
if buf # L then buf = m
of := true Effect:
buf :=m buf := L
overflow
Precondition:
of = true
Effect:
of := false

An operational way to read such a definition is as follows. The definition for send(m) says that
if the buffer receives a new message m when buf is not empty, the overflow bif of is set. After
that the new message is placed in buf (and a possible previous message will thus be overwritten).
The one-place buffer can perform a receive(m) step if m is the message in the buffer. The result
is to empty the buffer. Finally, overflow can be signaled if the overflow flag of is set, and the
result is that of gets reset to false.

4.1.1.1 Operations on Safe I/O Automata

In Section 2.1.1 we defined the three operators (parallel composition, action hiding, and action
renaming) on safe /O automata. Below we explain how the safe I/O automata resulting from
applying these operators can be described using syntax derived from the description of the safe
I/0O automata to which the operators were applied.

We start by considering parallel composition of safe I/O automata. In Definition 2.2, which
defines parallel composition, we defined a notion of compatibility for safe 1/O automata. This
notion deals with guaranteeing that each action in a composed system be controlled by at most
one component and that internal actions be unique. Definition 2.2 also says that the state space
of a composed system is the cartesian product of the component state spaces. This means that
if we want to reference the value of a certain state variable of one component, we first have to
extract the state of the component from the total state. This becomes even more cumbersome
if several levels of parallel composition are used. In order to avoid dealing with these not very
interesting details of extracting component states of component states, etc., we will extend the

4.1. Specifying Untimed Systems 47

notion of compatibility to also include the requirement that the sets of state variables of the
component systems be disjoint. In this way a state s of the composed system can be uniquely
described by an assignment of values to the total set of state variables in the system such that
the value of any state variable z in s agrees with the value of z in the state of the component
to which 2 belongs. (More precisely, such a “flat” assignment of values to state variables is
isomorphic to the state define by the parallel composition operator in Chapter 2.) Thus, if s;
describes the state of the ¢th component as a mapping from state variables of this component
to their values, the state of the composed system is described by the mapping s; U--- U sy.

Thus, below we shall use the following definition of compatibility (cf. Definition 2.2): Safe
I/O automata Ay,..., Ay are syntactically compatible if for all 1 <i,j7 < N with ¢ # j

L. out(A;)Nout(A;) =10
2. int(A;) Nacts(A4;) =10
3. wvariables(A;) N variables(A;) = 0.

Note that the first two conditions have not changed. Below we let “compatibility” refer to
“syntactical compatibility”.

This notion of compatibility trivially extends to live I/O automata (cf. Definition 2.9). A
consequence of this way of looking at the state space of a composed system is that for compat-
ible safe I/O automata A;,..., Ay, the set of state variables of A = A;||---||Ay is given by
variables(A) = variables(A;) U - - - U variables(Ay) .

Thus, the state variables (together with types and initial values) of a composed system can
be described by writing the lists of state variables for the components one below the other. In
a similar fashion it is easy to list the action signature of the composed system.

The question is, how can the description of the steps of the composed system be derived
from the description of the steps of the components? Remember, from Definition 2.2, that in
each step of the composed system several components might participate (each executing state
changes described locally for the action of that step) whereas all other components do not
change their state. Also remember, that the action of the step is locally-controlled by at most
one component. That is, either the action is an input action for all participating components,
or it is locally-controlled by one component and an input action for the remaining participating
components. Then, if the step rules for send(m) in three components, one of which controls the
actions, are described by

send(m) send(m) send(m)
Precondition: Effect: Effect:
P E> E;
Effect:
By

then the send(m) steps of the composed system can be described by

send(m)
Precondition:
Py
Effect:
£
by
b

48 4. Specifying Systems

Note, that the order of the three effect clauses is unimportant since £, F,, and F3; mention
disjoint sets of state variables.

Since the construction of the step rules of the composed system is so simple, we usually omit
the explicit construction and instead refer to the step rules of the components.

For action hiding the situation is much simpler (cf. Definition 2.3). If, for instance, A is a
safe I/O automaton and A is a set of locally-controlled actions of A, the syntactic description
of A\ A is obtained from the syntactic description of A by simply moving the action generator
functions describing output actions in A from the list of action generator function describing
output actions to the list of action generator functions describing internal actions. Of course,
if only some of the actions described by an action generator function are hidden, the action
generator function will have to be split. For example, if send-nat(i), where ¢ € N, is an action
generator function for output actions of A, and A = {send-nat(7) | i > 100}, then send-nat(7),
0 <1< 99, will be in the listing of output actions of A\ A and send-nat(7), ¢ > 100, will be in
the listing of internal actions of A\ A.

Finally, for action renaming we use mappings of the form [send(m) — send-message(m) |
m € Msg] U ---, where, intuitively, each entire action generator function is being renamed. In
this case each action generator function is simply replaced according to the action mapping in
the syntactic descriptions of the action signature and the steps.

In the remainder of this work we shall assume that the syntactic changes to safe (timed) I/O
automata reflecting semantic operations on these are well understood and concentrate on the
more interesting aspects of defining liveness.

4.1.2 Live I/O Automata

We specify a liveness condition L for a safe I/O automaton A indirectly in terms of a temporal
formula ¢) over A in the following way:

L={acerec(A) | aEQ} (4.1)

That is, the liveness condition L consists of all the executions of A that satisfy a certain temporal
formula ¢). Of course, we have to make sure that what we define is in fact a liveness condition
for A, i.e., we must make sure that any finite execution of A can be extended to an execution
in L. We shall refer to any temporal formula @) over A that defines a liveness condition L for
A as a liveness formula for A. Moreover, we call the liveness formula environment-free for A if
(A, L) is environment-free and thus is a live I/O automaton.

Given a liveness formula @) for A, we shall refer to the liveness condition defined by (4.1) as
the liveness condition for A induced by Q.

4.1.2.1 Operations on Live I/O Automata

In Section 2.1.2 we defined the three operators (parallel composition, action hiding, and action
renaming) on live [/O automata. If our approach with specifying liveness using temporal for-
mulas should have any practical relevance, it is important that the environment-free liveness
formulas inducing the liveness conditions for the resulting live I/O automata can be obtained
directly from the environment-free liveness formulas for the original live I/O automata.

This section proves that this is the fact given a few restrictions. As always we start by
the result for parallel composition, which requires three preliminary lemmas the first of which
embodies the complexity of the proof.

4.1. Specifying Untimed Systems 49

To help us state and prove the results below, we first define a notion of restriction of an execution
over (V,A) to (V', A’). This notion is not similar to the notion of projection of executions to
automata as defined in Chapter 2 since it introduces stuttering steps for actions not in A’,
whereas the definition in Chapter 2 simply removes such steps. Below we shall, however, see
how the two notions are related.

For any V-state s, s [V', where V' C V, is the V’'-state obtained from the mapping s by
restricting the domain to V'.

Then, for any execution a over (V,A), define o [(V', A"), where V' C V and A’ C A, to
be the execution over (1, A’) obtained from a by replacing each state s in a with s [V" and
replacing each action a ¢ A" with (.

Lemma 4.1

Let P be a temporal formula over (V', A"). Then, for all pairs (V, A) with V' CV and A" C A,
all executions o over (V, A), and all j > 0,

(atV AP ff (wi)EP

Proof
In Appendix B.
|

We now give an alternative characterization of the projection operator [on executions defined
in Section 2.1.1. For any execution « of a safe I/O automaton A,||---||Ay, define

al Ay 2 a | (variables(A;), acts(A;))
Then a[A; = f(a | A;) and clearly we have a[A; ~ a | A;.

The following lemma is now a direct consequence of Lemma 4.1.

Lemma 4.2

Let Ay, ..., Ay be compatible safe 1/0 automata and let Q)1,...,Qy be temporal formulas over
Ay, ..., An, respectively. Furthermore, let A = Ay||---||Ay and a € exec(A). Then, for all
1<e< N andall j >0,

(OéfAnj)):Qi iff (aaj)):Qi

Proof

Since « is an execution over (wariables(A), acts(A)) and each @; is a temporal formula over
(variables(A;), acts(A;)) with variables(A;) C variables(A) and acts(A;) C acts(A), the result
follows directly from Lemma 4.1 and the definition of a | A;.

Lemma 4.3

Let Ay, ..., Ay be compatible safe 1/0O automata and let Qy,...,Qx be stuttering-insensitive
temporal formulas over Ay,..., Ay, respectively. Let A= Ay|---||Ax and o € exec(A). Then,

alAi EQ, and --- and ao[Anx E QN iff aEQIN...ANQN

50 4. Specifying Systems

Proof
In Appendix B.
|

The following important result for parallel composition can now be proved.

Proposition 4.4

Let (A1, Ly),....,(An, Lxn) be compatible live 1/O automata and let Qy,...,Qx be stuttering-
insensitive temporal formulas over Ay, ..., Ax, respectively, such that each L; is induced by @Q;.

Let (A, L) = (A, L)||---||(Ax, Ln). Then L is induced by Q1 A ... A Qy.

Proof
In Appendix B.
|

It is important to understand the role that stuttering-insensitivity plays in the proposition. In
the execution of a composed system, each step represents activity in a certain subset of the
components while all other components do not engage in the step at all. When projecting the
execution to any component, such steps where the component does not engage (i.e., stuttering
steps) are simply removed. Thus, when specifying the liveness for a component system (A;, L;),
we might write ; = ¢0(2° = z 4+ 1) and hence specify that in any live execution (of (A;, L;))
there must be an infinite suffix where z is incremented by one at each step. Now, in a live
execution a of the composed system, even though a[A; satisfies @;, « itself does not necessarily
satisfy @J; since steps performed by other components might result in & being incremented only
in, e.g., every other step (but still, of course, incremented in every step where A; engages). In the
proposition we solve the problem by simply ruling out); since it is not stuttering-insensitive.
However, in the example we might write the following stuttering-insensitive liveness condition
which captures the same idea: Q) = OO (acts(A;)) A OO({acts(A;)) = (2° = v+ 1)). Thus,
Q) describes that there is a suffix, with infinite activity of A;, such that every time A; engages,
x is incremented.
Attention is now turned to the simpler operations of action hiding and action renaming.

Proposition 4.5

Let (A, L) be a live I/O automaton such that L is induced by the temporal formula @ for A and
let A C local(A). Then the liveness condition of (A, L)\ A is induced by Q.

Proof
In Appendix B.
|

Proposition 4.6

Let (A, L) be a live 1/O automaton such that L is induced by the temporal formula Q) for A, and
let p be an action mapping applicable to (A, L). Define p(Q) to be the temporal formula obtained
by applying p to every action function in Q. Then the liveness condition of p((A, L)) is induced

by p(Q).

4.1. Specifying Untimed Systems 51

Proof
In Appendix B.
|

4.1.2.2 Fairness

Fairness is a special form of liveness, where the requirement is that each component of the
system be given fair turns. Fairness is important since it in most cases is environment-free,
and furthermore fairness is easy to implement on a physical system. Traditionally, two different
kinds of fairness are considered: weak and strong fairness.

Weak fairness to a system component or, as we shall phrase it, to the set of actions repre-
senting this component says that actions from the set cannot be enabled indefinitely without
being executed infinitely often. Thus, for a safe I/O automaton A and a set C' C acts(A), weak
fairness to €' can be expressed as the temporal formula

WF,(C) 2 O0(C) v OO-enabled ,(C) (4.2)

where enabled,(C') is a state predicate over A that holds in exactly the states of A where an
action in C' is enabled. As usual we omit the subscript A and write WF(C') and enabled(C')
when A is clear.

We have in this work found it useful to use a slight variant of weak fairness in which actions
are only forced to occur if they are enabled indefinitely and a special forcing condition is satisfied
indefinitely. This can be formalized as

WF(C,P) 2 O0(C) v OO=(enabled(C) A P) (4.3)

where P is a state predicate (the forcing condition). When using this variant of weak fairness, it
is possible to separate the issues of when actions may occur (are enabled) and when they must
occur.

Strong fairness says that actions from a set must be executed infinitely often if actions from
the set are enabled infinitely often. In other words, we cannot ignore the actions forever if we
are given infinitely many chances to execute them.

SF(C) £ 00(C) v OO=enabled(C) (4.4)
Again, with a forcing condition this looks like

SF(C,P) 2 O0(C) v OO=(enabled(C) A P) (4.5)
It is easy to see that temporal formulas of the form WF(C'), WF(C, P), SF(C), or SF(C, P),

where C' C acts(A) and P is a state predicate over A, are liveness formulas for A. But are they
environment-free? First of all environment-freedom must require that C' consist of only locally-
controlled actions since otherwise we could be restricting the environment to perform certain
input actions. This condition turns out to be sufficient for weak fairness to be environment-free.
However, there is a problem with strong fairness as illustrated by the following example: Let L be
induced by the strong fairness formula SF(C') for A, where C' C local(A). Then, for any infinite
execution « in I it is the case that if C' is enabled in infinitely many states in a, then a contains
infinitely many actions from C'. Now suppose, in the game between system and environment,
that each environment move consists of two input actions: one that is bound to enable C' and
one that is bound to disable C' (thus no ¢ function of a strategy can be defined to avoid that

52 4. Specifying Systems

C' is enabled between the input actions and disabled afterwards). In this situation no strategy
function f can be defined that can ever execute an action in C' during such a game; in other
words, every time the system gets a chance to move, it is not possible to execute an action in C
since ' is not enabled. Thus, any strategy defined on A will, when playing against this villainous
environment, generate an outcome in which C' is infinitely often enabled (namely between the
two input actions of every environment move) but in which only finitely many C' actions are
executed. Thus the outcome is not live and it follows that SF(C') is not environment-free.

However, strong fairness is environment-free if the safe I/0 automaton in question is C'-
persistent, where C' C local(A). Define A to be C-persistent if for each state s of A in which C
is enabled and each step (s, a,s’) where a € in(A), C is enabled in s’. Thus, in any execution of
A, if C' becomes enabled, (' will stay enabled at least until a locally-controlled action has been
executed.

Lemma 4.7

Let A be a safe 1/0 automaton and let Q;, 1 < i <k, be temporal formulas over A of the form
WF(Cy), WF(Cy, By), SF(C;), or SF(Cy, By), where

o C; Clocal(A),
o P, is a state predicate over A, and
o if Q;=SF(C;) or Q; = SF(C;, P;), then A is C;-persistent.

Then Q1 A --- A Qg is an environment-free liveness formula for A.

Proof

This proof can be carried out similarly to the proof of Lamport and Abadi’s Proposition 4
in [AL92b]. (Note that [GSSL93] argues that Lamport and Abadi’s notion of p-machine-
realizability is similar to our notion of environment-freedom. Furthermore, y-invariance is similar
to our notion of C-persistence.)

Another important property of the fairness formulas is that they are stuttering-insensitive as
expressed by the following lemma.

Lemma 4.8

Any conjunction of temporal formulas of the form WF(C), WF(C,P), SF(C), and SF(C, P)

18 stuttering-insensitive.

Proof
Directly by the definition of the fairness formulas and Proposition 3.4.
|

4.2 Specifying Timed Systems

We now turn attention to timed systems. As above we first describe how to specify safe timed
I/0O automata, and then how to use our temporal logic to specify liveness.

4.2. Specifying Timed Systems 53

4.2.1 Safe Timed I/O Automata

In this work we use two approaches for specifying safe timed 1/O automata: explicit and implicit
specification. Both approaches describe state spaces using state variables as in the untimed
setting. The definition of safe timed I/O automata (Definition 2.17) describes that the time can
be obtained from any state by the .now mapping. Below we assume that

each safe timed I/O automaton has a special now state variable such that the .now
mapping simply returns the value of this state variable.

(We will not be able to see if s.now means the value of the now state variable in state s or the
result of applying the .now mapping to state s, but since, by definition, both interpretations
return the same time, this does not give rise to ambiguity.)

We denote by variables(A) the set of state variables (including now) of the safe timed 1/0
automaton A. With this definition we can extend the definition of compatibility for safe timed
I/0O automata (cf. Definition 2.18) by requiring the state variables of the safe timed I/O automata
be almost mutually disjoint. (They sets of state variables must only have now in common): Safe
timed I/O automata A,,..., Ay are syntactically compatible if for all 1 <i,j < N with ¢ # j

L. out(A;)Nout(A;) =10
2. int(A;) Nacts(A4;) =10
3. variables(A;) N variables(A;) = {now}

As in the untimed setting we use, for brevity, the term “compatibility” to refer to syntactical
compatibility. The notion of compatibility trivially extends to live timed I/O automata (cf.
Definition 2.26). As in the untimed setting we can now characterize the state of a composed
safe timed I/O automaton A = A;||---||Ay by a “flat” mapping from variables(A;) U --- U
variables(Ay) (i.e., variables(A)) to values such that s is the state of A if s [variables(A;) is
the state the component A;. This characterization is possible since all components must agree
on real time (cf. Definition 2.18).

Explicit Specification

The explicit approach to specifying safe timed 1/O automata is similar to our way of specifying
safe I/O automata: the state space and initial states are specified by a list of typed state
variables with possible initial values (the now variable must assume the value 0 initially), the
action signature is specified by using action generator functions to list input, output, and internal
actions and the special time-passage action v, and the steps are specified using the precondition-
effect style.

Some of the state variables will typically be used to keep track of deadlines etc. Also, when
specifying the steps using this explicit approach, the time-passage steps will have to be specified
explicitly. The precondition for the time-passage steps will usually state that time is not allowed
to pass beyond some deadlines representing times by which some other steps must have been
executed.

It must be proved that what we specify is in fact a safe timed I/O automaton (cf. Defini-
tion 2.1). The axioms S1-S3 are easy to ensure: S1 is ensured by initializing now to 0, S2 is
ensured by leaving now unchanged in the step rules for visible and internal actions, and S3 is
ensured by requiring, in the step rule for v, that time will increase. S4 and S5 are ensured if

54 4. Specifying Systems

time-passage steps change the now variable only and, from any time, time-passage steps to any
future time, possibly less than some deadline, is allowed.

As in the untimed setting it is easy to construct the syntactic description of a safe time 1/0
automaton from the syntactic description of its components. The only difference compared to
the untimed setting is constructing the step-rule for v when dealing with the parallel composition
operator. In this case the preconditions of the step-rules for v have to be combined so that all
components allow the assignment to the (common) now variable. This turns out not to be a
problem in practice.

In some situations it is possible to avoid dealing explicitly with deadlines and time-passing when
specifying safe timed 1/O automata. This approach is described next.

Implicit Specification

In [MMT91] and [LA91] alternative models for timed systems are developed. We will refer to
these models by “MMT-models” derived from the names of the authors of [MMT91]. As shown
in [GSSLI3] the model we use is a generalization of the MMT-models.

In the MMT-models the locally-controlled actions are partitioned into classes and each class
has associated with it a lower and upper time bound that represent the maximum and minimum
delay of the system when executing these actions.

While these models are sufficient for the specification of many timed distributed systems,
they are not sufficient for all the examples presented later in this work. However, because the
MMT-models handle time implicitly, they tend to be easier to understand.

Instead of developing a theory for MMT-models, we will merely, whenever possible, use the style
of these models as a convenient way of specifying our safe timed I/O automata. So below we
define a notion of MM T-specification and show what such a specification denotes in the model
of safe timed I/O automata.

Definition 4.9 (MMT-Specification)
An MM T-specification Ayryr is a triple where

o automaton(Aymyr) is a safe I/O automaton,

o sets(Apymr) is a collection C,...,C} of disjoint sets of locally-controlled actions of the
safe I/O automaton automaton(Aymr), and

o boundmap(Aymr) is a mapping that to each C; € sets(A7) associates a lower time
bound b;(C;) € T and an upper time bound b,(C;) € (T \ {0}) U {00}, such that b,(C;) >
bi(Cy).

We let states(Anmr), etc., refer to the corresponding components of the underlying safe I/0
automaton automaton(Ay).

The intuition behind an MMT-specification is as follows: Let the triple (A, .9,b) be an MMT-
specification. A itself contains no information about time but we will now “execute” it in a world
that has a notion of real time and now. Suppose during execution that a set C; € S becomes
enabled at time ¢. Then b specifies that if C; stays enabled, then an action from C; must be

4.2. Specifying Timed Systems 55

executed in the time interval [t + b;(C;),t + b,(C;)]. Thus, the boundmap specifies the time
interval (relative to ¢) in which an action from C; must be executed, unless C; becomes enabled
in the meantime. The same has to hold for C; if it stays enabled after being executed; thus, in
this case a new legal interval is calculated based on the current time, b;(C;), and b,(C;). If C;
becomes disabled, the timing constraints on C; are removed.

To encode this idea into the model of safe timed 1/O automata, we need to add several state
variables. For instance we need to add the variable now representing real time, and for each
of the sets C; we need to add two variables: first(C;) and last(C;) to denote the first and last
(absolute) times at which an action from C; must be executed. In the encoding in our model,
the first and last variables should then be set to the proper interval when the associated set
C; becomes (re-)enabled and reset to “no timing constraints” (i.e., the interval [0, 00]) when
C; becomes disabled. Furthermore, actions in C; are only allowed to be executed if real time
has passed beyond first(C;). Additional time-passage steps also need to be added. These steps
should only change now and are not allowed to let time pass beyond any of the last bounds.
This idea is now formalized.

Definition 4.10
Let Ay be an MMT-specification. Then time(Aypyr) is the safe timed I/O automaton A for
which

e cach state s of states(A) consists of a state s.basic, which is a state of Aypr, augmented
with a new state variable now and, for each set C; of sets(Aymr), two new state variables

first(C;) and last(C;).

e start(A) consists of states s for which s.basic is a start state of Aypr, s.now = 0, and,
for each set C; of sets(Aymr), if C; is enabled in s.basic then first(C;) = b/(C;) and
last(C;) = b,(C;); otherwise, first(C;) = 0 and last(C;) = oo.

o (in(A),out(A),int(A)) = (in(Aymr), out(Asmr), int(Apr))-
o ext(A) = ext(Appr)U{r}.

(s,a,s") € steps(A) iff the following conditions hold:

1. If a € acts(Apmr) then

(a) s'.now = s.now.
(b) (s.basic,a,s".basic) € steps(Ayt)-
(c¢) For each C; € sets(Apmr):
i. If @ € C; then s.first(C;) < s.now.
ii. If C; is enabled in both s.basic and s'.basic, and a ¢ C;, then §'.first(C;) =
s.first(C;) and §'.last(C;) = s.last(C;).
iii. If C; is enabled in s'.basic and either a € C; or C; is not enabled in s.basic,
then s'.first(C;) = s'.now + b;(C;) and &'.last(C;) = ' .now + b,(C;).
iv. If C; is not enabled in s".basic then s'.first(C;) = 0 and s'.last(C;) = oc.
2. If a = v then

(a) '.now > s.now.

(b) s'.basic = s.basic.

56 4. Specifying Systems

(¢) s'.now < &'.last(C;) for all C; € sets(Aymr).
(d) s".first(C;) = s.first(C;) and s'.last(C;) = s.last(C;) for all C; € sets(Apmir).

It is easy to see that time(Apmr) is in fact a safe timed I/O automaton (cf. Definition 2.17).
Specifically, axiom S1 is ensured since now is initialized to 0, S2 is ensured since, by explicit
construction, now does not change in steps labeled by visible or internal actions, S3 is ensured
since time-passage steps are explicitly required to increase time, and finally S4 and S5 are easily
seen to be ensured since time(A7) from any time allows time-passage to any future time less
than some deadline (expressed by the last variables) and time-passage steps do not change the
basic part of the state.

When using the implicit approach to specifying safe timed I/O automata, we use the
precondition-effect style of Section 4.1.1 to specify the underlying safe /O automaton, and
then use standard notation (cf. Appendix A) to specify the sets of locally-controlled actions
and the boundmap. Based on the simple way the new variables (now and the first and last
variables) are manipulated, it is easy to construct an explicit description of time(A7) based
on the description of Az

We refer to Chapter 10 for an example of the implicit style of specification.

4.2.2 Live Timed I/O Automata

If we were to follow the lines of the untimed section when specifying the liveness condition
for a safe timed I/O automaton, we should devise some temporal logic in which formulas were
evaluated over timed executions. However, we take a different approach. The idea is that a
timed execution can be characterized by a set of (ordinary) executions each of which can be
thought of as a sampling of the timed execution. Thus, there exists a close relationship between
timed executions and (ordinary) executions of a safe timed I/O automaton.

We proceed by defining the notion of sampling. Then we define what constitutes a sampling
characterization of a liveness condition, show how the operations on live timed 1/O automata
are reflected in the syntax describing the liveness of the live timed 1/0 automata, and finally
discuss the notions of weak and strong fairness in the timed setting.

4.2.2.1 Sampling

All definitions and lemmas in this section are taken from [GSSL93] and are similar to those of

[LV93b].

Roughly speaking, an (ordinary) execution fragment can be regarded as “sampling” the state
information in a timed execution fragment at a countable number of points in time. Formally,
we say that an execution fragment a = sqa;81a955 - -+ of A samples a timed execution fragment

Y = wobiwibowsy - - - of A if there is a monotone increasing mapping f : N — N such that the
following conditions are satisfied.
1. f(0)=0,

2. b = ay(y) for all 7 > 1,

3. a; = v for all j not in the range of f,

4.2. Specifying Timed Systems 57

4. For all ¢ > 0 such that w; is not the last trajectory in 3,

(a) 55 € ragles) for all §, f(i) < j < f(i+ 1),
(b) sp(;).-now = ftime(w;), and

(¢) Spiip1)—1-now = ltime(w;).
5. If w; is the last trajectory in 3, then

(a) s; € rng(w;) for all j, f(¢) < 7,

(b) sp(;).-now = ftime(w;), and

(c) sup{s;.now | f(i) < j} = ltime(w;).
In other words, the function f in this definition maps the (indices of) actions in ¥ to corre-
sponding (indices of) actions in a, in such a way that exactly the non-time-passage actions of a
are included in the range. Condition 4 is a consistency condition relating the first and last times
for each non-final trajectory to the times produced by the appropriate steps of a. Condition 5
gives a similar consistency condition for the first time of the final trajectory (if any); in place of
the consistency condition for the last time, there is a “cofinality” condition asserting that the
times grow to the same limit in both executions.

The following two straightforward lemmas show the relationship between timed execution
fragments and ordinary execution fragments.

Lemma 4.11

Let A be a safe timed I/0 automaton. If o € frag(A), then there is a timed execution fragment
Y € t-frag(A) such that o samples X.

Lemma 4.12

Let A be a safe timed 1/O automaton. If ¥ € t-frag(A), then there is an execution fragment
a € frag(A) such that o samples X.

Recall that an execution fragment « is finite if it is a finite sequence. Furthermore, in the timed
setting, an execution fragment « is defined to be admissible if there is no finite upper bound
on the .now values of the states in a. Finally, an execution fragment is said to be Zeno if it is
neither finite nor admissible. We denote by exec”(A), exec™(A), and exec”(A) the sets of finite,
admissible, and Zeno executions of a safe timed I/O automaton A.

Lemma 4.13
If a samples X then
1. « is finite iff ¥ is finite,
2. « is admissible iff Y. is admissible, and

3. «is Zeno iff X is Zeno.

58 4. Specifying Systems

It is possible to give a sensible definition of the timed trace of an ordinary execution fragment
of a safe timed I/O automaton. Namely, suppose a = Spa;81a45, - - - is an execution fragment of
a safe timed I/O automaton A. First, define {time(a) to be the supremum of the .now values of
all the states in a. Then let é be the sequence consisting of the actions in « paired with their
times of occurrence:

6 = (ay, s;.now)(ay, Sz.now) - - -.
Then t-trace(a), the timed trace of a, is defined to be the pair
t-trace(a) = (6 | (vis(A) x T), ltime(a))

The following lemma shows that the definitions of timed traces for execution fragments and
timed execution fragments are properly related:

Lemma 4.14
If o samples X then t-trace(a) = t-trace(X).
|

4.2.2.2 Sampling Characterization of Liveness Conditions

As mentioned above we will characterize liveness conditions for safe timed I/O automata by a
set of ordinary executions.

Let A be a safe timed I/O automaton and let L; C exec™(A) be a set of admissible (ordinary)
executions of A. Then L, is said to be a sampling characterization of the set

L ={Y € t-exec™(A) | for all a, if & samples X, then o € L} (4.6)

That is, L contains all those admissible timed executions of A that have all their samplings in
L,. We say that L is induced by the sampling characterization L,. Note, that the sampling
characterization L, may contain “extra” executions that are not samplings of any timed execu-
tions in the set L induced by L,. (Such an extra execution will be the sampling of some timed
execution X, but since all samplings of ¥ are not in L, ¥ is not in L.) If L, coincides with
the set of all samplings of all timed executions in the set L induced by L,, i.e., if L, does not
contain any “extra” executions, then L, is said to be minimal.

If the set L induced by L, is a liveness condition for A, L, is said to be a liveness sampling
characterization for A. Furthermore, if (A, L) is a live timed I/O automaton, i.e., if (A, L U
t-evec?'(A)) is environment-free, L, is said to be environment-free for A.

A liveness sampling characterization for some safe timed I/0O automaton A can now be specified
indirectly in exactly the same way we defined liveness conditions in the untimed setting using
temporal formulas. Thus, for any temporal formula) over A we refer to the set

Ly ={a € erec™(A) | a EQ} (4.7)

as the sampling characterization induced by Q). If L, is a liveness sampling characterization for
A, @) is referred to as timed liveness formula for A. Furthermore, if L, is environment-free or
minimal, ¢ is said to be environment-free or minimal, respectively. Finally, if L is induced by
L, which, in turn, is induced by), we say that L is induced by Q.

4.2. Specifying Timed Systems 59

4.2.2.3 Operations on Live Timed I/O Automata

As in the untimed setting we now show how the liveness of live timed I/O automata obtained
as results of the operators (parallel composition, action hiding, and action renaming) is induced
by temporal formulas derived from the temporal formulas inducing the liveness of the live timed
I/O automata to which the operators were applied.

We start by looking at parallel composition and for that we need the following result, which
expresses the relationship between sampling and projection ([). We state the result without
proof (except we note that point 3 follows from points 1 and 2).

Lemma 4.15

Let Ay, ..., Ay be compatible safe timed 1/O automata, A = Ai||---||An, and ¥ € t-exec(A).
Then, for all 1 <1< N,

1. if o samples X, then a[A; samples Y[A;,
2. if a; sample X[A;, then there exists an o such that a samples ¥ and o; = a[A;, and
3. {afA; | a samples ¥} = {a; | a; samples X[A;}.

Lemmas 4.2 and 4.3 above for safe /O automata are actually valid for safe timed 1/O automata
as well. We restate the timed version of Lemma 4.3.

Lemma 4.16

Let Ay, ..., Ay be compatible safe timed 1/0 automata and Q.,...,Qn be stuttering-insensitive
temporal formulas over Ay,..., Ay, respectively. Let A= Ay|---||Ax and o € exec(A). Then,

alAi EQ, and --- and ao[Anx E QN iff aEQIN...ANQN
|

The main result for parallel composition of live timed I/O automata can now be stated and
proved.

Proposition 4.17

Let (A, Ly),...,(An, Ly) be compatible live timed 1/0 automata and @)y, ...,Qx be stuttering-
insensitive temporal formulas over A, ..., Ay, respectively, such that each L; is induced by Q);.

Let (A, L) = (A, L)||-- - ||(An, Ln). Then L is induced by Q1 N ... N Q.

Proof
In Appendix B.
|

Attention is now turned to the simpler operations of action hiding and action renaming.

60 4. Specifying Systems

Proposition 4.18

Let (A, L) be a live timed 1/0 automaton such that L is induced by the temporal formula @ for
A and let A C local(A). Then the liveness condition of (A, L)\ A is induced by Q.

Proof
In Appendix B.
|

Proposition 4.19

Let (A, L) be a live timed 1/0 automaton such that L is induced by the temporal formula @ for
A, and let p be an action mapping applicable to (A, L). Define p(Q) to be the temporal formula

obtained by applying p to every action function in Q. Then the liveness condition of p((A, L))
is induced by p(Q).

Proof
In Appendix B.
|

4.2.2.4 Fairness

The fairness formulas (Equations (4.2)—(4.5)) presented in the untimed setting also express fair-
ness requirements in the timed setting. However, fairness in the timed setting is not necessarily
environment-free as in the untimed setting.

The problem is that environment-freedom can be jeopardized because the system may col-
laborate with the environment to generate non-Zeno-tolerant outcomes, as explained in Sec-
tion 2.2.2, regardless of the fairness formulas. We do not investigate further if weak and strong
fairness are environment-free for certain classes of safe timed I/O automata.

4.3 Embedding

In Section 2.3 we introduced the patient operator, which takes a safe or live I/O automaton as
argument and returns the corresponding safe or live timed 1/O automaton, respectively, that
allows time to pass arbitrarily.

The patient operator on safe I/O automata (cf. Definition 2.34) adds an extra state compo-
nent representing real time. When describing state spaces using state variables, we shall assume
that the patient operator adds an extra state variable called now (as well as it adds the extra
time-passage action v). Thus, we shall assume that now is not a state variable of any safe I/0O
automaton to which we apply patient.

In Section 2.3 we described what it means to untime a timed execution of a patient safe
I/O automaton. A similar definition can be given for ordinary executions: let A be a safe I/O
automaton such that now ¢ variables(A) and v ¢ acts(A), and let A, = patient(A). Then for
any a € exec(A,), define untime(a) to be the execution of A obtained from a by restricting
every state to the state variables of A and removing every time-passage step (which do not
change the state variables of A). Formally we have

untime(a) = f(a | (variables(A), acts(A)))

4.3. Embedding 61

The following lemma, which we state without proof, says that the definition of untime(a) is
sensible.

Lemma 4.20

Let A be a safe 1/0 automaton such that now ¢ variables(A) and v ¢ acts(A), and let A, =
patient(A). Then, for any ¥ € t-exec(A,) and a € exec(A,), if a samples ¥, then untime(a) =
untime(Y).

Lemma 4.21

Let A be a safe 1/0 automaton and let () be a stuttering-insensitive temporal formula over A.
Furthermore, let A, = patient(A). Then, for all o € exec(A,),

untime(a) = Q iff akEQ

Proof
In Appendix B.
|

We can now state and prove the main result of this section, namely that stuttering-insensitive
temporal formulas carry over as environment-free liveness formulas when applying the patient
operator.

Proposition 4.22

Let (A, L) be a live I/O automaton with L induced by a stuttering-insensitive temporal formula
Q) over A. Furthermore, let (A,, L,) = patient(A, L). Then, L, is induced by Q, and Q is
minimal.

Proof
In Appendix B.
|

The minimality of ¢ as implied by the proposition will be important when proving that a live
timed I/O automaton correctly implements the patient version of a live I/O automaton. In fact,
as we shall see in the next chapter, our proof techniques in the timed setting requires liveness
conditions of certain live timed I/O automata to be induced by minimal temporal formulas.

This concludes this chapter. We have described how to specify safe (timed) I/O automata using
a precondition-effect language and how to use the temporal logic defined in Chapter 3 to specify
liveness. Furthermore, this chapter contains several results which state how operations in the
semantic model are reflected in the syntax.

Before we start the protocol verification example in Part II of this report, the next chapter
deals with presenting a number of proof techniques for proving correctness.

Chapter 5

Proof Techniques

The previous chapters have defined the general models of timed and untimed systems that we
will use in this work, and described our approach to specifying objects of these models. This
chapter is devoted to presenting a host of proof techniques for proving that one live (timed) I/0
automaton correctly or safely implements another live (timed) I/O automaton.

In Chapter 2 the notions of safe and correct implementation are defined. These notions are,
for both untimed and timed systems, based on the (timed) traces that the involved systems
can exhibit. For safe implementation, all (timed) traces are considered, whereas correct imple-
mentation restricts attention to live (timed) traces. The respective implementation notions are
then expressed as the subset relation between the sets of all/live (timed) traces of the involved
systems.

For untimed systems, reasoning about implementation directly in terms of trace inclusion
is not feasible. First of all, traces are defined implicitly as the traces of the executions, and
second, the liveness condition is defined implicitly as the set of executions that satisfy a certain
temporal formula. Thus, the sets of traces and live traces are not readily available but are
derived from safe 1/O automata and temporal formulas. This calls for some proof techniques
that are based on this available information and that are sound with respect to the safe and
correct implementation relations.

The same discussion is valid for timed systems as well. In timed systems there is even an
extra level of indirection since the liveness condition of a live timed 1/O automaton is usually
induced by a sampling characterization which, in turn, is induced by a temporal formula.

We first present, in Section 5.1, the proof techniques used for untimed systems, and then, in
Section 5.2, these techniques are extended to timed systems. Most of the techniques are taken
from [GSSL93] and are included here to make this report self-contained. We refer to [GSSL93]
for details and proofs.

5.1 Untimed Systems

This section presents a number of techniques for proving the safe implementation relation and
assist in proving the correct implementation relation for live I/O automata. The techniques
are based on simulations between safe 1/O automata, which are sound with respect to the safe
implementation relation, i.e., trace inclusion.

However, as shown in [GSSL93], it turns out that a stronger result can be proved for the
simulation techniques: that there is a certain correspondence between the executions of the

63

64 5. Proof Techniques

: a b
High Level e > o > o > o > o > o
Simulation Relation | / | | /]
a b
Low Level ® > @ > @ > @ > @ > @

Figure 5.1

Example of a simulation. The actions ¢ and b are external actions. The rest of the
transitions are thought of as labeled by internal actions.

involved safe I/O automata and not only between their traces. Since the liveness conditions of
live I/O automata are stated in terms of executions and not in terms of traces, this result, which
is called the Fzecution Correspondence Theorem, can form the basis for the proof of the correct
implementation relation, i.e., live trace inclusion.

Thus, when proving correct implementation between two live I/O automata, first a simulation
result between the safe /O automata parts is proved and then this simulation result and the
Execution Correspondence Theorem are used to prove live trace inclusion.

We proceed by defining a number of simulation proof techniques and stating the Execution
Correspondence Theorem. Then we present the proof techniques for proving the safe and correct
implementation relations. Finally, we consider the additional proof technique of adding history
variables.

5.1.1 Simulation Proof Techniques

A simulation from A to B, where A and B are safe I/O automata with the same input and
output actions, is a relation between the states of A and the states of B such that certain
conditions hold. A will be referred to as the concrete, low-level, or implementation safe 1/0
automaton, and B as the the abstract, high-level, or specification safe 1/O automaton.

Exactly what conditions a simulation must satisfy depend on the kind of simulation. Below
we define notions of, e.g., forward and backward simulations which differ in few but important
respects. Generally, however, two conditions must be satisfied: first, the start states of the two
safe I/O automata must be related in a certain way, and, second, each step of the low-level safe
I/O automaton must “correspond” to a sequence of steps of the high-level safe 1/O automaton.

The second condition is depicted in Figure 5.1. For each step of the low-level safe 1/0
automaton, i.e., for each low-level step, there must exist a sequence of (high-level) steps of the
high-level safe I/O automaton between states related—by the simulation relation—to the pre-
and post-state of the low-level step, such that the sequence of high-level steps contains exactly
the same external actions as the low-level step. How the sequence of high-level steps is selected
depends on what kind of simulation is considered.

Below forward simulations, refinement mappings, and backward simulations are defined. We
refer to [GSSL93, LV93a, Jon91] for more details about these simulations.

The simulation techniques use invariants of the safe I/O automata to restrict the steps
needed to be considered. Define an invariant of a safe I/O automaton A to be any set of states
of A that is a superset of the reachable states of A. Equivalently, an invariant can be defined to
be a state formula over A that is satisfied by at least all reachable states of A. We will use the

5.1. Untimed Systems 65

two definitions interchangeably.
The following notational convention is used: if R is a relation over 57 x S5 and s; € 51, then
R[s,] denotes the set {sy € S5 | (s1,52) € R}.

Definition 5.1 (Forward simulation)

Let A and B be safe I/O automata with in(A) = in(B) and out(A) = out(B) and with invariants
I, and Ip, respectively. A forward simulation from A to B, with respect to I4 and [p, is a
relation f over states(A) x states(B) that satisfies:

1. If s € start(A) then f[s] N start(B) # 0.

2. If (s,a,8") € steps(A), s,8 € I4, and u € f[s]N g, then there exists an a € frag™(B) with
fstate(a) = u, Istate(a) € f[s'], and trace(a) = trace(a).

We write A <p B if there exists a forward simulation from A to B with respect to some invariants
I, and Ip. If f is a forward simulation from A to B with respect to some invariants I, and I,
we write A <z B via f.

A refinement mapping is a special case of a forward simulation where the relation is a function.
Because of its practical importance (cf. [AL91]) we give an explicit definition.

Definition 5.2 (Refinement mapping)

Let A and B be safe I/O automata with in(A) = in(B) and out(A) = out(B) and with invariants
I, and Ip, respectively. A refinement mapping from A to B, with respect to I, and I, is a
function r from states(A) to states(B) that satisfies:

1. If s € start(A) then r(s) € start(B).

2. If (s,a,s) € steps(A), s,8 € I4, and r(s) € Ip, then there exists an a € frag™(B) with
fstate(a) = r(s), lstate(a) = r(s'), and trace(a) = trace(a).

We write A <p B if there exists a refinement mapping from A to B with respect to some
invariants I, and Ig. If r is a refinement mapping from A to B with respect to some invariants
I, and Ig, we write A <z B via r.

In a forward simulation there has to be a sequence of high-level steps starting from any of
the high-level states related to the low-level pre-state and ending in some state related to the
low-level post-state. The word “forward” thus refers to the fact that the high-level sequence of
steps is constructed from any possible pre-state in a forward direction toward the set of possible
post-states.

In a backward simulation, on the other hand, there has to be a sequence of high-level steps
ending in any state related to the low-level post-state and starting in some state related to the
low-level pre-state. Thus, in a backward simulation the steps are constructed in a backward
direction.

66 5. Proof Techniques

This difference between forward and backward simulations implies that they apply to dif-
ferent situations. In some cases a forward simulation is needed whereas other situations might
require a backward simulation. We shall see examples of this below.

We need the auxiliary definition of image-finiteness. A relation R over 5; X 95 is image-finite
if for each s; € 5, R[sy] is a finite set.

Definition 5.3 (Backward simulation)

Let A and B be safe I/O automata with in(A) = in(B) and out(A) = out(B) and with invariants
I, and Ip, respectively. A backward simulation from A to B, with respect to I, and Ig, is a
relation b over states(A) X states(B) that satisfies:

1. If s € I, then b[s] N Ig # 0.
2. If s € start(A) then b[s|N Ip C start(B).

3. If (s,a,s') € steps(A), s,s' € I4, and v’ € b[s]N Ip, then there exists an a € frag”(B) with
Istate(a) = o', fstate(a) € b[s] N I, and trace(a) = trace(a).

We write A <p B if there exists a backward simulation from A to B with respect to some
invariants I4 and Ig. If furthermore the backward simulation is image-finite, we write A <;g B.
If b is a backward simulation from A to B with respect to some invariants /4 and I, we write
A <p B (or A <,p B when b is image-finite) via b.

In [LV93a] abstract notions of history variables [OGT76, AL91] and prophecy variables [AL91] are
given in terms of history relations and prophecy relations. Below, in Section 5.1.5, we consider
history and prophecy variables and show how history variables can be added to a specification.

5.1.2 Execution Correspondence

This subsection introduces the Execution Correspondence Theorem (ECT). The ECT states that
if any of the simulations from above has been proven from a low-level safe I/O automaton A to
a high-level safe I/O automaton B, then for any execution of A, there exists a “corresponding”
execution of B. In order to formalize this notion of correspondence, the notions of R-relation
and index mapping are first introduced.

Definition 5.4 (R-relation and index mappings)
Let A and B be safe I/O automata with in(A) = in(B) and out(A) = out(B) and let R be

a relation over states(A) X states(B). Furthermore, let @ and o' be executions of A and B,
respectively.

(8% = S50Q151A289 "

o = u0b1u1b2u2 te

We say that o and o are R-related, written (o, a’) € R, if there exists a total, nondecreasing
mapping! m: {0,1,...,]a|} — {0,1,...,]a/|} such that

'Tf, e.g., o is infinite (Ja| = co), then the set {0,1,...,|a|} is supposed to denote the set of natural numbers
(not including oo), and ¢ < |a] lets ¢ range over all natural numbers but not oco.

5.1. Untimed Systems 67

2. (84, Umy) € R forall 0 <@ < af,
3. trace(bpi—1)41 b)) = trace(a;) for all 0 < i < |a|, and
4. for all j, 0 < j < |a/|, there exists an ¢, 0 < ¢ < |af, such that m(i) > j.
The mapping m is referred to as an index mapping from o to o with respect to R.

We write (A, B) € R if for every execution a of A, there exists an execution o’ of B such that

(a,a) € R.
|

Thus, an index mapping maps indices of states in the low-level execution to indices of statesin the
high-level execution. Effectively, an index mapping maps low-level states to corresponding high-
level states such that the start states correspond (Condition 1), corresponding states are related
by R (Condition 2), and the external actions between two consecutive pairs of corresponding
states are the same at both the low level and the high level (Condition 3). Condition 4 ensures
that the high-level execution (o) is not “too long”, i.e., @ must not extend beyond the last
state of o’ corresponding to a state in a (if such a state exists). (Note, that if a is finite, then
o' must also be finite. However, even if « is infinite, o’ can be finite if the index mapping is
constant for indices above some bound.)

The Execution Correspondence Theorem of [GSSL93] is now stated. The theorem states that
if a relation S has been proved to be a forward simulation, refinement mapping, or image-
finite backward simulation from A to B, then for any execution of A, there exists an S-related
execution of B.

Theorem 5.5 (Execution Correspondence Theorem)

Let A and B be safe 1/O automata with in(A) = in(B) and out(A) = out(B). Assume for
X €{F,R,iB} that A <x B via 5. Then (A,B)€ S.

5.1.3 Proving Safe Implementation

The simulation proof techniques presented above are sound proof techniques for the safe imple-
mentation relation. Before we state this result, we first show two results relating the traces of
R-related executions.

Lemma 5.6

Let A and B be safe 1/O automata with in(A) = in(B) and out(A) = out(B) and let R be a
relation over states(A) X states(B). Assume that (a,a') € R and let m be any index mapping
from a to o with respect to R. Then, for all 0 < ¢ < |al, trace(;|a) = trace(p;|a’).

Since for any execution «, ¢|a = a and any index mapping maps 0 to 0, the following corollary
is a direct consequence of Lemma 5.6.

68 5. Proof Techniques

Corollary 5.7

Let A and B be safe 1/0 automata with in(A) = in(B) and out(A) = out(B) and let R be a
relation over states(A) x states(B). If (a,a') € R, then trace(a) = trace(a’).

|
Using this corollary and ECT, soundness of the simulation techniques can be proved.

Theorem 5.8 (Soundness of simulations w.r.t. safe implementation)

Let A and B be safe 1/0 automata with in(A) = in(B) and out(A) = out(B). Assume for some
X € {F,R,iB) that A <x B. Then A Cs B.

|

5.1.4 Proving Correct Implementation

A proof strategy for proving that a live I/O automaton (A, L) correctly implements another live
I/O automaton (B, M) is now described.

Lemma 5.9

Let (A, L) and (B, M) be live 1/O automata with in(A) = in(B) and out(A) = out(B). Also,
let L and M be induced by the temporal formulas Q1 and @y, respectively. Assume for some
X € {F,R,iB} that A <x B via S. If, for all o € exec(A) and o' € exec(B) with (a,a’) € 5,
a | Qp implies o |E Qpp, then (A, L) Cy, (B, M).

Proof

This lemma follows directly from a similar result in [GSSL93] and our definition of a liveness
condition being induced by a temporal formula.

Thus, we have the following proof strategy to prove that (A, L) is a correct implementation of

(B, M):
1. Prove a simulation S from A to B with respect to some invariants.

2. Assume « and o’ are arbitrary executions of A and B, respectively, and assume that

(,0') € § and a is live (i.e., a | Qp).

3. Prove that o’ is also live (i.e., & E Q).

This will usually be a proof by contradiction. That is, assume that o’ is not live and show
that this leads to a contradiction. This strategy gives a nice way of splitting the proof
into cases since being live usually means satisfying a conjunction of conditions such that
not being live means not satisfying one (at least) of these conditions. Thus, each of the
conditions can be considered separately.

It is evident that this proof strategy needs a way to go from temporal formulas satisfied by the
high-level execution o' to temporal formulas satisfied by the low-level execution a. For this
purpose we have identified the following two basic lemmas which will prove very useful in the
verification examples in Part II of this report.

5.1. Untimed Systems 69

Lemma 5.10

Let A and B be safe 1/O automata with in(A) = in(B) and out(A) = out(B) and let R be
a relation over states(A) x states(B). Furthermore, let oo and o be executions of A and B,
respectively, such that (o,) € R. Finally, let C be a set of external actions (from the common
set of external actions). Then

o): <>\:|—|<C> iff o): <>\:|—|<C>

Proof
In Appendix B.
|

Lemma 5.11

Let A and B be safe 1/O automata with in(A) = in(B) and out(A) = out(B) and let R
be a relation over states(A) X states(B). Furthermore, let o and o' be executions of A and

B, respectively, such that (a,a') € R. Assume P and Q are state formulas over A and B,
respectively, such that for all (s,u) € R, if u |E Q, then s = P. Then,

if o E<OQ then olf <OP

Proof
In Appendix B.
|

5.1.5 History and Prophecy Variables

In [AL91] history and prophecy variables (together called auziliary variables) are considered.
It is shown that even though it is not possible to find a refinement mapping from A to B, by
adding appropriate auxiliary variables to A to obtain A,,, it is in most cases possible to find
a refinement mapping from A, to B. Then, since A can be shown to be equivalent to (i.e.,
to have the same traces as) B, the soundness of refinement mappings implies that A safely
implements B.

History variables are only allowed to record the past history of the system. Thus, history
variables are allowed in each step to be assigned a value based on all variables in the system, but
must not affect the enabledness of actions or the changes made to other (ordinary) variables.
As we shall see below, it is easy to syntacticly define how to add a history variable to a system.

Prophecy variables, on the other hand, are much more complicated since they are allowed
to constrain the future behavior of the system. It is not possible to give a general syntactic
characterization of prophecy variables.

In [GSSL93] and [LV93a] abstract notions of history and prophecy variables are given in terms
of history relations and prophecy relations. A system A, is then said to be obtained from A
by adding history variables if there exists a history relation from A to A,, and similarly for
prophecy variables.

The motivation for adding, e.g., history variables to a specification A to obtain A, is to
ensure that a refinement mapping from Aj, to some high-level specification B can be devised.
But since the existence of a history relation from A to A; implies that there exists a forward

70 5. Proof Techniques

simulation from A to Aj, it is clear that it is possible to define a forward simulation directly
from A to B and thereby avoid mentioning A, at all. (The forward simulation from A to B
would be the composition of the forward simulation from A to A, and the refinement mapping
from A, to B.)

similarly, instead of adding prophecy variables to A to get A, such that a refinement mapping
from A, to B can be devised, it is possible to define a backward simulation directly from A to
B.

Now, since history variables can be defined using simple syntactic constraints, they are almost
free to use, as opposed to prophecy variables. Thus, the approach we take is to use history
variables whenever possible (which allows us to use refinement mappings instead of the more
complicated notion of forward simulations) but to use backward simulations instead of having
to deal with prophecy variables. Whether to use prophecy variables or backward simulations is
a matter of taste and probably amounts to the same effort. When using backward simulations
the complexity lies in showing that the relation is in fact a backward simulation, and when
using prophecy variables the complexity lies in showing that the variables are in fact prophecy
variables (which is done in a proof that actually has the flavor of a backward simulation).

Syntactically Adding History Variables

Let there be given a syntactic description of a safe I/O automaton A. Then a history variable

h (¢ variables(A)) can be added to A to get A, as follows:

1. To the list of state variables of A, append a line with h, the type of h, and the initial value
of h.

2. To each step rule of the form

name
Precondition:
P
Effect:
E

an assignment to h may be added

name
Precondition:
P
Effect:
E
h:=e

where e is an expression that may mentions h as well as other variables. Note, that
the assignment to h may appear in an if-then-else statement, and that it may be moved
anywhere in the effect clause since this does not affect the assignment of values to any of
the other variables (but of course could affect the value assigned to h).

For step rules for input actions, which have no precondition, the assignment to the history
variable can be added to the effect clause similarly.

5.1. Untimed Systems 71

We say that A is obtained from safe I/O automaton A by adding the history variable A if the
syntactic specification of A, can be obtained from that of A by 1) and 2). In this case, clearly Ay
is a safe I/O automaton and variables(A;) = variables(A) U {h}. The following simple lemma
states the close correspondence between the steps of A and Aj.

Lemma 5.12

Let Ay, be obtained from A by adding history variable h. Then,

1. for each (s,a,s") € steps(A) and each s, € states(Ay) with s, | variables(A) = s, there
exists a step (s, a,s),) € steps(Ay) such that s, [variables(A) = ', and

2. for each (sy,a,s)) € steps(Ay), (sp [variables(A), a, s;, | variables(A)) € steps(A).

Lemma 5.13
Let Ay, be obtained from A by adding history variable h. Then,

1. for each execution o € exec(A), there exists an execution ay, € exec(Ay) such that a, [A =
a, and

2. for each execution oy, € exec(Ap), ap | A € exec(A).

Proof
In Appendix B.
|

Instead of proving the existence of a history relation from A to A, we directly prove that A
safely implements Aj; and vice versa.

Lemma 5.14
Let Ay be obtained from A by adding history variable h. Then A Cg Aj, and A, Cg A.

Proof
In Appendix B.
|

We now turn attention to live I/O automata. Let (A, L) be a live I/O automaton and let A, be
a safe I/O automaton obtained from A by adding history variable h. Define

Ly, 2 {ay € evec(Ay) |ay | A€ L}

Then (Ap, Ly) is a live I/O automaton since any environment-free strategy (g, f) for (A, L) can
be trivially extended to an environment-free strategy (g, fu) for (A, L) by letting g, and f,
be like g and f except that they make arbitrary (possible) assignments to the history variable.
We say that (A, L) is a live I/O automaton obtained from (A, L) by adding history variable
h.

72 5. Proof Techniques

Lemma 5.15

Let (An, Ly,) be obtained from (A, L) by adding history variable h. Then (A, L) Cy, (A, L) and
(A, Ly) Er (A, L).

Proof
In Appendix B.
|

The final lemma of this section deals with liveness formulas.

Lemma 5.16

Let (A, Ly,) be obtained from (A, L) by adding history variable h, and assume that L is induced
by (). Then Ly is induced by ().

Proof
In Appendix B.
|

We can now turn attention to similar techniques to be used in the timed setting.

5.2 Timed Systems

The structure of this section is similar to the structure of Section 5.1.

5.2.1 Timed Simulation Proof Techniques

There are only two minor differences between the simulation relations presented here and the
simulation relations from the untimed case. First, states related by a simulation relation must
have the same time. Second, since the trace operator on execution fragments does not adequately
abstract from time-passage actions, the simulation techniques below use a notion of visible trace.
For any timed automaton A and any execution fragment a of A, define the visible trace of
a, written vis-trace (o), or just vis-trace(a) when A is clear from context, to be a [vis(A).
Similarly, given any sequence of actions /3, define the visible trace of 3, written vis-trace,(/3),
or just vis-trace(f) if A is clear from context, to be 5 [vis(A).

We now introduce the notions of timed forward simulations, timed refinement mappings, and
timed backward simulations.

Definition 5.17 (Timed forward simulation)

Let A and B be safe timed 1/O automata with in(A) = in(B) and out(A) = out(B) and with
invariants I, and I, respectively. A timed forward simulation from A to B, with respect to I,
and Ig, is a relation f over states(A) X states(B) that satisfies:

1. If u € f[s] then u.now = s.now.

2. If s € start(A) then f[s] N start(B) # 0.

5.2. Timed Systems 73

3. If (s,a,8") € steps(A), 5,8 € I4, and u € f[s]N g, then there exists an a € frag™(B) with
fstate(a) = u, Istate(a) € f[s'], and vis-trace(a) = vis-trace(a).

Write A <;r B if there exists a timed forward simulation from A to B with respect to some
invariants I, and Ig. If f is a timed forward simulation from A to B with respect to some
invariants I, and Ip, we write A <,r B via f.

Definition 5.18 (Timed refinement mapping)

Let A and B be safe timed I/O automata with in(A) = in(B) and out(A) = out(B) and with
invariants 1,4 and Ip, respectively. A timed refinement mapping from A to B, with respect to
I, and Ip, is a function r from states(A) to states(B) that satisfies:

1. r(s).now = s.now.
2. If s € start(A) then r(s) € start(B).
3. If (s,a,8) € steps(A), 8,8 € I4, and r(s) € I, then there exists an a € frag™(B) with

fstate(a) = r(s), Istate(a) = r(s'), and vis-trace(a) = vis-trace(a).

Write A <;r B if there exists a timed refinement mapping from A to B with respect to some
invariants I, and Ig. If r is a timed refinement mapping from A to B with respect to some
invariants I, and Ig, we write A <;z B via r.

Definition 5.19 (Timed backward simulation)

Let A and B be safe timed I/O automata with in(A) = in(B) and out(A) = out(B) and with
invariants 1,4 and Ig, respectively. A timed backward simulation from A to B, with respect to
I, and Ip, is a relation b over states(A) X states(B) that satisfies:

1. If w € b[s] then u.now = s.now.
2. If s € I, then b[s]N Ig # 0.

3. If s € start(A) then b[s]N I C start(B).

e

I (s,a,8") € steps(A), s, € 14, and v € b[s'] N I, then there exists an a € frag™(B)
with [state(a) = v/, fstate(a) € b[s| N Ip, and vis-trace(a) = vis-trace(a).

Write A <;p B if there exists a timed backward simulation from A to B with respect to
some invariants I, and Ig. If furthermore the timed backward simulation is image-finite, write
A <yp B. If bis a timed backward simulation from A to B with respect to some invariants 4
and Ip, we write A <,p B (or A <5 B when b is image-finite) via b.

74 5. Proof Techniques

5.2.2 Execution Correspondence

As in the untimed case, the simulation relations imply a certain correspondence between the
ordinary executions of the involved timed automata. The following definition formalizes this
correspondence, called timed R-relation, and defines a notion of timed index mapping. The
definition is similar to Definition 5.4 in the untimed model; the only differences are that the R
relation must relate states with the same time and that the definition below deals with visible
traces as opposed to traces, i.e., the same differences as in the simulations.

Definition 5.20 (Timed R-relation and timed index mappings)

Let A and B be safe timed I/O automata with in(A) = in(B) and out(A) = out(B), and
let R be a relation over states(A) X states(B) such that if (s,u) € R, then s.now = u.now.
Furthermore, let a and o’ be (ordinary) executions of A and B, respectively.

(8% = S50Q151A289 "

o = u0b1u1b2u2 te

Let a and o' be timed R-related, written (o, ') €, R, if there exists a total, nondecreasing
mapping m : {0,1,...,|a|} — {0,1,...,]|a’|} such that

1. m(0) =0,
2. (84, Umy) € R for all 0 <4 < af,
3. wis-trace(byi—1)41 - b)) = vis-trace(a;) for all 0 < i < |af, and
4. for all j, 0 < j < |a/|, there exists an ¢, 0 < ¢ < |af, such that m(i) > j.
The mapping m is referred to as a timed index mapping from o to o with respect to K.

Write (A, B) €; R if for every execution a of A, there exists an execution o’ of B such that

(a,0) €; R.
|

Now the Execution Correspondence Theorem for the timed case [GSSL93] can be stated.

Theorem 5.21 (Execution Correspondence Theorem)

Let A and B be safe timed 1/0 automata with in(A) = in(B) and out(A) = out(B). Assume
for X € {tF,tR,itB} that A <x B via S. Then (A,B) €, S.

5.2.3 Proving Safe Timed Implementation

Due to the fact that timed R-related executions have the same time in related states and have
a correspondence between the their visible traces, it is possible to prove that timed R-related
executions have the same timed traces.

Lemma 5.22

5.2. Timed Systems 75

Let A and B be safe timed 1/0 automata with in(A) = in(B) and out(A) = out(B) and let R
be a relation over states(A) x states(B) such that if (s,u) € R then s.now = u.now. Then, if
(a,0') €; R, then t-trace(a) = t-trace(a’).

The soundness of the timed simulations with respect to the timed safe preorders can now be
stated.

Theorem 5.23 (Soundness of timed simulations w.r.t. safe timed implementation)

Let A and B be safe timed 1/0 automata with in(A) = in(B) and out(A) = out(B). Assume
for some X € {tF,tR,itB} that A <x B. Then A Cs; B.

5.2.4 Proving Correct Timed Implementation

We can prove the following result which is similar to Lemma 5.9 in the untimed setting. This
lemma will form the basis of any proof of correct implementation in the timed setting.

Lemma 5.24

Let (A, L) and (B, M) be live timed 1/O automata with in(A) = in(B) and out(A) = out(DB).
Also, let L and M be induced by Q)1 and Qur, respectively, and assume that @ is minimal.
Assume for some X € {tF,tR,itB} that A <x B via §. If, for all a € exec®(A) and o/ €
exec™(B) with (a,a') € S, a |E Qp implies o' |= Qpr, then (A, L) Cr (B, M).

Proof

This lemma directly follows from a similar result in [GSSL93] and our definition of a sampling
characterization being induced by a temporal formula.

Lemma 5.24 can be used to prove the correct timed implementation relation between two live
timed I/O automata in a manner similar to the way Lemma 5.9 is used in the untimed model.
However, one must first prove that the high-level liveness condition is induced by a minimal
timed liveness formula.

The following lemmas correspond to Lemmas 5.10 and 5.11 above.

Lemma 5.25

Let A and B be safe timed 1/0 automata with in(A) = in(B) and out(A) = out(B) and let R be
a relation over states(A) x states(B) such that if (s,u) € R, then s.now = u.now. Furthermore,
let a and o/ be executions of A and B, respectively, such that (a,a’) € R. Finally, let C' be a
set of visible actions (from the common set of visible actions). Then

o): <>\:|—|<C> iff o): <>\:|—|<C>

76 5. Proof Techniques

Proof
Similar to the proof of Lemma 5.10.
|

Lemma 5.26
Let A and B be safe timed I/0 automata with in(A) = in(B) and out(A) = out(B) and let R be

a relation over states(A) x states(B) such that if (s,u) € R, then s.now = u.now. Furthermore,
let o and o' be executions of A and B, respectively, such that (a,a’) € R. Assume P and Q) are
state formulas over A and B, respectively, such that for all (s,u) € R, if u = Q, then s | P.
Then,

if o E<OQ then ok <OP

Proof
Similar to the proof of Lemma 5.11.

5.2.5 History and Prophecy Variables

As in the untimed setting it is possible to add history variables to safe and live timed I/0O au-
tomata. As above we only deal with history variables and adhere to timed backwards simulations
instead of using prophecy variables.

Syntactically Adding History Variables

The syntactic rules for adding history variables to a safe timed I/O autoamaton are equal to
the same rules in the untimed setting. However, in the timed setting, we do not allow history
variables to be updated in time-passage steps since otherwise the resulting object would not
necessarily be a safe timed I/O automaton (that is, the trajectory axiom S5 of Definition 2.17
could be violated). Thus, a history variable h (¢ variables(A)) can be added to a safe timed
I/O automaton A to get A, by following the two rules in Section 5.1.5 with the restriction
that A must not be changed in the step rule for the time-passage action v. We say that A, is
obtained from A by adding the history variable h. Clearly A; is a safe timed 1/0O automaton
and variables(Ay) = variables(A) U {h}.

In previous chapters we have defined how to restrict ordinary executions to subsets of state
variables and actions. Below we need a similar result for timed executions, however, we need
only deal with restriction to a subset of the state variables. So, let ¥ = wyaiwiasws - - - be a timed
execution of a safe timed 1/O automaton A. Then, for any set V C variables(A), define ¥ [V to
be the sequence wja,w|asw) - - -, where for each index ¢ and each ¢t € dom(w;), wi(t) = wi(t) [V.
Thus, informally X [V is obtained from 3 by restricting all states in the range of all trajectories
to V. If A, is obtained from A by adding history variable h and ¥, € t-exec(Ay), we let X, [A
be a shorthand for ¥ | variables(A).

As in the untimed case, we have the following lemmas.

Lemma 5.27
Let Ay be obtained from A by adding history variable h. Then,

5.2. Timed Systems 77

1. for each (s,a,s") € steps(A) and each s, € states(Ay) with s, | variables(A) = s, there
exists a step (s, a,s}) € steps(Ay) such that s, [variables(A) = ', and
2. for each (sy,a,s)) € steps(Ay), (sp [variables(A), a, s;, | variables(A)) € steps(A).

Lemma 5.28
Let Ay, be obtained from A by adding history variable h. Then,

1. for each timed execution ¥ € t-exec(A), there exists a timed execution ¥, € t-exec(Ay)
such that ¥, | A =X, and

2. for each timed execution X, € t-exec(Ay), ¥ [A € t-exec(A).

Proof
In Appendix B.
|

These lemmas allow us to prove that a safe timed I/O automaton A is a safe implementation of
any safe timed 1/O automaton A, obtained by adding history variable h to A, and vice versa.

Lemma 5.29
Let Ay be obtained from A by adding history variable h. Then A Cg; A and Ay Cgp A.

Proof
Similar to the proof of Lemma 5.14 by using Lemma 5.28.
|

Now, let (A, L) be a live timed I/O automaton and let A, be a safe timed I/O automaton
obtained from A by adding history variable h. Define

Lh é {Eh € t-execoo(Ah) | Eh rA € L}

Then (A, Ly)is alive timed I/O automaton since any environment-free strategy (g, f) for (A, LU
t-ezec?'(A)) can be trivially extended to an environment-free strategy (gn, fu) for (A, Ly U
t-exec?'(Ay)) by letting g, and f, be like g and f except that they make arbitrary (possible)
assignments to the history variable. We say that (A, L) is alive timed I/O automaton obtained
from (A, L) by adding history variable h.

Lemma 5.30

Let (Ay, Ly) be obtained from (A, L) by adding history variable h. Then (A, L) Cr; (An, Lp) and
(A, Lp) Ere (A, L).

Proof

Similar to the proof of Lemma 5.15 by using Lemma 5.28.
|

78 5. Proof Techniques

Before we can prove the final lemma, which deals with timed liveness formulas, we state the
following trivial result without proof.

Lemma 5.31

Let A;, be obtained from A by adding history variable h. Furthermore let o and X, range
over exec(Ay) and t-exec(Ay), respectively, and let a and % range over exec(A) and t-exec(A),
respectively. Then,

1. if ap samples X, then ay [A samples X, I A, and
2. if a samples 3, | A, then there exists an ay, such that o = ay, | A and a; samples 3y,.

Lemma 5.32

Let (A, Ly,) be obtained from (A, L) by adding history variable h, and assume that L is induced
by (). Then Ly is induced by ().

Proof
In Appendix B.
|

This concludes the theoretical part of the report. We now turn attention to the verification
example of proving correctness of two solutions to the at-most-once message delivery problem.

Part 11

Reliable At-Most-Once Message

Delivery Protocols

A Protocol Verification Example

Chapter 6

Specification S

This chapter describes the top-level specification of the “at-most-once message delivery” prob-
lem. The specification will be given in terms of a live I/O automaton. The objective of the S
level is to give a clear, easy-to-understand specification that can easily be checked to have the
desirable behavior.

The at-most-once message delivery problem is that of delivering a sequence of messages
submitted by a user at one location to another user at another location. Ideally, we would like
to insist that all messages be delivered in the order in which they are sent, each exactly once,
and that an acknowledgement be returned for each delivered message.!

Unfortunately, it is expensive to achieve these goals in the presence of failures (e.g., node
crashes). In fact, it is impossible to achieve them at all unless some change is made to the
stable state (i.e., the state that survives a crash) for each message. To permit less expensive
solutions, we weaken the statement of the problem slightly. We allow some messages to be lost
when a node crash occurs; however, no messages should otherwise be lost, and those messages
that are delivered should not be reordered or duplicated. (The specification is weakened in this
way because message loss is generally considered to be less damaging than duplicate delivery.)
Now it is required that the user who sent the message receive either an acknowledgement that
the message has been delivered, or in the case of crashes, an indication that the message might
have been lost.

Even though our specification S is centralized (i.e., has no distributed structure), the external
actions of S can be partitioned into actions connected to the user at the sender side and actions
connected to the user at the receiver side. This user interface, which will be the same for all
subsequent implementations, is depicted in Figure 6.1, where the specification S is shown as a
“black box”.

A user can send a message m to the system by issuing a send_msg(m) action, and the system
can pass a message m to the user at the receiver end by means of a receive_msg(m) action.
Crashes at the sender and receiver sides are modeled as inputs crash, and crash,, respectively?,
and the corresponding recovery actions are outputs recover, and recover,. If a crash, but not
yvet a recover, action has occurred, we say the the sender side is crashed or equivalently that
it is in recovery phase. Correspondingly for the receiver side. During a crash messages can be
lost. This is in S modeled by a lose(!) actions (not depicted in Figure 6.1 since it is internal).

YOur definition of at-most-once message delivery is different from what some people call at-most-once message
delivery in that we include acknowledgements and require messages to be delivered in order.

2We will use subscripts s and r on actions and state variables to indicate which are related to the sender and
receiver sides, respectively.

81

82 6. Specification S

Specification S

send_msg(m) recetve_msg(m)
ack(b)

Sender side crash, crash, Receiver side
recover recover;

Figure 6.1

The specification S as a ”black box”

Finally, there is a simple acknowledgement mechanism incorporated into the specification.
An action ack(b), where b is a Boolean, notifies the user at the sender side about the status of
the last message sent. If acknowledgements are needed for each message, the user must wait for
acknowledgement before sending the next message. Our simpler acknowledgement mechanism
reflects the way typical low-level protocols work. Thus, if the user sends a sequence of messages
my, ..., m, without waiting for acknowledgement between each pair of messages, a subsequent
acknowledgement will be for message m,. Ideally, an ack(true) should be issued if the last
message sent has been successfully delivered to the receiver, and an ack(false) should be issued
if the last message has been lost during a crash. This is, again, impossible to obtain in a
distributed implementation unless some changes are made to the stable state for each message,
so we will use a weaker acknowledgement mechanism: if an ack(true) is issued, the last message
has been successfully receiver. If, on the other hand, an ack(false) is issued, the only thing the
user can infer is that a crash has occurred. Thus, even in the case of negative acknowledgement,
the last message might have been successfully delivered since all messages are not necessarily
lost during crashes.

6.1 The Specification of S

We now define the live I/O automaton representing the specification S. We will let S represent
both the name of this level of development and the name of the live I/O automaton.

We specify S by defining its components (cf. Definitions 2.1 and 2.8). We refer to the safe
I/O automaton part of S by Ag, and to the liveness part by Lg. Thus, S = (As, Ls). Ls will be
specified implicitly by an environment-free liveness formula ()5 for Ag.

6.1.1 States and Start States

In S and the lower level protocols we assume that messages are taken from a set Msg. We require
that nil ¢ Msg but assume no other properties of Msg.

The state space of S is made up of four state variables as shown in the following table, which
furthermore shows the types and initial values of the state variables. The status variable ranges

6.1. The Specification of S

83

over the set

Stat = Bool U {7}
‘ Variable ‘ Type ‘ Initially Description

queue Msg" 3 The list of messages sent but not yet delivered.

rec, Bool false true iff the sender side has crashed and not yet
recovered.

rec, Bool false true iff the receiver side has crashed and not yet
recovered.

status Stat false Indicates the status of the last message sent. The
special value ’?’ indicates that the last message
sent is still in queue and no crashes have occurred
since it was sent.

6.1.2 Actions

The set of actions of S consists of the input and output actions from Figure 6.1 plus the internal

lose(I) action.

Input:
send_msg(m)
crash
crash,

Output:

,m € Msg

recetve_msg(m), m € Msg

ack(b), b € Bool

recovers
recover,
Internal:

lose(I), I CN

6.1.3 Steps

The transition relation steps(Ag) will be specified using the precondition-effect style presented

in Section 4.1.1.

send_msg(m)

Effect:

queue := queue m

status := 7

ack(b)
Precondition:
status = b
Effect:

none

crash

Effect:

recs := true

recetve_msg(m)

Precondition:
queue # & A
head(queue) = m

Effect:
queue := tail(queue)
if queue = ¢ A status = 7 then

status := true

crash,
Effect:

rec, := true

84 6. Specification S

lose([I)
Precondition:
(recs = true V rec, = true) A I C dom(queue)
Effect:

if queue # & A mazidz(queue) € 1
status := false

else
optionally status := false

queue := delete(queue, I)

recovers recover,
Precondition: Precondition:
rece = true rec, = true
Effect: Effect:
recs := false recy := false

The function delete in the step rule for lose(I) deletes messages with indices in I from queue.
Formally, for any list ¢ and any set I C dom(q), define

delete(q,I) = (q[i]|i € dom(q) Ni ¢ I)
The notation to the right of = is defined in Appendix A.

The handling of queue, rec,, and rec, in the step rules is self-explanatory. The handling of
status is a bit more complicated: when a new message m is sent to the system (modeled by
send_msg(m) steps), status is changed to ? to indicate that the last message sent is in queue.
When a message is delivered to the receiver (modeled by receive_msg(m) steps) and queue
thereby becomes empty, status should be changed to true, but only if the message delivered
is in fact the last message sent and not another message, which happens to be last on queue
because the last message sent has been lost in a crash. Thus, at any point a status value of ?
indicates that the message at the end of queue is actually the last message sent by the sender.
This explains the receive_msg(m) steps. The lose(I) action then records if the message at the
end of queue is lost by changing status to false. (If the message at the end of queue is not the
last message sent, status would already be false). On the other hand, if the message at the end
of queue is not deleted, we are still allowed to change status to false according to our informal
description of the acknowledge mechanism given in the introduction to this chapter.

Note, that it is possible for the system to output a positive acknowledgement for a message
and then “change its mind” and start issuing negative acknowledgements. However, this change
of mind can only happen during a crash. (In such a situation the user knows that the last
message has been delivered since she has received a positive acknowledgement.)

Another thing to note is the fact that the ack(b) steps do not disable themselves. Thus, once
status becomes true or false, acknowledgements can be sent continuously until a new message
is put into queue by a send_msg(m) step. (Actually, with the liveness restrictions we present
below, acknowledgements must be issued infinitely often if status stays true or false, and no
crashes occur.) A remedy to this situation would be to introduce an additional flag, which is
set when status is changed from 7 to a Boolean, and reset when an acknowledgement is issued.
Acknowledgements should then only be enabled when this flag is set. We have chosen not to
introduce the flag since it would only add few interesting aspects to the implementations.

6.1. The Specification of S 85

6.1.4 Liveness

We now present the environment-free liveness formula ()5 for Ag, which induces the liveness
condition Lg. The liveness we specify for S is weak fairness to four sets of locally-controlled
actions. Two of these sets have associated forcing conditions. Note, that lose(]) actions are not
in any set since we do not want to force the system to lose anything. Informally, the sets and
forcing conditions are.

1. ack(b) actions
Forcing condition: rec, = rec, = false
2. receive_msg(m) actions

Forcing condition: rec, = rec, = false
3. recover,

4. recover,

With these liveness restrictions we guarantee that in the absence of crashes, messages in queue
will be delivered and acknowledgements for the last message will be issued unless new messages
are sent to the system. Furthermore, both the sender side and the receiver side are guaranteed
to recover after a crash. (This requirement on recovery could be removed from all levels of
abstraction without affecting other liveness properties. All interesting liveness properties are, in
fact, conditioned by the assumption that no new crashes occur.)

The liveness requirements can be formalized in the following way. Let

Cs1 = {ack(true), ack(false)}

Cso = {receive_msg(m) | m € Msg}
Cs.s = {recover,}

Cs.a £ {recover,}

Then the formalization of Qg is

Qs = Cs 1, recs = false N rec, = false) N

Cs 2, recs = false N rec, = false) N

By Lemma 4.7, Qs is an environment-free liveness formula for Ags. Thus, S = (Ag, Lg) is a live
I/O automaton. Furthermore, by Lemma 4.8, (5 is stuttering-insensitive.

This concludes the formal specification of the at-most-once message delivery problem.

Chapter 7

Delayed-Decision Specification D

In our specification S, presented in Chapter 6, we saw that it is allowed to lose any number of
messages in the system, but only if either rec, or rec, is true, i.e., we can only lose messages
between crash and recovery. In the low-level protocols we consider, the choice whether or not
to lose a message because of a crash may be postponed until after recovery and the choice
is dependent on certain race-conditions on the network channels: a message m traveling on a
channel and the receiver have no way of knowing if the sender has crashed, so even if the sender
has crashed, the message might still be successfully received by the receiver. But, if the sender
recovers and sends a new message on the channel, the reception of this new message before m
(our channels are not FIFO) will lead to the discartion of m when it is eventually received (since
otherwise messages could be reordered).

This postponing of nondeterministic choices suggests that we at one point have to rely on a
backward simulation to prove correctness of the low-level protocols. In a first attempt, a timed
backward simulation was proved directly from the Clock-Based Protocol C to S (or rather the
patient version of S). A lot of this work would have had to be repeated in a backward simulation
from the Five-Packet Handshake Protocol H to S, so after having designed the Generic Protocol
G, we proved a backward simulation from G to S, and could then do with a timed refinement
from C to patient(G) and a refinement from H to G.

Still, the proof from G to S was very large and comprehensive. It is our experience that
backward simulations are generally difficult to deal with, mainly because they are not so intuitive
as forward simulations. This observation led us to try to “limit” the backward simulation to
a development step as small as possible. Generally, one should always try to find steps of
development that are intuitive, and remember that a series of steps (with proofs) are generally
easier to comprehend than is one big proof, even though the combined length of the small proofs
might exceed the length of the big proof.

So, as an intermediate level between S and G we came up with the Delayed-Decision Spec-
ification D, which looks very much like S, but instead of deleting messages between crash and
recovery, D marks arbitrary messages, and marked messages can then be lost at any point. D
also deals with postponing of losing (i.e., changing to false) the status as the result of a crash.
When we describe the steps of D, we will further explain the differences between S and D.

It should be noted, that even though we postpone the decision about which messages to lose,
only messages which were in the system between crash and recovery can be lost. A system that
did not satisfy this restriction could not, of course, implement S.

The rest of this chapter is organized as follows. First, in Section 7.1, we present D and then, in

87

88 7. Delayed-Decision Specification D

Section 7.2, we prove that D correctly implements S.

7.1 The Specification of D

We specify D = (Ap, Lp) as a live I/O-automaton using the notation introduced in Chapter 4.
Lp will be specified implicitly by the environment-free liveness formula Qp for Ap.

7.1.1 States and Start States

The marks we put on messages and status are taken from the following set:

Flag = {0K,marked}

‘ Variable ‘ Type ‘ Initially ‘ Description ‘

queue (Msg x Flag)* 3 The list of messages in the system. FEach
message has an associated flag. If the flag
value is marked, the message might be lost
in a subsequent drop([) action.

rec, Bool false true iff the sender has crashed and not yet
recovered.

rec, Bool false true iff the receiver has crashed and not yet
recovered.

status Stat x Flag (false, 0K) Indicates the status of the last message sent.

If the associated flag is marked, the status
might be changed to false in a subsequent
drop(1I) action.

We use the normal record notation to extract components of a value or variable. For instance,
status.stat and status.flag extract the status value and status flag from status.

We say that status is marked if status.flag = marked, and correspondingly an element e of
queue is marked if e.flag = marked. If en element of queue or the status is not marked, it is said
to be OK or “not marked”.

7.1.2 Actions

The input and output actions, i.e., the user interface, of Ap is, of course, the same as for Ag.
Ap has the internal actions mark([l), unmark(1l), and drop(I).

Input:
send_msg(m), m € Msg
crash
crash,
Output:
recetve_msg(m), m € Msg
ack(b), b € Bool
recover
recovery
Internal:

7.1. The Specification of D 89

mark(I), I C
unmark(l), I
drop(I), T CN

7.1.3 Steps

Here we present the steps of Ap. An explanation of the steps is offered below.

send_msg(m) recetve_msg(m)
Effect: Precondition:
queue := queue " (m, OK) queue # & N\
status := (7, 0K) (head(queue)).msg = m
Effect:
ack(b) queue := tail(queue)
Precondition: if queue = ¢ A status.stat = 7 then
status.stat = b status.stat .= true
Effect:

status.flag = 0K

crash crash,
Effect: Effect:
recs := true rec, := true
mark (1)
Precondition:

(rece = true V rec, = true) A I C dom(queue)
Effect:

queue := mark(queue, I)

optionally status.flag := marked

recovers recover;
Precondition: Precondition:
recs = true rec, = true
Effect: Effect:
recs := false recy := false
unmark(l)
Precondition:
I C dom(queue)
Effect:

queue := unmark(queue, I)
optionally status.flag := 0K

drop(I)
Precondition:
I C{i|1i€ dom(queue) A queue[t].flag = marked}
Effect:
if queue # & A mazidz(queue) € I then
status := (false, OK)
else if status.flag = marked then
optionally status := (false, OK)
queue := delete(queue, I)

In the step rule for drop we use the function delete, which was defined in Chapter 6 and used in
the definition of lose(I) at the S level. The precondition of drop(1) guarantees that only marked
messages are deleted. The step rule for mark uses a function mark, which is intended to mark

90 7. Delayed-Decision Specification D

messages with indices in /. Formally, for any queue ¢ € (Msg X Flag)* and any set I C dom(q),
define

mark(q,I) = ((if i € I then (q[i].msg,marked) else ¢[i]) | i € dom(q))
Similarly, the step rule for unmark uses the function unmark defined as
unmark(q, 1) = ((if i € I then (g[i].msg, 0K) else ¢[i]) | i € dom(q))

Furthermore, note that when a new message is put into queue (by send_msg(m)), the message
and status get the flag OK to indicate that they cannot be lost (yet). In the definition of the
receive_msg(m) steps it is seen that a message might be successfully delivered to the receiver
even though it is marked. This is because a marked message only has the possibility of being

deleted.

Recall from the definition of S that there are two ways in which status can be lost (i.e., get a
status value of false), and both ways are described in the definition of lose([) in Ag: 1) if the
element at the end of the queue is deleted, then the status is required to be lost, and 2) in any
lose(I) step the status may be lost.

In Ap a status flag of marked corresponds to point 2), i.e., that status may be lost. In
the mark(I) steps of Ap permission is given to lose some messages and maybe status. Then
in drop(I) steps of Ap, which does the actual deleting performed by lose([) in As, status is
required to be lost if the element at the end of queue is deleted, even though status is OK. This
corresponds to point 1) above, where status is required to be lost. Steps labeled by drop([I) is,
of course, always allowed to lose a marked status.

The effect clause in the definition of the ack(b) steps is explained as follows: suppose status.stat =
? and that status.flag has been changed to marked during a crash (by mark(l)). In a subse-
quent receive_msg(m) step that empties queue, status.stat is changed to true which enables
an ack(true) action. After the receive_msg(m) step, status = (true,marked), so there is still
a possibility of losing status. However, once a positive acknowledgement has been issued, the
system must not lose status and start issuing negative acknowledgements. Remember from the
S level that the system is only allowed to change its mind in this respect during a crash. Thus,
by changing status.flag to OK in the ack steps, we disallow this change of mind. Note, that it
would be too restrictive to change status to (true,0K) in receive_msg(m) since we want Ap to
be as nondeterministic as possible, to allow as many implementations as possible.

Another point where we have made Ap very nondeterministic is in the way messages (and
status) are marked and deleted. In a mark(l) step some messages are marked and in an
unmark(I) step, which can happen at any time, some of the marked messages can be made
OK again, and finally in a drop(I) step, some of the marked messages are deleted.

Here, again, the point is that we want Ap to be as nondeterministic as possible. Of course
the effect of marking some elements could be obtained by a “deterministic” mark that marks
everything followed by unmark(l). However, when performing simulation proofs from lower
levels of abstraction, it is desirable, for clarity, to have as nondeterministic actions of Ap as
possible. Thus, by removing nondeterminism from Ap, which could not jeopardize its correctness
with respect to Ag, we might rule out some implementations and make the correctness proofs
of other implementations more cumbersome.

7.2. Correctness of D 91

7.1.4 Liveness

As at the S level, we specify liveness in terms of fairness. Specifically, the liveness condition Lp
at the D level will be specified implicitly as an environment-free liveness formula () for Ap.
()p will be stated as a conjunction of four weak fairness formulas, two of which have associated
forcing conditions. We do not require fairness on the actions mark(I), unmark(1l), and drop(I).
Informally, we have the four weak fairness conjuncts:

1. ack(b) actions

Forcing condition: rec, = rec, = false

2. receive_msg(m) actions

Forcing condition: rec, = rec, = false
3. recover,

4. recover,

This ensures the same liveness as at the S level. Formally, let

Cp, = {ack(true), ack(false)}

Cpa 2 {receive_msg(m) | m € Msg}
Cps = {recover,}

Cpa £ {recover,}

Then the formalization of Qp is

@p

>

By Lemma 4.7, Qp is an environment-free liveness formula for Ap. Thus, D = (Ap, Lp) is a live
I/O automaton. Furthermore, by Lemma 4.8, Qp is stuttering-insensitive.

This concludes the Delayed-Decision Specification of the at-most-once message delivery problem
and attention is now turned towards proving that D correctly implements S.

7.2 Correctness of D

In this section we prove that D = (Ap, Lp) is a correct implementation of our specification
S = (As, Lg). First we give some invariants of Ap. Then we prove, by means of an image-finite
backward simulation, that Ap safely implements Ag, and finally we use this simulation result to
prove that D correctly implements S.

7.2.1 Invariants

We only need one invariant in the proof. The invariant should be understood as the conjunction
of the two parts.

92 7. Delayed-Decision Specification D

Invariant 7.1

1. if status.stat = 7 then queue # ¢

2. if status.stat = true then queue = ¢

Proof

By a simple inductive argument, it is easily proven that all reachable states of Ap satisfy the
two parts of the invariant, so we omit the proof here. At the lower levels of abstraction we will
give examples of proofs of more interesting invariants.

Below, we refer to this invariant by Ip.

7.2.2 Safety

To show that Ap safely implements Ag, we show the existence of an image-finite backward
simulation from Ap to Ag with respect to some invariants. However, before we can do this we
need a few preliminary definitions and lemmas.

Below we let gp be a queue at the D level, i.e., gp € (Msg x Flag)*, and let g5 be a queue at the
S level, i.e., qs € Msg".

Definition 7.2 (Explanation)

Define an explanation from gs to ¢p to be any mapping f : dom(gs) — dom(qp) that satisfies
the following four conditions

1. fis total
2. [is strictly increasing
3. Vi € dom(qp) \ rng(f) : qpli].flag = marked
4. Vi € dom(qs) : qp[f(i)].msg = qs][i]
|
Basically, if there exists an explanation from ¢g to ¢p, this means that ¢ can be obtained from

gp by first deleting some of the marked elements of gp and then removing the flags from the
remaining elements.

Lemma 7.3

Let f be an explanation from qs to qp. Then |qs| < |gp].

Proof

Suppose |gs| > |gp|. Then it is impossible to find a mapping from dom(gs) to dom(qp) that is
total and strictly increasing, thus Conditions 1 and 2 of Definition 7.2 are violated. Hence, we
can conclude |gs| < |¢p|.

7.2. Correctness of D 93

Now, define #qgg(¢p) to be the number of elements e of ¢gp with e.flag = 0K. Thus, formally
#ok(ap) = lap I (Msg x {0K})|

Lemma 7.4

Let f be an explanation from qs to qn. Then |qs| > #ox(qp).

Proof

Suppose |gs| < #gx(¢p). Then Conditions 1 and 2 of Definition 7.2 give us that |rng(f)| =
lgs|(< #gk(gp)), so there must exist indices ¢ in ¢p such that ¢p[i].flag = 0K and @ ¢ rng(f).
But this contradicts Condition 3 of Definition 7.2. Hence, we can conclude |gs| > #gk(ap)-

We are now ready to define a relation Bpg over states(Ap) x states(Ag). In Lemma 7.11 below
we prove that Bpg is an image-finite backward simulation from Ap to As.

However, before we give the actual definition of Bpg, it might be appropriate to discuss how
to define a backward simulation in general. What states should be related? Let us give some
guide-lines in terms of Ap and Ag in this example.

Recall that a backward simulation is needed when an implementation postpones some non-
determinism of the specification. The deletion of messages during a crash in Ag can in Ap be
postponed until after recovery, which indicates that we need a backward simulation from Ap to
As. (It is impossible to find a forward simulation from Ap to As. See, e.g., [LV92] for details.)
This situation is shown—in a simplified way—in the following picture.

Tecovers

13 ———— > U23
lose
l recovers

ose
S level o w12 u22

lose recovers
U1l ——— > U21

$33

D level So S1 S2 S32

M
mark recover, drop
m

$31

The mark step of Ap marks some messages, and after recovery some of the marked messages
can be deleted by the nondeterministic drop steps. In this simplified example we assume that
there are three ways of deleting messages, leading to states ss;, S35, and sss.> In Ag this scenario
corresponds to lose having the “same” three ways of deleting messages, leading to states wuqq,
1o, and u;3, followed by recovery.

!When dealing with two levels of abstraction, we always let s range over the states of the concrete level and
u over the states of the abstract level.

94 7. Delayed-Decision Specification D

It seems fairly intuitive that Bpg should relate ss; to us; for 1 <7 < 3. But what about s,7
Well, s, is the state right after Ap has recovered, so it should be related to states after Ag has
recovered. Thus, we are down to wusq, ¢29, and u.3. Now the point is that s, actually corresponds
to all of these states. In some sense Bpg offers an explanation of the nondeterminism occurring
after s, by saying that this nondeterminism corresponds to some previous nondeterminism of
Ag, which has led to one of the states s, a9, OF Uss.

To check that Bpg is a backward simulation from Ap to Ag we have, among other things,
to verify that each step of Ap corresponds to a sequence of steps of Ag with the same trace.
More specifically, consider, e.g., the step (ss, drop,ss;) of Ap. According to Condition 3 of
Definition 5.3, we have to verify that for each state of Ag that is related to sz5, here only wss,
there exists a state u of Ag such that there is a sequence of steps from u to u., with an empty
trace (since drop is internal). But here we can just choose u to be uss. This makes the sequence
of steps in Ag empty which certainly has an empty trace.

For s; we can use similar arguments and find that s; should be related to all of the states
U1, Uiz, and uy3. Now, consider the step (s, recover,,s;) of Ap. Again, we have to consider
every state that is related to s,. Let this state be u,; for some arbitrary 1 < ¢ < 3. We then have
to find some state u related to s; such that there is a sequence of steps from u to u.; with the
trace recover;. But here we just choose u = uy;, and since, for all 1 < i < 3, (uy;, recover,, us;)
is a step of Ag, we are done.

Finally, of course, sq should be related to ug.

The above example offers some guide-lines when defining backward simulations, and even though
the real Bpg from Ap to Ag is more complicated—mainly because of the nondeterminism involved
with the status and the connection between queue and status—the recipe is the same:

To any state s of Ap, we have to relate all states u of Ag that could have resulted
from some nondeterminism of Ag that “corresponds” to nondeterminism that may
happen after state s of Ap.

Of course, one has to use ones intuition about the safe I/O automata in question in order to
identify the “corresponding” nondeterminism.

Bpg can now be defined and motivated.

Definition 7.5 (Image-Finite Backward Simulation from Ap to Ag)

If s € states(Ap) and u € states(Ag), then define that (s,u) € Bpg if there exists an explanation
f from w.queue to s.queue such that the following conditions hold:

1. u.rec, = s.rec, and u.rec, = s.rec,

2. u.status €
if s.status.flag = OK A (s.queue = ¢ V (last(s.queue)).flag = OK) then {s.status.stat}

else {s.status.stat, false}
3. if u.status = 7 A s.queue # ¢ then mazidz(s.queue) € rng(f)

We say that an explanation from w.queue to s.queue is a valid explanation from u to s provided
that Conditions 1-3 are satisfied.

7.2. Correctness of D 95

Note, that (s,u) € Bps iff there exists a valid explanation from u to s.

The requirement that there has to be an explanation from wu.queue to s.queue in order for
(s,u) € Bps is a generalization of the example above. Thus, all states u related to s have queues
that can be obtained by deleting some marked messages from s.queuve and removing the flags
from the remaining elements.

Condition 1 gives the straight-forward correspondence between the rec flags of Ap and Asg.

Condition 2 deals with the status. In Ap there are two ways of losing status (i.e., changing
status.stat to false), and both situations are described in the specification of the drop steps of Ap:
either the element at the end of queue gets deleted, in which case status must be lost, or status
is marked, in which case status may be lost. Alternatively, we can say that if status.flag = 0K
and either queue is empty or its last element is OK, the status cannot be changed by a drop
step. Thus, in this case we are not in a situation where Ap is “waiting” to perform some
nondeterminism on status, which has already been performed by Ag. If, on the other hand,
status is marked or the last element on queue is marked, drop may lead to loss of status, and
this corresponds to a loss at the S level, which has already occurred in a lose step of S. Thus,
in this situation Bpg should allow the corresponding state at the S level to have status = false.
This explains Condition 2.

Finally, Condition 3 in the definition of Bpg is a consistency condition between the explana-
tion f and the value chosen for w.status. The condition should intuitively ensure that whenever
the last element of s.queue is not in the range of f, i.e., when f states that u describes a situ-
ation where the last element of queue has been lost, then w.status must reflect this by having
the value false. Thus, the condition should limit the number of legal combinations of w.queue
and u.status due to the fact that these values are not always independent. The condition could
initially be written as

if s.queue # ¢ N mazidz(s.queue) ¢ rng(f) then u.status = false
Taking the contrapositive of this condition gives us
if u.status # false then s.queue = ¢ V mazide(s.queue) € rng(f)

Now, if u.status = true then Condition 2 gives us that also s.status.stat = true. Invariant 7.1
Part 2 then implies that s.queue is empty. Thus, if w.status = true, the condition is trivially
satisfied. So we only need to deal with the case where u.status = 7 and this is exactly Condition
3 of the definition in a slightly rewritten form.

Note, that in defining Bpg we have used our intuition about Ag and Ap. It is not at all sure that
a first attempt to define a simulation relation is correct. However, any errors in the definition
will be caught in the subsequent simulation proof and lead to a revised definition, and so on.
For instance, the consistency condition (Condition 3) in the definition of Bpg was added during
a proof attempt that failed. In Lemma 7.11 below we prove that Bpg is in fact an image-finite
backward simulation from Ap to Ag.

The following lemmas make the main simulation proof shorter.

Lemma 7.6

Let s € states(Ap) and g € Msg™ such that there exists an explanation from q to s.queue. Then
there exists a state w € states(As) with w.rec; = s.recs, w.rec, = s.rec,, u.queue = ¢, and
(8, U) € BDS'

96 7. Delayed-Decision Specification D

Proof

Let f be an arbitrary explanation from ¢ to s.queue and let w.rec, = s.rec,, u.rec, = s.rec,,
and w.queue = ¢. We must show that we can define u.status such that Conditions 1-3 of
Definition 7.5 are satisfied.

Condition 1 is trivially satisfied.

We now consider cases, in each case defining u.status and showing that Conditions 2 and 3 are
satisfied.
1. s.queue = ¢

Define wu.status = s.status.stat. Then Conditions 2 and 3 are vacuously satisfied.

2. s.queue # ¢

(a) (last(s.queue)).flag = marked

Define wu.status = false. This satisfies Conditions 2 and 3, the latter vacuously.
(b) (last(s.queue)).flag = 0K

Define wu.status = s.status.stat. Then Condition 2 is vacuously satisfied.

Now, assume that mazidz(s.queue) ¢ rng(f). Then Condition 3 of Definition 7.2 of
an explanation says that s.queue[mazidz(s.queue)].flag = marked which is the same
as (last(s.queue)).flag = marked, but this contradicts the assumptions in this sub-
case. Hence we have that mazidz(s.queue) € rng(f). Thus Condition 3 is satisfied.

Now, define the total function mazqueue : (Msg x Flag)* — Msg" such that for any queue
¢p in the domain, mazqueue(qp) is defined to be the queue gs obtained by removing all flag
components from ¢p. Formally, we have

qs = mazqueue(qp) iff |gs| = |gp| and Vi€ dom(qp) : qs[i] = gp[i].msg

Lemma 7.7

The identity mapping f from dom(qp) to dom(qp) is an explanation from mazqueue(qp) to qp.

Proof

We check Conditions 1-4 of Definition 7.2 of an explanation. Since the identity mapping is both
total and strictly increasing Conditions 1 and 2 are satisfied. Condition 3 is vacuously satisfied
since rng(f) = dom(qp). From the definition of mazqueue we directly see that also Condition 4
is satisfied.

Lemma 7.8

Let s € states(Ap). Then there exists a state u € states(Ag) with u.rec, = s.rec,, u.rec, = s.rec,,
and u.queue = mazqueue(s.queuve), such that (s,u) € Bps.

7.2. Correctness of D 97

Proof

Let gs = maxzqueue(s.queue). Then by Lemma 7.7 there exists an explanation (namely the
identity mapping) from ¢s to s.queue. Lemma 7.6 then gives us the existence of a state u with
u.rec; = s.rec,, u.rec, = s.rec,, and u.queue = gs such that (s,u) € Bps. That suffices.

Corollary 7.9
Let s € states(Ap). Then there exists a state u € states(Ag) such that (s,u) € Bpg.

Proof
Immediate from Lemma 7.8.

We state the following trivial lemma without proof.

Lemma 7.10

Let gn be an element of (Msg x Flag)*. Then, any element qs of Msg™, such that there exists
an explanation from qs to qp, can be obtained from mazrqueue(qp) by deleting some elements.

We can now state and prove the main result of this section, namely that the relation Bpg
defined in Definition 7.5 is an image-finite backward simulation from Ap to Ag (with respect to
Ip (Invariant 7.1) and true). The style of the proof is careful mathematical reasoning.

Lemma 7.11

Ap <;p As via Bpg.

Proof

We prove that Bpg is an image-finite backward simulation from Ap to Ag with respect to Ip
and true. We first show that Bpg is image-finite and then check the three conditions (which we
call nonemptiness, base case, and inductive case, respectively) of Definition 5.3.

Image-Finiteness

Let s be an arbitrary state of Ap. We must show that there exists only finitely many states
u of Ag such that (s,u) € Bps. Since rec,, rec,, and status can only take on finitely many
values in Ag these variables cannot give rise to problems. It now remains to be shown that for
a fixed but arbitrary s also queue (in S) can only take on finitely many values. For (s,u) to
be in Bpg there must exist an explanation from u.queue to s.queue. Lemma 7.3 gives us that
|u.queue| < |s.queue|, thus there are only a finite number of lengths to choose from (since s.queue
is a finite queue). Also, there exists only a finite number of mappings (explanations) between
two finite domains. Condition 4 of Definition 7.2 finally gives us that the elements of the possible
u.queue values are uniquely determined by s.queue and the (finitely many) explanations. Hence,
u.queune can only take on finitely many values given s. That suffices.

98 7. Delayed-Decision Specification D

Nonemptiness
Corollary 7.9 immediately gives the result.
Base Case

Let s, be the (unique) start state of Ap. Then if (s,u) € Bps, then u.rec; = s.rec, = false,
u.rec, = s.rec, = false, u.status = s.status.stat = false (since s.status.flag = 0K and s.queue =
¢), and u.queue = ¢ (since the existence of an explanation from wu.queue to s.queue and the
fact that s.queue = ¢ implies that u.queue = ¢.) Thus, u is the unique start state of Ag. That
suffices.

Inductive Case

Assume (s,a,s’) € steps(Ap) such that s and s’ satisfy Ip (Invariant 7.1), and let w’ be an
arbitrary state of Ag such that (s',u') € Bps. Below we consider cases based on a (and sometimes
sub-cases of each case) and for each (sub)case we define a finite execution fragment a of Asg
with Istate(a) = W/, (s, fstate(a)) € Bps, and trace(a) = trace(a). In this particular proof all
execution fragments will be of length zero or one. Thus, in each (sub)case we will either

o define an action b € acts(Ag) and a state u € states(Ag), such that (u,b,u’) € steps(Asg),
(s,u) € Bps, and trace(b) = trace(a), or
e show that (s,u') € Bps and «a is internal.
In the former case, we show that (u,b,u’) € steps(As) by showing that all four state variables
of Ag are related in w and «' according to the definition of the b steps of Ag.

In the proof, when we refer to Conditions 1-3, we mean Conditions 1-3 of Definition 7.5 of Bpg
unless otherwise specified.

a = send_msg(m)

In this case we show that we can define u such that (u,send_msg(m),u’) € steps(As) and
(s,u) € Bpg. Clearly the step has the right trace.

We have s'.queue = s.queue " (m, 0K) and s'.status = (7,0K). Lemma 7.4 implies u'.queue # «.

Define u.rec; = Ss.rec,
w.rec, = s.rec,
w.queve = init(u'.queue)

First we find an explanation from wu.queue to s.queue. Let f' be a valid explanation from
uw to s'. (Such a valid explanation exists since (s',u’) € Bpg). Since last(s'.queue).flag =
0K, we have from Lemma 7.4 and Conditions 1-3 of Definition 7.2 of an explanation that
f'(mazide (v .queue)) = mazide(s'.queue). Then f = f' | dom(u.queue) is clearly an expla-
nation from u.queue to s.queue.

Now, by Lemma 7.6, define u.status such that (s,u) € Bps.
It remains to show that (u, send_msg(m),u') € steps(Ag):

rec, and rec,:
From the definition of the send_msg(m) steps of Ap, the definition of u, and the fact that
(s’,u') € Bps, we have that u'.rec, = s'.rec; = s.rec, = u.rec, and correspondingly for rec,.
This is as required by the definition of the send_msg(m) steps of As.

7.2. Correctness of D 29

status:
Since (s',u') € Bps, Condition 2 implies that «'.status = 7. No matter what the value of
w.status is, this is as required by the definition of the send_msg(m) steps of As.

queue:
We have u'.queue # ¢ (by Lemma 7.4) and last(u'.queue) = m (by use of Definition 7.2 of
an explanation). Then, by definition, we have w'.queue = init(vw'.queue) " last(u'.queue) =
w.queue " m. Again, this is as required by the definition of the send_msg(m) steps of As.

a = crash,

Define w.rec, = Ss.rec,
U.Tec, = u.rec,
u.status = o' .status
u.queue = u.queue

Then it is easy to see that (s,u) € Bps (any valid explanation from u’ to s is also a valid
explanation from u to s) and that (u, crash,,u’) € steps(As).

a = crash,

Similar to the case a = crash,.

a = receive_msg(m)

In this case we define u such that (u, receive_msg(m), u’) € steps(As) and (s,u) € Bps. Clearly
the step has the right trace.

From the definition of the receive_msg(m) steps of Ap we have that s.rec, = s'.rec,, s.rec; =
s'.recy, s.queue # ¢ with (head(s.queue)).msg = m and s'.queue = tail(s.queue).

Define w.rec, = Ss.rec,
u.rec, = s.rec,
u.queue = m" u.queue

We first find an explanation from w.queue to s.queue. Let f' be any valid explanation from w’
to s’ (we know it exists), and define f in the following way:

[=1E+1) = (f())+1) | i€ dom(f)]U[0 0]

Intuitively f relates the same elements in u.queue and s.queue that were related by f’ in v’.queue
and s'.queue (these elements all have their indices increased by one because of the new elements
at the head of the queues), and relates these new messages m. Based on the fact that f’ is an
explanation from u’.queue to s'.queue, it is easy to check that f is an explanation from wu.queue
to s.queue.

We consider cases, in each case defining u.status, showing (s,u) € Bps by showing that Condi-
tions 2-3 hold (Condition 1 clearly holds) and showing that (u, receive_msg(m), u’) € steps(As).
For the latter part it is easy to see that a receive_msg(m) step is enabled in u and that rec,,
rec, and queue are handled correctly. So all we need to do is to show that also status is handled
correctly in the receive_msg(m) step of As.

100

7. Delayed-Decision Specification D

1. s.status.stat = true

Invariant 7.1 Part 2 implies that this situation cannot occur.
. s.status.stat = false
Define u.status = false.
Then clearly (s,u) € Bpg (Conditions 2 and 3 are vacuously satisfied)
status:

Since s.status.stat = false, we have s'.status = s.status, so u'.status = false. lLeaving
status = false unchanged is permitted by the definition of the receive_msg(m) steps in
As.

. S.status.stat =7

(a) u'.queue # ¢

Then also s'.queue # ¢ (by Lemma 7.3) so from the definition of receive_msg(m) in

Ap we have §'.status = s.status.

Define wu.status = u'.status.

Condition 2:
Since (', u') satisfies Condition 2, also (s, u) satisfies that condition. (Neither the
emptiness of queue, status.flag, nor the flag of the last element in queue are changed
in the step in Ap).

Condition 3:
Assume that w.status(= u'.status) = 7. Since s.queue # ¢, we must show that
mazidz (s.queue) € rng(f). Since s'.queue # ¢, and (s',u’) and f’ satisfy Condition
3, we have maxidz(s'.queue) € rng(f'), so from the construction of f, it is easy to
see that mazidz(s.queue) € rng(f).

status:
Leaving status unchanged is as required by the definition of receive_msg(m) in As
since we assume that u'.queue # ¢.

(b) u'.queue = ¢

i. s'.queue = ¢
Then the definition of receive_msg(m) in Ap implies that s'.status.stat = true and
s'.status.flag = s.status.flag. Then, by definition of Bpg, u'.status is either true or
false. We consider cases.
A. §'.status.flag = OK or (s'.status.flag = marked and u'.status = true)
If ¢'.status.flag = 0K, then by Condition 2 we also have u'.status = true since
s'.status.stat = true.
Define u.status = 7 (= s.status.stat).
Condition 2:
Vacuously satisfied by (s, u).
Condition 3:

Since §'.queue = ¢, we have |s.queue| = 1. Now, since f(0) = 0, we have
mazidz(s.queue) € rng(f) as required.
status:

Changing status from ? to true when u'.queue = ¢ is as required by the defi-
nition of receive_msg(m) in As.
B. ¢'.status.flag — marked and u’.status — false
Define u.status = false.
Condition 2:

7.2,

Correctness of D 101

Since s.status.flag = §'.status.flag = false, we have that (s, u) satisfies Condi-
tion 2.
Condition 3:
Vacuously satisfied.
status:
Leaving status = false unchanged is allowed by receive_msg(m) in As.
ii. s'.queue # ¢
The definition of receive_msg(m) in D implies s'.status.stat = s.status.stat = 7
and ¢'.status.flag = s.status.flag. Since u'.queue = ¢, s'.queue # ¢, and (s',u')
and f’ satisfy Condition 3, we get that u'.status # 7 (f' must be empty). Note,
that this is one of the two places in the entire proof where we need the consistency
condition (Condition 3). Condition 2 now gives us that u'.status = false and that
either '.status.flag = marked or (last(s'.queue)).flag = marked.
Define u’.status = false.
Condition 2:
Since s.status.flag = s .status.flag, (last(s'.queue)).flag = (last(s.queue)).flag,
and one of these flag values is marked, we see that (s, u) satisfies Condition 2.
Condition 3:
Vacuously satisfied.
status:
Leaving status = false unchanged is allowed by the definition of receive_msg(m)

in As.

a = ack(b)

In this case we define u such that (u, ack(b),u') € steps(As) and (s,u) € Bpg. Clearly the step
has the right trace.

From the definition of ack(b) in Ap, we have that s.status.stat = b and that s’ = s except that
s’ and s may differ on the value of status.flag, which is set to OK in the step.

We consider cases based on the value of b.

1.

b = false

Then u'.status = false.

Define v = u'.

It is now easy to see that (s,u) € Bpg. (The fact that s and ' may differ on the value of
status.flag could only cause troubles in Condition 2 but this is seen not to be the case since
s.status.stat = false implies that the only choice for w.status is false as we have defined it

to be.)

Now, since «’' = u, we have u.status = false, Thus, an ack(b) step is enabled in u. Again
since u = ', we now see that (u, ack(b),u’) is a step of Ag as required.

. b= true

Since s.status.stat = s'.status.stat = true, Invariant 7.1 Part 2 gives us that s'.queue = ¢
and s.queue = ¢. Furthermore, since s'.status.flag = 0K, we get from Condition 2 that
uw'.status = true.

Define v = #'.

As in the previous case clearly (s,u) € Bps and (u, ack(b),u’) € steps(As).

102 7. Delayed-Decision Specification D

a = TECOVET

Define u.rec, = false
u.rec, = .rec,
w.status = u'.status
u.queue = u'.queue

Since u.rec, = s.rec, = false, it is easy to see that (s,u) € Bpg (any valid explanation from u’
to s’ is also a valid explanation from u to s) and that (u, recover,,u’) € steps(As) (and clearly
has the right trace).

a = TeCoveET,

Similar to the case a = recover,.

a = mark(I)
In this case we define u and I’ such that (u, lose(I’),u') € steps(Ag) and (s,u) € Bpg. Clearly
the step has the right trace (the empty trace).

From the definition of the mark steps in Ap we have s'.rec, = s.rec,, s'.rec, = s.rec,, and either
s.rec; = true or s.rec, = true.

Define u.rec; = Ss.rec,
u.rec, = s.rec,
u.queue = mazqueue(s.queue)
u.status = s.status.stat

By Lemma 7.7 the identity mapping f is an explanation from w.queue to s.queue, and it is easy
to show that f is a valid explanation from u to s. Thus, (s,u) € Bps.

To show that (u,lose(1’),u') € steps(Ag), we first observe that since (s,u) € Bps we have
u.rec, = true or u.rec, = true, so a lose(I") step is enabled in u.

rec, and rec,:
u'.rec, = §'.rec, — s.rec, = u.rec, and similarly for rec,. This is as required by the definition
of lose(I') in As.

queue:
First observe that mazqueue(s.queue) = mazqueue(s'.queue). Then, since by definition we
have u.queue = mazqueue(s.queue), Lemma 7.10 implies that u'.queue can be obtained from
u.queue by deleting some (possibly zero) elements. Thus, we can define I’ accordingly, and
this is as required by the definition of lose(1’) in As.

status:
First note that since we might have s'.status.flag = marked, we also might have u'.status =
false by Condition 2, but since lose(I’) can always change status to false in Ag, this situation
does not cause troubles.

The situation that could cause troubles is if u'.status # false but the lose(I’) step is required
to change status to false because the element at the end of u.queuve must be deleted in order
to treat queue correctly. We must show that this situation is impossible.

Assume that u'.status # false. Then Condition 2 and the definition of mark([) in Ap give
u'.status = §'.status.stat = s.status.stat # false. We consider cases.

7.2. Correctness of D 103

1. u'.status = s'.status.stat = s.status.stat = true.
Invariant 7.1 Part 2 implies s.queue = s'.queue = ¢. Then Lemma 7.3 implies that
u.queue = u'.queue = ¢. Thus I’ = (). That suffices.
2. u'.status = s'.status.stat = s.status.stat = 7.
(a) s.queue =¢
Similar to Case 1.
(b) s.queue # ¢
Then Condition 3 and Definition 7.2 imply f(mazidz(u.queuve)) = mazidz(s.queue).
It is now easy to see that u'.queue can be obtained by deleting some elements, but
not the element at the end, from u.queue. That suffices.

a = unmark(I)

In this case we show that unmark([l)in Ap corresponds to an empty step in Ag (remember that
unmark(T) is internal). Thus, we show that (s,u’) € Bps.

From the definition of the unmark(I') steps of Ap, we have that s’.queue is obtained from s.queue
by changing some (maybe zero) flag values from marked to 0K. Now, let f’ be a valid explanation
from u’ to s’. Then by Definition 7.2 it is easy to see that f’is also an explanation from u'.queue
to s.queue. (The only interesting case is Condition 3 of Definition 7.2 but since messages that
are marked in s'.queue cannot be OK in s.queue, this case is easily checked).

We show that f’ is a valid explanation from ' to s by checking Conditions 1-3.

Condition 1:
This condition is satisfied since the unmark(I) step does not change rec, and rec,.
Condition 2:
The unmarking of status and message flags might lead to the requirement that «'.status =
s'.status.stat (by Condition 2). But then obviously also (s,) satisfies Condition 2 since both
the “then” and the “else” in this condition allow w'.status = s.status.stat(= s'.status.stat).
The important thing to note here is that unmark(l) cannot lead from a situation where the
“then” clause must be chosen to a situation where the “else” clause must be chosen.
Condition 3:
Since Condition 3 does not mention any flag values, it is seen that (s,u') and f’ satisfy this
condition.

a = drop(1)

In this case we show that drop corresponds to an empty step of Ag, i.e., that (s,u’) € Bps (recall
that drop([I) is internal).

Let f’ be an arbitrary valid explanation from «' to s’. We now construct an explanation f from
u'.queue to s.queue: I contains the indices of the elements of s.queue that were deleted in the
drop(1) step. Then |dom(s'.queue)| = |dom(s.queue)\ I|. Now, let g be the (unique) bijective,
strictly increasing mapping from dom(s’.queue) to dom(s.queue)\ I. Informally ¢ maps indices
of elements in s'.queue to the indices the same elements had in s.queue.

Define f = g o f'. To check that f is an explanation from u'.queue to s.queue, we check
Conditions 1-4 of Definition 7.2:

Conditions 1-2 of Definition 7.2:

104 7. Delayed-Decision Specification D

Since f’is total and strictly increasing from dom(u’'.queue) to dom(s'.queue) and ¢ is total and
strictly increasing from dom(s'.queue) to dom(s.queue)\ I, f is total and strictly increasing
from dom(u'.queue) to dom(s.queue).
Condition 3 of Definition 7.2:

We have that dom(s.queue) \ rng(go f') = I U g~ *(dom(s .queue)\ rng(f’)). This informally
states if an element of s.queue is not “hit” by f then this is because either the element is
one of the elements that are deleted in the drop(I) step or because the “corresponding” (by
g) element in s'.queue is not “hit” by f'. Now, all elements in s.queue with indices in I are
marked (by the precondition of drop(l)). Since f’is an explanation, all elements of s'.queue

with indices in dom(s'.queue) \ rng(f’) are marked, and since g and then also ¢g~*

maps the
index of an element to the index of the same element, we have that all elements of s.queue
with indices in g~*(dom(s'.queue \ rng(f’))) are marked. That suffices.

Condition 4 of Definition 7.2:
By the fact that f’ is an explanation (and therefore satisfies Condition 4) and the fact that
g maps the index of an element to the index of the same element, it directly follows that f
satisfies Condition 4 of Definition 7.2.

Thus, f is an explanation from u’'.queue to s.queue.

It now remains to show that f is a valid explanation from v’ to s, i.e., we must check Conditions

1-3.

Condition 1:
Condition 1 is clearly satisfied (since neither rec, nor rec, are changed in the drop(I) step and
(s',u') € Bps).

Condition 2:
We consider the ways status can change in the if-statement in the definition of the drop(I)
step.
Assume that the element at the end of s.queue is deleted in the drop(I) step. Then s'.status =
(false,0K) which implies u'.status = false. But in order to be able to delete the element at the
end of s.queue we have that s.queue # ¢ and (last(s.queue)).flag = marked, so (s, u’) satisfies
Condition 2.
Then assume that the element at the end of s.queue is not deleted but that «'.queue is
changed to (false, 0K) since s.status.flag = marked. Again we have u'.status = false, and since
s.status.flag = marked, we have that (s, u’) satisfies Condition 2.
The last possibility is that status is not changed at all in the drop(I) step, but then obviously
(s,u’) satisfies Condition 2 since (', ') satisfies it.

Condition 3:
Assume v'.status = 7 and s.queue # . Since u'.status = 7 we must have s'.status.stat = ?
and then from the definition of the drop(I) step we infer s.status = s'.status.
Then the element at the end of s.queue is not deleted in the drop(I) step (i.e., mazidz(s.queue) ¢
I') since otherwise s'.status = (false,0K). Thus, also s’.queue # . Since f’is a valid explana-
tion from ' to &', Condition 3 gives us mazidz(s'.queue) € rng(f'), and since mazidz (s.queuve) ¢
I we must have g(mazidz(s'.queue)) = mazidz(s.queue) since otherwise ¢ could not be bijec-
tive and strictly increasing. All in all we get mazidz(s.queue) € rng(f), as required.

This concludes the simulation proof.

7.2. Correctness of D 105

We can now prove that Ap safely implements Ag.

Theorem 7.12 (Ap safely implements Ag)
Ap Cs As

Proof

Directly by Lemma 7.11 and the soundness of image-finite backward simulations with respect
to the safe implementation relation (Lemma 5.8).

7.2.3 Correctness

Before we can prove the main theorem of this chapter — that D is a correct implementation of
S — we need to prove some basic lemmas about S and D. In the remainder of this chapter we
use the following abbreviations.

SM {send_msg(m) | m € Msg}
RM = {receive_msg(m) | m € Msg}

From the safe I/O automata Ag and Ap we get the following lemmas.

Lemma 7.13
As | O(O(status € Bool) = O-(SM))

Proof
Immediate from the definition of Ag since any send_msg(m) step would change status to 7.

Lemma 7.14
1. Ap E O(O-(SM) = O(|queue®| < |queuel))

2. Ap E O((RM) = |queue®| = |queue| — 1)

Proof

Immediate from the definition of Ap since only send_msg(m) steps can add elements to queue,
and receive_msg(m) steps remove one element from queue.

The following two lemmas prove properties of live executions of D. The lemmas deal with live
executions where, from some point on, no send_msg(m) actions occur and neither the sender nor
the receiver is in recovery phase. Then, in the first lemma, we prove that eventually elements will
be removed from gqueue, which, in the second lemma, is used to prove that queue is eventually
emptied.

The proofs of the lemmas introduce the way we write structured proofs of temporal properties
of our systems. The proof style is due to Lamport. The following description is taken from

[AL92b]:

106 7. Delayed-Decision Specification D

We use hierarchically structured proofs. The theorem to be proved is statement
(0)1. The proof of statement (7)j is either an ordinary paragraph-style proof or the
sequence of statements (7 + 1)1, (i + 1)2, ...and their proofs. Within a proof,
(k)! denotes the most recent statement with that number. A statement has the form

ASSUME: Assump PROVE: Goal

which is abbreviated to Goal if there is no assumption. The assertion Q.E.D. in
statement number (i+ 1)k of the proof of statement (¢)j denotes the goal of statement
(7)j. The statement

Casge: Assump
is an abbreviation for
AssuME: Assump ProvE: Q.E.D.

Within the proof of statement (¢)j, Assumption (i) denotes that statement’s assump-
tion, and Assumption (7).k denotes the assumption’s k" item.

Lemma 7.15

Lp EVE :OO(~(SM) A recg = false A rec, = false) =
((|queue] = k ANk > 0) ~ |queue| < k))

Proof

ASSUME: « € Lp
PrOVE: o EVEk:O(O(=(SM) A rec; = false A rec, = false) =
((|queue| = k ANk > 0) ~ |queue| < k))

(1)1. Assume: k>0
ProvE: aF O(O(=(SM) A rec, = false A rec, = false) =
((|queue| = k Nk > 0) ~ |queue| < k))

(2)1. ASSUME: ay is an arbitrary suffix of
PrROVE: «ay | O(=(SM) A rec, = false A rec, = false) =
((|queue| = k Nk > 0) ~ |queue| < k)

(3)1. AsSUME: o = O(=(SM) A recy = false A rec, = false)
ProOVE: a; E (|queue| =k Ak > 0)~ |queue| < k

(D1, oy E O-(SM) = O(|queue®| < |queuel)
Proor: By Lemma 7.14 Part 1, Lemma 3.5 Part 1 and Rule Par.
(1)2. oy E O(|queue®| < |queue])
Proor: By (4)1, Assumption (3), and Rule MP.
(4)3. ay | O((|queue| = k ANk > 0) = (|queue| = kW |queue| < k))
ProorF: By (4)2.
(D)4, a = WF(RM, rec; = false N rec, = false)

7.2. Correctness of D 107

ProoF: By proof assumption (a € Lp) and definition of Qp, which
induces Lp.

(4)5. a = OO—(recs = false A rec, = false N |queue| > 0) vV OO(RM)

Proor: By (4)4, the definition of WF, and noting that enabled(RM) =
(lqueue| > 0).

(4)6. oy | OOC—(recs = false A rec, = false A |queue| > 0) Vv OOC(RM)
Proor: By (4)5, Lemma 3.5 Part 1, and definition of disjunction.
(D7, ay | O=(rec, = false N rec, = false A |queue| > 0) vV O(RM)
Proor: By (4)6, Rule Par, and the definition of disjunction.
(1)8. «ay | O(rec, = false A rec, = false A |queue| > 0) = O(RM)
Proor: By rewriting (4)7.
(1)9. a; E O(|queue| > 0) = >(RM)
Proor: By Assumption (3), (4)8, and Rule MP.
(1)10. oy = (|queue] = k AN (RM)) ~ |queue| < k
ProoF: Implied by Lemma 7.14 Part 2.

(4)11. Q.E.D.
Proor: By (4)3, (4)9, (4)10, and Rule Pro2.
(3)2. Q.E.D.
Proor: By (3)1 and the definition of implication.
(2)2. Q.E.D.
By (2)1 and Lemma 3.5 Part 2.
(1)2. Q.E.D.
Proor: By (1)1 and Lemma 3.5 Part 5.
|
Lemma 7.16
Lp EO(O(=(SM) A recy = false N rec, = false) = OO(queue = ¢))
Proof

ASSUME: « € Lp
ProvE: o O(O(=(SM) A recy = false A rec, = false) = OO(queue = ¢))

(1)1. ASSUME: a; is an arbitrary suffix of a
PrROVE: «a; E O(=(SM) A recy = false A rec, = false) = OO(queue = ¢)
(2)1. AsSUME: oy E O(=(SM) A rec; = false A rec, = false)
ProvE: «a; E ¢O(queue = ¢)

(3)1. a; = Vk: ((|queue] = k Ak > 0) ~ |queue| < k)

108 7. Delayed-Decision Specification D

Proor: By Lemma 7.15, Lemma 3.5 Parts 1, 5, and 6, and Rules Par and
MP.

(3)2. a; EVEk:(k>0= 3k : (K <k A (|queue| = k ~ |queue| = k)))
Proor: By (3)1 and Lemma 3.5 Part 7.
(3)3. a; E O(|queue] = 0)
Proor: By (3)2 and Rule Prol.
(3)4. a; E O-(SM) = O(|queue®| < |queuel)
Proor: By Lemma 7.14 Part 1, Lemma 3.5 Part 1 and Rule Par.
(3)5. oy E O(|queue®| < |queuel])
Proor: By (3)4, Assumption (2), and Rule MP.
(3)6. oy = Vk : O(|queue| = k = (|queue| = kW |queue| < k))
Proor: By (3)5.
(3)7. a; = O(|queue| = 0 = (|queue| = 0 W |queue| < 0))
Proor: By (3)6 and Lemma 3.5 Part 6.
(3)8. a; = O(|queue| = 0 = O(|queue| = 0))

Proor: By (3)7, the fact that |queue| < 0 is always false, and the definition
of O.

(3)9. a; E <¢O(|queue| = 0)
Proor: By (3)3, (3)8, and Rule MP1.

(3)10. Q.E.D.
Proor: Directly by (3)9.
(2)2. Q.E.D.
Proor: By (2)1 and definition of implication.
(1)2. Q.E.D.

Proor: By (1)1 and Lemma 3.5 Part 2.

An important advantage of this way of writing structured proofs of temporal properties is that
at a first reading, one can concentrate on the first outermost levels of the proof. Once that has
been understood, the details at lower levels can be considered.

The next lemma contains the main part of the proof that D correctly implements S. It
states that for any Bps-related executions of Ap and Asg, if the execution of Ap satisfies Qp (the
temporal formula which induces the liveness condition Lp), then the execution of Ag satisfies
(s (the temporal formula which induces the liveness condition Lg). The proof will be a proof
by cases based on a proof by contradiction: if we assume the execution of Ag is not live, this
means that the execution does not satisfy one of the weak fairness formulas in the definition of
()s. By considering the weak fairness formulas one by one and deriving a contradiction in each
case, the result follows.

7.2. Correctness of D 109

Lemma 7.17

Let a € exec(Ap) and o € exec(As) be arbitrary executions of Ap and As, respectively, with

(a,a’) € Bps. Assume o |E Qp. Then o' = Qs.

Proof

We prove the conjecture by contradiction. Thus,

ASSUME: o £ Qs

PRrROVE:
(1. o

False
E = WF(Cs 1, recy = false A rec, = false) Vv

(
= WF(Cs s, recy = false A rec, = false) Vv
- WF(Csyg) \/

- WF(CSA)

ProoOF: Immediate by the Assumption, definition of (Jg, and the Boolean operators.
(1)2. CASE: o E ~WF(Cs 1, rec; = false A rec, = false)

(2)1.

o' | OO0-(Csq) A OO(recs = false A rec, = false A status € Bool)

Proor: From Case Hypothesis (1) by expanding WF and noting the fact that
enabled 4, (Cs 1) = (status € Bool).

.o EOO-(Csq) A OO=(SM) A &O(rec, = false A rec, = false A status € Bool)

Proor: By (2)1, Lemma 7.13, and MP1.

. a EOO-(Cs 1) ACO-(SM) A OO(recs = false A rec, = false)

Proor: By Lemmas 5.10 and 5.11 since Cs ; consists of external actions and Defini-
tion 7.5 of Bpg implies that for all (s,u) € Bps, if u |= (rec, = false A rec, = false)
then s = (rec;, = false A rec, = false).

. a EOO0-(Cs 1) A CO(rec, = false A rec, = false N queue = ¢)

Proor: By (2)3, Lemma 7.16, and MP1.

. a | OO0-(Cs 1) A CO(rec, = false N\ rec, = false A status € Bool)

Proor: By (2)4 and Invariant 7.1 Part 1.

. aEaWF(Cp gy, rec, = false A rec, = false)

Proor: By (2)5, the definition of WF, the fact that Cs; = Cp; and the fact that
enabled 4 ,(Cp 1) = (status € Bool).

. Q.E.D.

ProorF: By (2)6, the assumption that a | Qp, and the definition of Qp.

(1)3. CASE: o | 2" WF(Cs o, rec; = false A rec, = false)

(2)1.

(2)2.

o' E (OO=(Cs o) A OO(recs = false A rec, = false N queue # ¢))
Proor: By expanding WF and noting that enabled o.(Cs 2) = (queue # ¢).
a | OO0-(Cs 2) A CO(rec, = false A rec, = false N queue # ¢)

Proor: By Lemmas 5.10 and 5.11 since Cs » consists of external actions and Defini-
tion 7.5 of Bps and Lemma 7.3 imply that for all (s,u) € Bps, if u = (rec, = false A

110 7. Delayed-Decision Specification D

rec, = false \ queue # ¢) then s | (rec;, = false A rec, = false A queue # ¢).
(2)3. a | 2" WF(Cp s, recy = rec, = false)

Proor: By (2)2, the definition of WF, the fact that C's » = Cp » and the fact that
enabled,,(Cp ») = (queue # ¢).

(2)4. Q.E.D.
Proor: By (2)3, the assumption that o E Qp, and the definition of Qp.
(1)4. Casge: o E ~WF(Cs3)
(2)1. Q.E.D.
Proor: Similar to Case (1)3.
(1)5. CasE: o | ~WF(Cs4)

(2)1. Q.E.D.
Proor: Similar to Case (1)3.
(1)6. Q.E.D.

Proor: By (1)1 and the exhaustive cases (1)2—(1)5.

Finally, we can prove that D correctly implements S.

Theorem 7.18
DC S

Proof
Immediate from Lemmas 7.11, 7.17, and 5.9.

The total proof of correctness of D has been partitioned into three parts. First, some invariants
were proved. Then, a relation was defined and proved to be an image-finite backward simulation
from Ap to Ag. Note, that it is usually during the simulation proof that one realizes which
invariants are needed. Thus, when performing the proof there is usually not this clear distinction
between defining invariants and proving the simulation result, but for presentation purposes, we
make the split.

The third and final part of the proof is the liveness proof which, in conjunction with the
simulation proof, allows us to conclude correctness. In the proofs at lower levels of abstraction,
the same partition into three parts is found.

The Generic Protocol G is defined and proved correct in the next chapter.

Chapter 8

The Generic Protocol G

We can now start to introduce a more distributed view of the system. Both low-level protocols
H and C consist of several parallel components: a sender, a receiver, two channels connecting
the sender and receiver, and, for C, a clock subsystem. The G level consists of three parallel
processes: a sender/receiver process and two channels. This is depicted in Figure 8.1. The
sender /receiver process of G can intuitively be viewed as “partly” distributed. It contains state
variables which are intuitively manipulated by a sender part of the sender/receiver process
and state variables which are intuitively manipulated by a receiver part. However, some state
variables are manipulated by both the sender part and the receiver part of the sender/receiver
process. These “centralized” variables describe aspects which will be implemented differently
by H (using handshakes) and C (using timing assumptions). The “distributed” variables, on the
other hand, will basically reoccur in both H and C, and will be manipulated similarly in G, H,
and C'.

Thus, we have developed G to be as distributed as possible according to H and C, and to
contain an abstract handling of the crucial aspects of choosing good identifiers, where H and C
use different methods. By looking a little bit forward at H and C, we can make the following
more detailed introduction to G:

As mentioned in Chapter 1, solutions to the at-most-once message delivery problem work by
tagging each message with a unique identifier and sending it repeatedly over the channel. The
receiver will only accept messages which are marked with “good” identifiers.

Thus, the two protocols H and C both go through three major phases during normal opera-

tion.
Sender/Receiver G/,

send_msg(m)) recetve_msg(m)
—_— send_pkt receive _pkt . —_—

ack(b) Pkt () il Chyy Pkt (7)
-—]

crash “Sender” “Receiver” crash,
[ve _pkt d_pkt l———mM

recovers receivepht, (p) Channel Ch,, send pkt,, (p) recover,
-—] —

Figure 8.1
The Generic Protocol G.

111

112 8. The Generic Protocol G

Choosing a message identifier The sender picks an identifier id that is within the set of
identifiers that the receiver is willing to accept. In C time bounds are used to choose a
good identifier; in H an initial handshake between the sender and the receiver is used.

Sending the message and getting acknowledgement This phase is similar in both H and
C. The sender (re)transmits the current message with the chosen id, until it receives an
acknowledgement packet for that id.

Cleaning up Here again, C uses time bounds (in particular timeouts) whereas H uses a hand-
shake to determine when some “old” information may be discarded.

Our Generic Protocol G is designed to capture these three phases in an abstract way that both H
and C implement. The key abstractions incorporated into the protocol G are two “centralized”
variables, good, and good,. The variable good, represents the identifiers that the sender might
shortly assign to messages, and good, represents the identifiers that the receiver is willing to
accept. Four actions of G deal with “growing” and “shrinking” good, and good,. , respectively.

The preconditions of the grow and shrink actions are designed to preserve certain key invari-
ants. We actually allow more freedom in these actions than is actually needed by H and C. This
leaves open the possibility that other low-level protocols, other than H and C, can be proved to
be correct implementations of G.

The rest of this chapter is organized as follows. Section 8.1 introduces the set of message
identifiers. Section 8.2 then formally defines the channels in G. Then, in Section 8.3, we present
the sender /receiver process, and in Section 8.4 we show how G is obtained from the subprocesses.
Finally, in Section 8.5 we consider the proof that G correctly implements D.

8.1 Message Identifiers

In G and the lower level protocols we need a set of identifiers in order to label the messages
communicated over the channels. In C the identifiers are timestamps ranging over the non-
negative reals; in H the identifiers are just taken from some infinite set of elements. In G we
use a set ID on which we place some constraints. When proving correct implementation for
a lower-level protocol, ID is then instantiated with the set used at that lower level, and this
set must satisfy the constraints on ID. Thus, G can be seen to be parameterized with ID. G
correctly implements S for any proper value of ID; the low-level protocols correctly implement
G for particular proper values of ID. The constraints on ID are:

1. ID is infinite.

2. nil ¢ ID. We need nil as a special value.

8.2 The Channels

As depicted in Figure 8.1, the G level contains two channels: a channel Ch,, intuitively for
sending packets' from the sender part to the receiver part of the sender/receiver process, and a
channel Ch,, in the other direction (for acknowledgements).

'Here and elsewhere, we use the term “packet” to denote objects sent over the channels; we reserve the term
“message” for the “higher-level” | user-meaningful messages that appear, e.g., in the specification.

8.2. The Channels 113

Below we specify the Ch,, channel as a live I/O automaton (Acy s, Lensr). The Ch,y =
(Ach rss Lcn,rs) channel is similar and can be obtained from the definition of Ch,, by replacing
the state variable sr by rs and actions send_pkt, (p) and receive_pkt . (p) by send_pkt (p) and
receive_pkt, (p).

8.2.1 States and Start States

Chy, has only one state variable which contains the packets (including duplicates) currently in
the channel. We let Ch,, be parameterized with a set P of possible packets.

‘ Variable ‘ Type ‘ Initially ‘ Description ‘
sr B(P) 0 The packets (including duplicates) in the
channel.

8.2.2 Actions

The channel only has two types of actions: send_pkt,, (p), which represents the input of packet
p from the environment, and receive_pkt,,(p) which represents the output of packet p from the
channel.

Input:

send_pkt, (p), p € P
Output:

recetve_pkt,, (p), p € P
Internal:

none

8.2.3 Steps

The channel is not reliable. This means that it may remove or duplicate packets. We have
chosen to model this unreliability at the time of a send_pkt, (p) step.

send_pkt,,(p) recetve_pkt, . (p)
Effect: Precondition:
add a finite number of p to sr pE sr
Effect:

sr:=sr \ {p} (* remove one copy *)

In the specification, “a finite number” could mean 0. Note, that we could have modeled the
unreliability of the channel by having internal lose and duplicate actions which could remove
or duplicate packets at any time. However, such a channel can be shown to be equivalent to
our channel, so by our substitutivity results, we will be able to substitute the channels for each
other.

8.2.4 Liveness

The receive_pkt . (p) steps of Acy, 5, allow all received packets to be lost. With such a channel we
cannot, of course, guarantee any liveness of the composed system, so we shall require that if we
keep sending the same packet to the channel, then infinitely many will get through. Thus, if a

114 8. The Generic Protocol G

packet is sent infinitely often, then it is also received infinitely often. Furthermore we impose the
natural requirement that if a packet has succeeded in being put into the channel, then eventually
it will be delivered.

Then the liveness condition L¢y . for the channel is induced by the following liveness formula:

Qcne = Vp:OO(send_pkt, (p)) = OO (receive pkt,,.(p)) A
Vp : WF(receive_pkt,,.(p))

We do not prove formally that ¢)cp s, is an environment-free liveness formula for Acy, .. However,
we provide some intuition by informally describing an environment-free strategy (g, f) for Chy,
(cf. Definitions 2.5 and 2.7): the ¢ function of the strategy should on every input send_pkt, (p)
add one copy of p to sr. This means that when we are playing the game against the environment,
whenever a send_pkt,.(p) input arrives, receive_pkt,,(p) will stay enabled at least until it is
executed.

The f function of the strategy, i.e., the function that determines the moves of the channel,
should then work as follows: when the game commences after some finite execution, there
are only finitely many packets in sr. The strategy can order these and use its first moves on
outputting the packets. In the meantime send_pkt, (p) actions occur. When the strategy has
finished outputting initial packets it should start matching each send_pkt (p) action with a
receive_pkt . (p) action. Since f has access to the history of the game so far, it should simply at
its first move after having output initial packets perform receive_pkt_, (p,) if the first input action
of the game was send_pkt,.(p;), and generally at its nth move perform receive_pkt.(p,) if the
nth input action of the game was send_pkt .(p,). Even though the environment may provide
several (but only a finite number of) input actions at each move and, thus, might be “faster”
than the channel, at any point in time the channel only has finitely many “unmatched” inputs
which it will eventually have matched. The point is that the environment can never have sent
infinitely many copies of the same packet without the channel having output infinitely many
copies of the same packet, and all packets put into the channel will eventually be output. If f
has matched all inputs, it should simply return the empty move L since in this case the channel
is empty.

Note that, by Proposition 3.4, Q) ¢y s is stuttering-insensitive.

8.3 The Sender/Receiver Process

We specify the sender/receiver process as a live I/O automaton G,/ = (A s/r, La,s/r)-

8.3.1 States and Start States

As mentioned in the introduction to this chapter, Ag ,/, intuitively consists of a sender part
and a receiver part such that some state variables are only manipulated by the sender part,
some state variables are only manipulated by the receiver part, and some state variables are
manipulated by both parts. Thus, the state variables of Ag ,/. are consequently grouped into
the following three classes. (When we write “sender” below, we refer to the sender part of the
sender /receiver process. Similarly for “receiver”.)

8.3. The Sender/Receiver Process

115

‘ Variable

‘ Type

‘ Initially

Description

mode,

{idle,
needid,
send, rec}

idle

The mode of the sender. Mode idle indi-
cates that the sender is not in the process of
sending a packet over the channel, needid
indicates that the sender is ready to choose
an identifier for the current message, and
send indicates that the sender is sending
(repeatedly) the current packet (consisting
of current message with identifier) over the
channel. Mode rec denotes that the sender
is in recovery phase.

buf

Msg”

The list of messages at the sender side.

used,

ID”

A list containing all identifiers assigned to
messages in the past. These identifiers will
never be used again. The list induces a par-
tial order on identifiers (see below).

current-msg,

Msg U{nil}

nil

When mode, € {needid,send}, this vari-
able contains the “current” message, i.e.,
the message about to be or being sent. In
the other modes current-msg, is not used
and is set to nil.

last,

ID U {nil}

Any value

When mode, = send this variable contains
the identifier chosen for the current mes-
sage. In all other modes its value is not
used. Due to requirements in low-level pro-
tocols (where last, could, e.g., be a time-
stamp), last, is allowed to assume arbitrary
values when it is not used.

current-ack,

Bool

false

Acknowledgement from the receiver.

116 8. The Generic Protocol G

mode, {idle, rcvd, | idle The mode of the receiver. Mode idle indi-
ack, rec} cates that the receiver has delivered all re-
ceived messages to the user, rcvd indicates
that messages have been accepted but not
yet delivered to the user, ack indicates that
the receiver is sending positive acknowl-
edgements for the last message accepted to
the sender. Mode rec denotes that the re-
ceiver is in recovery phase.

buf, Msqg™ 3 The list of messages accepted by the re-
ceiver but not yet delivered.
last, ID U{nil} |nil Contains the identifier of the last message
accepted. When its value is not used, it is
assigned the special value nil.
issued, P(ID) Any superset | Includes everything that was ever accept-
of good, such | able by the receiver, i.e., in good,. Thus,
that 1ssued,. is used to guarantee that “old” iden-
|ID \ issued,| | tifiers do not show up in good, again, which
=00 could otherwise lead to duplicate delivery.
nack-buf ID” € A list of identifiers for which a negative ac-
knowledgement will be issued.
good, P(ID) Any set When mode, = needid this set contains all

the identifiers that the sender might choose
for the current message. In all other modes
its value is not used.

good, P(ID) Any set At any time this set contains the identifiers
the receiver will accept from the channel.

current-ok Bool false If current-ok = true the identifier chosen
for the current message is considered good
by the receiver, but the current message has
not been accepted by the receiver yet.

8.3.2 Partial Order of Identifiers

In the G protocol we need an ordering of all the identifiers used as ids on messages sent by
the sender. As we shall see below, an identifier id is chosen in a choose_id(id) step, so if a
choose_id(id) step has occurred before a choose_id(id") step, we will require that id is less than
id' in this ordering. Since we collect—as we shall see—all the ids used by the sender in used,,
we use the following partial order derived from the state of G:

If used, contains distinct elements and id precedes id’ in used,, then id <, id’

In arbitrary states of G the same identifier might occur several times in used,; however, below
we shall prove an invariant (Invariant 8.2 Part 2 on Page 125), which states that the elements
of used, are all distinct, which then implies that all identifiers ever used by the sender during

8.3. The Sender/Receiver Process 117

execution are related by <,. Since identifiers of ID can be tested for equivalence (=), the
definition of <, trivially extends to <,.

8.3.3 Actions

Input:
send_msg(m), m € Msg
recetve_pkt,.(m,id), m € Msg, id € ID
recetve_pkt, (id,b), id € ID, b € Bool
crash
crash,

Output:
recetve_msg(m), m € Msg
ack(b), b € Bool
send_pkt, (m,id), m € Msg, id € ID
send_pkt, (id,b), id € ID, b € Bool
recover
recovery

Internal:
prepare
choose_id(id), id € ID
shrink_good (ids), ids C ID
shrink_good, (ids), ids C ID
grow_good (ids), ids C ID
grow _good, (ids), ids C ID
cleanup,

8.3.4 Steps

Before we formally define steps(Ag /) we provide some intuition. During normal operation the
sender goes through the cycle idleneedid-send-idle of modes. When the sender is in mode
idle and buf, is non-empty, a prepare step moves to mode needid and makes the message at
the head of buf, the current message. Now “good” identifiers must be put into good,. Exactly
how this is done will be discussed below. An identifier id for the current message is chosen from
good in a choose_id(id) step. In such a step the sender enters send mode in which it repeatedly
sends the current message m with associated current identifier id in send_pkt,.(m,id) steps.
The sender will stay in this mode until it receives a positive (b = true) or negative (b = false)
acknowledgement receive_pkt, (id,b) for the current identifier. In this case the sender moves to
mode idle again from where acknowledgements ack(b) can be issued to the user (but only of
buf ; is empty since otherwise the sender is not acknowledging the last message sent, as required).
If the receiver receives a packet (m, id) in a receive_pkt .(m, id) step, it checks to see whether
id is in good,,. If this is the case it accepts? the message m, adds it to the end of buf, and enters
mode rcvd (if it was not there already). Mode rcvd indicates that the receiver has messages in
buf, and is in the process of delivering these messages to the user. Once the last message in buf,
has been delivered in a receive_msg(m) step, the receiver enters ack mode in which it will issue
positive acknowledgements in send_pkt, (id, true) steps for the identifier id of the last message
accepted from the sender (and thus the last message delivered to the user). These positive
acknowledgements will be issued repeatedly to overcome the unreliability of the channel.

2We say that a packet (or the associated message) is “successfully received” or “accepted” when the associated
identifier is in good, at the time of receipt.

118 8. The Generic Protocol G

The above discussion has focused on the normal modes of operation of the sender and receiver,
where no crashes have occurred. After the formal definition of steps(Ag /), we explain what
can happen when sender or receiver crashes occur.

We now look at the manipulation of the good sets. When a prepare step is performed, the good,
set is emptied. The sender is now in needid mode, waiting to perform a choose_id(id) step.
Since id must be taken from good,, this set must be “grown” with identifiers. Two types of
steps can change good: shrink_good (ids) removes identifiers from good, and grow_good(ids)
adds identifiers to good,. When the receiver has not been in recovery phase “recently”, i.e.,
after the prepare step was performed, the sender and receiver should be in agreement about
which identifiers are considered good. This situation is indicated by the special flag current-ok
being true. In this situation grow_good (ids) can only add elements from good, to good,, and
the shrink_good . (ids) steps, which can remove elements from good,, must not remove elements
which are already in good,. In this way we preserve the key invariant that if current-ok = true,
then good, C good,, and, thus, the current packet is guaranteed to be accepted by the receiver
(unless new crashes occur). A detail is that identifiers put into good, might immediately be
“shrunk” away by a shrink_good (ids) step that empties good,. (If we look forward at C, only
the value of the local sender clock is considered a good identifier. Thus, whenever the clock
ticks, this corresponds, in G, to the old clock value being removed from good,, and the new
value being added to good,.) When we deal with liveness below, we show how to guarantee that
the sender will not grow and shrink good, forever but will eventually choose an identifier in a
choose_id(id) step.

If crashes occur, the low-level implementations H and C have no way of keeping good, a
subset of good,. This must at the G level be reflected in the grow and shrink steps. We have
designed these steps such that they preserve certain key invariants presented below. The steps
actually allow more freedom than is needed by the implementations H and C, but in this way
we have the possibility that other low-level implementations implement G. If, for instance,
current-ok = false, it turns out to be necessary to allow shrink_good, to remove elements from
good, which are already in good,. If, furthermore, mode, = rec, good, can be grown fairly
arbitrarily. It is in this situation possible to add elements to good, which have never been issued
by the receiver. This may give rise to a situation where the current identifier is not in good,
when the current packet is sent, but is added to good, during transmission over the channel.
(For this reason we shall, in the proofs below, introduce a derived variable good-ids containing
identifiers from good, and identifiers not issued yet. Packets with identifiers in good-ids have a
chance of being accepted by the receiver.)

Other preconditions on the grow and shrink steps deal with guaranteeing that the sender
and receiver do not reuse identifiers in their good sets. In particuler, the set issued,, which
“survives” a crash (and thus has to be implemented in stable storage in the implementations),
contains all identifiers that were ever in good,. No identifiers in issued, can ever be put in good,..
In this way it is guaranteed that the receiver will never—mnot even in the case of crashes—accept
the same packet twice. Similarly, the sender will never choose an identifier which is in wused,.

We now define steps(Aq ,/r). To increase readability we keep the definition of the steps of
the sender in the left column and the definition of the steps of the receiver in the right column.
Furthermore, we align the definition of the send-pkt steps with the definition of the corresponding
recetver-pkt steps.

8.3. The Sender/Receiver Process

119

send_msg(m)
Effect:
if modes # rec then

buf, :=buf,"m

prepare
Precondition:
mode, = idle A buf, # ¢
Effect:
modes := needid
good, := 0
current-msg, := head(buf)
buf , := tail(buf)
if mode, # rec then
current-ok := true

choose_id(id)

Precondition:

mode; =needid A id € good,
Effect:

modes := send

lasts .= id

useds := used. " id

send_pkt,, (m,id)
Precondition:
modes = send A last. = id N
current-msg, = m
Effect:

none

recetve_pkt . (m, id)
Effect:
if mode, # rec then
if ¢d € good, then
mode, := rcvd
buf, := buf, "m
last, := id
good, 1= good \ {id" | id' <, id}
if id = last: A\ mode. = send then
current-ok := false
else if id # last, then
if mode. = send A id = id, then
nack-buf, := nack-buf, " id

else

optionally nack-buf, := nack-buf,

else if mode, = idle then
mode, := ack

recetve_msg(m)
Precondition:
mode, = rcvd A buf, # e A head(buf)
Effect:
buf, = tail(buf,)
if buf, = e then

mode, := ack

"id

=m

120

8. The Generic Protocol G

recetve_pkt, (id, b)

Effect:
if mode. = send A last. = id then
mode; := idle
current-acks := b
lasts := arbitrary value

current-msg, :=mnil

ack(b)
Precondition:
mode, = idle A buf, = e A
current-acks = b
Effect:

none

crashs
Effect:
modes = rec
current-ok := false

recovers

Precondition:
modes = rec

Effect:
modes := idle
lasts := arbitrary value
buf =«
current-msg,_ :=nil
current-acks := false

grow_good (ids)
Precondition:
mode, # needid vV

((modey, # rec = ids C issued;) A
(current-ok = true = ids C good,.) A

(ids N used: = 1))
Effect:
good := good_ U ids

shrink_good (ids)
Precondition:
none
Effect:
good, := good, \ ids

send_pkt, (id, true)
Precondition:
mode, = ack A last, = id
Effect:
optionally mode, := idle

send_pkt . (id, false)
Precondition:
mode, # rec A nack-buf #e A
head(nack-buf,) = id
Effect:
nack-buf, := tail(nack-buf,)

crash,
Effect:
mode, = rec
current-ok := false

recover,
Precondition:
mode, = rec
Effect:
mode, := idle
last, :=nil
buf, :=¢
nack-buf, =€
1ssued, := any superset of
issued, U used . U good,
such that afterwards

|ID \ issued,| = co

grow _good, (ids)
Precondition:
eds N essued, =0 A
|ID \ (ids U issued,)| = oo
Effect:
good, := good, U ids
issued, = issued, U ids

shrink_good (ids)
Precondition:
current-ok = false Vv

((modes = needid = ids N good, = #) A

(mode. = send = last. ¢ ids))
Effect:
good,. := good,. \ ids

cleanup,
Precondition:
mode, € {idle,ack} A
(mode. = send = last. # last,)
Effect:
mode, := idle
last, :=nil

8.3. The Sender/Receiver Process 121

Note that most locally-controlled steps of the sender and receiver are conditioned by mode, and
mode, , respectively, not being rec. Also, inputs (except crash, and crash,) do not lead to state
changes when the side at which they occur is crashed. Thus, G is “dead” when it is crashed.
Furthermore, crashes and subsequent recoveries have the effect of resetting all state variables
(except issued, and used,) at the side at which they occur. For instance, even if the sender is
about to issue a positive acknowledgement to the user when a sender crash occurs, the sender
has forgotten about this when it recovers. These choices about the way G behaves with respect
to crashes are motivated by the low-level protocols H and C.

We now discuss certain special situations that can arise mainly due to crashes or recoveries.
Assume that the sender is in send mode with (my,id,) as the current packet. If a crash, occurs,
the sender forgets, among other things, everything about (my, id,). However, before it crashed,
the sender might have succeeded in placing (m;, id;) in the channel. Since we do not assume
any time bounds on channel delays, (m;, id;) might travel very slowly on the channel. In the
meantime the sender recovers, receives a new message ms in a send_msg(ms) step, assigns the
identifier ids to ms, and starts sending (ms, ids) to the channel. Now both (my, id,) and (ma, id5)
are traveling on the channel, and both id, and id, might be in good,. (The receiver has no way of
knowing that the sender has been crashed.) In general, if crashes have occurred, several packets
(my,idy), ..., (my, id,) with identifiers in good, might be traveling on the channel. This gives
rise to a race condition between the packets. Assume (my,id;) is the first packet that reaches
the receiver and gets accepted. Then the receiver is not allowed subsequently to accept any of
the packets (my, idy), ..., (my,id;) since then either the receiver would accept the same message
twice or it would reorder messages (since my,...,m;_; were sent before m;). The messages
my,...,m;_1 are thus effectively lost, but since they were in the system during crashes, this
is allowed by the Delayed-Decision Specification D (and consequently by the specification S).
This explains the manipulation of good, in the definition of the receive_pkt,, (m,id) steps. If the
sender crashes in needid mode, the same kind of race condition does not arise since the current
packet has not been placed in the channel yet. However, messages get lost but, again, this is
allowed by D.

If the receiver receives a packet (m,id) and id is not in good, it will not accept the packet.
Now, two situations must be considered (which correspond to the two “else-if” cases in the
definition of receive_pkt,, (m,id) above).

1. If id # last,, we are not just receiving another copy of the last packet accepted.

e if mode, = send and id = last,, we are, due to crashes, in a situation where the
sender is in send mode with a “bad” identifier. The receiver must inform the sender
about this situation since otherwise the sender would be stuck forever. Thus, the
receiver adds id to nack-buf, which will lead to a send_pkt, (id, false) step. Note,
that since only one send_pkt . (id, false) will be performed, there is no guarantee that
the packet will actually be put into the channel (which is unreliable). However, the
sender continues to send (m,id), so packets will continue to get through (due to
channel liveness) to the receiver. Every time this happens, the receiver will add id to
nack-buf ., so (id, false) will continue to be issued. By channel liveness in the other
direction the sender will eventually receive (id, false) and thereby be dislodged.

o if mode, # send or id # last,, the received packet (m,id) is not the current packet
of the sender but instead some old packet from the channel. The low-level protocols
we consider cannot always identify this situation—mainly because the receiver in a

122 8. The Generic Protocol G
distributed implementation does not have access to mode, and last,. The C protocol
can in some situations make some safe guesses, but generally a low-level protocol has
to assume the worst case and thus add id to nack-buf,. The G protocol leaves this
possibility open.

2. If id = last,, we are receiving a new copy of the last packet accepted. In this situation

mode, could be idle, in which case it should be changed to ack. The situation is explained
as follows.

Due to requirements in the low-level implementations, a send_pkt, (id, true) step must
have the possibility of changing mode, to idle, which disables further send_pkt . (id, true)
steps. Thus, due to the unreliability of the channels, we are not sure that (id, true)
actually arrives to inform the sender that the current packet was successfully received.
But the sender will then continue to send (m, id) packets, and the (inevitable) receipt of
some of these by the receiver will lead to mode change to ack, which, in turn, leads to
send_pkt, (id, true) steps. As above, channel liveness ensures that a receive_pkt, (id, true)
step will eventually occur as required.

Some of this discussion has dealt with liveness. We now turn to the formal definition of the
liveness condition for G/,.

8.3.5 Liveness

Let

Casr = A{prepare, ack(true), ack(false), recover,} U
{send_pkt . (m,id) | m € Msg A id € ID}

Ca,s/ra £ {choose_id(id) | id € ID}

Ca,s/rs £ {recover,} U
{receive_msg(m) | m € Msg} U
{send_pkt . (id, true) | id € ID}

Casra = {send_pkt,(id, false) | id € ID}

The liveness condition Lg ./ for Ag ./ is now induced by the following temporal formula.

QG,S/T S WF
D(D

CG,s/rl) A
mode, = needid A mode, # rec) = O(Cq g/m0)) A
CG,S/TB) A

(
(
(
(Ca,sra)

S 3

The first, third, and fourth conjunct express normal weak fairness to some locally-controlled
actions of the sender and receiver, respectively.

The second conjunct looks more complicated but simply states that it is always the case
that if the sender stays in mode needid and the receiver does not crash, then eventually a
choose_id(id) step occurs. Thus, infinite growing and shrinking of the good sets are avoided.
Note, that this kind of liveness condition is more high-level than, e.g., weak fairness, but it

8.4. The Specification of G 123

exactly captures the intuitive requirement to the execution of the system, and the general model
of live I/O automata allows such general liveness requirements.

As for the liveness formula for the channel Ch,, above, we do not formally prove that Q¢ /. is
an environment-free liveness formula for Ag ,/, but instead provide some intuition as to how an
environment-free strategy (g, f) could be defined: on inputs, the g function can choose arbitrarily
between nondeterministic choices. The f function should deal with the four conjuncts of Q¢ /-
in a round-robin fashion: if it dealt with the first conjunct last time, it should deal with the
second conjunct now, and so on. If it is time to deal with one of the weak-fairness formulas,
f simply performs some step from the appropriate set if possible. The second conjunct needs
more attention. Here f should do the following if mode, = needid and mode, # rec, and do
nothing otherwise:

1. If good, # (), then perform a choose_id(id) step.

2. Else, if good, # 0, perform a grow_good (ids) step (with ids nonempty). Such a step is
always possible when good, # (.

3. Else, perform a grow_good, (ids) step with ids nonempty. Such a step is always possible
since it is true that there are always infinitely many unused identifiers left.

If Part 3 was performed, then Part 2 will be performed next time the second conjunct of Q¢ /-
is dealt with. If Part 2 was performed, then Part 1 will be chosen next time. This is under
the assumption that the sender stays in mode needid and the receiver does not crash in the
meantime, but if this is not satisfied, then the second conjunct does not restrict the execution
at all.

Another thing to note is that, by Lemma 4.8 and Proposition 3.4, Qg ./ is stuttering-insensitive.

8.4 The Specification of G

As depicted in Figure 8.1, G consists of the sender/receiver process and the two channels. So,
first define G’ = (A{,, L) to be the following live I/O automaton

G’ S Gs/rHCherChm

where the set P of possible packets of the channels is instantiated with the packets that G,
can send and receive, i.e., packets of the form (m,id) and (id,b). Thus, G’ is the parallel
composition of the sender/receiver process and the channels. Since Qg /vy Qcnsr, and Qcn e
are all stuttering-insensitive, Proposition 4.4 implies that L{, is induced by

QG S QG,S/T A QCh,sr A QCh,rs

By Definition 2.2 the channel actions send_pkt . (m,id), receive_pkt . (m,id), send_pkt, (id,b),
and receive_pkt, (id,b) are output actions of G’. Thus, to get G = (Ag, Lg) we hide these
actions. Let

Ac & {send_pkt, (m,id) | m € Msg A id € ID} U
{receive_pkt,.(m,id) | m € Msg A id € ID} U
{send_pkt (id,b)|id € ID N b € Bool} U
{receive_pkt, (id,b) | id € ID N b € Bool}

124 8. The Generic Protocol G

Then, define
G = G'\Ag
By Proposition 4.5, Lg is induced by Q.

We can now turn attention to proving that G correctly implements D.

8.5 Correctness of G

In this section we consider the proof that G = (Ag, Lg) correctly implements D = (Ap, Lp).

This will be done in terms of a refinement mapping from Ag to Ap and a subsequent liveness

proof. We perform the refinement proof in all detail, but only sketch the liveness proof. We

refer to the formal liveness proof at the H level for a similar—but formal—liveness proof.
First, we state some invariants of Ag.

8.5.1 Invariants

As mentioned in Chapter 7, during the process of performing a simulation proof, it usually
becomes clear that certain invariants are needed: some situation in the proof is impossible to
solve but it turns out that the state in which the situation occurs is not reachable. Thus, an
invariant that avoids these “bad” states is found. In this section we present the invariants
we need in the refinement mapping proof from Ag to Ap. The proofs of the invariants are
deferred to Appendix C, where we furthermore consider the general way to prove invariants of
safe (timed) I/O automata.

In the invariants we use a derived variable good-ids defined as follows: in any state s of Ag,

define

s.good-ids = s.good, U s.issued,
where s.issued, is the complement of s.issued, with respect to ID. A message assigned an id in
s.good-ids might still be received successfully, i.e, accepted by the receiver.

The first invariant has two parts which state simple properties of the state when the sender is
in send mode. (Recall from Appendix A that last; € used is shorthand notation for last, €
elems(usedy). Similar notation will be used below.)

Invariant 8.1

1. If mode, = send then last, € used,

2. If mode, = send then last, # nil
| |

When the sender is in needid mode, it can never choose among identifiers that have been used
before (since such identifiers cannot be put into good again). As a consequence used, contains
distinct elements.

Invariant 8.2

1. If mode, = needid then used, N good, =

8.5. Correctness of G 125

2. All elements of used, are distinct

As expected a receiver mode of rcvd indicates that there are some messages in the receiver
buffer which have not yet been delivered to the user.

Invariant 8.3
1. If mode, = rcvd then buf, # ¢
|

The following invariant is a key invariant. It states relationships between and properties of the
different sets of identifiers in Aq.

In this invariant and other invariants below, we use the following definition: define in any
state s of Ag ids(sr) to be the set of id components of the packets in the sr channel. Formally,
we have

ids(sr) = {id | m € Msg A (m,id) € sr}
Similarly,

ids(rs) = {id | b€ Bool A (id,b) € rs}

Invariant 8.4
1. issued, D good, if mode, = needid A mode, # rec
2. ussued, 2 good,
3. issued, O used, if mode, # rec
4. used; D ids(sr) U (if mode, = send then {last,} else ()
5. used, O nack-buf,
6. used, D ids(rs)
7. last, ¢ good-ids

8. If last, # nil then last, € used,
| |

The following invariant states the fact that for any two packets in sr (possibly including the
current packet), if the packets have the same identifier, then the packets are equal (and thus
represent two copies of the same packet).

Invariant 8.5
1. Let pkts = sr U (if mode, = send then {(current-msg,, last;)} else (), and
let (m,id) € pkts and (m’,id") € pkts. Then
If id = id" then m = m/

126 8. The Generic Protocol G

The next invariant states properties of reachable states where current-ok = true. Recall that
current-ok intuitively is a flag which is true whenever the sender is in the process of sending the
next message (packet), the receiver has not been in recovery phase since the last prepare action,
and the current packet has not been received yet. Thus, current-ok = true indicates that the
sender and receiver are synchronized and in agreement about which identifiers to use.

Invariant 8.6

1. If current-ok = true then mode, € {needid, send}

2. If current-ok = true then mode, # rec

3. If current-ok = true A mode, = send then last, # last,

4. If current-ok = true N mode; = send then (last,,b) ¢ rs

5. If current-ok = true A mode, = needid then good, C good,
6. If current-ok = true A mode; = send then last, € good,

7. If current-ok = true A mode, = send then last, ¢ nack-buf,

In certain situations current-ok is guaranteed to be false. For instance, if the sender is in send
mode and the current packet has been accepted by the receiver (indicated by either last, = last,
or the fact that an acknowledgement for last, is in rs).

Invariant 8.7

1. If mode, = send A last, = last, then current-ok = false

2. If mode, = send A (last,,b) € rs then current-ok = false
u

We now state properties of the identifiers in sr. Part 1 states that each identifier in sr has
been chosen before (or is equal to) the current identifier when mode, = send. This is expressed
using the ordering <, induced by used,. Parts 2-4 state that if either (2) the current packet
has been accepted by the receiver, (3) the receiver has sent positive acknowledgement for the
current packet to rs, or (4) the sender has received the positive acknowledgement, then none of
the identifiers in sr (possibly including the current identifier last,) can never become “good”,
i.e., can never reappear in good,. (These invariants among other things guarantee that Ag can
never reorder messages or accept the same packet twice.)

Invariant 8.8
1. If mode, = send A id € ids(sr) then last, >, id
2. If mode; = send A last, = last, then ({last;} U ids(sr)) N good-ids = ()

3. If mode, = send A (last,, true) € rs then ({last,} U ids(sr)) N good-ids = ()

8.5. Correctness of G 127

4. If mode, = idle A current-ack, = true then ids(sr) N good-ids = {)
|

In certain situations buf, is guaranteed to be empty. Part 1 of the following invariant states
that if mode, = idle then buf, is empty. This situation occurs if the receiver has just sent
acknowledgement after having delivered the last message to the user, or if the receiver has just
recovered. Parts 2-4 deal with the situation where the current message is being acknowledged
over rs. Either (2) the receiver is sending positive acknowledgements for the last message
received (and passed on to the user), (3) the receiver has succeeded in placing the positive
acknowledgement in rs, or (4) the sender has already received the positive acknowledgement.

Invariant 8.9

1. If mode, = idle then buf, = ¢
2. If mode, = ack then buf, =¢
3. If mode, = send A (last, true) € rs then buf, = ¢

4. If mode, = idle A current-ack, = true then buf, = ¢.

The following invariant states that identifiers for which the receiver will or has sent negative
acknowledgements can never (again) be considered “good” by the receiver.

Invariant 8.10

1. nack-buf, N good-ids = ()

2. ids(rs) N good-ids = ()
|

Furthermore, the receiver can never issue negative acknowledgements for the current identifier
if it has accepted the current packet (unless new crashes have occurred).

Invariant 8.11

1. If mode, = send A last, € nack-buf, then last, # last,.

2. If mode, = send A (last;, false) € rs then last; # last,.

Our final invariant states that there are always “enough” (read: infinitely many) identifiers
left that have not been issued. This is an important invariant since it ensures that a message
to be sent can always be associated with an identifier. The invariant will not be used in the
safety proof since not being able to choose an identifier does not violate any safety requirement.
Instead the invariant is essential for the system to guarantee any liveness requirements.

128 8. The Generic Protocol G

Invariant 8.12
1. |ID\ issued,| = o
|]

The conjunction of all invariants above (which is itself an invariant) will be referred to by Ig.

8.5.2 Safety

In this section we show the existence of a refinement mapping from Ag to Ap. However, first
we need some preliminary definitions.

Let s be any state of Ag which satisfies 1. Define the possible pairs in s in the following
way

s.pos-pairs = {(m,id) € s.sr | id € s.good-ids A (s.mode, = send = id # s.last,)}

The pairs in s.pos-pairs represent the “old” packets in sr that still have a chance of being
successfully received by the receiver. Note, that we do not count (s.current-msg,, s.last;) as a
possible pair when s.mode, = send. Thus, the set of possible pairs in a state consists of packets
for which the sender never stayed around to receive acknowledgement because of sender crashes.
If no crashes have ever occurred the set is empty.

We want to order the possible pairs of a state into a list reflecting the order in which the
pairs were sent. For this reason we—for any state s of Ag which satisfies Ig—define a total order
on the packets in s.sr based on the partial order on ids imposed by s.used, (see Section 8.3.2):

(m/,id') <, (m”,id"y it dd' <, id”

Invariant 8.4 Part 4 and Invariant 8.5 Part 1 imply that the order is indeed total on all packets
in s.sr for reachable states s of Ag.

Now, for any state s of Ag which satisfies I, define the possible list, written s.pos-list,
to be the list obtained by ordering the elements of s.pos-pairs according to the ordering just
introduced. (The closer to the head of the list the smaller the value according to the ordering).
Thus, s.pos-list is the list of those packets (excluding the current packet) that still might be
successfully received, and is ordered according to the order in which the packets were sent, with
older packets occurring towards the head of the list. For all states s of Ag not satisfying Iq,
define s.pos-list to be €.

Define the function messages to extract the list of messages from a list of packets of sr.
Thus, if [= ((my,idy), ..., (m,,id,)) then messages(l) = (mq,...,m,).

When the mode of the sender is either needid or send, the value of current-msg, is the message
to be sent to the receiver. (This message has already been removed from buf,). Now, the destiny
of this message might be unknown if there has been a crash, because then the id that has been
(or is to be) assigned to the message might not be in good-ids or it might be removed from
good-ids before the message is received. The variable current-ok in Ag is precisely what we need
to state this uncertainty. So, the flag (0K or marked) to be associated with the current message
in the refinement mapping below is then derived from current-ok in state s in the following way:

s.current-flag = (if s.current-ok then OK else marked)

8.5. Correctness of G 129

We now define the current queue, i.e., the part of the queue at the D level that corresponds to
the current message at the G level, as follows

s.current-queue = if s.mode, = needid V (s.mode, = send A s.last; € s.good-ids)
then ((s.current-msg,, s.current-flag))
else ¢

When the mode of the sender is send and last, € good-ids we denote by current pair the set
containing the pair (current-msg,, last,). In all other states this set is empty. Thus

s.current-pair = if s.mode, = send A s.last, € s.good-ids
then {(s.current-msg,, s.last,)}

else ()

We define a function Rgp from states(Ag) to states(Ap). This function will in Lemma 8.14 be
proved to be a refinement mapping from Ag to Ap with respect to Ig and Ip. In the definition,
when we write e.g. “buf, paired with 0K”, we mean the element of (Msg X Flag)* obtained from
buf, by pairing every message with OK.

Definition 8.13 (Refinement Mapping From Ag to Ap)
If s € states(Ag) then define Rgp(s) to be the state u € states(Ap) such that

1. u.recy, = (s.mode; = rec)
u.rec, = (s.mode, = rec)
2. u.queue is the concatenation of

o s.buf, paired with OK
o messages(s.pos-list) paired with marked
e s.current-queue

o s.buf paired with 0K

3. u.status =

(false, 0K) if s.mode, = rec A
else (?,0K) it s.buf, #¢ B
else (7, s.current-flag) if s.mode, = needid C(i)
(7, s.current-flag) it s.mode, = send A s.last, € s.good-ids C(ii)
(7,0K) if s.mode; = send A s.last; = s.last, A s.buf . # ¢ C(iil)
(true, 0K) if s.mode; = send A s.last; = s.last, A s.buf . = ¢ C(iv)
(true,marked) if s.mode, = send A s.last, # s.last, A
(s.last,, true) € s.rs C(v)
(false, 0K) if s.mode, = send A s.last, ¢ s.good-ids N
s.lasts # s.last, N
(s.last,, true) ¢ s.rs C(vi)
(s.current-ack,,0K) if s.mode; = idle C(vii)

130 8. The Generic Protocol G

It is easy to see that the cases in Part 3 of the definition are exhaustive. However, the cases
C(ii)-C(vi) are overlapping in some non-reachable states (where s.last, € s.good-ids A (s.last, =
s.last, V (s.last,, true) € s.rs), cf. Invariants 8.4 Part 7 and 8.10 Part 2). Since we shall only
be interested in the image of states satisfying the invariants, this is not a problem in practice.
However, to make Rgp a mapping from all states of Ag to states of Ap, we adopt the convention
that in cases C(ii)~C(vi) the first case (from top to bottom) that is satisfied by a given state is
chosen.

The intuition behind Rgp is as follows: When either the sender or receiver in Ag is in mode
rec this, of course, corresponds to Ap having either rec, or rec, set to true, respectively. This
is captured in Part 1.

Part 2 associates flags with the messages between the sender and the receiver. The messages in
buf ., and buf,. all get paired with the flag OK. That is because these messages are “safe” as long
as no new crashes occur. If a crash occurs at, e.g., the sender side, then of course the elements
in buf, will be deleted, but this corresponds in Ap to marking these elements and dropping
them. So, the flag associated with a message (or the status below) should indicate the situation
for that message (or status) here and now.

The messages in pos-list are all paired with marked. As explained above, when pos-list
was defined, all elements of pos-list are “old” packets that still might be successfully received.
However, elements of pos-list lose this possibility (i.e., are removed from pos-list) if a packet with
higher id is successfully received by the receiver (since otherwise Ag could rearrange messages).
Thus, messages in pos-list might be lost without any crashes occurring. For this reason these
messages are paired with marked in Rgp.

In current-queue the flag is current-flag. If the receiver has not been in rec mode (which
in this situation implies current-ok = true) since the last prepare action, we know that the id
assigned (or to be assigned) to the current message is in good, (cf. Invariant 8.6 Parts 5 and
6). Unless crashes occur this will be the case until the current message is successfully received.
(Note, that the successful receipt of a message from pos-list cannot cause the id of the current
message to be removed from good, since all messages in pos-list have ids less that this id). So, in
this situation current-flag = OK. On the other hand, if a crash has occurred the current message
might still be successfully received but it could be lost. In this case current-flag = marked as
required.

Part 3 deals with the status. First, recall that in Ap status records the status of the last message
sent to the system.

Case A deals with the situation where the sender has crashed. In this situation the last
message sent can only cause a negative acknowledgement to the user. Therefore status =
(false, OK).

In Case B, mode, # rec and buf, # ¢. Thus, the last element sent is, for now, sitting safely
in buf . For this reason we have status = (7, 0K).

C(i) and C(ii) describe to the situation where the last element sent is in current-queue. Here
status = (7, current-flag), where current-flag = marked is there has been a crash so that it is
permitted to “lose” status (i.e., change it to (false, 0K)).

In C(iii) the last message sent has been received by the receiver and is sitting safely in buf,.

In C(iv) this message has been passed on to the user and the receiver is in the process of
sending positive acknowledgements to the sender. This is a sure positive status, thus, status =
(true, 0K).

8.5. Correctness of G 131

Case C(v) then describes the situation where a positive acknowledgement has been sent by
the receiver, but where the receiver subsequently has crashed. In this situation the positive
acknowledgement might eventually be successfully received by the sender, but, since the sender
keeps on sending its current packet until it receives an acknowledgement, the receiver might issue
negative acknowledgements for the current message and these negative acknowledgements could
pass the positive acknowledgements in rs such that the sender receives a negative acknowledge-
ment for the current message. The latter situation corresponds in Ap to status being lost. This
explains why status = (true,marked) in case C(v). Note, that in the situation just explained,
the current message has been successfully delivered to the user, but a subsequent crash could
cause status to be lost anyway (recall that this is allowed by the specification).

Case C(vi) actually describes two situations: (a) the id assigned to the current message is
such that the current message can never be successfully received by the receiver. Thus, the
receiver can only issue negative acknowledgements for this message. The other situation is: (b)
the current message has been successfully received, but the receiver crashed before successfully
placing a positive acknowledgement on the channel rs. Again, only negative acknowledgements
can be received by the sender. This explains status = (false, 0K).

Finally, case C(vii) reflects the acknowledgement received by the sender for the (last) current
message.

After having used our knowledge and intuition about Ag and Ap to define Rgp, we still need
to verify that Rgp is in fact a refinement mapping from Ag to Ap (with respect to Ig and Ip).
The following lemma states that this is the case.

Lemma 8.14
AG SR AD via RGD'

Proof

We prove that Rgp is a refinement mapping from Ag to Ap with respect to I and Iy. We check
the two conditions (which we call base case and inductive case, respectively) of Definition 5.2.

Base Case
It is easy to see that for any start state s of Ag, Rgp(s) is a start state of Ap.
Inductive Case

Assume (s, a,s') € steps(Ag) such that s and s’ satisfy /g and Rgp(s) satisfies Iy (Invariant 7.1).
Below we consider cases based on a (and sometimes subcases of each case) and for each (sub)case
we define a finite execution fragment o of Ap of the form (Rgp(s),a’,u”,a”, v, ..., Rap(s'))
with trace(a) = trace(a). For brevity we let u denote Rgp(s) and u’ denote Rgp(s').

Unless otherwise stated we let Part 1-3 refer to the three parts of Definition 8.13.

a = send_msg(m)

We consider cases based on s.mode;,.

1. s.mode, # rec

Then, it is easy to see that (u, send_msg(m),u’) is a step of Ap and thus a finite execution
fragment with the right trace.

132 8. The Generic Protocol G

2. s.mode, = rec

Then s = s, so also v’ = w.

We show that (u, send_msg(m),u”, mark(Il),w"”, drop(I),u’), where v”, v and I are de-

fined below, is a finite execution fragment of Ap by showing that (u, send_msg(m),u”),
(v, mark(l),v"), and (v, drop(I),u') are steps of Ap. Clearly the execution fragment
has the right trace.

Define u".rec, = u.rec,
u”.rec, = u.rec,
u’.queve = wu.queue " (m,0K)
u’.status = (7,0K)
Then obviously (u, send_msg(m),u") € steps(Ap).
Define u".rec, = w.recs (= true)
u'".rec, = u.rec,
u".queve = wu.queue” (m,marked)
u' . status = u.status
Thus the only difference between ' and w" is that the element at the end of queue is

marked in u”’. Define I = {mazide(v"’.queue)}. Then, since u"”.rec; = true, obviously

(w", mark(I),u") € steps(Ap).

Finally, we have to show that (v, drop(1),u’) € steps(Ap). First note that drop is enabled
in " since I contains the index of the last element of «”’.queue and this element is marked
by explicit construction. It now suffices that the four state variables of Ap are handled

correctly.

rec, and rec,:
We have (by construction and the fact that v’ = w) w”.rec, = w'.rec; and v .rec, =
u'.rec, as required by the definition of drop(/) in Ap.

queue:
We have (again by construction and the fact that w' = wu) u”.queue = u'.queue *
(m,marked). Thus, since drop(I) requires the last element of queue to be deleted, queue
is handled correctly.

status:
Since the element at the end of queue is deleted, the definition of drop(I) requires that
u'.status = (false, 0K), but this is the case since u.status = (false, 0K) (from the definition
of Rgp) and o' = u.

a = receive_msg(m)

We show that (u, receive_msg(m), u') € steps(Ap). The step clearly has the right trace.

From the precondition of the receive_msg(m) steps in Ag we have that s.mode, = rcvd,
s.buf,. # ¢, and head(s.buf,.) = m. The definition of Rgp then implies that w.queue # ¢
and head(u.queue) = (m,0K). Thus, from the definition of the receive_msg(m) steps in Ap we
see that receive_msg(m) is enabled in u. It now suffices to show that the four state variables of
Ap are handled correctly.

rec,, rec,, and queue:
It is easy to see that w'.rec; = w.rec,, u'.rec, = wu.rec,, and u'.queue = tail(u.queue), as
required by the definition of receive_msg(m) in Ap.

status:

8.5. Correctness of G 133

We consider cases based on which condition (A, B, C(i)~C(vii)) s satisfies in Part 3.
Suppose s satisfies the condition in case A, C(v), C(vi), or C(vii). Then ¢’ satisfies the same
condition, so u.status = u'.status. Since in all cases u.status.stat # 7, leaving status unchanged
is permitted by the definition of receive_msg(m) in Ap.

Suppose s satisfies the condition in case B, C(i), or C(ii). Then s’ satisfies the same condition,
so u.status = u'.status. In all three cases it is easy to see that u'.queue # ¢ so it is allowed by
the definition of receive_msg(m) in Ap to leave status unchanged.

Suppose s satisfies the condition in case C(iii). If s’.buf, # ¢ then s’ also satisfies this condition
but in this case u’.queue # ¢ so it is permitted by the definition of receive_msg(m)in D to leave
status unchanged. So, assume s'.buf, = . Then s satisfies the condition in case C(iv). Thus,
w.status = (7,0K) and ’.status = (true,0K). Also, s’.buf, = ¢ and Invariant 8.8 Part 2 implies
that both s'.pos-list = € and s'.current-queue = €. Then, since s'.buf, = ¢, u.queue = . Thus,
changing status from (7,0K) to (true,0K) is as required by receive_msg(m) in Ap.

Finally, the precondition of receive_msg(m) in Ag implies that s cannot satisfy the condition
in case C(iv).

a = ack(b)

We show that (u, ack(b),uw’) € steps(Ap). The step clearly has the right trace.
By definition of ack(b) in Ag we have s’ = s so also v/ = u.

From the precondition of ack(b)in Ag we have s.mode, = idle, s.buf;, = ¢, and s.current-ack, =
b. Then wu.status = (s.current-ack,,0K) = (b,0K) (by case C(vii) of Part 3). Thus, ack(b) is
enabled in wu.

Since w.status.stat = 0K, it is now easily seen that (u, ack(b), ') is a step of D.

a = crash,

We show that (u, crashg, w”, mark([),w", drop(1'),u), where u”, u"’, I, and I’ are defined below,
is a finite execution fragment of Ap by showing that (u, crash,,u”), (v”, mark(l),u""), and
(u"”, drop(1'),u’) are steps of Ap. Clearly the execution fragment has the right trace.

Define «".rec, = true
u”.rec, = u.rec,
u’.queue = u.queue
u' . status = w.status

Then clearly (u, crashg,u”) € steps(Ap).
First let i., = |s.buf,| + |s.pos-list|. Then, define

134 8. The Generic Protocol G

u'" .rec, = o .rec,
u'" .rec, = u".rec,
(u".queue,P,0) if s.mode, € {idle,rec} V
(s.mode; = send A
s.dasts ¢ s.good-ids)
(q,{icq},0) if s.mode, = send A
(u".queue, I,1') = s.last, € s.good-ids A
(s.current-msg,, s.last,) € s.sr
where ¢ = mark(u”.queue, {i.,})
(¢, {tcg}, {icq}) otherwise
where ¢ = mark(u”.queue, {i.,})
u' . status = (u”.status.stat,marked)

Since u”.rec, = true, clearly mark(I) is enabled in w”. To prove that (w’, mark(Il),u") €
steps(Ap) it now suffices to show that all four state variables of Ap are handled correctly.

rec, and rec,:
Leaving rec, and rec, unchanged is as required by the definition of mark(Il) in Ap.
queue:
By explicit construction of u”.queue and I, it is easy to see that queue is handled correctly.
Ap.
status:
Marking status is allowed by the definition of mark(/) in Ap.
Thus, (', mark,u"") € steps(Ap).

Finally, we must show that (v, drop(1’),u') € steps(Ap). Slearly drop(I’) is enabled in v, so
it suffices to show that the four state variables of Ap are handled correctly.

rec, and rec,:
We have u'.rec, = true = u''.rec, and u'.rec, = w.rec, = u"'".rec,. Leaving rec, and rec,
unchanged is as required by the definition of drop(1’) in Ap.

status:
We have u'.status = (false,0K) since s’.mode, = rec, and this is allowed by the definition of
drop(1') in Ap.

queue:
First, assume s.mode, € {idle,rec} or s.mode, = send A s.last, ¢ s.good-ids. Then it is
easy to see that u'.queue = u"'.queve = u.queve. Leaving queue unchanged is as required by
the definition of drop(I') in Ap since in this case I' = ().
Next, assume (s.mode; = send A s.last, € s.good-ids A (s.current-msg,,s.last;) ¢ s.sr) or
s.mode, = needid. Then we have s.current-queue = ((s.current-msg,, s.current-flag)) and
§'.current-queue = . But the other three (buf,, buf,, and pos-list) parts that make up the
abstraction of a queue in Ap are unchanged. (Note, in the definition of w”.queue is this case
that the element in u”.queue that corresponds to s.current-queuve has index i.,). Then, it is
easy to see that u'.queue = delete(u .queue,{i.,}). Thus, by explicit construction of I’ and
the definition of drop(I’) it is seen that queue is handled as required.
Finally, assume (s.mode;, = send A s.last, € s.good-ids A (s.current-msq,,s.lasty) € s.sr).
Again, we have s.current-queue = ((s.current-msg,, s.current-flag)) and s'.current-queue = €.
But in this case we have s'.pos-pairs = s'.pos-pairs U (s.current-msg,, s.last;). Then Invari-
ant 8.8 Part 1 implies that s'.pos-list = s.pos-list * (s.current-msg,, s.last;). We now have
that the only difference between u'.queue and u.queue is that one of the elements (the one

8.5. Correctness of G 135

corresponding to (s.current-msg,, s.last,)) in u'.queue is marked (which it might not be in
w.queue). But this gives us u'.queve = v .queue, and since I’ = () in this case, it is seen that
queue is handled as required by the definition of drop(1’) in Ap.

Thus, (v, drop,u’) € steps(Ap) as required.

a = crash,

We show that (u, crash,,u”, mark(I),v'), where u” and I are defined below, is a finite execution
fragment of Ap by showing that (u, crash,,v”) and (u”, mark(l),u’) are steps of Ap. Clearly
the execution fragment has the right trace.

Define " .rec, = true
u'’ .rec, = u.rec,
u”.queue = u.queue
uw'.status = u.status
Clearly (u, crash,,u’") € steps(Ap).
Define,
I { {|s.buf,.| + |s.pos-list|} if s.mode, = needid V (s.mode, = send A s.last, € s.good-ids)
10 otherwise

We now show that (u”,mark(l),u') € steps(Ap). First note that since u”.rec, = true, the
definitions of I and Rgp imply that mark([) is enabled in »”. It thus suffices to show that the
four state variables of Ap are handled correctly.

rec, and rec,:
We have u'.rec, = true = u”.rec, and w'.rec, = w.rec, = u”.rec,. Leaving rec, and rec,
unchanged is as required by the definition of mark(l) in Ap.

queue and status:
First assume s.mode, = needid or s.mode, = send A s.last, € s.good-ids. In this case the
only difference in states s and s’ of the four components that make up the abstraction of a
queue in Part 2 is that the element in current-queue is marked in s’ whereas it might be 0K
in s. So, the only difference between u”.queue(= wu.queue) and w'.queue is that the element
with index |s.buf,| + |s.pos-list| has changed its flag to marked, but by definition of I in this
case, this is as required by the definition of mark(l) in Ap. FYor status, if s.buf, # ¢ then
w.status = u'.status = (7,0K) by Part 3B. But leaving status unchanged is allowed by the
definition of mark(Il) in Ap. If s.buf, = ¢ then s satisfies either Part 3C(i) or 3C(ii) and s
satisfies the same part. In this case status might change its flag from 0K to marked but again
this is allowed by the definition of mark(Il) in Ap.

Finally, in all other cases u.queue = u’.queue and u.status = u'.status so mark(1l) should be a
no-op, but again this is allowed by the definition of mark(I) in Ap since in this case I = ().

a = Tecover,

We show that (u, mark(I), v, drop(I),u", recovers,u’), where u”, u"’, and I are defined below,
is a finite execution fragment of Ap by showing that (u, mark(Il),w”), (u”, drop(I),u""), and
(u", recoverg, u’) are steps of D. Clearly the execution fragment has the right trace.

Define I = {i | mazidz(u.queue) — (|s.buf | — 1) < i < mazide(u.queue)}.

Thus, I contains the indices of the last |s.buf| elements in w.queue.

136 8. The Generic Protocol G

Define u”.rec; = u.rec,
u”.rec, = u.rec,
v’ .queve = mark(u.queue,)
u'.status = w.status

Since s.mode; = rec we have u.rec, = true so the definition of I implies that mark([) is enabled
in u. Then it is easy to see that (u, mark(Il),u") € steps(Ap).

Define v .rec, = o .rec,
u'" .rec, = u".rec,
o .queuve = delete(u”.queue,)
uw".status = (false,OK)

The definitions of I and w”.queue implies that drop([l) is enabled in u”. Now, to show that
(u", drop(I),u"") € steps(Ap), it suffices to show that the four state variables of Ap are handled
correctly.

rec, and rec,:
Leaving rec, and rec, unchanged is as required by the definition of drop(I) in Ap.
queue:
By explicit construction of u"'.queue, clearly queue is handled correctly.
status:
Since drop(I) is always allowed to change status to (false,0K), status is handled correctly.
Thus, (v, drop(I),uw") € steps(Ap).

Finally, we prove that (u", recover,,u’) € steps(Ap). Since uw.rec; = v .rec, = u.rec; = true,
we have that recover; is enabled in u”’. We show that the four state variables of Ap are handled
correctly.

rec, and rec,:
Leaving rec, unchanged and changing rec, from true to false is as required by the definition
of recover, in Ap.

queue:
Note that s.current-queue = s'.current-queue = e, s.pos-list = §'.pos-list, and s.buf, =
s'.buf,. So, since buf, is emptied in the recover, step of Ag, the only difference between
u.queue and u'.queue is that the last |s.buf,| elements of u.queue are missing in w'.queue.
Thus, u'.queue = u"'.queue as required by the definition of recover, in Ap.

status:
Since s’.mode, = idle, s'.buf, = ¢, and s'.current-ack, = false, we have u'.status = (false, 0K)
by Part 3(vii). Thus, v'.status = u".status as required by the definition of recover, in Ap.

Thus, (v, recover;,u’) € steps(Ap).

a = TeCoveET,

We show that (u, mark(I), v, drop(1),u", recover,,u'), where uv”, ', and I are defined below,
is a finite execution fragment of Ap by showing that (u, mark(l),u”), (u”,drop(1),u""), and
(u", recover,,u’) are steps of Ap. Clearly the execution fragment has the right trace.

First, define w”’.rec, = u.rec,
u'.rec, = u.rec,
w'".rec, = u.rec,

v .rec, = u'.rec,

8.5. Correctness of G 137

Below we define I so that it contains indices of u.queue and indices of marked elements in
u”.queue. Then, since s.mode, = rec we have u.rec, = true, so mark(I) is enabled in u, drop([l)
is enabled in u”, and finally recover, is enabled in u'” since we also have v .rec, = true.

We now show that the four state variables in Ap are handled correctly by all steps in the
execution fragment.

rec, and rec,:
As in the case a = recover, above it is easy to see that rec, and rec, are handled correctly.

queue:
Note that s'.good-ids C s.good-ids since issued, might be extended in the recover, step of
Ag. This leads to the observations that (a) either s'.current-queue = s.current-queue or

§'.current-queue = ¢, and (b) §'.pos-pairs C s.pos-pairs so that s'.pos-list can be obtained
from s.pos-list by deleting some elements. Also we have s.buf, = s'.buf, and s'.buf, = «.
Thus, w'.queue can be obtained from w.queue by deleting some elements. By letting I be the
indices of these elements, the elements are marked in the mark(Il) step and then deleted in
the drop(I) step. Thus, queue is handled correctly.

status:
We consider cases based on which condition in Part 3 is satisfied by s.
Suppose s satisfies condition A. Then so does s’ so we have u.status = u'.status = (false, 0K)
which is allowed by the execution fragment of Ap.
If s satisfies condition B, then so does s’ so we have w.status = v'.status = (7,0K). This is
allowed by the execution fragment of Ap provided that the element at the end of w.queue was
not deleted in the drop(I) step but this is the case (that it was not deleted) since s.buf, =
s'.buf, # €.
Also, if s satisfies C(i) then so does s’ (with s.current-flag = s'.current-flag), and this is
allowed since s.buf, = s.buf, = ¢ and s.current-queue = s'.current-queue # ¢ so the last
element of u.queue was not deleted in the drop(I) step.
If s satisfies C(ii) then s.last, = &'.last; ¢ ids(s.rs) = ids(s'.rs) (by Invariant 8.10 Part 2)
and s.last, # nil (by Invariant 8.1 Part 2). Now, if s'.last, € s'.good-ids then s’ satisfies
C(ii) so s.current-queue = s'.current-queue # ¢. As for case C(i) we see that this is allowed.
If §'.last; ¢ s'.good-ids then, since s'.last, = nil # s'.last,, s’ satisfies condition C(vi), so
o .status = (false, 0K) which is allowed by the execution fragment.
Now, suppose s satisfies C(iii). Then Invariant 8.4 Part 7 implies s.last, ¢ s.good-ids which
again implies s'.last, ¢ s'.good-ids since s'.good-ids C s.good-ids. Invariant 8.9 Part 3 im-
plies (s.last,,true) ¢ s.rs, i.e., (s'.last,, true) ¢ s'.rs. Thus, s satisfies condition C(vi), so
u.status = (false, 0K) which is allowed by the execution fragment of Ap.
If s satisfies C(iv) we consider two subcases. If (s.last,, true) ¢ s.rs the case is similar to case
C(iii) above. So assume (s.lasty, true) € s.rs. Then s satisfies C(v) so u.status = (true,0K)
and w'.status = (true,marked). This marking of status is allowed by mark(l) in Ap. Then
total change of status is allowed is the element at the end of u'.queue is not deleted in the
drop(I) step. Invariant 8.8 Part 2 implies that s.current-queue = s.pos-list = ¢ so u.queue = ¢,
thus there is no last element to be deleted. That suffices.
If s satisfies C(v), then so does s’ (Invariant 8.1 Part 2 implies s".last; # nil = ¢'.last,). Thus,
s.status = s'.status = (true,marked). This is allowed since u.queue = ¢ (so the last element of
the queue cannot be deleted in the drop(I) step). To see why u.queue = ¢, we have from C(v)
that s.buf, = ¢ and Invariants 8.8 Part 3 and 8.9 Part 3 imply s.current-queue = s.pos-list =
s.buf, = ¢. That suffices.

138 8. The Generic Protocol G

If s satisfies condition C(vi) then so does s’ (arguments as above). Thus, u.status = u'.status =
(false,0K) which is allowed by the execution fragment.

Finally, if s satisfies condition C(vii), then so does s’. We then have u.status = u'.status =
(s.current-ack,,0K). This is easily seen to be allowed if s.current-ack, = false. So, assume
s.current-ack, = true. Then having u.status = u'.status = (true,0K) is allowed provided the
element at the end of u.queue is not deleted in the drop(l) step. A sufficient condition is
to show u.queue = ¢. From C(vii) we have s.buf, = s.current-queue = ¢ and Invariants 8.8
Part 4 and 8.9 Part 4 imply s.pos-list = s.buf, = ¢. Thus, u.queue = ¢.

a = prepare
We consider two cases

e s.mode, = rec

We show that (u, mark(l),u’) € steps(Ap), where I = |s.buf,|+|s.pos-list|. This step (and
execution fragment) clearly has the right trace (the empty trace).

Since s.mode, = rec, we have u.rec, = true, so clearly mark(I) is enabled in u.
We show that the four state variables of Ap are handled correctly.

rec, and rec,:
We have s.mode, — idle and s’.mode, — needid, so u.rec, = u'.rec, — false which is as
required by the definition of mark(l)in Ap. From the case hypothesis and the definition
of prepare in Ag, we have s.mode, = s'.mode, = rec, so u.rec, = u'.rec, = true which is
also as required by the definition of mark([l).

queue:
Note that the element at the head of buf, is moved to current-msg, in the prepare step of
Ag. From the definition of Rgp we have that this element goes from being 0K when it was
in buf, to being marked (s.mode, = rec implies, by Invariant 8.6 Part 2, s'.current-ok =
false which in turn implies §'.current-flag = marked) when it is in current-queue. Neither
buf . nor pos-list are changed in the prepare step. Thus, u’.queue is the same as u.queue
except that the message at position |s.buf,.| + |s.pos-list| is marked in u.queue and OK in
u.queue. This is as required by the definition of mark(Il) in Ap.

status:
We have u.status = (7, 0K) since s.buf, # ¢ (from the precondition of the prepare step).
Either state s’ satisfies Condition 3B in which case u'.status = (?,0K) or s’ satisfies
condition C(i) in which case u'.status = (7, false). Both of these situations are allowed
by the definition of mark(l) in Ap.

Thus, (u, mark(l),u’) € steps(Ap).

e s.mode, # rec

Here we have s'.current-flag = 0K from the effect of the prepare step, so with arguments
similar to those used in the previous case it is easy to show show that ' = u. Thus, the
execution fragment consisting of only the state u has the right trace. That suffices.

a = choose_id(id)

We consider two cases

8.5.

Correctness of G 139

o s.last, ¢ s'.good-ids

We show that (u, drop(1),u’) € steps(Ap), where I = {|s.buf .| + |s.pos-list|}. This step

(and finite execution fragment) clearly has the right trace (the empty trace).

We show that the four state variables of Ap are handled correctly.

rec, and rec,:
We have s.mode, = needid, s’.mode, = send, and s.mode, = s'.mode, which implies
w.rec; = u'.recy and w.rec, = u'.rec, as required by the definition of drop(I) in Ap.

queue:
We note that s'.buf, = s.buf,, s'.pos-list = s.pos-list, and s'.buf, = s.buf,. However,
§'.current-queue = ¢ but s.current-queue # ¢. Thus, u'.queue can be obtained from
w'.queue by deleting the element that corresponds to s.current-queue. From the case
hypothesis and the definition of choose_id(id) in Ag we have s.good, € s.good-ids (note,
§'.good-ids = s.good-ids). Now, since s.mode, = needid, Invariant 8.6 Part 5 implies
s.current-ok = false which again implies s.current-flag = marked. Thus, the flag of
the element s.current-queue is marked. Now, s.current-queue corresponds to position
|s.buf .| + |s.pos-list| in u.queue. Since this element is marked, drop(I) is enabled in w.
Furthermore, it is easy to see that queue is handled correctly.

status:
If s.buf , # ¢ then also s’.buf; # ¢ so both s and s’ satisfy condition 3B. Thus, u.status =
o' .status = (7, 0K). This is allowed by drop([) since the element at the end of queue is not
deleted because s.buf, = s'.buf, # ¢. Now, if s.buf, = ¢, s satisfies condition 3C(i), i.e.,
u.status = (7, false) since s'.current-flag = marked (see the discussion for queue above).
We show that &' satisfies 3C(vi) such that w'.status = (false,0K) which is allowed by
drop(I). This amounts to showing '.last; # §'.last, and (s'.last,, true) ¢ s'.rs since the
case hypothesis and the definition of choose_id(id) give us the rest:
From the definition of choose_id(id) we get id = s'.last; € s.good,. Invariant 8.2 Part 1
then implies s'.last, ¢ s.used,. Also, s'.last, # nil by Invariant 8.1 Part 2. Invariant 8.4
Part 8 implies (since s.last, = s'.last,) that §'.last, = nil or s'.last, € s.used,. Thus,
we get §'.last, # s'.last, as required. Also, since s'.last, ¢ s.used,, Invariant 8.4 Part 6
implies (s'.last,, true) ¢ s.rs = s'.rs as required.

Thus, (u, drop(I),u') € steps(Ap).

s last, € s'.good-ids

We show «' = u by comparing the four state variables of Ap in u and «’. The execution

fragment « then has the right properties.

rec, and rec,:
We have s.mode, — needid, s’.mode, — send, and s.mode, = s§.mode, which implies
u.rec, = u'.rec, and w.rec, = u'.rec, as required.

queue:
Her we have s'.current-queue = s.current-queue. Then it is easy to see that u'.queue =
U queue.

status:
We have that either both s and s’ satisfy condition 3B, or s satisfies 3C(i) and s’ satisfies
3C(ii). In both cases v'.status = u.status as required.

a = send_pkt . (m,id)

We show u = u’ by comparing the four state variables of Ap in w and u'. The execution fragment

140 8. The Generic Protocol G

u then has the right properties.

rec, and rec,:

We have s.mode, = s'.mode, and s.mode, = s'.mode, which implies u.rec, = u'.rec, and
w.rec, = u'.rec, as required.

queue:
We have s'.buf, = s.buf,, s'.current-queue = s.current-queue and s'.buf,. = s.buf,.. The

send_pkt . (m, id) step might add some copies of (m, last,) to the channel sr. However, since
mode, = send, this does not change the value of pos-pairs, so s'.pos-list = s.pos-list. Thus,
u'.queue = u.queue.

status:
Whatever condition in Part 3 of Definition 8.13 s satisfies, s’ satisfies the same. This implies
w'.status = u.status.

a = receive_pkt .(m,id)

Since this step may remove the last copy of (m, id) from the channel sr (a multiset), we generally
have s'.pos-pairs C s.pos-pairs. (Note, that the ordering of pairs is unchanged since used, is
unchanged). Also, we have s'.buf = s.buf .

We consider cases.

e s.mode, = rec
In this case the only change in the step of Ag is the above mentioned change of the channel
sr. We show (u, drop(I),u') € steps(Ap), where [is defined below. This step (and finite
execution fragment) clearly has the right trace (the empty trace).
Define [= { 0 ' if (m, zd) ¢ s.pos-list V (.m,.z'd) € 8’.p03-list

{|s.buf,| + i} otherwise, where s.pos-list[i] = (m,id)

Clearly drop(I) is enabled in u (elements in pos-list correspond to marked elements in

u.queue). We show that all four state variables of Ap are handled correctly.

rec, and rec,:
It is easy to see that we have u'.rec, = u.rec, and v .rec, = u.rec,(= false) as required
by the definition of drop(I) in Ap.

queue:
We have s'.current-queue = s.current-queue, s'.buf, = s.buf,, and s'.buf, = s.buf,.
Then the definition of I implies that queue is handled as required by the definition of
drop(l) in Ap.

status:
We have from Part 3 that «'.status = w.status since none of the variables occurring in
Part 3 are changed in the step of Ag. This is allowed by drop(I) provided either the value
of status is (false, 0K) or the element at the end of queue was not deleted. For conditions
A, B, C(i), C(ii), and C(vi) this is obvious. For C(ii) and C(iii) we get from Invariant 8.8
Part 2 that pos-list = ¢, so v'.queue = u.queue which suffices. For C(iv) Invariant 8.8
Part 3 implies in the same way that u’.queue = u.queuve. Finally, for C(vii) only the case
where current-ack, = true is of interest. But again we get u'.queue = u.queue. This time
because of Invariant 8.8 Part 4.

e s.mode, # rec
We consider cases based on the if-statement in the definition of receive_pkt, (m,id) in
AG s/re

8.5. Correctness of G 141

— ud € s.good,

This implies id € s.good-ids.

We show that (u, drop(1),u”, unmark(Il’),u"), where v, I, and I" are defined below, is

a finite execution fragment of Ap. The execution fragment clearly has the right trace

(the empty trace).

rec, and rec,:
It is easy to see that we have u'.rec; = u.rec;, and w'.rec, = w.rec,(# false). Define
u”.rec, = u.rec, and u".rec, = w.rec,. Leaving rec, and rec, unchanged is as required
by the definitions of drop(I) and unmark(l’) in Ap.

queue:
Since id € s.good-ids we have that (m,id) € s.pos-pairs U s.current-pair where, by
definition, s.pos-pairs and s.current-pair are disjoint (all ids are different).
First, assume (m, id) € s.pos-pairs. The effect of receiving this pair is to remove
from good, (and thus from good-ids) all ids less than or equal id. This corresponds
to removing an initial prefix of s.pos-list up to and including (m, id). And at the same
time m is moved to the end of buf,. Invariant 8.8 Part 1 and the fact that s.pos-pairs
and s.current-pair are disjoint gives us s.current-queue = s'.current-queve. Thus,
u'.queue can be obtained from w.queue by deleting some elements corresponding to
the initial prefix of s.pos-list and changing the flag of the element corresponding to
(m, id) to 0K (since now this element is in buf,). Then clearly I and I’ can be defined
so that the change in queue is as required by the definition on drop(1) and drop(1’)
in Ap
If (m, id) € s.current-pair a similar argument gives us that u'.queue can be obtained
from u.queue by deleting all elements corresponding to elements in s.pos-list and
setting the flag of the element corresponding to s.current-queue to 0K. In this case
s'.current-queue = ¢. Again, I and I' can be defined.

status:
If s satisfies condition A, B, or C(i) of Part 3 then so does s’. This is allowed by
drop(1) and unmark(1") since either u'.status = (false,0K) or the element at the end
of u.queue was not deleted.
If s satisfies C(ii) then s satisfies either C(ii) or C(iii). In both cases the element
end of u.queue was not deleted (as required) and the possible flag change of status
to OK is allowed by unmark(Il").
s cannot satisfy C(iii), C(iv), or C(v) since then Invariant 8.8 Parts 2 and 3 would
imply that no packets in s.sr could be received successfully which contradicts the
assumption that id € s.good,.
If s satisfies C(vi) then so does s'. This is allowed by drop(I) and unmark(l’) in Ap.
Finally, assume s satisfies C(vii). Then s.current-ack, = false since we otherwise
would have a contradiction with Invariant 8.8 Part 4. Thus, v'.status = u.status =
(false,0K) which is allowed by drop(I) and unmark(l) in Ap.

— id ¢ s.good,
Then (u, drop(I),u') € steps(Ap).
The proof is similar to the proof in case s.mode, = rec above.

a = send_pkt, (id,b)

Here it is easy to see that that « = «w'. That suffices since then the execution fragment u of Ap
has the right properties.

142 8. The Generic Protocol G

a = receive_pkt, (id,b)

We consider cases

o s.mode, = send A s.last, = id

We show that (u, drop(0), u”, unmark((), "), where u” is defined below, is a finite execution
fragment of Ap. The execution fragment clearly has the right trace (the empty trace).

Define u".rec, = u.rec,
u”.rec, = u.rec,
u”.queue = wu.queue,

We will define u”.status below when we consider cases.

First note that drop(0) and unmark(Q) are enabled in « and ", respectively, since these
actions have no precondition. We show that all four state variables of Ap are handled
correctly by the two steps in the execution fragment.

rec, and rec,:
We obviously have u'.rec, = w.rec, = uw”.rec, and u'.rec, = u.rec, = u'.rec.. Leaving
rec, and rec, unchanged is as required by the definitions of drop(§) and unmark(9) in
Ap.

queue:
First observe that s'.buf, = s.buf, and s'.buf, = s.buf,. Since (s.last;,b) € s.rs, In-
variant 8.10 Part 2 implies that s.last, ¢ s.good-ids thus s.current-queue = . Also
§'.current-queue = ¢ since s.mode, = idle. The receive_pkt, (id,b) step in Ag might
cause (s.current-msg,, s.last,) to be added to pos-pairs (the pair might have been put onto
sr but did not figure in s.pos-pairs because s.mode, = send). (s.current-msg,,s.last,)
is, however, not added to pos-pairs since s.last, ¢ s.good-ids as explained above. Thus,
we have s'.pos-list = s.pos-list. All in all we have u'.queue = u.queue. Leaving queue
unchanged is as required by the definitions of drop()) and unmark(Q) in Ap.

status:
State s cannot satisfy conditions A, C(i), and C(vii) of Part 3 because s.mode, = send.
If s satisfies condition B then so does s. By defining u".status = u.status we have that
status is unchanged in the execution fragment which is allowed by the definitions of
drop(0) and unmark(9) in Ap.
State s cannot satisfy condition C(ii) since §'.last, ¢ s.good-ids as explained above.
Also, s cannot satisfy condition C(iii). If b = true then Invariant 8.9 Part 3 implies
s.buf, = e which contradicts condition C(iii). If b = false then Invariant 8.11 Part 2
implies s.last; # s.last, which is also a contradiction.
Assume s satisfies condition C(vi). Then u.status = (true,0K). From the discussion in
the previous condition C(iii), we have b = true. Now, s.current-ack, = b = true and
s'.mode; = idle so s’ satisfies condition C(vii). Thus, also w’.status = (true,0K). By
defining u”.status = (true, 0K) we have that status is unchanges in the execution fragment
which is allowed by the definitions of drop(0) and unmark(Q) in Ap.
Next, assume s satisfies condition C(v). Then u.status = (true,marked). If b = true
then by condition C(vii) we have u'.status = (true,0K). This is allowed by drop(0)
and unmark(Q) by defining u”.status = wu.status. If b = false then, again, by condition
C(vii) u'.status = (false,0K) which is allowed by drop(() and unmark(0) by defining
u” . status = u'.status.
Finally, if s satisfies C(vi) then b must be false since the condition states (s.last;, true) ¢

8.5.

Correctness of G 143

s.rs. Thus, u.status = (false,0K) and by condition C(vii) also '.status = (false, 0K).
So, by defining u”.status = w.status, we leave status unchanged, which is allowed by the
definition of drop(0) and unmark(Q) in Ap.

o s.mode; # send V s.last; # id

Then the only difference between s’ and s is that s’ has one less copy of (m,id) in the
channel rs.
We show that ' = u. Then the execution fragment u clearly has the right properties. We
check the state variables of Ap.
rec,, rec,, and queue:

Obviously rec,, rec,, and queue are the same in w and w'.

status:
No matter which condition in Part 3 s satisfies, s’ satisfies the same condition, thus,
o' .status = w.status. The only interesting case is if s satisfies condition C(v). The

condition states that s.mode, = send, so the case hypothesis gives us that id # s.last,.
Thus, (m,id) # (s.last,, true). Then, since (s.last,,true) € s.rs by condition C(v) we
also have (s'.last, true) € s'.rs. Thus, also s satisfies condition C(v).

a € {shrink_good (ids), grow_good ,(ids)}

Changing good, clearly does not change anything in the mapping Rgp. Thus, v’ = u. Then the
finite execution fragment u clearly has the right properties.

a = shrink_good .(ids)

This step removes elements from good,., thus, s'.good-ids C s.good-ids.

We consider cases

o s.current-ok = false

We show (u, drop(1),u’) € steps(Ap), where [is defined below. Clearly the step (and finite
execution fragment) has the right trace (the empty trace).

rec, and rec,:
We clearly have u'.rec, = u.rec, and u'.rec, = wu.rec, as required by the definition of
drop(I)in Ap.

queue:
By shrinking good-ids we might remove elements from pos-list and current-queuve. But,
the elements in u.queue corresponding to these elements are all marked (for current-queue
remember that s.current-ok = false implies s.current-flag = marked), so by defining [to
be the indices of these elements we both get that drop([) is enabled in u and that queue
is handled correctly.

status:
Assume s satisfies condition A, B, or C(i) in Part 3. Then so does ', so u'.status =
u.status. This is allowed by drop(I) since in the cases (B and C(i)) where status #
(false,0K) the element at the end of u.queue is not deleted.
If s satisfies C(ii) then either s" also satisfies C(ii) which is allowed since the element at
the end of u.queue (which corresponds to current-queue is no deleted), or s’ satisfies C(vi)
(it cannot satisfy C(iii)~C(v) because of Invariant 8.4 Part 7 and Invariant 8.10 Part 2)
which is allowed by drop([) since s.current-ok = false implies u.status.flag = marked.

144

8. The Generic Protocol G

If s satisfies C(iii)~C(v), then so does s’, so u'.status = u.status. But this is allowed by
since we in these cases have u'.queue = u.queue.

If s satisfies C(v) then so does s’. In this situation the element at the end of u.queue
might have been deleted (corresponding to elements being removed from pos-list, but
since status = (false, 0K), status is handled correctly.

Finally, if s satisfies C(vii) then so does s'. If current-ack, = false then v .status =
u.status = (false, 0K) which is allowed by drop([). If current-ack, = true then Invari-
ant 8.8 Part 4 implies that u'.queue = u.queue. Thus the element at the end of u.queue
is not deleted, so it is permitted to leave status unchanged at (¢rue, 0K).

Thus, (u, drop(I),u') € steps(Ap).

® S,

current-ok = true

Again we claim that (u, drop(l),u’) € steps(Ap).

The argument is similar to the previous case except that since current-ok = true, we have
current-flag = 0K, so it is not allowed to lose an element in current-queue or lose status in
case C(ii). However, the precondition to shrink_good, (ids) ensures that these requirements
are met.

a = grow_good,.(ids)

The precondition ids N issued, = () and the effect of grow_good,(ids) ensures that s'.good-ids =
s.good-ids.

Then it is easy to see that v’ = w. Thus, the execution fragment u has the right properties.

a = cleanup,

We show that ' = u. Then the execution fragment u has the right properties. We consider the
four state variables of Ap.

rec,, rec,, and queue:
We obviously have u'.rec, = u.rec,, u'.rec, = w.rec,, and v'.queue = u.queue.

status:
Here

the only problem would be that last, is changed. The variable last, only occurs in the

conditions of Part 3 when mode, = send, so assume s.mode, = send. Then s.last, # s.last,

from

Now,

the precondition. Since also s’.mode, = send, Invariant 8.1 Part 2 gives us s'.last, # nil.
since s'.last, = nil, we also have s'.last, # s'.last,. It is now easy to see that whatever

condition in Part 3 that s satisfies, s’ satisfies the same condition. Thus, u'.status = u.status.

This concludes the simulation proof.

We can now prove that Ag safely implements Ap.

Theorem 8.15 (A safely implements Ap)

Aq Cs

Proof

Ap

Directly by Lemma 8.14 and the soundness of refinement mappings with respect to the safe
implementation relation (Lemma 5.8).

8.5. Correctness of G 145

8.5.3 Correctness

We do not give a formal proof that G correctly implements D. Instead we provide some intuitive
justification and refer to the formal proof that H correctly implements G which is similar.

We first give two key lemmas about the live executions of G. We use our temporal logic to
state the results but we only give informal proofs. These lemmas are then use to prove that G
correctly implements D.

The first lemma says that if we are in a situation where no crashes occur in the future, then
whenever mode, = send, eventually the sender will move to idle mode. Note, that due to
previous crashes the sender and the receiver do not necessarily agree on what identifiers to use.
So, in some situations, the sender moves to idle mode because of negative acknowledgements
from the receiver, in which case the current message might have been lost.

Lemma 8.16
Le E O(O(mode, # rec A mode, # rec) = (mode, = send ~ mode, = idle))

Proof
ASSUME: 1.« € Lg
2. a; is an arbitrary suffix of «
3. a; E O(mode; # rec A mode, # rec)
4. a5 is an arbitrary suffix of a;.
5. ay |E mode, = send

PROVE: as E O(mode; = idle)

We consider what happens in a;. Note that since mode, = send and no crashes occur, mode, will
stay send unless one of the actions receive_pkt, (last,, true) or receive_pkt, (last,, false) occurs,
in which case mode, changes to idle. Furthermore, while mode, = send, last, is unchanged
and the sender keeps performing send_pkt, (m, last,). The latter is due to weak fairness to the
set Cq s/r1 containing send_pkt, (m, last,) since all other actions in the set are never enabled.
Now, it suffices to show that eventually receive_pkt, (lasts,true) or receive_pkt, (last,, false)
occurs.

(1)1. CASE: ay = last; ¢ good-ids
(2)1. CASE: as = (last,, true) € rs

ProoF: By the fairness of the rs channel, eventually a receive_pkt, (last,, true)
action occurs. That suffices.

(2)2. CASE: as = (last,, true) ¢ rs A last, = last,

ProOF: In this situation the receiver has received the current packet but not yet
sent positive acknowledgements.

If buf, # e, weak fairness to the set Cg /.5 implies that eventually buf, = e.
Furthermore, buf, stays empty as long as the sender does not leave send mode.
Now, when buf, = ¢, we have mode, € {idle,ack}. If mode, = idle, it changes
to ack when a receive_pkt . (m,last;) occurs. Since the sender keeps on sending
(m, last,) packets, some will continue to get through (by channel liveness), so if
mode, = idle, eventually mode, = ack. When mode, = ack the receiver will
continue to perform send_pkt, (last,, true). Such a step can, however, change mode,

146 8. The Generic Protocol G

to idle, but from above we have that eventually mode, = ack again and new
send_pkt, (last,, true) steps will be performed.

By channel liveness, eventually receive_pkt, (last,,true) occurs, and since last, =
last,, the result follows.

(2)3. CASE: as = (lasty, true) ¢ rs A last, # last,

ProovF: This case actually describes two situations: in the first situation the current
packet never has been and never can be successfully received by the receiver. In the
second situation the current packet has been successfully received but the receiver
crashed before placing a positive acknowledgement in the channel. Both situations
are dealt with in the same way.

Every time a receive_pkt,,(m, last,) step occurs, last, is placed into nack-buf ., which
leads to a send_pkt, (last,, false) action (by fairness to the send_pkt, (id, false) ac-
tions). Since receive_pkt . (m, last,) continues to occur, send_pkt (last,, false) con-
tinues to occur. By channel liveness eventually receive_pkt, (last,, false) occurs.
That suffices.

(2)4. Q.E.D.
Proor: By the exhaustive cases (2)1-(2)3.
(1)2. CASE: s [last; € good-ids

ProovF: Then either always last, ¢ good, or eventually last, € good,..

If always last, ¢ good,., then the situation is as described by the case above where a, |
lasts ¢ good-ids N (last,, true) ¢ rs A last, # last,.

If eventually last, € good,, then still the receiver might have issued send_pkt, (last,, false)
actions in the meantime, and these packets could have gotten through to the sender in
which case the result follows. So, if this is not the case, eventually (m, last,) is successfully
received in which case the situation is as described by the case above where a, |= last, ¢
good-ids N (last,, true) ¢ rs A last, = last,.

(1)3. Q.E.D.
ProoF: By the exhaustive cases (1)1-(1)2.

The result now follows from Lemma 3.5 and the definition of ~s.

|

The next lemma states that if there are elements in the four parts that make up the abstraction
of a queue in Ap (cf. Definition 8.13), then eventually a receive_msg(m) action occurs. Thus,

messages cannot be blocked in the G protocol.
Below we use the notation receive_msg(_) to denote the set {receive_msg(m) | m € Msqg}.

Lemma 8.17

Le = O(O(mode, # rec A mode, # rec A
(buf, # ¢ V pos-list # ¢ V current-queue # ¢ V buf ; # ¢)) = (receive_msg(-)))

Proof

ASSUME: 1. « € Lg
2. a; is an arbitrary suffix of «

8.5.

Correctness of G 147

3. a; E O(mode, # rec A mode, # rec A
(buf, # € V pos-list # ¢ V current-queue # £ V buf , # ¢))

ProvVE: a; E O(receive_msg(-))

(1)1.

(1)2.

CASE: ay | buf, # ¢
Proo¥: The result follows by weak fairness to the set Cgq /3.
CASE: a; [pos-list # ¢

ProOF: The packets in pos-list represent “old” packets in the sr channel that might still
successfully be received by the receiver since the packets all have identifiers in good-ids.
Due to channel liveness (the weak fairness requirement on each packet), the packets in
pos-list will eventually be received. Two situations can occur.

First, a packet from pos-list is accepted because it has an identifier in good, at the time
it is received. In this case the message of the packet is placed in buf,, and (1)1 gives the
result.

Second, no packets from pos-list are ever accepted. Then eventually pos-list becomes
empty (no new packets can be added to pos-list since no crashes occur, and each packet in
pos-list has only finitely many copies in sr and these will eventually all be received (but
not accepted) and thus removed from sr). However, then one of the other disjuncts in
Part 3 of the Assumption must be satisfied, so we refer to the other cases.

. CASE: oy E current-queue # ¢

(2)1. CASE: oy |= current-ok = true

ProovF: In this situation the sender either will (because of liveness on choose_id(id)
actions) or has chosen a current identifier last, which is in good, (and stays there until
the current packet is accepted). The sender will send the current packet repeatedly,
so by channel liveness it will eventually be received and thus accepted. The message
will be placed into buf, and Case (1)1 gives the result.

(2)2. CASE: oy | current-ok = false

ProoF: Here, due to the fact that the receiver was crashed during the last prepare
action, the sender may choose an identifier which is not in good,. The sender will
send the current packet repeatedly, and two things can happen.

Either, the current packet will be accepted at some point by the receiver because
last; was in good-ids initially and has been added to good, in the meantime. Then
the message is placed in buf, and Case (1)1 gives the result.

Or, the current packet will never be accepted by the receiver. However, since the
current packet will keep on being received by the receiver (due to channel liveness),
the receiver will keep on issuing negative acknowledgements for the current iden-
tifier last,. By channel liveness such a negative acknowledgement will eventually
get through and move the sender to idle mode. This has the effect of emptying
current-queuve, so one of the other disjuncts in Part 3 of the Assumption must be
satisfied, so we refer to the other cases.

(2)3. Q.E.D.
ProorF: By exhaustive cases (2)1 and (2)2.

(1)4. CaSE: oy | buf, # ¢

148 8. The Generic Protocol G

ProoF: By Fairness to the set (g /-1, eventually a prepare action will occur. Since
mode, # rec, the sender ends up in needid mode with current-ok = true. The result is
now implied by the first subcase of Case (1)3.

(1)5. Q.E.D.
ProorF: By exhaustive cases (1)1-(1)4.

The result now follows from Lemma 3.5.

With the two lemmas above we can prove the main ingredient in our liveness proofs, namely, if
a is a live execution of G and o’ is an execution of Ap such that (a, ') € Rgp, then o is live.
We prove the result by contradiction (cf. the similar lemma (Lemma 7.17) in the proof that D
correctly implements S). Thus, we assume that o’ is not live and then derive a contradiction
with the fact that « is live.

Lemma 8.18

Let a € exec(Ag) and o € exec(Ap) be arbitrary executions of Ag and Ap, respectively, with

(a,a’) € Rgp. Assume a |E Qg. Then o E Qp.

Proof
We prove the conjecture by contradiction. Thus,

AssUME: o £ Qp
ProvE: False

(H1. o [" WF(Cpg,rec, = false A rec, = false) Vv
= WF(Cp,s, rec; = false N\ rec, = false) vV
“WF(Cps)V
= WF(Cp4)
ProoOF: Immediate by the Assumption, definition of ¢)p, and the Boolean operators.
(1)2. Case: o E ~WF(Cp 1, rec; = false N rec, = false)

(2)1. o = OO(status.stat € Bool A recy = false A rec, = false) A
OO-({ack(true), ack(false)})

Proor: By Assumption (1), the definitions of WF and Cp, ;, and the fact that ack(b)
actions are enabled when status.stat € Bool.

(2)2. o E <>O(modes # rec A mode, # rec A buf, =< A
((mode, = send A last, = last, A buf, =€)V
(mode, = send A last, # last, A\ (last,, true) € rs) Vv
(mode, = send A last, # last, A (lasts, true) ¢ rs A last, ¢ good-ids) V
(mode; = idle))) A
SO=({{ack(true), ack(false)})

Proor: By (2)1, Lemmas 5.10 and 5.11, the definition of Rgp, and the fact that
ack(b) actions are external.

(2)3. a E <CO(mode; = idle A buf, = ¢) A OCO-({ack(true), ack(false)})

8.5.

Correctness of G 149

ProorF: By (2)2, Lemma 8.16, and the fact that when mode, becomes idle, it stays
idle since no crashes occur and no prepare action can occur (since buf , = ¢ forever).

. a = OO(mode, = idle A buf, = ¢) A OO-(Ca s/r1)

Proor: By (2)3 since the ack(b) actions are in Cg /-1 and no other actions in Cq /1
can occur when mode, = idle and buf, = ¢.

. Q): ﬁWF(C(}ys/H)

ProorF: By (2)4, the definition of WF, and the fact that mode, = idle A buf, = ¢
implies the enabling condition of C'g /1.

. Q.E.D.

Proor: (2)5 contradicts the assumption that « is live.

. CAsE: o |E ~WF(Cp s, recy = false A rec, = false)
(2)1.

o' = OO(queue # € A recg, = false A rec, = false) A CO=(receive_msg(-))

Proor: By Assumption (1), the definitions of WF and Cp », and the fact that Cp »
is enabled when queue # ¢.

. a E<OO(mode, # rec A mode, # rec A

(buf, # € V pos-list # ¢ V current-queue # £ V buf , #¢)) A
OO=(receive_msg(-))

Proor: By (2)1, Lemmas 5.10 and 5.11, the definition of Rgp, and the fact that
receive_msg(m) actions are external.

. Q.E.D.

Proor: (2)2 contradicts Lemma 8.17.

. Case: o E =WF(Cp 3)
(2)1.

o' | OO(recs = true) A SO=(recovery)

ProorF: By expanding WF in Assumption (1).

. a | OO(mode, = rec) A OO=(recovery)

Proor: By (2)1, Lemmas 5.10 and 5.11, the definition of Rgp, and the fact that
recover, is external.

. a = O0(mode, = rec) A OO-(Cq 5/r1)

Proor: From (2)2 since recover, € Cg ,/r1 and none of the other actions in Cg /1
are enabled when mode, = rec.

. Q): ﬁWF(C(}ys/H)

Proor: From (2)3, the definition of WF and the fact that mode; = rec implies the
enabling condition for Cg /1.

. Q.E.D.

ProOF: (2)4 contradicts the assumption that a is live.

. CAsE: o E ~WF(Cp4)

Proor: Similar to (1)4.

150 8. The Generic Protocol G

(1)6. Q.E.D.
Proor: By (1)1 and the exhaustive cases (1)2—(1)5.

Finally, we can show that G correctly implements D.

Theorem 8.19
GLCLD

Proof
Immediate by Lemmas 8.14, 8.18, and 5.9.

We are now ready to consider the two low-level protocols: the Five-Packet Handshake Protocol
H and the Clock-Based Protocol C. The next chapter deals with H and then, in Chapter 10, we
consider C.

Chapter 9

The Five-Packet Handshake Protocol
H

We have now reached the point where we can present the first of the low-level protocols we
consider, namely, the Five-Packet Handshake Protocol of Belsnes [Bel76], which in this work is
denoted by H. The H protocol is entirely distributed: it consists of a sender process, a receiver
process, and two channels as depicted in Figure 9.1.

H is the standard protocol for setting up network connections, used in TCP, ISO TP-4,
and many other transport protocols. During normal operation it goes through three phases (cf.
Figure 9.2):

Agree on identifier: The sender picks an identifier, called jd to distinguish it from the identi-
fier id used below for the actual communication of the message, and sends it in a needid
packet. On receipt of this packet, the receiver pairs jd with a new identifier id, and sends
the pair (jd, id) back to the sender. On receipt of this pair, the sender knows that it should
associate id to the current message.

Send and acknowledge: This phase is similar to the send/acknowledge phase of G. The
sender sends the current packet in send packets, and the receiver acknowledges the receipt
with ack packets.

Clean up: When the sender has received the acknowledgement, it issues a done packet in order
to inform the receiver that it may forget about the last message accepted.

send_msg(m) 4kt (p)) Ko (p) recetve_msg(m)
ack(b) PP) " Channel Ch,, b PP

crashs Sender H. Receiver H, crash,

_ receive_pkt send_pkt ——
recovers Pt (p) Channel Ch,, pht,, (p) recover,
-— —

Figure 9.1
The Five-Packet Handshake Protocol H.

151

152 9. The Five-Packet Handshake Protocol H

Sender Receiver

Agree on identifier

Send and acknowledge

} Clean up

Figure 9.2
The phases of H.

Below we look at different abnormal situations which can arise due to crashes. H is sometimes
called the three-way handshake, because only three packet types are needed for message delivery
(the first three in Figure 9.2).

The rest of this chapter is organized as follows. Section 9.1 considers the channels in H. Then,
in Section 9.2, we present the sender and receiver processes, and in Section 9.3 we show how H
is obtained from the subprocesses. Finally, in Section 9.4 we prove that H correctly implements

G.

9.1 The Channels

We use the same channels as at the G level (cf. Section 8.2). However, the actual packets that
are communicated are different in H and G. This only means that in H we should instantiate
the set P of possible packets with a different set of packets than in G.

9.2 The Sender and the Receiver

In this section we specify the sender and receiver processes as two live I/O automata H, =
(A s, Ly s) and H, = (An,, Ln,), respectively. In the subsection defining steps(Ap,) and
steps(Ap) below, we provide more intuition about the H protocol.

9.2.1 States and Start States

The sender and receiver processes both contain a stable set of used identifiers. This means that
these sets should survive crashes when implemented on a physical machine. Specifically, we
model the stability of a state variable by not resetting it on recovery.

For instance, the stable set issued, includes all identifiers ever considered “good” by the
receiver. Thus, every time the receiver issues a new identifier id (to be sent to the sender in an
accept packet) this should be remembered forever by adding id to issued,. This is an expensive

9.2. The Sender and the Receiver 153

solution since it requires updates to a stable variable for every message. The fix to this problem
would be to introduce a normal volatile (i.e., non-stable) variable unused, which is filled with
new (i.e., non-issued,) identifiers now and then in steps that update the stable variable issued,
by adding these new identifiers. Then, for each message, the identifier can be chosen from
unused, and no updates to stable variables need to be performed. Of course, unused, will be
lost in crashes, so it should not be kept too big, but on the other side, the less identifiers it
contains, the more frequently updates to the stable variable issued, needs to be performed.
This is a typical trade-off.

We do not consider the addition of the variable unused, to H,, but the changes needed are
both few and simple.

Sender

The sender chooses identifiers jd from the set JD. This set is similar to the set ID introduced in
Section 8.1. We call it JD to distinguish it from ID, which are identifiers chosen by the receiver.

‘ Variable ‘ ‘ Type ‘ Initially ‘ Description ‘
mode, {idle, idle The mode of the sender. Similar to the
needid, mode of the sender at the G level.
send, rec}
buf Msg" 3 The list of messages at the sender side.
Jd, JD U{nil} | nil The jd chosen for the current message
by the sender.
jd-used, S | P(JD) 0] A set including all the jds ever used by
the sender.
id, ID U{nil} |nil The id received from the receiver. Sim-
ilar to last, at the G level.
currenl-msg, MsgU{nil} | nil The message about to be sent to the
receiver. Same as at the G level.
current-ack, Bool false Acknowledgement from the receiver.
Same as at the G level.
done-buf ID” € A list of ids for which the sender must
issue an done packet to the receiver.

‘ S = Stable

154 9. The Five-Packet Handshake Protocol H
Receiver
‘ Variable ‘ ‘ Type ‘ Initially ‘ Description ‘
mode, {idle, idle The mode of the receiver. Similar to
accept, the receiver mode at the G level, except
rcvd, ack, for the extra accept mode. In mode
rec} accept the receiver is sending accept
packets, which contain the chosen mes-
sage identifier.
buf, Msg" 3 The list of messages accepted. Same as
at the G level.
Jd, JDU{nil} |nil The jd received from the receiver.

id, ID U {nil} |nil

The id chosen for the received jd.

last, ID U {nil} |nil This variable contains (when non-nil)
the id of the last packet accepted.
issued, S | P(ID) € A set including all ids ever issued by
the receiver. Same as at the G level.
nack-buf ID” € A list of ids for which the receiver
will issue negative acknowledgements.
Same as at the G level.
| S = Stable
9.2.2 Actions
Sender
Input:
send_msg(m), m € Msg
crash

recetve_pkt, (accept, jd, id), jd € JD, id € ID
recetve_pkt, (ack, id, b), id € ID, b € Bool
Output:
ack(b), b € Bool
recover
send_pkt,, (needid, jd), jd € JD
send_pkt, (send, m, id), m € Msg, id € ID
send_pkt,, (done, id), id € ID
Internal:
choose_jd(jd), jd € JD
grow-jd-used (jds), jds € P(JD)

Receiver

Input:
crash,
recetve_pkt . (needid, jd), jd € JD
recetve_pkt,, (send, m, id), m € Msg, id € ID
recetve_pkt, (done, id), id € ID

Output:
recetve_msg(m), m € Msg
recovery

send_pkt (accept, jd, id), jd € JD, id € ID

9.2. The Sender and the Receiver 155

send_pkt, (ack, id,b), id € ID, b € Bool
Internal:

grow-issued, (ids), ids € P(ID)

9.2.3 Steps

We now formally define steps(Ap ;) and steps(Ap,). As at the G level we increase readability
by listing the definition of steps(Ay ;) in the left column and the definition of steps(Ag) in the
right, and by aligning send-pkt with the corresponding receive-pkt.

After the definition, we provide more intuition about how H works.

send_msg(m)
Effect:
if modes # rec then
buf = buf, "m

choose_jd(jd)

Precondition:
mode; = idle A buf_ #e A
jd & jd-used,

Effect:
modes := needid
jd, == jd
jd-used, := jd-used, U {jd}
current-msg, := head(buf)
buf , := tail(buf)

send_pkt, (needid, jd) recetve_pkt,, (needid, jd)
Precondition: Effect:
mode. =needid A jd, = jd if mode, = idle then
Effect: mode, 1= accept
none choose an id not in issued,
jd, == jd
id, = id

issued, := issued, U {id}

recetve_pkt, (accept, jd, id) send_pkt, (accept, jd, id)
Effect: Precondition:
if modes # rec then mode, = accept A jd,. = jd N id, = id
if mode: = needid A jd, = jd then Effect:
modes := send none
ids = id

else if ids # id then
done-buf := done-buf_ " id

send_pkt, (send, m, id) recetve_pkt,, (send, m, id)
Precondition: Effect:
mode: = send A current-msg, = m A id; = id if mode, # rec then
Effect: if mode, = accept A id, = id then
none mode, := rcvd
buf . = buf, "m
last, := id

else if last, # id then
nack-buf, := nack-buf " id

156

9. The Five-Packet Handshake Protocol H

recetve_pkt . (ack, id, b)
Effect:
if modes # rec then

if mode. = send A id. = id then
mode; := idle
current-acks := b
jd, :=nil
ids :=nil
current-msg, = mnil

if b = true then
done-buf, := done-buf, " id

send_pkt,, (done, id)
Precondition:
mode. # rec A\ done-buf, # e A
head(done-buf) = id
Effect:
done-buf, := tail(done-buf)

ack(b)
Precondition:
mode, = idle A buf, = e A
current-acks = b
Effect:

none

crashs
Effect:

modes := rec

recovers

Precondition:
modes = rec

Effect:
modes := idle
jd, :=nil
ids ;= nil
buf . :=¢
current-msg, ;= nil
current-acks := false
done-buf, :=¢

grow-jd-used (jds)
Precondition:
|JD \ (jd-used, U jds)| = oo
Effect:
jd-used, := jd-used, U jds

recetve_msg(m)

Precondition:
mode, = rcvd A buf, #e A
head(buf,) =m

Effect:
buf, = tail(buf,)
if buf, = e then

mode, := ack

send_pkt, (ack, id, true)
Precondition:
mode, = ack A last, = id
Effect:
none

send_pkt, (ack, id, false)
Precondition:
mode, # rec A nack-buf, #e A
head(nack-buf,) = id
Effect:
nack-buf, := tail(nack-buf,)

recetve_pkt . (done, id)
Effect:
if (mode, = accept A id, = id) V
(mode, = ack A last, = id) then

mode, := idle
jd, :=nil
id, :=nil

last, :=nil

crash,
Effect:
mode, := rec
recover,
Precondition:
mode, = rec
Effect:
mode, := idle
jd, :=nil
id, == nil
last, :=nil
buf, :=¢

nack-buf, ;= ¢

grow-issued, (ids)
Precondition:
|ID \ (issued, U ids)| = oo
Effect:
issued, = issued, U ids

9.2. The Sender and the Receiver 157

The following note about the receive_pkt,, (needid, jd) steps should be made: Ag, is required
to be input-enabled and therefore we do not specify preconditions for input actions. However,
in the effect clause of receive_pkt,,.(needid,jd) we must choose an id not in issued,.. But this
is only possible if issued, # ID. However, Invariant 9.11 Part 8.12 below states that this is
indeed the case for all reachable states. However, since there exists (non-reachable) states with
issued, = ID, Ay, is not input-enabled. This is not a problem in practice, but to make Ay,
input-enabled we interpret the definition of receive_pkt,,(needid, jd) such that an arbitrary id
is chosen if issued, = ID.

We first describe the normal mode of operation: the sender performs a choose_jd(jd) action
(which corresponds to prepare of G) and moves to mode needid, where it repeatedly sends
(needid, jd) to the receiver. By channel liveness these packets will continue to get through.
One of the major problems in the liveness proof below is to show that eventually the receiver
will be in idle mode. When this happens, the receiver accepts (needid,jd), associates a new
identifier id with jd, and moves to accept mode, where it repeatedly issues (accept,jd,id)
packets. Again by channel liveness, such a packet gets through and since jd is equal to the
current jd (kept in jd,) of the sender, the sender accepts this packet. The value jd is no longer
needed, but id is used for the actual communication.

On receipt of (accept, jd, id) the sender moves to mode send. Note how the accept packets
work as acknowledgements for the needid packets. In send mode the sender repeatedly sends
the current packet (send, m, id). When one gets through, it is accepted since the id in the packet
corresponds to the current id (kept in id,) of the receiver. The message m is placed in buf,
and the identifier id for which the receiver shall eventually issue positive acknowledgements is
remembered in the last, variable. (Note the difference between id, and last,: id, remembers
the identifier that the receiver will accept, whereas last, remembers the identifier for which the
receiver must issue positive acknowledgements. Due to this difference the identifiers are kept in
separate variables.) Now, eventually m is delivered to the user and the receiver moves to ack
mode. Note how the send packets work as acknowledgements for the accept packets.

In ack mode the receiver repeatedly sends positive acknowledgements in (ack, id, true) pack-
ets. When one gets through, the sender leaves send mode and issues a positive acknowledgement
ack(b) to the user at the sender side.

The receiver has no knowledge of whether an (ack, id, true) packet has gotten through yet
or not, so it continues to issue the packets. Somehow the receiver must be informed that the
sender has received the acknowledgement. The done packets are used for this purpose. It
would not work if the sender entered a mode where it repeatedly issued done packets because
then the receiver would have to acknowledge the receipt of a done packet, and so on. Instead,
every time the sender receives (ack,id, true) it adds id to done-buf,, and this leads to one
send_pkt,, (done, id) being issued. There is no guarantee that the packet is not lost, but if it
is, the sender will eventually receive another (ack, id, true) packet, which gives rise to another
send_pkt,, (done, id) step. This cannot go on forever because of channel liveness, so eventually
the receiver will receive (done, id) and since id is equal to last,, the receiver leaves ack mode
and moves to idle mode, where it is allowed to forget everything about jd,, id,, and last,.

The above discussion has concentrated on normal mode of operation, where the sender and
receiver are synchronized. However, because both the sender and the receiver have modes where
they repeatedly send certain packets and await acknowledgements, they would be very vulnerable
to crashes of the other node if we did not have some means of informing the node about crashes.
The “bad” modes are accept for the receiver and send for the sender.

158 9. The Five-Packet Handshake Protocol H

First consider a situation where the receiver is in accept mode but where the sender due to
crashes is not in the expected needid mode with jd, = jd,.. The sender could be in idle mode
or even in needid mode with a new jd identifier such that jd, # jd,. Now, every time the sender
receives a bad accept packet, it places the associated identifier id in done-buf, which leads to a
send_pkt ;. (done, id) step, which may or may not succeed in putting the packet into the channel.
If it succeeds, the packet will eventually be received and the receiver will be dislodged (cf. the
definition of the receive_pkt,.(done, id) steps of the receiver). If it does not succeed, the sender
will eventually receive another accept packet, which gives rise to another send_pkt, (done, id)
step. This cannot go on forever because of channel liveness, so eventually the receiver will
receive (done, id). Thus, the done packets are used to inform the receiver to leave a bad accept
mode in the same way done packets were used during normal mode of operation to inform the
receiver that the sender has received the positive acknowledgement. An additional problem
arises because the receiver immediately could receive an old needid packet and thus reenter a
bad accept mode. However, there can only be finitely many such old needid packets in the
channel, so this cannot go on forever. Below we shall see how this is proved formally.

Another “bad” situation occurs when the sender is in send mode but where the receiver
due to crashes is not in the expected accept mode with id, = id,. The receiver could be in
idle mode or it could have received an old needid packet and thus be in accept mode with
id, # id,. Now, every time the receiver receives a (send, m, id) packet it will, since id # id,,
add id to nack-buf,, which leads to send_pkt (ack,id, false). This continues, as for the done
packets above, until (ack, id, false) is receiver by the sender and at that point the sender resets
to idle mode.

The actions grow-jd-used (jds) and grow-issued, (ids) allow identifiers to be added to the sets of
used identifiers of the sender and receiver, respectively, as long as there are still “enough” (i.e.,
infinitely many) unused identifiers left. These actions are not required for the correctness of H
but allow a final implementation on a physical machine to throw away some identifiers. This is
typically required by algorithms for generating unused identifiers.

It may seem strange that the sender and receiver need to engage in the initial needid/accept
handshake. Why don’t they just agree on using, say, the natural numbers in increasing order
as identifiers? Then the receiver will only accept a message if the associated identifier is greater
than the identifier of the last message accepted. The answer is that H is designed so that the
receiver can use the same set of identifiers for several senders. Thus, as defined, the sender does
not have to remember (in stable storage!) the last identifier used by each individual sender. We
do not in this report show how the receiver should work for several senders.

The discussion above has partly been based on liveness assumptions on the sender and receiver.
We now consider how to specify this liveness formally.

9.2.4 Liveness

Sender

We define the following two sets of the locally-controlled actions of the sender:

Cua = {ack(true), ack(false), recover,} U
{send_pkt . (needid, jd) | jd € JD} U

9.3. The Specification of H 159

{send_pkt . (send, m,id) | m € Msg A id € ID}
Cis = {send_pkt, (done,id) | id € ID}

The liveness formula ()i ; that induces the liveness condition Ly , for Ay, is now defined as
QH,s é WF(CH,SI) A WF(CH,SZ)

Note, that the reason we need weak fairness to C'y ;- separately is that sending of done packets
can occur at any time. Then, if we only had weak fairness to Cy ;1 U C 42, there would be no
requirement to issue done packets if the sender is in send mode and keeps sending send packets.
This would not lead to correct operation of H.

Thus, H, can intuitively be seen as consisting of two parallel processes: one dealing with
the actions in Cy ;; and one dealing with issuing done packets. Since the liveness requirements
are weak fairness, the liveness of H, can be implemented on a physical machine by a scheduler
giving fair turns to the two parallel processes.

By Lemma 4.7, Qu, is an environment-free liveness formula for Ay ,. Thus, H; is a live I/O
automaton. Furthermore, by Lemma 4.8, ()i is stuttering-insensitive.

Receiver

We define the following two sets of locally-controlled actions of the receiver:

Churm £ {recover,} U
{receive_msg(m) | m € Msg} U
{send_pkt (accept,jd,id) | jd € JD Aid € ID} U
{send_pkt .,(ack, id, true) | id € ID}

Cuy, = {send_pkt,(ack,id, false) | id € ID}

The liveness formula that induces the liveness condition for the receiver of H can now be ex-
pressed as

QH,T é WF(CH,TI) A WF(CHJQ)

The reason why we need weak fairness to two sets of actions is similar to the reason given above
for the sender.

By Lemma 4.7, Qu, is an environment-free liveness formula for Ay ,. Thus, H, is a live I/O
automaton. Furthermore, by Lemma 4.8, ()i, is stuttering-insensitive.

9.3 The Specification of H

As depicted in Figure 9.1, H consists of the sender and receiver processes and the two channels.
So, first define H” = (A}, L{;) to be the following live I/O automaton.

H” 2 H,||H,|Ch,]|Ch,,

since Qus, Qury Qon sy and Qen rs are all stuttering-insensitive, Proposition 4.4 implies that
Lt is induced by

QH é QH,s A QH,T A QCh,sr A QCh,rs

160 9. The Five-Packet Handshake Protocol H

By Definition 2.2 the channel actions send_pkt .(...), receive_pkt,(...), send_pkt, (...), and
receive_pkt, (...) are all output actions of H”. We need to hide these in order to get a live I/O
automaton with the same external actions as S.

However, recall from Lemma 5.10 that the existence of an index mapping between execu-
tions at two levels of abstraction allows one to conclude certain properties of the (common)
external actions of the executions. Thus, the more external actions of two levels, the stronger
the correspondence between the executions.

At the G level we defined G’ to be the system where channel communication is external, i.e.,
G’ was simply the parallel composition of the sender/receiver process and the channels—similar
to H” above. Now, the actions send_pkt, (m,id), receive_pkt, (m,id), send_pkt, (id,b), and
receive_pkt, (id,b) of G’ correspond to the send_pkt . (send,m,id), receive_pkt, (send, m,id),
send_pkt . (ack,id,b), and receive_pkt, (ack,id,b) actions at the H level. Thus, the channel
actions at the H level which deal with needid, accept, and done packets do not correspond to
any external actions of G’. Thus, we first hide these actions from H” to get H'. Let

Ay 2 {send_pkt, (needid,id) | id € ID} U
{receive_pkt , (needid, id) | id € ID} U
{send_pkt, (accept,jd,id) | jd € JD ANid € ID} U
{receive_pkt, (accept,jd,id) | jd € JD Nid € ID} U
{send_pkt (done,id) | id € ID} U
{receive_pkt ,(done, id) | id € ID}

Then H' = (Ay, Ly) is defined as
e W\ A
By Proposition 4.5, Lj; is induced by Qg.
Finally, to get the H protocol, we hide the remaining channel actions. Let

Ax 2 {send_pkt, (send,m,id) | m € Msg A id € ID} U
{receive_pkt, (send, m,id) | m € Msg A id € ID} U
{send_pkt (ack,id,b)| id € ID A b € Bool} U
{receive_pkt, (ack,id,b) | id € ID A b € Bool}

Thus, H = (An, Ly) is defined as
H = H\Ag
Again, by Proposition 4.5, Ly is induced by Qy.

Now, in the proof below we prove that H' correctly implements G’ (or actually a slightly different
version of G’ in which the channel actions are renamed to completely match the (remaining)
external channel actions of H’). Then the substitutivity results of Proposition 2.16 are used to
infer that H correctly implements G.

9.4 Correctness of H

The correctness of H with respect to G is now considered. We first add history variables to H’
to get H*" = (A4', L1') as described in Section 5.1.5. Then we state some invariants of A% and
show the existence of a refinement mapping from Alh{/ to A%’ where A% is a slightly modified

9.4. Correctness of H 161

version of A, obtained by renaming some channel actions. This refinement mapping is then
used to show that H”' correctly implements G¢’, which, in turn, allows us to conclude that H
correctly implements G.

9.4.1 Adding History Variables to H’

We add three history variables to H and denote the resulting live I/O automaton by HM =
(Al Liy).

‘ Variable ‘ ‘ Type ‘ Initially ‘ Description ‘

used, H | ID" € A history variable giving the list of ids
ever used by the sender (and thus ac-
cepted in accept packets from the re-
ceiver). Same as at the G level.

seen, H | P(JDxID) |0 A history variable consisting of all the
(jd, id) pairs the receiver has ever seen.
current-ok H | Bool false A history variable describing the state
of the current message. Same as at the
G level.
‘ H = History ‘

By the results in Section 5.1.5, we are allowed to change the history variables anywhere in the
effect clauses of the step rules defining the steps of Ap. The effect clauses of step rules of Ay
are, in turn, defined by the corresponding effect clauses of the components of H’ as described
in Section 4.1.1.1. We show where the changes to the history variables should be placed in the
effect clauses. We omit the assignments to the original variables (by writing ... instead) but
outline the if-then-else statements.

choose_jd(jd)
Precondition:
(* Precondition from H. *)

Effect:
(* Effect clause from H. *)

if mode, # rec then
current-ok := true

recetve_pkt,, (needid, jd)
Precondition:
(* Precondition from Ch, *)

Effect:
(* Effect clause from Ch,, *)

(* Effect clause from H;, *)
if mode. = idle then

seen, 1= seen, U {(jd,., idy)}

162

9. The Five-Packet Handshake Protocol H

recetve_pkt, (accept, jd, id)
Precondition:
(* Precondition from Ch,, *)
Effect:
(* Effect clause from Ch,, *)
(* Effect clause from H, *)

if modes # rec then
if mode, = needid A jd, = jd then

useds := used. " id

else if id. #£ id then

crash
Effect:
(* Effect clause from H, *)

current-ok := false

recetve_pkt,, (send, m, id)
Precondition:
(* Precondition from Ch,, *)
Effect:
(* Effect clause from Chs, *)
(* Effect clause from H, *)

if mode, # rec then
if mode, = accept A id, = id then

if id = id. then
current-ok := false

else if last, # id then

crash,
Effect:
(* Effect clause from H, =)

current-ok := false

From Lemma 5.16 we know that LIh{/ is induced by Q.

9.4.2 Invariants

To help us in the refinement mapping proof below, we state some invariants of Alh{/ without proofs.
The proofs could be performed similarly to the proofs of the Ag invariants in Appendix C.

The first invariant states properties of issued,..

Invariant 9.1

1. If id, # nil then id, € issued,

2. If last, # nil then last, € issued,

3. If (accept, jd, id) € rs then id € issued,

4. used, C issued,

9.4. Correctness of H 163

Define in any state of Alh{/ Jjds(sr) to be the set of jd components of the packets in the sr channel.
Formally, since only needid packets have jd components in the sr channel, we have

Jds(sr) = {jd | (needid, jd) € sr}
Similarly,
Jds(rs) = {jd | (accept,jd,id) € rs}
The following invariant then states that all jds in the system are used by the sender.
Invariant 9.2
1. jd, € jd-used, if jd, # nil
2. jds(sr) C jd-used,
3. jd, € jd-used, if jd, # nil
4. jds(rs) C jd-used,
|

The following invariants state simple properties.

Invariant 9.3
1. If mode, € {idle,accept} then last, = nil
|

Invariant 9.4
1. If mode, = accept then id, # nil
| |

Invariant 9.5
1. If mode, = rec V mode, = rec then current-ok = false

Invariant 9.6
1. If id, # nil then mode, € {send,rec}
|

The next invariant states the identifiers in the system are in most cases registered in the history
variable used,.

Invariant 9.7

1. If ¢dy # nil then id, € used,

2. If (send, m, id) € sr then id € used,

164 9. The Five-Packet Handshake Protocol H

3. If mode, = rcvd then last, € used,
4. If mode, = ack then last, € used,

5. If (ack, id,b) € rs then id € used,

The identifiers for which the sender will issue or has issued done packets can never be equal to
the current identifier of the sender.

Invariant 9.8

1. If id € done-buf then id # id,

2. If (done, id) € sr then id # id,

The history variable seen, records all the (jd,id) pairs the receiver has ever seen. Thus, when
the receiver associates an identifier id to a received jd, the pair (jd,id) is added to seen,. Due
to crashes the receiver might associate two different id identifiers to the same jd identifier.
However, it can never happen that the receiver associates the same id to different jds.

Invariant 9.9
1. If id, # nil then (jd,,id,) € seen,
2. If (jd, id) € seen, A (jd',id) € seen, then jd = jd’
3. If (accept, jd, id) € rs then (jd, id) € seen,

Invariant 9.10

1. If mode, = needid A mode, = accept A jd, = jd, then
(send,_, id,) ¢ sr A (done, id,) ¢ sr

The final invariant corresponds to Invariant 8.12 at the G level. It states that there are always
enough unused ids and jds left.

Invariant 9.11
1. |ID\ issued,| = o
2. |JD\ jd-used,| = >

Below we refer to the conjunction of the invariants by Ig».

9.4. Correctness of H 165

9.4.3 Safety

The safe 1/O automata Alh{/ and Af do not agree on their input and output actions. The
difference is however very small: Aﬁ/ adds packets to the channel in send_pkt, (send,m,id)
steps, whereas the corresponding steps in Af; are send_pkt,, (m,id). There is a similar difference
with respect to send_pkt, (ack,id,b) steps and the corresponding receive_pkt_, and receive_pkt,,
steps. So, define the following action mapping:

p = [send_pkt, (m,id)— send_pkt, (send,m,id) | m € Msg A id € ID] U
[receive_pkt,,(m,id) — receive_pkt (send, m,id) | m € Msg A id € ID]U
[send_pkt, (id,b) — send_pkt, (ack,id,b)| id € ID A b € Bool] U
[receive_pkt, (id,b) — receive_pkt, (ack,id,b)|id € ID N'b € Bool] U

[

ar—alac€acts(Ag)\ Acl

where Ag is defined in Section 8.4 and contains all the actions which are not being renamed by
p. Clearly p is applicable to G’, so define G*' = (A%, L%) as follows.

G = p(G)
By Proposition 4.6, L is induced by p(Qc¢).

We now define a function from states(A%') to states(AZ'). Below, in Lemma 9.13, this function
is proved to be a refinement mapping from A’ﬁl/ to A%" with respect to Iyp and Ig. (Note, that
the invariant I of Ag is also an invariant of Aé/.)

Definition 9.12 (Refinement Mapping from A" to A%")
If s € states(A}y) then define Rua(s) to be the state u € states(A%') such that

1. w.mode, = s.mode;
u.buf = s.buf,
w.used, = s.used,
w.current-msg, = S.current-msg,
w.current-ack, = s.current-ack,
u.last, = s.last,
w.buf = s.buf,
u.issued, = s.issued,
u.nack-buf = s.nack-buf,
u.current-ok = s.current-ok

2. wu.last, = s.d,

3. wu.good, = (if s.mode; = needid then

{id | (accept,s.jd,,id) € s.rs} U
(if s.mode, = accept A s.jd, = s.jd, then {s.id,} else 0)

else ()
4. w.mode, = (if s.mode, = accept then idle else s.mode,)
5. wu.good, = (if s.mode, = accept then {s.id,} else 0)

6. The packets in each channel in u are exactly the send and ack packets in the same channel
in s.

166 9. The Five-Packet Handshake Protocol H

Lemma 9.13

! 12 .
A?I SR Aé via RHG'

Proof

We prove that Rpg is a refinement mapping from AIh{/ to AL' with respect to Iy and Ig. We
check the two conditions (which we call base case and inductive case, respectively) of Defini-
tion 5.2.

Base Case
It is easy to see that for the start state s of A%, Rap(s) is a start state of AZ'.
Inductive Case

Assume (s,a,s') € steps(Al') such that s and s satisfy Iy and Ryg(s) satisfies I. Below
we consider cases based on a (and sometimes subcases of each case) and for each (sub)case we
define a finite execution fragment a of A%’ of the form (Ruc(s), ', u”,a”,w", . .., Rua(s')) with
trace(a) = trace(a). For brevity we let u denote Rpg(s) and o’ denote Ryg(s’).

Unless otherwise stated we let Part 1-6 refer to the three parts of Definition 9.12.

a € {send_msg(m), receive_msg(m), ack(b), recover, }

Then it is easy to see that (u,a,u’) € steps(AL").

a = crash,

We show that (u, crashy,u”, shrink_good (I),u’), where u” and I are defined below, is a finite
execution fragment of A%’ by showing that (u, crash,,u”) and (u”, shrink_good ,(I),u') are steps
of A%'. Clearly the execution fragment has the right trace.

Define u” to be the same as u' except that u”.good, = u.good,. Then it is easy to see that
(u, crashy,u") € steps(AZ).

Now, if s.mode, = needid then u”.good, might be nonempty whereas u'.good, = () according
to Rug. So, define I = u”.good,. (Note, I = (if s.mode, # needid.) Then, obviously,
(u", shrink_good ((I),u') € steps(AL).

a = crash,

We show that (u, crash,,u”, shrink_good,.(I),u’), where I = u.good, and u” is defined below, is
a finite execution fragment of A%’ by showing that (u, crash,,u”) and (u", shrink_good,(I),u’)
are steps of AZ'. Clearly the execution fragment has the right trace.

Define u" to be the same as u’, except that u”.good, = u.good,. .

It is easy to see that (u,crash,,u”) € steps(A%'). The only interesting case is to show that
good,. is handled correctly but from the definition of u” we have u”.good, = wu.good,, which is as
required.

9.4. Correctness of H 167

Since u’'.mode, = rec, we get from Invariant 9.5 that «'.current-ok and then also u”.current-ok
are false, so shrink_good, (1) is enabled in w”. The only difference between u” and ' is the value
of good,. We have u”.good, = I and '.good, = () since s'.mode, = rec # accept. This change
in good, is as required by the definition of shrink_good, (I)in AZ'.

a = recover,

We show that (u, recover,,u’) € steps(A%'). This step (and finite execution fragment) clearly
has the right trace.

First note that recover, is enabled in u. We then carry out a case-by-case check to see that all
state variables change appropriately. The only interesting cases are good, and issued,.

Both u.good, = 0 and «'.good, =) by the definition of Rpq since mode, # accept in s and 3.
Thus, the value of good, is unchanged as required by the definition of recover, in AZ'.

From the definition of recover, in Alh{/ and Rpg we have that w.issued, = u'.issued,. To show
that it is allowed by recover, in Aé/ to leave issued, unchanged, we must show that u.used, C
u.issued, and w.good, C wu.issued,. But both of these requirements follow directly from the
definition of Ryg and Invariant 9.1.

a = choose_jd(jd)

We show that (u, prepare,u’) € steps(A%'). This step (and finite execution fragment) clearly
has the right trace.

Since choose_jd(jd) is enabled in s and v = Rug(s), it is immediate that prepare is enabled in w.
A case analysis on the variables of A% shows that all are modified properly; the only interesting
case is that of good,. There, the definition of prepare in AL’ requires that u'.good, = (). We
must show that that is the case:

First, assume s.jd, = nil. By the definition of choose_jd(jd) in A’ﬁl/ we have s'.jd, # nil, so
since s'.jd, = s.jd,, we have s’ .jd, # s'.jd,.

Now assume s.jd, # nil. Then Invariant 9.2 gives us that s.jd, € s.js-used, and since s'.jd, =
s.jd, we have s'.jd, € s.js-used,. By the definition of choose_jd(jd) in AL we have s'.jd, ¢
s'.jd-used, so also in this case we get s'.jd, # §'.jd,.

From Invariant 9.2 we get jds(s.rs) C s.jd-used,. By the definition of choose_jd(jd) in Alh{/ we
have §'.jds(s'.rs) = jds(s.rs) and §'.jd, ¢ s.jd-used, so we get s'.jd, ¢ jds(s'.rs).

Finally, since §'.jd, # s'.jd, and §'.jd, ¢ jds(s'.rs), we get from the definition of Rug that
u'.good, =) as required.

a = send_pkt (needid, jd)

We show that u' = u. Then the execution fragment u of AL clearly has the right properties.

The only difference between s and s’ is that s contains an additional needid message in the
s channel. But this does not affect the values of any of the variables of A%’ according to the
definition of Rygq.

a = receive_pkt ,, (needid, jd)

We consider two cases.

168 9. The Five-Packet Handshake Protocol H

1. s.mode, # idle.

Then the only difference between s and s’ is that the latter is missing one needid packet
from the sr channel. But this does not affect the values of any variables of A%, so that
w' = u. Then the execution fragment u of A%’ clearly has the right properties.

2. s.mode, = idle.

There are two subcases.

(a) s.mode; # needid or jd # s.jd,.
We show that (u, grow_good, ({id}),u') € steps(Af,), where id is the identifier chosen
in the step of AIh{/, ie., id = §'.id,. Clearly the step has the right trace (the empty
trace).
The definition of the step in AIh{/ implies that id ¢ s.issued,. From the definition of
Ryuc we have u.issued, = s.issued,, so that grow_good, ({id}) is enabled in w.
We consider the state changes. From the definition of Rgg we have u.good, = ()
and w'.good, = {id}. This is the change to good, specified by the definition of
grow_good,.({id}). Also, the step of AR" explicitly adds id to issued,, which is as
required by the definition of grow_good, ({id}) in A% .
We claim that all variables of A%’ other than good, and issued, have the same values
in w and w'. This is immediate for mode;, buf,, used,, current-msg,, current-ack,,
buf ., last, nack-buf,, current-ok, and last;,. For mode,, we have a change at the H
level, from idle to accept. But both of these correspond to idle at the G level.
We now show that u.good, = u’.good,. We make a case analysis based on the definition
of this case. First assume s.mode, # needid. Then also s’.mode, # needid so from
the definition of Ryg we have u.good, = u'.good; = () as needed.
Now, assume s.mode, = needid and jd # s.jd,. Since s'.jd, = jd and s'.jd, = s.jd,
we get s'.jd, # s'.jd,, so even though mode, changes to accept in Alh{/, it is easy to
see from the definition of Ryg that u.good, = u'.good,.
Finally, the only difference between the channels in s and s’ is that the sr channel in
s’ is missing one needid packet. But then the values of the channels in « and u’ are
the same.

(b) s.mode, = needid and jd = s.jd,.
We show that (u, grow_good, . ({id}),u", grow_good ({id}),u’), where u” is defined be-
low and id = s'.id,, is a finite execution fragment of AZ%'. We do this by showing
that (u, grow_good,({id}),u") and (u”, grow_good, ({id}),u') are steps of AZ'. The
execution fragment clearly has the right trace.
Define u” to be the same as ', except that u”.good, = v’ .good, \ {id}.
The argument that (u, grow_good, ({id}),u") is a step of A%’ is the same as the argu-
ment for the previous case, except for the part about good,. Here, u.good, = u".good,
by explicit construction.
To show that (u”, grow_good, ({id}),u') is a step of AZ', it suffices to note that id €
u” issued,, id € u”.good,, and id ¢ u”.used;. (This latter claim uses Invariant 9.1.)

a = send_pkt, (accept, jd, id)

We show that u/ = u. Then the execution fragment u of A%’ clearly has the right properties.

The only difference between s and ¢’ is that s’ contains an additional accept message in the sr
channel. We claim that this does not affect the values of any of the A%’ variables.

9.4. Correctness of H 169

The only interesting case to check is the value of good,. The only way the step can modify
this variable according to Rug is to add an id to good,, by putting id,. to good,, by putting
an (accept, s'.jd,, id) message into the rs channel. By definition of the step in H, it must be
that s'.9d, = s.jd, and id = s.id,.. Since s.jd, = s'.3d,, it follows that s.jd, = s.jd,. But then
id € u.good,. This contradicts the assumption that the step modified this variable.

a = receive_pkt, (accept, jd, id)

There are two cases.

1. s.mode; = rec

In this case the only difference between s’ and s is that s has an extra (accept,id, jd)
packet on rs, but from the definition of Ryg we see that this does not affect any of the
variables in A%’ since s.mode, # needid. Thus u' = u. The the execution fragment u of

p!
AG

has the right properties.

2. s.mode, # rec

We consider cases

(a)

s.mode, # needid or jd # s.jd,.

We show that u/ = u. The the execution fragment u of A%’ has the right properties.
The only difference between s and s’ is that s’ removes a single accept message in
the sr channel and that done-buf, might be updated. We claim that this does not
affect the values of any of the A%’ variables; the only interesting case to check is that
of good,, and there, the fact that s.mode, # needid or jd # s.jd, implies that good,
has the same value in u and u'.

s.mode, = needid and jd = s.jd,.

We show that (u, choose_id(id), v, shrink_good (I),u'), where I = u.good, and u” is
defined below, is an execution fragment of AL’ by showing that (u, choose_id(id),u")
and (u", shrink_good (I),u') are steps of A%'. Clearly the execution fragment has the
right trace.

Define u” to be the same as u’ except that v”.good, = I.

First consider (u,choose_id(id),u”). Since s.mode, = needid, we have u.mode; =
needid. Then, to prove that choose_id(id) is enabled in u, we need to show that
id € u.good,. In s, we have (accept, id, jd) in the rs channel, and moreover jd = s.jd.
Thus, from the definition of Ryg we have id € u.good, as needed.

Now we consider the effects on the variables in AZ'. A case analysis shows that the
changes reflected in u” are as specified by the step of A%'. The only interesting case is
that of good,, where the definition of u”.good, = I = u.good, ensures that the value is
unchanged, as required by the definition of choose_id(id) in AZ'.

To see that (u”, shrink_good ,(I),u') is a step of A%', note that u'.good, = (). Therefore,
the changes are as required by the definition of shrink_good,(I)in AZ'.

a = send_pkt . (send, m, id)

Then it is easy to see that (u,send_pkt, (m,id),w') € steps(AZ'). This step (and execution
fragment) clearly has the right trace.

170 9. The Five-Packet Handshake Protocol H

a = receive_pkt . (send, m, id)

We show that (u, receive_pkt,, (m,id),u’) € steps(AZ'). This step (and execution fragment) has
the right trace.

We consider four (exclusive and exhaustive) cases.

1. s.mode, = rec.
Then the only change from s to s’ is the removal of the single message from the sr channel.
Since also u.mode, = rec, this corresponds to the right change in A%’.

2. s.mode, = accept and id = s.id,.
Then, from the definition of Ryg we have that w.mode, = idle and id € u.good, , such that
the required state change of the receiver variables of A%’ is described by the first alternative
in the nested if-then-else construct in the step rule for receive_pkt (m,id). A case analysis
shows that all variables of A%" are handled correctly. The interesting cases are current-ok
and good,,.
For current-ok, we consider two cases.
First, if id = s.id,, then we have id = wu.last,. Moreover, s.mode, € {send,rec} by
Invariant 9.6. If s.mode, = rec then Invariant 9.5 implies that s.current-ok is already false,
so setting it to false in Alh{/ is a no-op, as required by the step in A%". If s.mode, = send
both algorithms set current-ok to false.
On the other hand, if id # s'.id;, then also id # w.last,. Thus in this case neither level
changes current-ok.
For good,, note that u.good, = {s.id,} since s.mode, = accept and u'.good, = () since
s'.mode, # accept. Since id = s.id,, this change is as required by the definition of
receive_pkt ,,(m, id) of Af'.

3. s.mode, # rec and (s.mode, # accept or id # s.id,)
We show that the required state changes of the receiver variables of A% are not described by
the first alternative inside the nested if-then-else construct. First, if s.mode, # accept then
u.good, =) which gives the result. Next, if s.mode, = accept we have u.good, = {s.id, },
but from the definition of this case we must have id # s.id,, so again the result follows.

We now consider two cases

(a) id # s.last,
Then we have s'.nack-buf, = s.nack-buf, " id. Since id # u.last,, by the definition of
Ryg, we also have u'.nack-buf, = w.nack-buf, " id. It is now easy to see that all state
variables of AL are handled correctly.

(b) id = s.last,
In this case, the AIh{/ level makes no changes (that is, the only difference between s and
s" is that the latter has the one message deleted from the sr channel). We must thus
show that all variables but sr of A% have the same values in u and u’.
First we note that the A%’ step does not choose the second alternative inside the
nested if-then-else construct since the definition of this case and Ryg gives us that
id = u.last,.
We must show that A% does not choose the third alternative. The only way A%’ can
choose the third alternative is if u.mode, = idle. From the definition of Ryg we see
that this is the case if s.mode, € {idle,accept}. Now, Invariant 9.3 gives us that

9.4. Correctness of H 171

s.last, = nil, but this contradicts the definition of this case (id = s.last,), thus, we
cannot have u.mode, = idle which again implies that A% does not choose the third

alternative.
That suffices.

a = send_pkt.(done, id)

This step of A’ﬁl/ changes done-buf, and may change the channel sr, but from the definition of
Rug we see that this does not change any of the variables in A%, so we have v = u’. Thus, the
finite execution fragment u clearly has the right properties.

a € {send_pkt, (ack, id,b), receive_pkt, (ack,id,b)}

Then it is easy to see that (u', send_pkt . (id,b),w) and (v, receive_pkt, (id,b),u), respectively,
are steps of AL

a = receive_pkt . (done, id)

We consider cases.

1. s.mode, = accept and id = s.id,.

There are two subcases.

(a) s.mode, # needid or
(s.mode, = needid and s.jd, # s.jd,) or
(s.mode;, = needid and s.jd, = s.jd, and (accept, s.jd,, s.id,) € s.rs)
We show that (wu, shrink_good,({id}),u’) € steps(A%'). This step (and execution frag-
ment) clearly has the right trace.
First, we show that shrink_good,.({id}) is enabled in u.

i. s.mode; # needid
Then the precondition of shrink_good,.({id}) is satisfied by u. The only interesting
case is if s.mode; = send. In this case we must show that u.last, # id, i.e., that
s.idg # id. Since (done, id) € s.sr, Invariant 9.8 gives the result.

ii. s.mode; = needid and s.jd, # s.jd,
Here, it suffices to show that id ¢ u.good,. From Ryg we get that u.good, = {id’ |
(accept,s.jd,, id')}. From Invariant 9.9 Part 3 we get that u.good, is a subset of
the set S defined as S = {id" | (s.jd,,id") € s.seen,}, so it suffices to show that
id ¢ S. Since s.id, = id # nil, we get from Invariant 9.9 Part 1 that (s.jd,, id) €
s.seen, and Part 2 of the same invariant then implies that (s.jd,,id) ¢ s.seen,
since s.jd, # s.jd, in the case we consider here. Thus, the result follows.

iii. s.mode; = needid and s.jd, = s.jd, and (accept, s.jd,, s.id,) € s.rs
Invariant 9.10 implies that this situation cannot occur.

We now show that the variable changes are allowed by the step of A%

First, we show that good, is handled correctly. By definition of this case and Ryg, we

get that u.good, = {id} and w'.good, = (). Thus, good, changes in a way allowed by

shrink_good, ({id}) in AL’

We must show that no other variables have different values in «’ and u. The interesting

cases are mode,, last,, and good,.

172

9. The Five-Packet Handshake Protocol H

2.

For mode, we have s.mode, = accept and s'.mode, = idle, but then Rygq gives us
u'.mode, = u.mode, = idle, as needed.
For last, we have w.last, = nil from Invariant 9.3 since s.mode, = accept, and
u'.last, = nil from the definition of the AIh{/ step. Thus, last, is unchanged as needed.
Finally, we consider good,,
i. s.mode; # needid
Then, since also s'.mode, # needid, Rug gives us u'.good, = wu.good (= 0) as
needed.
ii. s.mode; = needid and s.jd, # s.jd,
Since s’.mode, = needid, we have §'.jd, # nil (easy invariant), so since s'.jd, =
nil we have s'.jd, # s'.jd,. Now, since jd, and rs are unchanged in the A’ﬁl/ step,
we clearly get from Rpg that u'.good, = u.good, as needed.
iii. s.mode; = needid and s.jd, = s.jd, and (accept, s.jd,, s.id,) € s.rs
Again, Invariant 9.10 implies that this situation cannot occur.
s.mode, = needid, s.jd, = s.jd,, and (accept,s.jd,,s.id,) ¢ s.rs
We show that (u, shrink_good ({id}),u", shrink_good,({id}),u’), where u” is defined
below, is an execution fragment of A%" by showing that (u, shrink_good,({id}),u")
and (u”, shrink_good, ({id}),u’) are steps of A%’. The execution fragment clearly has

the right trace.

Define u” to be the same as u except that u”.good, = u.good, \ {id}.
Then obviously (u, shrink_good ,({id}),uw") € steps(AL").

We show that also (u”, shrink_good, ({id}),u') € steps(AL').

Since w’.mode, = u.mode, = needid and id ¢ u".good,, shrink_good,({id}) is enabled

in u”’.

We show that all variables are handled correctly.

For all other variables than good, the arguments are as in the case above.

We show that w”.good, = u'.good,. We have §'.jd, = nil # s'.jd, (since s'.mode,
needid), so the definition of Ryg and u” gives us:

u".good, = ({id" | (accept,s.jd,,id") € s.rs} U{id})\ {id} and

u'.good, = {id' | (accept,s'.jd,,id") € s'.rs}.

Since jd, and rs are unchanged, it suffices to show id ¢ {id" | (accept,s.jd,, id')}, but

since id = s.id,, this follows directly from the definition of this subcase.
That suffices.

s.mode, = ack and id = s.last,.

We show that (u, cleanup,, ') € steps(AZ'). This step (and execution fragment) clearly

has the right trace.

Since (done, id) € s.sr we get from Invariant 9.8 that id # s.id;, so from the definition
of Ryg and the hypothesis we get u.last, # w.last,.. Also, since s.mode, = ack, we have

u.mode, = ack. Thus, cleanup, is enabled in w.

All variables are handled correctly. The changes to last, and mode, in A’ﬁl/ clearly are
required by the definition of cleanup, in AZ'. Since mode, # accept we have u.good,
u'.good, (= () as needed. The only other interesting case is good,. But since mode,
accept and jd, and rs are unchanged by the step in AIh{/, we get from Ryg that u'.good,
u.good, as needed.

. Otherwise

Then we claim that v = u.

as

0t |l

9.4. Correctness of H 173

The only difference between s and s’ is the removal of the done packet from the sr channel.
This does not affect any of the A%’ variables.

a = grow-jd-used ,(jds)

This step adds some elements to jd-used,, but since jd-used, is not used in the mapping Rug,
we have u = u/. Thus, the execution fragment « has the right properties.

a = grow-issued,.(ids)

This transition adds elements to issued, in Alh{/.

We show that (u, grow_good,.(I),u", shrink_good,(I),u’), where u” is defined below and I =
s'.issued, \ s.issued,, is an execution fragment of A%’ by showing that (u, grow_good,(I),u")
and (u”, shrink_good, (I),u') are steps of A%'. The execution fragment clearly has the right
trace.

Define ¢ to be the same as u’ except that u”.good, = u.good, U I.

From the definition of Ryg we get that [= u'.issued, \u.issued, which implies that INu.issued, =
(). Thus, grow_good,(I) is enabled in u. Now, the only difference between « and u” is that
u”.good, = u.good, U1 (by explicit construction) and u”.issued, = w.issued,.UI (by the definition
of grow-issued,, Ryq and u”), but this is as required by grow_good, (I)in AZ'.

We now consider (u”, shrink_good,(I),u'). To show that shrink_good,.(I) is enabled in w”’, we
show that I N w”.good, = () and that u”.last, ¢ I.

First, consider the claim that I N u”.good, = (). Since u”.good, = u.good, we must show that
I Nu.good, = (. From Invariant 9.1 and Rgg we get that u.good, C s.issued,, but since
I N s.issued, =) (by the definition of I') the result follows directly.

Then, consider the claim that u”.last, ¢ I. Since u".last, = w.last, = s.id,, we must show that
s.idy ¢ I. If s.id, = nil this is obvious, so assume s.id, # nil. Then Invariant 9.7 gives us that
s.id, € s.used,, and Invariant 9.1 implies that s.id, € s.issued,. Again, since I N s.issued, = {),
we get the result.

Thus, shrink_good,.(I) is enabled in u”.

The only difference between u” and u’ is by the definition of u” that w”.good, = u.good, U I =
w.good, U I. (The latter equality uses the definitions of grow-issued, and Rpg to see that
u'.good, = u.good,). To satisfy the requirements in A% we must show that u’.good, = u".good,. \
I. This is only the case if «'.good, \I = u’.good,., i.e., if w'.good, NI = (). Now, either u’.good, = ()
in which case this result follows directly or u’.good, = {s'.id,} (with s'.id, # nil). In the latter
case we observe that s'.id, = s.id,, so Invariant 9.1 implies that u’.good, C s.issued,, and since
1IN s.issued, = 0, we get that u'.good, N T = (), as needed.

This concludes the simulation proof.
|

With this simulation result we can prove that Ay safely implements Ag.

Theorem 9.14 (Ay safely implements Ag)
An Gs Ag

174 9. The Five-Packet Handshake Protocol H

Proof

By Lemma 9.13 and the soundness of refinement mappings (Lemma 5.8) we get Al Cg A%,
and from Lemma 5.14 we get Al Cg AR’ Thus,
Ay Cs Ag
which by substitutivity (Lemma 2.16) implies
A \ Au s 4G\ An
Then, by the definition of p, Ay, and Ag we get
A\ An Cs AL\ p(Aq)
Now, since p only renames actions which are subsequently hidden, this implies
Ay \ An Cs A5\ Ag
which finally, by definition, yields the result
Ay Cs Ag

9.4.4 Correctness

We can now turn attention to formally proving that H" correctly implements G¢’, which, in
turn, then allows us to prove that H correctly implements G.

We start out by giving some basic results about AZ'. The first results (Lemma 9.15 and
Lemma 9.16) describe certain possible steps of Alh{/ in the absence of crashes. The lemmas
have one part for each mode in the system and each part is furthermore divided into two sub-
parts. The first subpart states that if the system reaches a certain state, then it will stay in
that state at least until a certain action (or certain actions) occur(s). The second subpart then
states the resulting state if such an action indeed occurs.

In the remainder of this section we use notation like send_pkt (accept,_,_) to denote the
action function {send_pkt(accept,jd,id) |jd € JD A id € ID}. Similarly, the expression, e.g.,
send_pkt . (accept, _, id,) denotes the action function {send_pkt(accept,;jd,id;)|jd € JD}.

Lemma 9.15
Alh{/ satisfies each of the following formulas
1. (a) O(O(mode, # rec) A mode, = idle => (mode; = idle W, (choose_jd(_))))
(b) O(mode, = idle A (choose_jd(_)) = mode; = needid)
2. (a) Vjd : O(O(mode; # rec) A mode; = needid A jd, = jd =
(mode, = needid A jd, = jd W; (receive_pkt, (accept,jd,_))))
(b) O(mode, = needid A (receive_pkt, (accept,jd,,_)) = mode; = send)
3. (a) Vjd :Vid : O(O(mode, # rec) A mode; = send A jd, = jd N id; = id =
(mode; = send A jd, = jd A id, = id W; (receive_pkt, (ack, id,_))))
(b) O(mode; = send A (receive_pkt, (ack,id;,_)) = mode; = idle)

Proof
Easy by careful inspection of the steps of Alh{/.
|

9.4. Correctness of H 175

Lemma 9.16
Aﬁ/ satisfies each of the following formulas
1. (a) O(O(mode, # rec) A mode, = idle =
(mode, = idle W; (receive_pkt,,(needid,_))))
(b) Vjd : O(mode, = idle A (receive_pkt,, (needid, jd)) =
mode, = accept A jd, = jd)

2. (a) Vjd :Vid : O(O(mode, # rec) A mode, = accept A jd, = jd A id, = id =
(mode, = accept A jd, = jd A id, = id W;
(receive_pkt, (send,_, id)) V (receive_pkt,, (done,id))))
(b) O(mode, = accept A (receive_pkt,, (send,_, id,)) = mode, = rcvd)
O((mode, = accept A (receive_pkt,, (done,id,))) = mode, = idle)
3. (a) Vid : O(O(mode, # rec) A mode, = rcvd A last, = id =
(mode, = rcvd A last, = id W; (receive_msg(_)) A buf, = ¢))
(b) O(mode, = rcvd A (receive_msg(_)) A buf’ = ¢ = mode, = ack)
4. (a) Yid : O(O(mode, # rec) A mode, = ack A last, = id =
(mode, = ack A last, = id W; (receive_pkt,, (done, id))))
(b) O(mode, = ack A (receive_pkt,, (done, last,)) = mode, = idle)

Proof
Easy by careful inspection of the steps of AIh{/.
|

In the proofs below we furthermore need the following simple lemma.

Lemma 9.17

A?I/ E O(mode, = needid A mode, = accept A jd, = jd, =
—(receive_pkt,, (send, _, id,)) N —(receive_pkt,, (done,id,)))

Proof

Directly by Invariant 9.10.
|

We now turn attention to more interesting results about the live executions of H*. The first
lemma states that if the sender stays in needid mode, then it will issue infinitely many needid
packets. This result is actually a simple consequence of weak fairness to the set C'y ;. We give
the proof in all formal detail.

Lemma 9.18 (needid liveness)

Ll E Vjd : O(0(mode, = needid A jd, = jd) = OO (send_pkt ,(needid, jd)))

Proof

/
ASSUME: a € L}

176 9. The Five-Packet Handshake Protocol H

PrOVE: o E Vjd : O(O(mode; = needid A jd, = jd) = O (send_pkt,, (needid, jd)))

(1)1. AssuME: jd is arbitrary
ProVE: afF O(O(mode; = needid A jd, = jd) = OO (send_pkt , (needid, jd)))

(2)1. ASSUME: ay is an arbitrary suffix of
PROVE: «; E O(mode; = needid A jd, = jd) = OO (send_pkt,,(needid, jd))

(3)1. AssUME: a; E O(mode, = needid A jd, = jd)
ProvE: «a; E OO(send_pkt,, (needid, jd))

(1. o) = WF(Crrat)

ProOF: By the assumption o € L};" we have a = WF(Ch,). Then
Assumption (2) and Lemma 3.5 Part 1 give the result.

(4)2. oy E <©O(mode, € {rec,needid, send} V
(mode;, = idle A buf, = ¢)) =
D<><CH,51>

Proor: From (4)1 by expanding WF and noting that enabled(Cy ;1) =
(mode, € {rec,needid,send} V (mode, = idle A buf, = ¢)).

(4)3. oy E O(mode, € {rec,needid, send} V
(mode;, = idle A buf, = ¢)) =
D<><CH,51>

ProorF: Directly from (4)2.
M4, oy EOO{(Cr 1)

Proor: By Assumption (3), (4)3, and Rule MP.
(4)5. Q.E.D.

Proor: By (4)4 since Assumption (3) yields that send_pkt,, (needid, jd)
is the only action in C'y ; which is enabled anywhere in a;.

(3)2. Q.E.D.
Proor: By (3)1 and the definition of implication.
(2)2. Q.E.D.
Proor: By (2)1 and Lemma 3.5 Part 2.
(1)2. Q.E.D.
Proor: By (1)1 and Lemma 3.5 Part 5.

The following lemmas (Lemmas 9.19-9.23) state similar basic results about the live executions
of HY'.

Lemma 9.19 (done liveness)
1. L} EVid : (O(mode, # rec) A id € done-buf,) ~ (send_pkt,(done, id))

2. LI EVid : O(0(mode, # rec) A OO (receive _pkt, (ack, id, true)) =>
OO (send_pkt . (done, id))

9.4. Correctness of H 177

3. LI EVijd:Vid : O(O(mode, = needid A jd; # jd) A

OO (receive _pkt,.(accept, jd, id)) =
OO (send_pkt . (done, id)))

Proof
We sketch the proof.

1. Consider an arbitrary suffix of a live execution of H*" and assume that the sender is never

crashed in this suffix. In the first state of the suffix, let id be an arbitrary element of
done-buf, and id’ the first element of done-buf,. Then send_pkt,, (done,id") is enabled
(since O(mode, # rec)) and by fairness eventually send_pkt,, (done, id"') occurs and id’ is
removed from done-buf,. By repeating this argument, we get that eventually id is first on
done-buf ; and then eventually send_pkt,, (done,id) occurs.

. Here id will infinitely often be put into done-buf by the receive_pkt, (ack, id, true) events

since O(mode; # rec). Then Part 1 of this lemma implies the result.

. Similar to Part 2. When mode, = needid, Invariant 9.6 implies id, = nil. Then,

since jd; # jd, the each receive_pkt, (accept,jd,id) step leads to id being inserted into
done-buf .. Part 1 of this lemma then implies the result.

Lemma 9.20 (accept liveness)

2. LI EVijd : Vid : O(

1. LY = vid :Vid

O(O(mode, = accept A jd, = jd A id, = id) = OO (send_pkt . (accept, jd, id)))

O(mode, # rec) A mode, = accept A jd, = jd A id, = id =
O(receive _pkt . (send, _, id)) V

O(receive _pkt . (done, id)) V

OO (send_pkt . (accept, jd, id)))

or(
(

Proof

1. Similar to the proof of Lemma 9.18.

2. AssuME: 1. o € LI/

2. jd and id are arbitrary
3. a4 is an arbitrary suffix of «
PrOVE: «a; = O(mode, # rec) A mode, = accept A jd, = jd A id, = id =
O(receive _pkt . (send, _, id)) V
O(receive _pkt . (done, id)) V
OO (send_pkt . (accept, jd, id))

(1)1. oy | O(mode, = accept A jd, = jd A id, = id) = (send_pkt . (accept, jd, id))
ProoF: From Part 1 of this lemma, the Assumptions, and Lemma 3.5.

(1)2. oy = O(O(mode, # rec) A mode, = accept A jd, = jd A id, = id =
((mode, = accept A jd, = jd A id, = id) W;
((receive_pkt,,(send, _, id)) V (receive_pkt,, (done, id)))))

178 9. The Five-Packet Handshake Protocol H

Proor: By Lemma 9.16 Part 2(a), The Assumptions, and Lemma 3.5.
(1)3. Q.E.D.
Proor: By (1)1, (1)2, and Rule Unl1.

By Lemma 3.5 the result follows.
|

Lemma 9.21 (rcvd ~ ack)

Ll = O(O(mode, # rec) = (mode, = rcvd ~ mode, = ack))

Proof

We only sketch this proof. During any live execution of H"', if the receiver is in rcvd mode
and never crashes, then, by the definition of steps(AIh{/), the only mode change of the receiver
is a mode change to ack in a receive_msg(m) step that empties buf.. Furthermore, when
mode, = rcvd no messages can be put into buf, (which actually implies that buf, will always
contain zero or one element). Then, by fairness to receive_msg(m) steps, buf, will eventually
be emptied and hence the result follows.

Lemma 9.22 (ack liveness)
1. L} k= Vid : O(O(mode, = ack A last, = id) = OO (send_pkt, (ack, id, true)))

2. LI [Vid : O(0(mode, # rec) A mode, = ack A last, = id =>
O(receive_pkt . (done, id)) V OO (send_pkt, (ack, id, true)))

Proof
Similar to the proof of Lemma 9.20.
|

Lemma 9.23 (ack ~ idle)
Ly E O(O(mode, # rec A mode, # rec) = (mode, = ack ~» mode, = idle))

Proof
By Lemma 3.5 the following proof suffices.

AssumEe: 1. a e L}/

2. a; is an arbitrary suffix of «

3. id is arbitrary

4. oy = O(modeg # rec A mode, # rec)
PrROVE: a; | mode, = ack ~ mode, = idle

(1)1. oy | O(O(mode, # rec) A mode, = ack A last, = id =
O(receive pkt . (done, id)) V OO (send_pkt, (ack, id, true)))

Proor:By Lemma 9.22 Part 2, the Assumptions, and Lemma 3.5.

9.4. Correctness of H 179

(1)2. oy = O(O(mode, # rec) A mode, = ack A last, = id =
O(receive _pkt . (done, id)) V OO (receive_pkt, (ack, id, true)))

Proor: By (1)1 and Channel Liveness (Qcp ,s)-

(1)3. a; = O(O(mode, # rec) A mode, = ack A last, = id =
O(receive _pkt . (done, id)) V OO (receive_pkt,, (done, id)))

Proor:By (1)2, Lemma 9.19 Part 2, Rule MP, and Channel Liveness (Qcp s)-

(1)4. oy = O(O(mode, # rec) A mode, = ack A last, = id =
O(receive _pkt . (done, id)))

Proor: Directly from (1)3.

(1)5. o = O(O(mode, # rec) A mode, = ack A last, = id =
((mode, = ack A last, = id) U; O(receive_pkt,, (done, id))))

Proor: By (1)4, Lemma 9.16 Part 4(a), and the definition of ¥4;.

(1)6. oy = O(mode, = ack A last, = id =
O(mode, = ack A last, = id A (receive_pkt,, (done, id))))

Proor: By (1)5, The Assumptions, Rule MP, and the definition of ;.

(1)7. oy E mode, = ack A last, = id ~
mode, = ack A last, = id A (receive_pkt,, (done,id))

Proor: Directly from (1)6 and the definition of ~-.
(1)8. a; = (mode, = ack A last, = id) ~ mode, = idle
Proor: By (1)7, the ~ property implied by Lemma 9.16 Part 4(b), and transitivity of

N,

(1)9. Q.E.D.
Proor: Directly from (1)8.

We are now ready to state and prove a very important result about the live executions of H*'. In
Section 9.2.3 we provided some intuitive justification of the mode of operation of the H protocol.
One bad situation that we touched upon was when the sender is in needid mode but the receiver
is in some “bad” mode other than idle. We argued that eventually, due to done packets, the
receiver would always be reset to idle but that it immediately could enter a bad accept mode
again as a result of receiving an old needid packet (i.e., a needid packet (needid, jd) for which
jd # jd,) from the channel. However, since each channel step can only add a finite number of
packets to a channel, at any point during execution there are only finitely many packets—and
consequently only finitely many old needid packets—in the sr channel. Therefore, since the
sender only adds new needid packets to sr, the receiver can only enter a bad accept state finitely
many times. Thus, sooner or later either the receiver receives a new needid packet (even though
there are still old ones in the channel) or all old needid packets have been received, in which
case the receiver will eventually be reset to idle mode and thereafter receive a new needid
packet. This is formalized in the following lemma. In the proof we use the induction rule Ind.

First, we need the following definition: in any state where mode, = needid, define the num-
ber of old needid packets, written #,,needid, to be the number of needid packets (including
duplicates) in the sr channel with jd # jd.,.

180

9. The Five-Packet Handshake Protocol H

Lemma 9.24

L EVid : O(O(mode, = needid A jd, = jd A mode, # rec) =
O(mode, = accept A jd, = jd))

Proof

/
ASSUME: a € L}

PrOVE: «a E Vjd : O(O(mode;, = needid A jd, = jd A mode, # rec) =
O(mode, = accept A jd, = jd))

(1)1. AssuMmE: 1. jd is arbitrary
2. ay is an arbitrary suffix of «
3. a; E O(mode, = needid A jd, = jd A mode, # rec)
ProvE: a; E O(mode, = accept A jd, = jd)

(2)1. CASE: oy = mode, = accept A jd, = jd

(3)1. Q.E.D.

Proor: Case Assumption (2) implies the goal.
(2)2. CASE: a; | —(mode, = accept A jd, = jd)
(3)1. ay E O(mode, = idle)
(4)1. CASE: oy |= mode, = idle

(5)1.

Q.E.D.

ProoF: Assumption (4) implies the goal.

(4)2. CASE: oy = mode, = ack

(5)1.

Q.E.D.
Proor: By Assumptions (4) and (1).3, and Lemma 9.23.

(4)3. CASE: oy |= mode, = rcvd

(5)1.

Q.E.D.
Proor: By Assumptions (4) and (1).3, and Lemmas 9.21 and 9.23.

(4)4. CASE: oy = mode, = accept A jd, # jd

(5)1.

ay = mode, = accept A jd, # jd A jd, = jd' Aid, = id

PrOOF: From Assumption (4) by letting jd' and id be the values
of jd, and id,, respectively, in the first state of a;.

. ay | O(receive_pkt . (send, _, id)) V O(receive_pkt . (done, id)) V

OO (send _pkt, (accept, jd', id))

Proor: By Lemma 9.20 Part 2, Lemma 3.5, (5)1, Assumption
(1).3, and Rule MP.

. ay | O(receive_pkt . (send, _, id)) V O(receive_pkt . (done, id)) V

O (receive pkt . (done, id))

Proor: By (5)2, Channel Liveness (Qcp s and Qcnrs), Lemma
9.19 Part 3, the Assumptions, Lemma 3.5, and Rule 3.5.

9.4. Correctness of H

181

(5)4. a; | O(receive_pkt,, (send, _, id)) V O(receive_pkt,, (done, id))
Proor: Directly by (5)3.
(5)5. a; E mode, = accept A jd, = jd' A id, = id U
(receive_pkt,,(send, _, id)) V (receive_pkt, (done, id))
Proor: By (5)4, Lemma 9.16 Part 2(a), Lemma 3.5, the Assump-
tions, and Rule MP.
(5)6. a; | O(mode, = accept A jd, = jd' A id, = id A
(receive_pkt, (send,_, id))) V
O(mode, = accept A jd, = jd' A id, = id A
(receive_pkt,,(done, id)))
Proor: Implied by (5)5.
(5)7. a; E O(mode, = revd) V O(mode, = idle)
ProorF: By (5)6, Lemma 9.16 Part 2(b), the Assumptions, Lemma
3.5, and Rule MP.
(5)8. Q.E.D.
Proor: By (5)7, Lemmas 9.21 and 9.23, and the Assumptions.
(4)5. Q.E.D.

ProoF: By Assumption (2) and the exhaustive cases (4)1-(4)4.

. ay E O(#,4needid® < #,,4needid)

Proor: By Assumption (1).3, #,4needid is defined in all states of a; and
jd, does not change in «;. Then, since the only actions that can add needid
packets to sr add packets with jd # jd,, the result follows.

. Base Case

a; E (mode, = idle A #,4needid = 0) ~ (mode, = accept A jd, = jd)

(4)1. AssuME: 1. ay is an arbitrary suffix of a;

2. ay |E mode, = idle A #,4needid = 0

PROVE: as = O(mode, = accept A jd, = jd)

(5)1.

ay | O(#,4needid = 0)
Proor: By (3)2 and Assumption (4).2.

. ay | O=({receive_pkt,,(needid, jd') | jd' # jd})

Proor: By (5)1, Assumption (1).2, Lemma 3.5 Part 1, and the
definition of the steps of Alh{/.

. a3 | mode, = idle W, (receive_pkt,, (needid,.))

Proor: From Lemma 3.5 Part 1, the fact that as is a suffix of
a (Assumptions (1).2 and (4).1), Lemma 9.16 Part 1(a), Assump-
tions (1).3 and (4).2, and Rule MP.

. ay |E mode, = idle W, (receive_pkt,, (needid, jd))

Proor: By (5)2 and (5)3.

. ay | O(receive_pkt,, (needid, jd))

182

9. The Five-Packet Handshake Protocol H

Proor: From Lemma 9.18, Channel Liveness Qcp ., Assump-
tion (1).3, and Rule MP.

. a3 = mode, = idle U; (receive_pkt,, (needid, jd))

Proor: By (5)4, (5)5, and the definition of ;.

. ay E O(mode, = idle A (receive _pkt,, (needid, jd)))

Proor: By (5)6 and the definition of ¥;.

. Q.E.D.

Proor: By (5)7, Lemma 9.16 Part 1(b), and MP1 (and, as always,
Lemma 3.5 Part 1 and the assumption that as is a suffix of a).

(4)2. Q.E.D.

ProoF: (3)3, the definition of implication, and Lemma 3.5 Part 2 gives

a; E O(mode, = idle A #,4needid = 0 = O(mode, = accept A

jd, = jd)) which, by definition of ~~, immediately gives the result.
(3)4. Inductive Case

A:(l<kA
(mode, = idle A #,4needid = k ~
(mode, = idle A #,4needid = 1) V
(mode, = accept A jd, = jd))))

(4)1. AssuME: 1. k is an arbitrary positive number

2. @ is an arbitrary suffix of a;
3. ay |E mode, = idle A #,4needid = k

PrROVE: as E O((mode, = idle A #,yneedid < k) V

(51.

(mode, = idle A jd, = jd))

ay | mode, = idle W;
((receive_pkt,, (needid, jd)) V
({receive_pkt,, (needid, jd') | jd' # jd}))

Proor: By Lemma 9.16 Part 1(a), Assumptions (1).3 and (4).3,
and Rule MP.

. ay | O(receive_pkt , (needid, jd))

Proor: By Lemma 9.18, Assumption (1).3, Rule MP, and Chan-
nel Liveness () cp s

. s = mode, = idle l;

((receive_pkt,, (needid, jd)) V
({receive_pkt,, (needid, jd') | jd' # jd}))

Proor: By (5)1, (5)2, and the definition of ;.

. ay E O(mode, = idle A (receive _pkt,, (needid, jd))) Vv

O(mode, = idle A ({receive_pkt . (needid, jd') | jd' # jd}) A
,4needid < k)

Proor: By (5)3, the definition of #f;, Assumption (4).3, and (3)2.

9.4. Correctness of H 183

(5)5. as | O(mode, = accept A jd, = jd) Vv
O(mode, = accept A jd, # jd N #,yneedid < k)

Proor: By (5)4, Lemma 9.16 Part 1(b) and the fact that receiving
an old needid packet reduces #,;yneedid by one.

(5)6. O(mode, = accept A jd, = jd) vV
&O(mode, = idle A #,yneedid < k)

ProorF: Similar to Case a; | (mode, = accept A jd, # jd) of
(3)1 above (and (3)2).

(5)7. Q.E.D.
Proor: Directly from (5)6.
(4)2. Q.E.D.
Proor: From (4)1, The definition of ~~, and Lemma 3.5.

(3)5. ay EVn : O(mode, = idle A #,4needid = n =
O(mode, = accept A jd, = jd))

Proor: By (3)3, (3)4, Rule Ind, and the definition of ~-.

(3)6. For some number n/,
a; E O(mode, = idle A #,4needid = n')

ProorF: Directly from (3)1 when we let n’ be the value of #,,yneedid in some
state of oy where mode, = idle.

(3)7. oy E O(mode, = idle A #,yneedid = n' =
O(mode, = accept A jd, = jd))

Proor: By (3)5 and Lemma 3.5 Part 6.
(3)8. Q.E.D.
Proor: By (3)6, (3)7, and Rule MP1.
(2)3. Q.E.D.
ProoF: By the exhaustive cases (2)1 and (2)2.
(1)2. Q.E.D.
Proor: By (1)1 using the definition of implication and Lemma 3.5 Parts 2 and 5.
|

Now, since the receiver will eventually enter accept mode with the right jd,., eventually the
sender will receive a (accept,jd,, id) packet as formalized by the following lemma.

Lemma 9.25

L Evid : O(O(mode, = needid A jd, = jd A mode, # rec) =
O(receive _pkt, (accept, jd, _)))

Proof

ASSUME: a € LY
PrOVE: o« E Vjd : O(O(mode, = needid A jd, = jd A mode, # rec) =

184

9. The Five-Packet Handshake Protocol H

O((receive _pkt, (accept, jd, _))))

(1)1. AssuMmE: 1. jd is arbitrary

PRrROVE:

2. ay is an arbitrary suffix of «
3. a; E O(mode, = needid A jd, = jd A mode, # rec)
a; | O(receive_pkt, (accept, jd, _))

(2)1. a; | O(mode, = accept A jd, = jd)
Proor: By Lemma 9.24, Assumption (1), Lemma 3.5, and Rule MP.

(2)2.

(2)3.

ASSUME: 1. ay is a suffix of a; such that

2. ay |E mode, = accept A jd, = jd A id, = id

PROVE: a, E O(receive_pkt, (accept, jd, _))

(3)1.

ay E (mode, = accept A jd, = jd A id, = id) W;
((receive_pkt,, (send,_, id)) V (receive_pkt,, (done, id)))

Proor: By Lemma 9.16 Part 2(a), Lemma 3.5, Assumptions (1) and (2), and
Rule MP.

. ay E O(mode, = accept A jd, = jd A id, = id)

Proor: By (3)1, Lemma 9.17, Lemma 3.5, and Rule Unl.

. ay E OO (send_pkt, (accept, jd, id))

Proor: By (3)2, Lemma 9.20 Part 1, Lemma 3.5, and Rule MP.

. ay | OO (receive _pkt, (accept, jd, id))

Proor: The form of Qcy s implies that since a = Qcp 5 (@ is live) and a5 is
a suffix of a, then as = Qcn 5. This and (3)3 together with Rule MP give
the result.

. Q.E.D.

Proor: Directly from (3)4.

Q.E.D.

Proor: By (2)1 and (2)2.

(1)2. Q.E.D.
Proor: By (1)1, the definition of implication, and Lemma 3.5.

Lemma 9.26
Al E O(O(mode, = needid A mode, # rec) => (mode, = send))

Proof

Directly from Lemma 9.25 and Lemma 9.15 Part 2(b).

We are now ready to prove the main part of the liveness proof that H”' correctly implements
G?', namely, if a is a live execution of H" and ' is an execution of G’ such that (a,a’) € Ryg,

9.4. Correctness of H 185

then o' is live. As usual, we prove this result by contradiction. Thus, we assume that o’ is not
live and then derive a contradiction with the fact that « is live.

Lemma 9.27

Leta € eavec(A’ﬁI/) and o € exvec(AL') be arbitrary executions of Alh{/ and A%, respectively, with

(a,0') € Rug. Assume a = Qu. Then o = p(Qq).

Proof

We prove the conjecture by contradiction. Thus,

AssuME: o £ p(Qc)
Prove: False

()1 W (p(Caya)
O(0O(mode, = needid A mode, # rec) = O{(p(Ca s/r2))) V
ﬁWF(P Cas/r3)) V
SWF(p(Copra)) V
-Vp : (OO (send _pkt ,, (p)) = OO (receive _pkt,,(p))) V
=Vp : WF(receive_pkt,,.(p)) V
-Vp : (OO (send _pkt . (p)) = O (receive_pkt, (p))) V
=Vp : WF(receive_pkt,, (p))

ProoF: Immediate by the Assumption, definition of p(Q¢), and the Boolean operators.
(1)2. Case: o E~WF(p(Cgq /r1))
(2)1. o/ = OO(mode, € {idle,send,rec}) A OO (p(Cg /1))

Proor: From Case Hypothesis (1) by noting that enabled(p(Cq /1)) = (mode, €
{idle, send,rec}) and by expanding WF.

(2)2. a | OO(mode, € {idle,send,rec}) A CO=(p(Caq s/r1) \ {prepare})
Proor: From (2)1 by definition of Ryg and by Lemmas 5.10 and 5.11.
(2)3. a E OO(modeg € {idle,send, rec}) A

OO=(p(Caq,s/r1) \ {prepare}) A
&O=({send_pkt ,, (needid, jd) | jd € JD})

ProovF: By (2)2 there is a suffix of & where always mode, € {idle,rec,send}. Thus
we get that no send_pkt (needid,_) actions occur in that suffix, since such actions
are only enabled when mode, = needid.

(2)4. o E <>O(mode, € {idle, send, rec,needid}) A
OO((p(Ca,s/r1) \ {prepare}) U {send_pkt, (needid, jd) | jd € JD})

ProoF: By (2)3 by noting that if mode, is in {idle,send,rec}, it is also in the
bigger set {idle, send, rec,needid}.

(2)5. a | 2 WF(Cy,)

Proor: From (2)4 by using the definitions of WF and Cp 4.
(2)6. Q.E.D.

Proor: (2)5 contradicts the assumption that a = Qg.

186

9. The Five-Packet Handshake Protocol H

(1)3. Case: o = ~O(O(mode, = needid A mode, # rec) = O{(p(Ca s/r2)))

(2)1.

o' | O(O(mode, = needid A mode, # rec) A O-(p(Caq /)

ProorF: Directly from Assumption (1).

. o E OO(mode, = needid A mode, # rec) A CO-(p(Cq /r2))

ProorF: Directly from (2)1.

. a | CO(mode; = needid A mode, # rec)

Proor: From (2)2 by Lemma 5.11 and the definition of Ryg.

. There exists a suffix a; of a such that

a; | O(mode; = needid A mode, # rec)

Proor: From (2)3 using Lemma 3.5 Part 3.

. oy E O(mode; = needid A mode, # rec) = <{(mode, = send)

Proor: By Lemma 9.26, Lemma 3.5 Part 1, and Rule Par.

. ay | O(mode; = send)

Proor: By (2)4, (2)5, and Rule MP.

. Q.E.D.

Proor: (2)6 contradicts (2)4.

. Case: o E~WF(p(Ca,s/r3))
(2)1.

o' E ©O(mode, = rec V (mode, = rcvd A buf, # ¢) V mode, = ack) A
CB=(p(Ca,s/rs))
Proor: By Assumption (1) and the definitions of WF and enabled(p(Cq s/r3)).

. a | CO(mode, = rec V (mode, = rcvd A buf, # ¢) V mode, = ack) A

CB=(p(Ca,s/r3))

Proor: From (2)1 by definition of Ruq, the fact that p(Cq s/r3) contains external
actions only, and Lemmas 5.10 and 5.11.

. a | CO(mode, = rec V (mode, = rcvd A buf, # ¢) V mode, = ack) A

ST (p(Cos120)) A
OO ({send_pkt ., (accept, jd, id) | jd € JD A id € ID})

ProOF: Since, by (2)2, there is a suffix of a where always mode, € {rec,rcvd, ack}
we get that no send_pkt, (accept,_,_) actions occur in that suffix, since such actions
are only enabled when mode, = accept.

. o E OO((mode, = revd A buf, # ¢) V mode, € {rec,ack,accept}) A

OO=(p(Ca,s/rs) U {send_pkt (accept,jd,id) | jd € JD N id € ID})

ProoF: By (2)3 by noting that if eventually mode, is always in {rec,rcvd,ack},
then it is eventually always in the bigger set {rec,rcvd, ack, accept}.

e): ﬁWP(CHVH)

Proor: By (2)4 using the definition of WF and the fact that Cy,1 = p(Cq s/r3) U
{send_pkt (accept,jd,id) | jd € JD A id € ID}.

Q.E.D.

9.4.

Correctness of H 187

(1)5.

Proor: (2)5 contradicts the assumption that a = Qg.
Case: o = ~WF(p(Cg o/ra))
(2)1. o/ = O0(mode, # rec A nack-buf . #) A CO~(p(Ca,s/ra))

ProoF: From Assumption (1) by using the definition of WF, and the fact that
enabled(p(Cq s/ra)) = (mode, # rec A nack-buf, # ¢).

(2)2. a = OO(mode, # rec A nack-buf, # &) A OO=(p(Cq s/ra))

Proor: By (2)1, the definition of Rpug, the fact that p(Cq s r4) consists of external
actions only, and Lemmas 5.10 and 5.11.

(2)3. @ |~ WF(Cypo)

ProoF: By (2)2 using the definition of WF and the fact that Cu 2 = p(Cq s/ra)-
(2)4. Q.E.D.

Proor: (2)3 contradicts the assumption that a = Qg.

. Cask: o | —Vp: (OO (send_pkt,, (p)) = O (receive _pkt . (p)))

(2)1. o | dp : (OO (send_pkt ,(p)) A CO—(receive_pkt,,.(p)))
ProorF: Directly from Assumption (1).

(2)2. There exists m € Msg and id € ID such that
o = OO (send_pkt ,, (send, m, id)) A OO (receive_pkt,,(send, m, id))

Proor: By (2)1 and Lemma 3.5 Part 8.
(2)3. a E OO (send_pkt, . (send, m, id)) A OO (receive_pkt,,(send, m, id))

ProorF: By (2)2, Lemma 5.10, and the fact that the actions send_pkt, .(send, m, id)
and receive_pkt,,.(send, m,id) are external.

(2)4. o E dp : (OO (send_pkt,, (p)) A OO (receive_pkt,,.(p)))

Proor: By (2)3 and Lemma 3.5 Part 7. (Note that the bound variable p ranges
over all packets of the form (needid, id), (send, m, id), and (done, id), whereas the
bound variable in (2)1 only ranges over packets of the form (send, m,id).)

(2)5. a = =Vp : (OO (send_pkt . (p)) = O (receive_pkt, . (p)))
ProorF: Directly from (2)4.

(2)6. Q.E.D.
Proor: (2)5 contradicts the assumption that a = Qg.

. Case: o | —Vp: WF(receive_pkt_ . (p))

(2)1. o | dp: " WF(receive_pkt,,(p))
ProorF: Directly from Assumption (1).

(2)2. For some packet p (of the form (send, m, id)),
o' | OO=(receive_pkt,,.(p)) A OO(p € sr)

Proor: By (2)1, Lemma 3.5 Part 8, the definition of WF and since receive_pkt_,.(p)
is enabled when p € sr.

(2)3. a | ©O-(receive_pkt . (p)) A OO(p € sr)

188 9. The Five-Packet Handshake Protocol H

ProorF: By (2)2, Lemmas 5.10 and 5.11, and the facts that receive_pkt,, (p) is exter-
nal, and if (s,u) € Rug and u |= (p € sr), then s = (p € sr) (recall that p has the
form (send, m, id)).

(2)4. a = =Vp : WEF(receive_pkt,, (p))
Proor: Directly from (2)3, Lemma 3.5 Part 7 and the definition of WF'.
(2)5. Q.E.D.
ProoOF: (2)4 contradicts the assumption that o E Qu.
(1)8. CasE: o | —¥p : (OO (send_pkt,(p)) = OO (receive_pkt, (p)))
Proor: Similar to (1)6.
(1)9. Cask: o' | =Vp: WF(receive_pkt, (p))
Proor: Similar to (1)7.
(1)10. Q.E.D.
Proor: By (1)1 and the exhaustive cases (1)2—(1)9.
|

With this result, the simulation result of the previous section, and Lemma 5.9 we can prove that
HM correctly implements G*'.

Lemma 9.28
o+ c;, G’

Proof
Immediate by Lemmas 9.13, 9.27, and 5.9.
|

And, finally, we can prove that H correctly implements G.

Theorem 9.29
HC;, G

Proof

By Lemma 9.28 and Lemma 5.15 we get
H C, G
which by substitutivity (Lemma 2.16) implies
H'\ Ay Cy, G\ Ay
Then, by the definition of p, Ay, and Ag we get
H'\ A Cr, G\ p(Ag)
Now, since p only renames actions which are subsequently hidden, this implies
H'\ Ay Cp, G\ Ag
which finally, by definition, yields the result
HC, G

9.4. Correctness of H 189

Due to the fact that the correct implementation relation Ty, is a preorder, we get the overall
result that H correctly implements S and thus solves the at-most-once message delivery problem.

Theorem 9.30
HC. S

Proof

By Theorems 7.18, 8.19, and 9.29, and the fact that the subset relation, and thus the correct
implementation relation (cf. Definition 2.15), is transitive.

We now move to the timed setting to consider the Clock-Based Protocol C.

Chapter 10

The Clock-Based Protocol C

The second and last low-level protocol we consider in this work is the Clock-Based Protocol of
[LSWO1], which in this work is denoted by C. As the name suggests the functionality of the
protocol depends on the sender and receiver having access to certain clocks. Specifically, the
sender and the receiver each has a local clock which is required to deviate from real time by at
most some constant amount, called the clock skew. The C protocol thus consists of a sender, a
receiver, two channels, and a special clock subsystem that guarantees that the local clocks are
almost synchronized with real time. This structure is depicted in Figure 10.1. We model the
clock subsystem as a live timed I/O automaton that issues ticks to the sender and the receiver.
Exactly how to implement a clock subsystem in a distributed system falls outside the scope of
this work [LMS85].

C is a timed protocol. Besides having the clock subsystem, we shall assume that channel
delays and the maximum time difference between certain process steps are bounded. Thus, each
component of C is specified as a live timed I/O automaton, and consequently C itself is a live
timed I/O automaton.

The specification S is modeled as an (untimed) live I/O automaton since the problem state-
ment did not mention time at all. In Section 2.3 we discussed what it means to implement
an untimed specification by a timed implementation. The idea was to to consider the untimed
specification as a timed system that allows tome to pass arbitrarily as long as possible liveness
assumptions are satisfied. For this reason the operator patient on safe and live I/O automata
was introduced.

We could have removed all liveness assumptions from C and used timing assumptions instead.
However, then it would have been difficult to see which timing requirements were actually needed
to guarantee the correctness of C and which were just additional timing requirements. Thus,
we introduce the minimum timing requirements and otherwise use liveness to guarantee the
progress of the system. This means that all external actions of C, which are subject to liveness
requirements in S, will be given liveness requirements in C, whereas certain internal actions,
like channel communication, will be given timing requirements. With this approach we cannot,
of course, prove any maximum response time on, e.g., acknowledgements ack(b) but if such a
response time is important, it should have been specified in S. Instead S just assumes that the
final implementation is “fast enough”.

The rest of the chapter is organized as follows. First, in Section 10.1, we present the clock
subsystem. In Section 10.2 we specify timed versions of the channels. Then, in Section 10.3, we
specify the sender and receiver and furthermore intuitively describe how the C protocol works.

191

192 10. The Clock-Based Protocol C

send_msg(m) d_pkt.. (p)) K (p) recetve_msg(m)
—_— send_ receive _pkt., —

ack(b) +p or b Channel Ch, PP

crash Sender C, Receiver C, crash,

— recetve_pkt send_pkt —
recovers Pht, . (p) Channel Chi, Pkt (1) recovery
-—] —

tick.(t) Clock tick.(t)
Subsystem

Cl

Figure 10.1
The Clock-Based Protocol C.

Section 10.4 shows how C is obtained from its subprocesses and Section 10.5 then considers the
correctness of C. Section 10.6 discusses a “weak” version of C, where the timing assumptions
are removed, and finally Section 10.7 considers a version of C that works for a single receiver
but multiple senders.

10.1 The Clock Subsystem

The clock subsystem is specified as a live timed I/O automaton Cl = (Acy, Lc)). We use the
explicit specification style (cf. Section 4.2.1) to specify A¢y and specify Lc) by an environment-
free timed liveness formula ()¢ for Acy.

10.1.1 States and Start States

Ac) contains three state variables: now is as usual real time (ranging over T which equals the
nonnegative real number), and ctime, and ctime, remember the last clock value sent to the
sender and receiver, respectively.

Variable ‘ Type ‘ Initially Description

now T 0 Real time

ctime, T 0 Last clock value sent to the sender.
ctime, T 0 Last clock value sent to the receiver.

10.1.2 Actions

Input:
none
Output:
ticks(t),t €T
tick,(t), t €T
Internal:
none

10.1. The Clock Subsystem 193

Time-passage:
v

10.1.3 Steps

The clock subsystem is responsible just for performing outputs of the form tick,(t) and tick,(t).
This clock subsystem is constrained to produce ticks that have the property that, at any real
time now, the most recent tick at either station has value within ¢ of now. Thus, ¢, which is
positive, denotes the clock skew. In addition, each local clock is nondecreasing, that is, successive
ticky(t) events have nondecreasing values of ¢, and similarly for successive tick,(t) events.

tick.(t) v (time-passage)
Precondition: Precondition:
ctime; <t A now < t A
|t — now| < e |ctimes —t| < e A
Effect: |ctime, — t| <€
ctimes 1=t Effect:
now =1t
tick,(t)
Precondition:
ctime, <t A
|t — now| < e
Effect:

ctime, : =1

It is easy to see that Ac is in fact a safe timed 1/O automaton, i.e., that is satisfies the five
axioms in Definition 2.17. Clearly S1 is satisfied and since the tick;(t) and tick,(t) do not change
the value of now, also S2 is satisfied. S8 is satisfied since the first conjunct in the precondition
of the step rule for v explicitly requires real time to increase in time-passage steps. Also clearly,
if (s,v,s") and (s, v,s") are steps, then (s,r,s”) is a steps, so S4 is satisfied. For the trajectory
theorem S5, assume that (s, v, s’) is a step. Then s.ctime, = s'.ctime, and s.ctime, = s .ctime,.
So, the mapping from the interval [s.now, s .now] to states, which to each time ¢ returns the
state [now — t, ctime, — s.ctime,, ctime, — s.ctime,] is a trajectory from s to s'.

10.1.4 Liveness

We need no liveness restriction (other that normal admissibility). Thus, L¢ should consist of
all admissible timed executions of Aq. This is specified by an environment-free timed liveness
formula ()¢ for A as follows.

Qa = true

It is easy to see that true actually induces the liveness condition consisting of all admissible
timed executions of Ac;. However, generally it is not the case that true is an environment-free
timed liveness formula for a safe timed 1/O automaton. However, for the clock subsystem it is
the case. The proof obligation is to show that there exists a (timed) strategy defined on Ag
such that any outcome of the strategy can only consist of admissible and Zeno-tolerant timed
executions. But this is clearly the case. First of all the clock subsystem has no inputs. So,
the f function of the strategy should simply be defined to provide one tick (t) step and one
tick,(t) step every € time units (remember that € is positive). Then any outcome will consist of
admissible timed executions only.

194 10. The Clock-Based Protocol C

10.2 The Timed Channels

The channels we use to connect the sender and the receiver in C are basically the same as the
channels we used in G and H. That is, an attempt to send a packet on a channel leads to zero
or more copies (a finite number) of the packet being put into the channel. The channels we used
in G and H furthermore had some liveness restrictions: if we made infinitely many attempts to
send a packet, then infinitely many copies would get through.

Now, the C protocol needs certain timing assumptions about the channels. Not only should
the channel delay—once a packet has been successfully placed in the channel—he bounded; it is
also necessary to assume an upper bound on the number of attempts needed before a packet has
been successfully placed in the channel. Thus, the timed channels should satisfy the following
properties.

1. For each packet py, if k attempts (for some positive channel retry number k) are made to
send p;, then at least one copy of p; is put in the channel—even though the k attempts
may be interspersed with attempts to send other packets p,.

2. When a copy of a packet is successfully put in the channel, the copy will be delivered at
the other end of the channel after at most the positive channel delay time d.

We give an explicit specification of the timed channel Ch! = (Acht , Lent). The specification
of the other channel Ch!, = (Acy: , Lo,) is similar (and obtained by replacing sr with rs).

10.2.1 States and Start States

The timed channel needs, as usual, a now variable to specify real time. As before the main state
variable is a multiset sr. However, in order to specify that each packet must leave the channel
at most time d after it entered the channel, we need to mark each packet with a send time (not
to be confused with the identifier timestamp we associate with messages). Thus, the multiset
contains elements of the form (p,t), where p is a packet and ¢ is the real time when p entered
the channel. Furthermore, to specify that after at most & attempts to send a packet, the packet
has been successfully put into the channel, we have for each packet p a variable count,.(p) which
counts the number of unsuccessful attempts to send p.

‘ Variable ‘ Type ‘ Initially ‘ Description ‘
now T 0 Real time
sr B(PxT) 0 A multiset of packets together with the time

when the packets were sent.

count,.(p) N 0 For each p € P, count,(p) contains the
number of unsuccessful attempts to send p
since last successful attempt.

Define packets(sr) to be the multiset of packets in sr, i.e., the multiset obtained by removing
all send times ¢’ from all elements (p,t’) in sr.

10.3. The Sender and the Receiver 195

10.2.2 Actions

Input:

send_pkt, (p), p € P
Output:

recetve_pkt,, (p), p € P
Internal:

none
Time-passage:

v

10.2.3 Steps

send_pkt,, (p) recetve_pkt . (p)
Effect: Precondition:
let ps be a finite multiset of (p, now) such that (p,t) € sr
ps # 0 if county, (p) =k —1 Effect:
sr:= sr U ps sr=sr\ {(p,t)}

if ps # @ then
counts, (p) :==0
else
counts; (p) := counts, (p) +1

v (time-passage)
Precondition:
t > now A
Vip,t')€esr: (t<t' +d)
Effect:

now =1

Note, that the operators U in send_pkt .(p) and \ in receive_pkt.(p) are operators on multisets,
e.g., st \ {(p,t)} removes one copy of (p,t) from sr.
As for the clock subsystem it is easy to see that Acy: is in fact a safe timed I/O automaton.

10.2.4 Liveness

We need no liveness restriction (other that normal admissibility). Thus, Lcy: should consist of
all admissible timed executions of Acy: . This is specified by an environment-free timed liveness
formula Qcye, for Acy: as follows.

QCh; = true

(cnt, clearly is an environment-free timed liveness formula for Acy: . The g function of a (timed)
strategy could be defined to add one copy to sr every time send_pkt, (p) occurs. The f function
of the strategy should then simply be defined to wait the maximum time (d) before outputting
a packet again. In this way (since d is positive), if the environment provides Zeno input, the
resulting outcome will be Zeno-tolerant. In all other cases the outcome will consist of admissible
timed executions only. That suffices.

10.3 The Sender and the Receiver

Above we have specified the clock subsystem and the timed channels explicitly as live time
I/O automata. To specify the sender and receiver processes in C, we use the implicit approach

196 10. The Clock-Based Protocol C

introduced in Section 4.2.1. That is, we describe the automaton part of both the sender and re-
ceiver live timed I/O automaton as MMT-specifications (cf. Definition 4.9) Aynsr s and Az,
respectively.

When formally defining steps(Apymr s) and steps(Apymsr) below, we furthermore provide an
intuitive description of the functionality of C.

10.3.1 States and Start States
Sender

The identifiers used to tag messages at the C level are taken from the sender’s local clock and
are thus also called timestamps. Thus, the domain of the variable last,, which contains the
current timestamp, is T. The sender’s local clock is contained in time,. This variable must be
stable, i.e., it must survive a crash.

‘ Variable ‘ ‘ Type ‘ Initially ‘ Description ‘
mode, {idle, send, | idle The mode of the sender. Compared
rec} to G, the sender does not need a spe-
cial needid mode. Instead the sender
enters send mode directly from idle
mode.
buf Msg" 3 The list of messages at the sender side.
Same as at the G level.
ttme, S | T 0 The sender’s local clock.
currenl-msg, MsgU{nil} | nil The message about to be sent to the
receiver. Same as at the G level.
last, T 0 The timestamp chosen for the current
message. Same as at the G level.
current-ack, Bool false Acknowledgement from the receiver.
Same as at the G level.
| S = Stable
Receiver

The receiver’s local clock is called time, and as for the sender’s local clock, it must be stable.
The receiver also contains the variables lower, and upper,, both ranging over T. The role of
these variables is to delimit the interval of timestamps that the receiver will accept. The variable
upper,., which is stable, is initialized to the special timing constant 3. Ixactly how lower, and
upper, are manipulated and what the properties of 3 must be will be described below. The final
new variable is rm-time,. This variable holds the timestamp of the last message delivered to the
user and is used to calculate when the receiver can safely clean up its state. This mechanism is
also described below.

10.3. The Sender and the Receiver 197
‘ Variable ‘ ‘ Type ‘ Initially ‘ Description ‘
mode, {idle, rcvd, | idle The mode of the receiver. Same as at

ack, rec} the G level.
buf, Msg" 3 The list of messages accepted. Same as
at the G level.
trme, S | T 0 The receiver’s local clock.
last, T 0 The timestamp of the last message
accepted.
lower, T 0 A lower bound on the timestamp of a
new message that can be accepted.
upper,. S| T J¥ An upper bound on such a timestamp
rm-time, TU{x} oo Remembers the value of the local clock
when the last message accepted was
delivered to the user. Is used for clean-
up purposes.
nack-buf T* 3 The list of timestamps for which
the receiver will issue a negative
acknowledgement.
‘ S = Stable ‘
10.3.2 Actions
Sender
Input:
send_msg(m), m € Msg
crash

recetve_pkt, (t,0), t € T, b € Bool

tick(t), t€ T
Output:

ack(b), b € Bool

recover

send_pkt, (m,t), m € Msg, t €T
Internal:

choose_id(t), t € T

Receiver

Input:
crash,
recetve_pkt . (m,t), m € Msg, t € T
ticko(t), t€T
Output:
recetve_msg(m), m € Msg
recovery
send_pkt(t,b), t € T, b € Bool
Internal:
increase-lower, (t), t € T
increase-upper, (t), t € T
cleanup,

198 10. The Clock-Based Protocol C

10.3.3 Steps

We now provide the formal definition of the steps of the underlying automata in the MMT-
specifications of the sender and receiver. As always we list the definition of the steps of the
sender in the left column and the definition of the steps of the receiver in the right column.
However, first we provide the intuition behind the functionality of C.

Informally C works as follows during normal mode of operation. The sender associates in a
choose_id(t) step the timestamp ¢ with the next message it wishes to transmit. The timestamp
is obtained from the sender’s local clock time,, so the precondition for choose_id(t) guarantees
that the local clock has advanced since the last time a timestamp was chosen (last,). The sender
is now in send mode and starts to transmit repeatedly the current packet over the channel to
the receiver. The time between every retry, as we shall see formally in Section 10.3.6,is at most
the constant [,. Based on this constant and the channel characteristics, it is possible to derive
the maximum delay before the current packet is received.

The receiver now uses the associated timestamp to decide whether or not to accept a received
message—roughly, it will accept a message provided that the associated timestamp is greater
than the timestamp of the last message that was accepted, which is kept in last,. However, the
receiver does not always remember the timestamp of the last accepted message: it might forget
this information because of a crash, or simply because a long time has elapsed since the last
message was accepted and it is no longer efficient to remember it (see below). Therefore, the
receiver uses safe time estimates determined from its own local clock (time,) to decide when
to accept a message. The estimates are kept in lower, and upper,; the receiver accepts if the
message’s timestamp is in the interval (lower,, upper,].

The lower, bound is designed to be at least as big as the time of the last message accepted. It
can be bigger, however, but in this case is must be sufficiently less than the receiver’s local time
(at least a maximum one-way message delay (plus a double clock skew) less). This is because
the receiver should not accidentally fail to accept a valid message that takes the maximum time
to arrive. We note that the reason why we do not want to remember just the last timestamp is
that we envision using this protocol in parallel for many users, and a single lower, bound could
be used for all users that have not sent messages for a long while. The special timing constant
p signifies the amount by which lower, must be kept smaller than time, when incremented in
increase-lower,(t) steps. In Section 10.3.6 we show how p should be related to the other timing
constants of the system.

The upper, bound is chosen to be big enough so that the receiver still accepts the most recent
messages, even if they arrive very fast. That is, it should be somewhat larger than the current
time (at least a double clock skew larger). But this bound is kept in stable storage, and therefore
should not be updated very often. Thus, it will generally be set to be a good deal larger than the
current local time. When we present the timing constraints in Section 10.3.4 below, we show that
at most some time [/ elapses between every time upper, is increased (in an increase-upper, (1)
step). The timing constant 3, which occurs in the definition of increase-upper, (t) below, then
has to be properly related to I in order to guarantee that upper, is always big enough.

Unlike the H protocol, C will not continuously issue positive acknowledgements for the last
packet successfully received. Instead it only issues one positive acknowledgement and returns
to idle mode (cf. the definition of the send_pkt (¢, true) steps below). If this packet is lost
in the channel, eventually the receiver will receive another copy of the current packet; this will
change mode, to ack and a new positive acknowledgement will be issued. After at most k retries,
(t, true) is successfully placed in the buffer and after at most d time units thereafter, the sender

10.3. The Sender and the Receiver 199

will receive the acknowledgement. Once send_pkt, (t, true) is enabled, it must occur within [,
time units unless it is disabled in the meantime. This upper bound will be important in order
to specify when the receiver is allowed to clean up its state.

This completes a normal cycle of the sender and receiver. After the formal definition of the
steps, we return to the description of the special cleanup, action and what can happen due to

crashes and recoveries.

send_msg(m)
Effect:
if modes # rec then

buf . == buf,"m

choose_id(t)

Precondition:
mode; = idle A
buf, #£e A
times =t A
t > last,

Effect:
modes := send
last, .=t

current-msg, := head(buf)
buf , := tail(buf)

send_pkt,, (m,t)
Precondition:
mode; = send A
current-msg, = m A
last: =t
Effect:

none

recetve_pkt, .(m,t)
Effect:
if mode, # rec then

if lower, <t < upper, then
mode, := rcvd
buf, := buf, "m
last, .=t
rm-time, := 0o
lower, =t

else if last, < t < lower, then
nack-buf, := nack-buf, "t

else if mode, = idle A last, = t then
mode, := ack

recetve_msg(m)

Precondition:
mode, = rcvd A
buf, #e A
head(buf,) =m

Effect:

buf, = tail(buf,)

if buf, = e then
mode, := ack
rm-time, := time,

200

10. The Clock-Based Protocol C

recetve_pkt, (¢,)
Effect:

if mode. = send A last. = t then

mode; := idle
current-acks := b
current-msg, :=mnil

ack(b)

Precondition:
mode; = idle A
buf, =«
current-acks = b

Effect:

none

crashs
Effect:

modes := rec

recovers

Precondition:
modes = rec

Effect:
modes := idle
last, = time,
buf . :=¢
current-msg, ;= nil
current-acks := false

tick.(t)
Effect:

times : =1

send_pkt (t, true)
Precondition:
mode, = ack A
last, =1
Effect:
mode, := idle

send_pkt (t, false)
Precondition:
mode, # rec A
nack-buf, #¢e A
head(nack-buf.) =t
Effect:

nack-buf, := tail(nack-buf,)

crash,
Effect:

mode, := rec

recover,
Precondition:
mode, = rec A
upper, + 2¢ < time,

Effect:
mode, := idle
last, .= 0
rm-time, := 0o
buf, :=¢
lower, := upper,

upper, = time, +
nack-buf, ;= ¢

increase-lower, (t)
Precondition:
mode, # rec A
lower, <t < time, — p
Effect:

lower, =t

increase-upper, (t)
Precondition:
mode, # rec A
upper, < t = time, + ¢
Effect:
upper, =1

cleanup,
Precondition:
mode, € {idle,ack} A
time, > rm-time, + «
Effect:

mode, := idle
last, .= 0
rm-time, := 0o
tick,(t)
Effect:

time, :=1

10.3. The Sender and the Receiver 201

All that needs to be kept in stable storage is just the local clocks time, and time,, plus the
one variable upper, of the receiver. When the receiver side crashes and recovers again (cf. the
definition of recover, above), it resets its lower, bound to the old upper, bound, to be sure
that it will not accept, and thus deliver, any message twice. This explains why we cannot just
set upper, to infinity. It also explains another detail: the precondition for the recover, steps
requires the local clock to grow beyond upper, + 2¢ before recovery can take place. This is
because otherwise the new lower, bound would be too big compared to time, which could lead
to the rejection of a very fast message sent to the system after the recovery of the receiver. If
we were to allow such a rejection, C would not correctly (or even safely) implement S since S
only allows the loss of messages which are in the system between crash and recovery.

The way the receiver informs the sender that the sender is in a bad send state is similar
to the way this is done at the G level: when the receiver receives a packet (m,t) where ¢ is
not between lower, and upper,, it should issue a negative acknowledgement for ¢. However,
if t < last,, the receiver has already successfully received a message with a later timestamp,
so (m,t) cannot be the current packet of the sender. In this situation the receiver does not
issue the negative acknowledgement. (Note, that due to crashes or clean-ups (see below), the
receiver may forget last,. However, in this case last, = 0, and the receiver will issue negative
acknowledgements for all “bad” timestamps and, in particular, the current one.)

Finally we consider the clean-up mechanism of the sender. When a long time has elapsed
since the receiver started to issue positive acknowledgements for the last packet accepted, it can
be sure that the sender has received the acknowledgement, and is thus allowed to forget last,
and move to idle mode. This is specified in the definition of cleanup, above. Section 10.3.6
describes how large the timing constant o occurring in the precondition should be.

10.3.4 Timing Constraints
We can now specify sets(Apymr), boundmap(At 5), sets(Aymr), and boundmap(Aymsr)
and thus complete the MMT-specifications of the sender and the receiver.

Sender

The correctness of C depends on an upper bound on the send_pkt . (m,t) actions of the sender.
Thus, sets(Apmr,s) contains only one set of locally-controlled actions and boundmap(Ayt 5)
then associates a lower and upper bound on this set. Formally we have

CL, = {send_pkt,(m,t)| me Msg Nt €T}

and

bi(CE) 0
bu((tj,s) lS

where [, is a positive real.

> (>

Receiver

Similarly, as mentioned above we put bounds on two sets of locally-controlled actions of the
receiver. The two constants [, and [/ are both positive reals.

L. = {send_pkt,(id, true) | id € ID}
£ {increase-upper,(t) |t € T}

202 10. The Clock-Based Protocol C

and
bl((tj,rl) =0
bu(CE,) = L
bl(C(tj,TZ) =0
bu((tj,TZ) = l;‘

10.3.5 The Sender and Receiver Safe Timed I/O Automata

The safe timed I/O automata of the sender and receiver processes in C are now given by (cf.
Definition 4.10)

AC,s
AC,T

tz’me(AMMT’s)
tz’me(AMMT’T)

(> 1>

10.3.6 Derived Timing Constants

Before we specify the liveness requirements for the sender and receiver processes of C, we return
to the three timing constants /3, p, and a occurring in the definition of the steps of the sender
and receiver, and show how they should be related to the other timing constants. We give the
intuition behind the constants, and in the proofs in Section 10.5 we show that the properties of
the constants actually guarantee correctness. We first repeat the other timing constants, which
are all positive reals:

¢ The maximum clock skew from real time (at both the sender and receiver side).
Iy An upper time bound between retransmissions of message packets (m,t) from the sender.

[, An upper time bound between retransmissions of positive acknowledgement packets (¢, true)
from the receiver.

Il An upper bound between increase-upper,(t) steps of the receiver. (This upper bound will
usually be bigger than [, since increase-upper, (t) writes to stable storage.)

d An upper bound on channel delay.

Furthermore, the channel retry number k is a fixed positive integer, which represents the number
of retries that will guarantee delivery of a packet.

We consider 3, p, and a one by one.

The Timing Constant [

The timing constant 3 occurs in the definition of the increase-upper,(t) steps above and indicate
the amount by which upper, should be set bigger than time,. Assume that the sender’s local
time is € ahead of real time and the receiver’s time is € behind. If the sender picks a timestamp
for the current message and this message arrives very fast (in fact arbitrarily fast since we have
no lower bounds in the system) at the receiver, the timestamp of this message will be 2¢ larger
than the receiver’s local time. Since the message must be accepted, upper, must be at least 2¢

10.3. The Sender and the Receiver 203

larger than time, at any moment (where the receiver is not crashed). When increase-upper,(t)
has occurred, it will recur before [/ time units. Thus, 8 should satisfy

8 >2e+ 1

Note, the smaller 3 is, the more often increase-upper,(t) steps (and thus writes to stable storage)
are required to happen. On the other hand, if 5 is chosen too big, recovery will be delayed (cf.
the definition of recover,).

The Timing Constant p

The timing constant p occurs in the definition of the increase-lower,(t) steps above and indicate
the amount by which lower, must be smaller than ¢ime,. The p bound should guarantee that
very slow messages from the sender will still be accepted. Assume the sender’s local time is
behind real time and the receiver’s local time is € ahead. By the time the sender associates a new
timestamp ¢t with the current message, t = time, — 2¢. Now, the sender will succeed in placing
the current packet in the channel after at most k retries and the delay between each retry is at
most [,. Thus, after kI, time units, from the time the timestamp was chosen, the current packet
must have been placed in the channel, and after at most d time units the packet will be received.
Thus, during the time of transmission, the receiver’s local time has increased by at most ki, + d
time units (it cannot have increased by more since it was already the maximum amount ahead
of real time). We finally get that the timestamp ¢ will be time, — kl; + d + 2¢ at the time of
receipt in this worst case. Thus,

p >kl +d+ 2e

The Timing Constant «

We finally consider o which occurs in the definition of cleanup,. Clearly, a is the most compli-
cated of the timing constants.

There is no bound on how fast new packets can arrive at the receiver, nor are there bounds
on how fast the receiver delivers accepted messages to the user. The a bound has to indicate
the first time by which it is no longer necessary to remember last,. This bound thus has to be
calculated from the time the last message accepted (i.e., the message for which last, gives the
timestamp) is delivered.

We consider a situation where neither the sender nor the receiver crashes.

Let now,, be a real time when receive_msg(m) occurs and buf, becomes empty, and let
time, ., be the corresponding value of time,. Also, let now,en4.qck,; denote the real time when
the receiver performs its ith send_pkt, (¢, true) step for the current timestamp ¢ (contained in

last,). We have,
nowsend-ack,l S now rp, + lr

The maximum delay until the receiver receives (m,t) again is kl; 4+ d. (Just before the receiver
performed send_pkt, (t, true) the sender might have succeeded in putting a copy of (m,t) into
the channel, and this copy could be fast such that it arrives with no delay at the receiver, i.e.,
just before send_pkt (t,true). Since such copies are not buffered by the receiver, the receiver
has to wait for the next copy which arrives after at most kl, + d time units.) Thus,

nowsend-ack,Z S nowsend-ack,l + (kls + d + lr)
= now, + 1+ (kl,+d+1,)

204 10. The Clock-Based Protocol C

And for the kth send_pkt, (¢, true),

nowsend-ack,k S nowsend-ack,k—l + (kls + d + lr)

= nowsend-ack,k—Z ‘I’ Q(kls ‘I‘ d ‘|‘ lr)

= nowsend-ack,l + (k - 1)(kls + d + l,.)
= noW, + 4+ (k=1)kl; +d+1,)

Now, let now qcp.reva be the real time when (¢, true) is received by the sender and let time, 4op reva
be the corresponding value of time,.

now gck-revd S nowsend-ack,k + d
= nowe, + 4L+ k=1)kl;+d+1.)+d
= now, + k(. +d)+ (k= 1)kl

Since time, — ¢ < now and time, + € > now, we have

timer,ack-rcvd — € S NoW gck-revd
< nowp, + k(. +d) + (k= 1)kl
< timey 4+ €+ k(L +d) + (k= 1)k,
Thus,
timer,ack-rcvd S timer,rm + k(lr + d) + (k - 1)]6‘[5 + 2¢

Since the state variable rm-time, of the receiver is set to time, ,, at the time of the last
receive_msg(m) step, we see from the definition of cleanup, that a should satisfy

a>k(l, +d)+ (k- 1)kl + 2¢
Note that
e « depends on k? (but fortunately not on k*d).

e the 2¢in «a is actually not obtained as the maximum difference between sender and receiver
clocks but as two times the maximum receiver clock skew.
10.3.7 Liveness
The liveness requirements to the sender and receiver processes of C are weak fairness to sets of

locally-controlled actions.

Sender
Let
Ce. = {ack(true), ack(false), recover,} U

{choose_id(t) |t € T} U
{send_pkt . (m,id) | m € Msg A id € ID}

10.4. The Specification of C 205

Then the liveness condition L¢ 4 is induced by
QC,s é WF(CC,S)

Note, that it is actually not necessary to add the send_pkt . (m,id) actions to Cc ; since these
actions are already constrained by the stronger timing requirements.

In the untimed setting weak fairness to locally-controlled actions is trivially environment-free.
This is not necessarily the case in the timed setting. The problem is that even with the simple
weak fairness requirements, the system might still collaborate with a Zeno environment and
generate outcome timed executions that are not Zeno-tolerant. However, ()¢ , is environment-
free for Ag . Intuitively, consider a strategy that for actions in C¢, | always waits the maximum
delay [, before performing an action in Céys. The actions in (¢, should then be handled
similarly with some arbitrary positive real number as bound. If the sets C¢ , and Cc¢ , becomes
disabled, there are no requirements so the strategy should just let time pass forever. With this
strategy, if the environment is not Zeno, each outcome timed execution will be in L¢,, and if
the environment is Zeno, each outcome timed execution will be Zeno-tolerant.

Finally note that, by Proposition 3.4, ()¢, is stuttering-insensitive.

Receiver

Similarly, let

Com = {recover,} U {receive_msg(m) | m € Msg} U
{send_pkt . (id, true) | id € ID}
Core = {send_pkt, (t,false) |t € T}

)

Then L¢, is induced by

QC,T é WF(CC,TI) A
WF(CC,TZ)

As for the sender, ()¢, is stuttering-insensitive and environment-free for A¢ ,.

10.4 The Specification of C

C is the parallel composition of sender, receiver, two channels, and clock subsystem. First define

C" = (AL, LY) as,
" = CJ|C,[|Ch,[|Ch JICl
By Proposition 4.17, LY, is induced by ¢, which is defined as

Qc = Qcs NQcr NQcnt, N Qent, N Qar

C” has channel communication as well as ticks from the clock subsystem as external (output)
actions. To obtain a specification where the ticks are hidden, define

AL 2 {tick,(t) |t € TYU {tick,(t) |t € T}
Then €’ = (Af, L() is defined as

C/ C// \ -/4/0

206 10. The Clock-Based Protocol C

By Proposition 4.18, L{, is induced by Qc.
Finally, to get C, we hide the channel actions. First define

Ac 2 {send_pkt,(m,t)|m c Msg ANt € T}U
{receive_pkt . (m,t)| m € Msg Nt € T} U
{send_pkt (t,b) |t € T Ab € Bool} U
{receive_pkt, (t,b) |t € T A b € Bool}

Then the specification of C = (A¢, L¢) is given by
C = '\ Ac
Again, by Proposition 4.18, L is induced by Qc¢.

We now turn to proving the correctness of C. This involves, among other things, use of the
Embedding Theorem of Section 2.3.

10.5 Correctness of C

The objective of this section is to prove correctness of C—mnot with respect to G but with respect
to the patient version of G. Then the Embedding Theorem of Chapter 2 will allow us to conclude
that C correctly implements patient(S).

First, recall that the G protocol uses a set ID of identifiers that has to satisfy certain
conditions (cf. Section 8.1). We instantiate this set with the time domain T, which clearly
satisfies the conditions. Thus, we set ID = T in the proofs below.

Next, recall from Section 9.4 that we first proved that H' correctly implements G’, where
H’ and G’ are the versions of H and G with channel communication as external actions. This
was because the Execution Correspondence Theorem gives a stronger result the more external
actions the systems have in common. The same motivation leads us first to consider the proof
that C’ correctly implements patient(G"). Thus, let GP' = (A%, %) be defined as

G = patient(G')

By Proposition 4.22, L% is induced by Qg and Q¢ is minimal.

In order to prove that C’ correctly implements G?’, we first enhance C’ with history variables
and thereby obtain " = (A’é/,L’é/). We then prove several invariants of A’é/ and show the
existence of a timed refinement mapping from Aé/ to AL'. Finally, this refinement result is used
to prove that cr’ correctly implements G?’ and, in turn, that C correctly implements patient(S).

10.5.1 Adding History Variables

We add two history variables to C’ and denote the resulting live timed 1/0 automaton by
CM = (A, LE).

‘ Variable ‘ ‘ Type ‘ Initially ‘ Description ‘
used, H|T* 3 The list of timestamps used by the
sender. Same as at the G level.
deadline H | TuU{cx} 00 An estimated deadline on arrival of the
current packet.

‘ H = History ‘

10.5. Correctness of C 207

We now show how the history variables should be updated (cf. Section 9.4.1 where history
variables are added at the H level). We refer to Section 5.2.5 for a description on how we are
allowed to manipulate the history variables.

choose_id(t)
Precondition:
(* Precondition from C, *)
Effect:
(* Effect clause from C. *)
useds := used: "1

if mode, # rec then
deadline := now + kl. + d

recetve_pkt,, (m,t)
Precondition:
(* Precondition from Ch, *)
Effect:
(* Effect clause from Chf,)
(* Effect clause from C; *)

if mode, # rec then
if lower, < t < upper, then

if t = last. A\ mode. = send then
deadline := oo

else if last, < t < lower, then

else if mode, = idle A last, = t then

crash crash,
Effect: Effect:
(* Effect clause from C; *) (* Effect clause from C; *)
deadline := oo deadline := oo

By Lemma 5.32, L' is induced by Qc.

10.5.2 Invariants

In this section we state the invariants of A’é/ we need below. The proofs are deferred to Ap-
pendix C.

The first invariant deals with the local clocks of the sender and receiver in A’é/ and states
that the maximal clock skew for these is ¢, which then implies that time, and time, can differ
by at most 2e.

Invariant 10.1

1. time, = ctime,

2. time, = ctime,

208 10. The Clock-Based Protocol C

3. |times, — now| < ¢
4. [time, — now| < €
5. |time, — time,| < 2¢

When the receiver is not in recovery mode, upper, is updated regularly to ensure that timestamps
chosen by the sender are never “too big”. This is expressed by the following invariant.

Invariant 10.2
1. If mode, # rec then upper, > now + ¢

2. If mode, # rec then upper, > time,

v

3. If mode, # rec then upper, > time,

The following invariant deals with last,. Since the local clock time, can never decrease and due
to the facts that the current timestamp is taken from time,, and last, gets reset to time, after a
crash, it is the case that last, is always greater than or equal to time,. Furthermore, the current
timestamp (i.e., the value of last, when mode;, = send) can never be 0.

Invariant 10.3

1. last, < time,

2. If mode, = send then last, > 0
| |

The state variable last, contains the timestamp of the last message accepted by the receiver (or
0 right after recovery or cleanup). The next invariant states that the value of last, can never be
considered a good timestamp by the receiver. (Otherwise the receiver could accidentally accept
the same packet twice). Specifically, last, is always less than or equal to lower,. Furthermore,
lower, is always less than or equal to upper,.

Invariant 10.4

1. last, < lower,

2. lower, < upper,

The next invariant states that the number of unsuccessful attempts (since the last successful
attempt) to send a packet (m,t), where ¢t > last,, is always 0. Actually, no attempts can ever
have been made to transmit (m,t) since the sender cannot yet have issued the timestamp t.
Furthermore, the number of unsuccessful attempts (since last successful attempt) to send any
packet can never be greater than or equal to k (the channel retry number).

10.5. Correctness of C 209

Invariant 10.5

1. If t > last, then count,.(m,t) =10
2. countg(m,t) <k—1

The following invariant is a key invariant and states properties of timestamps associated with
messages and acknowledgements in the channels.

Invariant 10.6
1. If (m,t) € packets(sr) then ¢ < last,
2. If (m, last,) € packets(sr) A mode, = send then m = current-msg,
3. last, < last,
4. If (¢, true) € packets(rs) then t < last,
5. If t € nack-buf, then t < lower,
6. If (t,b) € packets(rs) then ¢t < lower,
|
Properties of the relationship between lower, and last, are stated in the following invariant.
Invariant 10.7
1. lower, < time,
2. If last, < time, then lower, < time,
|

The sender chooses increasing timestamps as indicated by the next invariant.

Invariant 10.8
1. If ¢ precedes t' in used, then t < t'
|

Due to the way the channels deal with the maximum channel delay d, the following invariant

holds.

Invariant 10.9

1. If ((m,t),t') € sr then ¢ < now +d

210 10. The Clock-Based Protocol C

To state the next invariant, we need a few definitions. Define the function mintime with the
following signature

mintime : P x (B(P xT))—T

in the following way

.y a t if(p,t)yechAY(p,t')ech:(t'>1
mintime(p, ch) = { 0 otierv&zise) |)
Thus, mintime(p, ch) gives the minimal send time associated with the packet p in ch (and
defaults to 0 if p ¢ packets(ch)). Remember from the way we model the channels sr and rs that
each element in the channels has two times associated with it: one is a timestamp chosen by
the sender; the other represents the real time when the element was put into the channel and is
called the send time of the packet. The function mintime returns send times.

For any state s of A’é/ we define s.bound in the following way, where we use m and { as
shorthands for s.current-msg, and s.last,, respectively.

00 if s.mode, # send
d 4+ mintime((m,t), s.sr) if s.mode, = send A
s.bound = (m,t) € packets(s.sr)

s.dast(CL) + (k=1 = s.count, (m, 1))l + d if s.mode, = send A
(m,t) & packets(s.sr)

Thus, s.bound represents an estimated time of arrival for the current packet. With this definition

we can prove very important properties of the history variable deadline.

Invariant 10.10
1. bound < deadline

2. now < bound

3. now < deadline

4. If deadline # oo then deadline < last, + ¢ + ki, + d
5. If deadline # 0o then now < last, + € + kl, + d

6. If deadline # oo then last, > lower,

7. If deadline # oo then mode; = send A mode, # rec

The receiver is allowed to clean up its state, i.e., to forget the timestamp of the last message
accepted and move to idle mode, when a sufficiently long time has elapsed since the message
was delivered to the user. This is because by then the receiver can be certain that the sender
has received a positive acknowledgement packet for the current packet. In the specification of
the receiver, a indicates how long time the receiver must wait before cleaning up. The following
invariant captures the fact that « is properly defined. We do not prove the invariant but note
that it can be proved in a fashion similar to the proof of Invariant 10.10.

10.5. Correctness of C 211

Invariant 10.11

1. If mode, = send A mode, # rec A time, > rm-time, + « then last, # last,

The final two invariants are trivial and state that any timestamps occurring in the channels are
positive.

Invariant 10.12
1. If (m,t) € packets(sr) then t > 0
|

Invariant 10.13
1. If (¢,b) € packets(rs) then t > 0
|

We refer to the conjunction of the invariants above by Icn.

10.5.3 Safety

We now define a function from states(AL') to states(A%'). Below, in Lemma 10.15, this function
is proved to be a timed refinement mapping from A’é/ to AL with respect to Icn and Ig. (Note,
that the invariant Ig of Ag is clearly also an invariant of A’(’}/.)

Below we use the notation (¢;,,] to denote both the left-open interval from a to b and the
set {t |t <t <ty}. Similar notation is used for the other kinds of intervals.

Definition 10.14 (Refinement Mapping from A% to A%')
If s € states(AL") then define Rcg(s) to be the state u € states(AL') such that

1. u.now s.now
w.mode = s.mode;
u.buf = s.buf,
w.current-msg, = S.current-msg,
w.current-ack, = s.current-ack,
w.used, = s.used,
w.mode, = s.mode,
w.buf = s.buf,
u.nack-buf s.nack-buf
2. u.last, = (if s.last; = 0 then nil else s.last;)
u.last, = (if s.last, = 0 then nil else s.last,)
3. u.good, = {s.time,}\ {s.last,}
4. u.good, = (s.lower,,s.upper,]
5. w.issued, = (0, s.upper,]

6. w.current-ok = (s.deadline # o)

212 10. The Clock-Based Protocol C

7. u.sr = packets(s.sr)
w.rs = packets(s.rs)

Note how the values of most variables at the G level correspond directly to the value of the same
variables at the C level as expressed by Part 1. Part 2 gives the trivial correspondence for the
last, and last, variables. Parts 3-5 contain the interesting aspects of the mapping: good,—the
timestamps the sender can associate to messages—consists of the value of time,, but only if
the clock has increased since the last timestamp was chosen; otherwise good, is empty; good,
is, as expected, the left-open interval from lower, to upper,; finally, the receiver has issued all
timestamps up to and including upper,. The correspondence in Part 6 between current-ok at
the G level and deadline at the C level is obvious. Finally, Part 7 states that each channel at
the G level is obtained from the corresponding channel at the C level by removing the send time
components of all elements.

We now prove that Rcq is in fact a timed refinement mapping from Aé/ to AL’ (with respect

to I and Ig).

Lemma 10.15

! 12 .
Aé StR AZ()} via RCG'

Proof

We prove that Rcq is a timed refinement mapping from A’é/ to AL’ with respect to Icn and Ig.
We check the three conditions (which we call real time correspondence, base case, and inductive
case, respectively) of Definition 5.18.

Real Time Correspondence
From the definition of Rcg we see that for all states s of C, Rog(s).now = s.now as required.
Base Case

For the initial condition, let s be the start state of C. Then it is easy to check that Rcg(s) is a
start state of AL

Inductive Case

Assume (s,a,s') € steps(AL') such that s and s satisfy Ion and Ryg(s) satisfies Ig. Below
we consider cases based on a (and sometimes subcases of each case) and for each (sub)case we
define a finite execution fragment a of A% of the form (Rca(s),a',u”,a”, v, ..., Rea(s')) with
vis-trace(a) = vis-trace(a). For brevity we let u denote Ryg(s) and v’ denote Rpg(s').

a=v

Then (u,v,u’) € steps(A%'): the only change in going from s to s’ is that the now variable
increases, thus, by definition of Rcg, the only difference between u and u' is that the now
variable of AL’ increases and all such changes are allowed in A%’

10.5. Correctness of C 213

a € {send_msg(m), receive_msg(m), ack(b)}

Then it is easy to see that (u,a,u’) € steps(AL'). This step (and finite execution fragment)
clearly has the right visible trace.

a € {crash, crash, }

Then it is easy to see that (u,a,u’) € steps(AL'). This step (and finite execution fragment)
clearly has the right visible trace.

The only thing to note here is the handling of deadline. The step of A’é/ changes deadline to oo
but this corresponds, according to the definition of Rcg, to changing current-ok to false in A,
as required by the definition of the crash actions in A%’

a = Tecover,

We show that (u, recover,,u”, shrink_good (s.time,),u'), where u” is defined below, is a finite
execution fragment of A%’ by showing that (u, recover,,u”) and (u”, shrink_good (s.time,), u')
are steps of A%'. Clearly the execution fragment has the right visible trace.

Define «".mode, = idle
u” . last, = s.lime,
u”’.buf = ¢
u”.current-msg, = nil
u'.current-ack, = false
u’.x = w.x for the remaining state variables x

First, consider (u, recovers,u”). From the definition of recover; in A’é/ we have that s.mode, =
rec which implies, by the definition of Rcq, that also u.mode, = rec. Thus, recover, is enabled
in u. Then, by definition of u” and recover, in AL', clearly (u, recover,,u") € steps(A%").

Next, consider (u”,shrink_good,(s.time,),u’). The definition of shrink_good, in AL’ has no
precondition, so shrink_good (s.time,) is enabled in «”. From the definitions of v’ and Rcg we
have that u”.good, = u.good, C {s.time,}.

We must show that the differences between u” and «' are allowed by the definition of the
shrink_good,(s.time,) steps in AZ’. This amounts, by the definition of shrink_good (s.time,) in
AP to showing that u'.good, = u”.good, \ {s.time,} and that all other state variables of A%’
have the same values in «” and «’'.

For good, we have that u'.good, = 0 (since s'.time, = s'.lasty), but from above we have
u'.good, C {s.time,}, so u'.good, = u'.good \ {s.time,} as required.

It is easy to check that the rest of the state variables of A%’ have the same values in «” and u/'.

T = TECOoVET,

We show that
(u, shrink_good . ((s.lower,, s.upper,]),u”, grow_good, ((s.upper,, s.time, + (3]),w", recover,,u’),
where 4" and u” are defined below, is a finite execution fragment of A%’ by showing that
u, shrink_good ((s.lower,, s.upper]),u"), (u”, grow_good ((s.upper ,s.time, + (]),u""), an
h ; k dr l , 1 1 dr , t 1" d
u", recover,, ') are steps of A%'. The execution fragment clearly has the right visible trace.
a g g

214 10. The Clock-Based Protocol C

Define u”.good, =
u'.x = w.xz for the remaining state variables x

First, consider (u, shrink_good,((s.lower,, s.upper,]),u”). From the precondition of the recover,
steps in Aé/ and the definition of Rcg we have that u.mode, = s.mode, = rec. Then In-
variant 8.6 Part 2 implies that w.current-ok = false, thus, shrink_good ((s.lower,,s.upper,]) is
enabled in u. Since the definition of Rcg implies that u.good, = (s.lower,, s.upper,], it is easy
to see that (u, shrink_good . ((s.lower,, s.upper,]),u") € steps(AL').

Define u"”.issued, = (0,s.time, + 5]
uw".good, = (s.upper,,s.time, +]
u'" .z = wu”.x for the remaining state variables x

Next, consider (u”, grow_good,.((s.upper,,s.time, + 3]),w"). By definition of v’ and Rcg we
have that u”.issued, = u.issued, = (0, s.upper,]. So, (s.upper,,s.time, + 3] and u”.issued, do
not intersect. Also, by adding (s.upper,,s.time, + 3] to issued, we still have infinitely many
unused timestamps left in T. Thus, grow_good,((s.upper,, s.time, + (3]) is enabled in u”. Since
u"”.good, = () by definition, it is easy to see that the change in good, is as required by the
definition of the grow_good, ((s.upper,,s.time, + 3]) steps in AL'. To show that also issued, is
handled correctly, we must show that «'".issued, = u”.issued, U (s.upper,,s.time, + 3], i.e., we
must show that (0, s.time, + 5] = (0, s.upper,] U (s.upper,, s.time, + 3]. A sufficient condition
for this to hold is that s.time, + 3 > s.upper,, but this is implied by the precondition of the
recover, step in Ag/. To leave all other state variables unchanged is also as required by the
definition of grow_good, ((s.upper,, s.time, + (3]) in A%’

Finally, consider (v, recover,,u'). We have u"’.mode, = u.mode, = s.mode, = rec, so recover,

is enabled in uw"/. We show that all state variables are handled according to the definition of
. / . . .

recover, in AY,". The only interesting cases are issued, and good,.

For issued, we have v .issued, = (0, s.time,+ /] by definition of "’ and furthermore u’.issued, =
(0, s".upper,] = (0,s.time, + 5] by definition of Rcg and the recover, step in A/ Thus,
u"issued, = u'.issued, and this is allowed by the definition of recover, in A% if |T\ s'.issued,| =
oo which is clearly satisfied and if u'.issued, includes a) u”.issued,., b) " .used,, and ¢) w".good .
Case a) is clearly satisfied. For b) we have u"".used, = u.used; = (0, s.last,]. Thus, we must show
that s.last, < s.time, + 3, but this follows from s.last, < s.time, < s.time, + 2¢ < s.time, + 3,
where the first inequality follows from Invariant 10.3 Part 1, the second inequality follows from
Invariant 10.1 Part 5, and the third inequality follows from the definition of 5. For ¢) we have
w".good; = u.good, = {s.time,} \ {s.last,}. It suffices to show that s'.time, < s'.upper, (since
§'.time, = s.time; and s'.upper, = s.time, + [3), but that follows from Invariant 10.2 Part 2.
Thus, issued, is handled correctly.

For good, we have u".good, = (s.upper,,s.time, +] and v'.good, = (s'.lower,, s .upper,]| but
since §'.lower, = s.upper, and s’ .upper, = s.time, + 3, by definition of the recover, step in Aé/,
we have that u".good, = u'.good, as required by the definition of recover, in A%’

a € {send_pkt .(m,t), send_pkt (1, true), send_pkt (t, false)}

It is straightforward to show that (u,a,u’) € steps(AL’). This step (and finite execution frag-
ment) clearly has the right visible trace.

a = receive_pkt . (m,t)

We consider cases.

10.5. Correctness of C 215

1. s.mode, # rec and s.lower, <t < s.upper,.

We show that (u, receive_pkt,,(m,t),u”, shrink_good .((s.lower,,t]),u’), where v is defined
below, is a finite execution fragment of A%’ by showing that (u, receive_pkt,,(m,t),u") and
(", shrink_good, ((s.lower,t]), ') are steps of AZ'. Clearly the execution fragment has the
right visible trace.
Define u”.good, = w.good, \ {t' |t <, 1t}

u' .z = «o'.xz for the remaining state variables z
First, consider (u, receive_pkt, (m,t),u”). By the case assumption and the definition of
Rcg, we have u.mode, # rec and t € u.good,. Then, by definition of receive_pkt , (m,t)in
AL and u it is easy to see that (u, receive_pkt,,(m,t),u") € steps(AL").
Then consider (u”, shrink_good . ((s.lower,,t]),u'). We show that shrink_good, ((s.lower,,1])
is enabled in uw”. Assume u”.current-ok = true (otherwise shrink_good.((s.lower,,t]) is
trivially enabled). Then, by definition of receive pkt,, (m,t) in A%’ we have u”.last, # t or
u’.mode, # send. By the precondition of shrink_good,((s.lower,,t]), we must show two
conditions.
1) First, since mode, ranges over {idle,send,rec} in A%', we have u.mode,(= u".mode,) #
needid. Thus, the first condition is satisfied.
2) Second, assume u”.mode, = send. We must show that v”’.last, ¢ (s.lower,,t]. From
above we have u”.last, # t. Then since §'.last, = u.last, = u’.last, = t, Invariant 10.6
Part 3 implies ¢ < u".last,. That suffices.
Thus, shrink_good,((s.lower,,t]) is enabled in u”.
We must show that all state variables of AL’ are handled correctly. This is easy for all
variables other than good, by explicit definition of u”.
For good, we must show that u'.good, = u”.good, \ (s.lower,,t]. Since §'.lower, =t and
s'.upper, = s.upper,, the definitions of Rcg and w” imply w”.good, = (s.lower,, s .upper,]\
{t' |t <, t} and u'.good, = (t,s .upper,). Thus, it suffices to show that if ¢ <, ¢, then
t' <t, but that follows directly from Invariant 10.8 Part 1. That suffices.

2. s.mode, = rec or ~(s.lower, <t < s.upper,)

We show that (u, receive pkt,,(m,t), ') € steps(A%L'). This step (and execution fragment)
clearly has the right trace.

We consider subcases.

(a) mode, = rec.
In this case the only difference between s and s’ is that s’.sr is missing one element
((m,1),t") compared to s.sr. Thus, the only difference between u and ’ is, by definition
of Reg, that w'.sr is missing one packet (m,) compared to u.sr.
Since s.mode, = rec we have u.mode, = rec, so in this case it is easy to see that
(u, receive pkt, (m,t),u') € steps(AL).

(b) mode, # rec, =(s.lower, <t < s.upper,), and last, <t < lower,.
In this case the only difference between s and s’ is that s'.nack-buf, = s.nack-buf, "t
and s'.sr is missing one element ((m,t),t"”) compared to s.sr. Then the definition of
Rcg implies that w’ and w are the same except that v'.nack-buf, = u.nack-buf, "t and
w'.sr is missing one packet (m,t) compared to u.sr.
Now, the definition of Rcg implies that w.mode, # rec and t ¢ w.good,, and since
s.last, < t, u.last, # t. Thus, by definition of receive_pkt,,(m,t)in A%', it is easy to
see that (u, receive pkt,,(m,t),u') € steps(AL").

216 10. The Clock-Based Protocol C

(¢) mode, # rec, =(s.lower, < t < s.upper,), =(last, <t < lower,), mode, = idle, and
last, = t.
In this case the only difference between s and s’ is that s’.mode, = ack and s'.sr is
missing one element ((m,t),¢"”) compared to s.sr. Then the definition of Rcg implies
that 4’ and u are the same except that u.mode, — idle, s.mode, = ack and u'.sr is
missing one packet (m,t) compared to s.sr.
We have, by definition of Rcg that u.mode, = idle and t ¢ w.good,. Furthermore,
the case assumption and Invariant 10.12 imply that s.last, > 0, so, by the definition of
Reg, u.last, = s.last, = t. Then, by definition of receive_pkt,, (m,t)in A%’ it is easy
to see that (u, receive_pkt,, (m,t),u') € steps(AL").

(d) mode, # rec, —(s.lower, <t < s.upper,), ~(last, < t < lower,), and (mode, # idle
or last, #1).
In this case the only difference between s and s’ is that s'.sr is missing one element
((m,1),t") compared to s.sr. Thus, the only difference between u and ' is, by definition
of Reg, that w'.sr is missing one packet (m,) compared to w.sr.
We must show that the definition of receive_pkt,,(m,t)in AL allows all state variables
except sr to be unchanged. (The change to sr is as required by receive_pkt,.(m,t).)
As in the previous case we have u.mode, # rec and t ¢ w.good,. Thus, according to
the definition of receive_pkt, (m,t) for the receiver of AL, the required changes to the
state variables are not given by the first alternative in the embedded if-statement.
Now assume ¢ # s.last, (cf. the case assumption). Then also ¢ # wu.last,. Then,
by definition of receive_pkt, (m,t) in AL', we see that in order for A%’ to allow
u'.nack-buf, = u.nack-buf, it suffices to show that ¢t # u.last,. By the case assumption
and Invariant 10.2 Part 2, Invariant 10.3 Part 1, and Invariant 10.6 Part 1, ¢ < s.last,.
Thus, u.last, = s.last, > t. That suffices.
Finally, assume that ¢t = s.last, and mode, # idle. Then it is clearly the case that
(u, receive_pkt ,(m, t), u') € steps(AL').

a = receive_pkt, (t,b)

We show that (u, receive_pkt, (t,b),u') € steps(A%'). This step (and finite execution fragment)
clearly has the right visible trace.

Since (¢,b) € packets(s.rs), the definition of Reg gives (¢,b) € u.rs. Thus, receive_pkt, (t,b) is
enabled in w.

We consider cases based on the if-statement in the definition of receive_pkt,, (¢,b) of the sender
in A’é/. In both cases a ((¢,b),t') element of s.rs gets removed and this corresponds, by the
definition of Rcg, to removing a (¢, b) element from u.rs, but this is as required by the definition
of receive_pkt, (t,b) in AZL'. Below we consider the remaining state variables of A%,

Assume s.mode, # send or s.last, # t. Then the only difference between s and s’ is the
change in the channel rs as described above, so the only difference between u' and wu is the
corresponding change in sr (according to Rcg). Now, the definition of Rcg implies that
u.mode, # send or u.last, # t so we see, from the definition of receive_pkt, (t,b) in AL’
that (u, receive pkt, (t,b),u') € steps(AL").

Then, assume s.mode, = send and s.last, = t. From Invariant 10.13 we have t > 0, so the
definition of Rcg implies that w.mode, = send and wu.last, = t. Thus, the condition of the
if-statement in A% is satisfied. It is now easy to see that the changes made by A’é/ correspond

10.5. Correctness of C 217

to allowed changes in A’é/. (Note that w.last, = w'.last; but this is allowed by the definition of
receive_pkt, (t,b) in AL').

a = choose_id(t)

We show that (u, prepare, u”, grow_good (), w" choose_id(t),u"”, shrink_good (), u'), where u”,
u", and u”” are defined below, is an execution fragment of A% by showing that (u, prepare, u"),
(u", grow_good (t),u""), (u", choose_id(t),u""), and (u"", shrink_good(t),u’) are steps of AL’
Clearly the execution fragment has the right visible trace.

Define v”.mode, = needid
u”’.good,, =0
u”’.current-msg, = head(u.buf,)
u”.buf = tail(u.buf)
u”.current-ok = (if w.rec, # rec then true else u.current-ok)
u’.x = w.x for the remaining state variables x

We first consider (u, prepare,w”). From the precondition of the choose_id(t) steps in A we have
that s.mode, = idle and s.buf, # . This implies, by the definition of Rcg, that u.mode, =
idle and w.buf, = s.buf; # ¢. Thus,prepare is enabled in u (and furthermore the definition of
u" is well-defined). Now, by definition of «”, clearly (u, prepare,u”) € steps(A%").

Define u"'.good, = {t}
u'.x = /. for the remaining state variables x

Next, consider (u”, grow_good (t),uw"). We have, from the definition of u”, that v’.mode, =
needid, so from the definition of grow_good,(t) in AL’ we have to show three conditions in
order to show that grow_good (t) is enabled in u”. First, assume u”.mode, # rec. We must
show t € u”.issued,. We have u”.issued, = wu.issued, = (0, s.upper,] (by definition of v’ and
Rea) and t = s.time, > s.last, (from the precondition of choose_id(t) in AL'), so we must
show that s.time, < s.upper, but that follows from Invariant 10.2 Part 2. Second, assume
u”.current-ok = true. We must show ¢ € u”.good,., thus since u”.good = wu.good,, we must
show time, € (s.lower,, s.upper,]. The lower bound follows from Invariant 10.7 Part 2 since the
precondition of the choose_id(t) step in A’é/ implies that s.last, < s.time,. The upper bound
is already shown in the treatment of the first part of the precondition above. Third, we must
show that ¢ ¢ u”.used,, thus we must show that s.time, ¢ (0, s.last,] but that follows from the
precondition of the choose_id(t) steps in A%, Thus, we have shown that grow_good () is enabled
in u”. Now, by definition of " and since w”.good, =), obviously (u”, grow_good (t),u") €
steps(AL).

Define v’ .mode, = send
w'" last, =
" used, = u".used;"t
u'".x = o2 for the remaining state variables z

Next, consider (u", choose_id(t),w""). By the definitions of w”, u"’, and Rcg we have that
u”.mode; = needid and t € u"”.good, (= {t}). Thus, choose_id(t) is enabled in . By
definition of v and choose_id(t), clearly (u", choose_id(t),u"") € steps(AL').

Finally, consider (u"", shrink_good /(t),u’). From the definition of shrink_good (t) in A%’ we see
that we must show that «”” and u’ are the same except that u’.good, = v'"".good \ {t}. From the
definition of Rcg and the choose_id(t) step of AL we have u/.good, = {s'.time,}\ {.last,} = 0.

218 10. The Clock-Based Protocol C

Thus, since u"”.good, = u"'.good, = {t}, the condition on good, is satisfied. It is trivial to check

that all other state variables of A% are handled correctly.

a = increase-lower, (1)

We show that (u, shrink_good,((0,1]),u') € steps(AL'). This step (and finite execution fragment)
clearly has the right visible trace.

From the precondition of increase-lower,(t) in A’é/ we have s.mode, # rec and s.lower, <t <
s.time, — p.

We first show that shrink_good, ((0,t]) is enabled in w. If w.current-ok = false then this
is obvious. So assume u.current-ok = true. We must check two conditions. First assume
w.mode, = needid. Then we must show that (0,¢] N u.good, =) which, by definition of Rcg,
amounts to showing (0,¢] N ({s.time,} \ {s.last,}) = 0. Thus, it suffices to show ¢ < s.time,
which, by definition of increase-lower,(t) in Aé/, is the same as showing s'.lower, < s'.time,,
but this is implied by Invariant 10.3 Part 1 and Invariant 10.10 Part 6, where the latter in-
variant applies since u.current-ok = true implies s.deadline # oo which again, by definition of
increase-lower,(t), implies s.deadline # oo. For the second condition in the precondition we
must show, under the assumption that u.mode, = send, that u.last, # t, which is implied by
proving s'.last, # s'.lower,. Again, Invariant 10.10 Part 6 gives the result.

Thus, shrink_good . ((0,1]) is enabled in w.

To show that (u, shrink_good,((0,t]),u') € steps(AL') we must finally show that u'.good, =
u.good, \ {t} and that all other state variables in A% have the same values in u and v’. By defini-
tion of Rcg and increase-lower,(t) we have u.good, = (s.lower, s.upper,] = (s.lower,, s .upper,]
and u'.good, = (t,s .upper,], so since t > s.lower,, by the precondition of increase-lower, (1),
it is easy to see that the condition for good, is satisfied. Since the increase-lower,(t) step of
Aé/ only changes lower, and lower, is only used in the definition of Rcg to define good,., it is
obvious that all state variables, but good,, of AL’ have the same values in u and w’.

a = increase-upper,.(t)

We show that then (u, grow_good, ((s.upper,,t]),u’) € steps(A%'). This step (and finite execution
fragment) clearly has the right visible trace.

Since, by definition of Rcg, u.issued, = (0, s.upper,], it is obvious that u.issued, N (s.upper,,t] =
(0 and that | T\ (u.issued, U(s.upper,,t])| = co. Thus, a grow_good,.((s.upper,,t]) step is enabled
in u.

Now we first show that w'.issued, = u.issued,U(s.upper,,t] and u’'.good, = u.good, U(s.upper,.,t],
as required by the definition of grow_good, ((s.upper,,t])in AL'. For issued, we have u.issued, =
(0, s.upper,] and u'.issued, = (0, s".upper,] = (0,t]. Now, since t > s.upper,, by the precondition
of increase-upper,(t), the condition for issued, is clearly satisfied. For good, we similarly have
u.good, = (s.lower,,s.upper,] and u'.good, = (s .lower,,s upper.] = (s.lower,,t]. Thus, the
condition for good, is also satisfied.

We must finally show that all other state variables in A%’ have the same values in u and u’, but
this is obvious since the increase-upper,(t) step of Aé/ only changes upper,, and upper, is only
used in Rag to define good, and issued,..

10.5. Correctness of C 219

a = cleanup,

We show that (u, cleanup,,u') € steps(A%'). This step (and finite execution fagment) clearly
has the right visible trace.

By the precondition of cleanup, we have s.mode, € {idle, ack} and s.time, > s.rm-time, + .
By the definition of Rcg and Invariant 10.10, we have u.mode, € {idle, ack} and u.mode, —
u.last; # u.last,. Thus, cleanup, is enabled in u.

It is now easy to see that the variable changes specified by the cleanup, step of Aé/ correspond
to the required variable changes of the cleanup, step of AZ'. (The change of rm-time, in A’é/
does not affect any of the variables of A%L"). Thus, (u, cleanup,,u') € steps(AL").

a = tick,
We consider cases.

1. s'.time, = s.time,
In this case clearly s’ = s and thus «/ = u. Then the finite execution fragment u of A%’
has the right properties.

2. §'.times # s.time,
We show that (u, shrink_good (s.time,),u”, grow_good (s’ .time),u’), where u” is defined
below, is a finite execution fragment of A%’ by showing that (u, shrink_good (s.time,),u")
and (u", grow_good,(s'.time), u') are steps of AZ'. Clearly this execution fragment has the
right visible trace.
Define u”.good, =)

u' .z = w.xz for the remaining state variables x

First, consider (u, shrink_good (s.time,),u”). Note that trivially shrink_good (s.time,) is
enabled in u. We check that all state variables of A%’ are handled correctly. By the
definition of Rcg we have u.good, C {s.time,}. Then, since u”.good, = (), good, is handled
correctly. By definition all other variables of A%’ have the same values in « and ", which
is also as required by the definition of shrink_good (s.time,) in AL’
Then, consider (u”, grow_good ,(s'.time), u’). By definition of Rcg (and the fact that mode,
ranges over {idle,send,rec} in A’é/), we have u.mode;, # needid and consequently, by
definition of u”, u”.mode, # needid. This shows that grow_good (s'.time) is enabled in
u’.
By Invariant 10.3 Part 1, s.last, < s.time,. The Case Assumption together with the
precondition of the tick, steps of the clock subsystem implies that s'.time, > s.time,.
Then since s'.last, = s.last,, we have s'.time, # s'.last,. This implies, by definition of
Rcg that w'.good, = {s'.time,}. Thus, good, is handled as required by the definition of
grow_good ,(s'.time) in AL'. Tt is easy to see that all the remaining variables of A% have the
same values in w” and «’ which is also as required by the definition of grow_good (s'.time)

in AZ'. That suffices.
a = tick,

We show that «' = u. Then the finite execution fragment u clearly has the right properties.

Now, clearly u’' = u since the tick, step of Aé/ only changes time, and ctime,, and these variables
are not mentioned in the definition of Rqq.

220 10. The Clock-Based Protocol C

This concludes the simulation proof.
|

This simulation result allows us to prove that Aé/ safely implements A%', and, in turn, that A
safely implements GP.

Lemma 10.16
AL Cgp AV

Proof
Immediate by Lemmas 10.15 and 5.23.
|

Theorem 10.17
Ac Cg; patient(Ac)

Proof

By Lemma 10.16 and Lemma 5.29 we get
A Cg; patient(Ag)
which by substitutivity (Lemma 2.33) implies
A\ Ac Cg; patient(Ag) \ Ac
which, by definition of Ag and Ac, gives
A\ Ac Cg; patient(AG) \ Ag
By Proposition 2.38 we then get
AL\ Ac Cg, patient(Ag \ Ag)
which finally, by definition of Ac and Ag, gives the result
Ac Cg; patient(Ac)

10.5.4 Correctness

The liveness proof presented in this section is significantly simpler than the liveness proof in
the proof of correctness of H. The reason is that the sender and receiver processes are very
similar in C and G, and that the packets sent to the channels at the two levels are of the same
type. Recall that at the H level, additional packet types (needid, accept, and done) made the
liveness proof very complex.

Actually, the only preliminary lemmas we need, express the fact that the timing requirements
of the timed channels are sufficient to guarantee the liveness requirements specified for the
untimed channels used at the G level.

Lemma 10.18
1. exec™(AL) = Vp : (OO (send_pkt , (p)) = OO (receive_pkt,,(p)))

2. exec®(AL) £ Vp : WF(receive_pkt,,(p))

10.5. Correctness of C 221

Proof
We only sketch the proofs.

1. Consider any packet p and assume « is an admissible execution of A’é/ such that a |
OO (send _pkt . (p)), thus, send_pkt, (p) occurs infinitely often in a. For every k occurrences
of send_pkt . (p) at least one element of the form (p,t), where ¢ is the send time for p, is
placed in sr. By the maximum channel delay d, we have that not later than real time ¢+ d
a receive_pkt,,.(p) action occurs. Then, since « is admissible, for every k occurrences of
send_pkt . (p) in « there is at least one occurrence of receive_pkt . (p). Thus, since there
are infinitely many occurrences of send_pkt,, (p), there are infinitely many occurrences of
recetve_pkt . (p), i.e, o = OO (receive_pkt,,.(p)). That suffices.

2. Consider any packet p and assume « is an admissible execution of A’é/ such that for some
suffix oy of @, ay = O(p € packets(sr)) (the enabling condition for receive_pkt,, (p) is
(p € packets(sr))). Then, for any time ¢, a receive_pkt,, (p) action occurs not later than
time t + d since all packets much have left the channel after at most the channel delay

time d. Then, since a is admissible, infinitely many occurrences of receive_pkt,,(p) occur
in ay. Thus, a; | OO (receive_pkt,,(p)). That suffices by definition of WF.

Lemma 10.19
1. exec™(AL) = Vp : (3O (send _pkt, (p)) = OO (receive_pkt, ,(p)))

2. exec™ (ALY |2 Vp : WF (receive_pkt, (p))

Proof
Similar to the proof of Lemma 10.18.
|

We can now show the main part of the liveness proof, namely, if a is a live execution of C"" and
o' is an execution of GP’ such that (a,a’) € Rcg, then o is live. As usual, we prove this result
by contradiction. Thus, we assume that o’ is not live and then derive a contradiction with the
fact that « is live.

Lemma 10.20

Let a € exec™(AL) and o' € exec™(AL') be arbitrary admissible executions of AL and AV,
respectively, with (o, ') € Reg. Assume o = Qc. Then o E Qg.

Proof
We prove the conjecture by contradiction. Thus,

AsSSUME: o' £ Qg
ProvE: False

10. The Clock-Based Protocol C

Lo EOAWFE

CG,s/rl) N

mode, = needid A mode, # rec) = O(Cq o)) V
-WF ngs/rg) V

-WF CG,s/r4) V

-Vp (OO (send _pkt, (p)) = OO (receive_pkt . (p))) V
=Vp : WF(receive_pkt, (p))V

-Vp (OO (send _pkt . (p)) = OO (receive pkt,(p))) V
=Vp : WF(receive_pkt,, (p))

ProoF: Immediate by the Assumption, the definition of Q. and the Boolean operators.

-~0(O

N =

. Case: o E~WF(Cq g/r1)

(2)1. o = OO(mode, € {idle,send,rec}) A CO~(Cq /1)
Proor: From Case Hypothesis (1) by noting that enabled(Cq /) = (mode, €
{idle, send,rec}) and by expanding WF.
(2)2. o | CO(mode, € {idle,send,rec}) A OO=(Cq o/ \ {prepare})
Proor: From (2)1 by definition of Rcg and by Lemmas 5.25 and 5.26.
(2)3. o E <>O(mode; € {idle,send,rec}) A
OO=(Ca,sym \ {prepare}) A
OO ({choose_id(t) |t € T})

ProoF: By (2)2 and the definition of A%'. Consider a suffix a; of a that satisfies
ar; E O-(Cq g1 \{prepare}). Then if mode, is send it will stay send unless a crash
occurs, in which case mode, changes to rec. However, once in mode rec, the sender
will stay there since no recover, occurs in a;. Now, choose_id(t) actions can only
occur if mode, = idle. However, then the sender never returns to mode idle again,
as we have just seen. Thus, there is at most one occurrence of a choose_id(t) action
in a. This gives the result.

(2)4. a = <>O(mode, € {idle,send, rec}) A CO-(Ce ;)

Proor: By (2)3 and the definition of C ;.
(2)5. a " WF(Ccy)

Proor: From (2)4 by using the definitions of WF and Cc ;.
(2)6. Q.E.D.

Proor: (2)5 contradicts the assumption that o = Qc.

. CasE: o | ~0O(O(mode, = needid A mode, # rec) = O(Cq o/r2))

(2)1. o = OO(mode, = needid A mode, # rec) A CO-(Cq o)
ProovF: Directly by Assumption (1).
(2)2. o E <>O(mode ¢ {idle,send, rec})
Proor: By (2)1, the definition of Rcg, and Lemma 5.26.
(2)3. Q.E.D.

ProoF: (2)2 contradicts the fact that always mode, € {idle,send,rec} at the C
level.

10.5.

Correctness of C 223

. Case: o E-WF(Cq r3)

(2)1. o = <O(mode, = rec V (mode, = rcvd A buf, # ¢) V mode, = ack) A
<>D_'<CG,5/7‘3>

Proor: By Assumption (1) and the definitions of WF and enabled(Cgq ,/3).

(2)2. a = OO(mode, = rec V (mode, = revd A buf, #) V mode, = ack) A
<>D_'<CG,5/7‘3>

Proor: From (2)1 by definition of Rcg, the fact that Cg /.3 contains external
actions only, and Lemmas 5.25 and 5.26.

(2)3. o | ~WP(Cen)

Proor: By (2)2 using the definition of WF, the fact that C'c,1 = Cq /3, and the
definition of enabled(Cc ;).

(2)4. Q.E.D.
Proor: (2)3 contradicts the assumption that o = Qc.

. Case: o E2WF(Cq /ra)

(2)1. Q.E.D.

Proor: Similar to Case (1)4 we get o = = WF(Cc,»), which contradicts the as-
sumption that o | Qc.

. Cask: o | —Vp : (OO (send_pkt,, (p)) = O (receive _pkt . (p)))

(2)1. o | dp : (OO (send_pkt ,(p)) A CO—(receive_pkt,,.(p)))
ProorF: Directly from Assumption (1).

(2)2. a = dp : (OO (send_pkt . (p)) A OO=(receive_pkt,,.(p)))
Proor: By (2)2, Lemma 3.5 Parts 7 and 8, and Lemma 5.25.

(2)3. a = =Vp: (OO (send_pkt . (p)) = O (receive_pkt, . (p)))
ProorF: Directly from (2)2.

(2)4. Q.E.D.
Proor: (2)3 contradicts Lemma 10.18 Part 1.

. Case: o | —Vp: WF(receive_pkt_ . (p))

(2)1. o | dp: " WF(receive_pkt,,(p))
ProorF: Directly from Assumption (1).

(2)2. o Edp:00(p € sr) A SO—(receive_pkt,,(p))
Proor: By (2)1 and the definition of WF.

(2)3. a = dp : O0O(p € packets(sr)) A CO=(receive_pkt,, . (p))

ProorF: By (2)2, Lemma 3.5 Parts 7 and 8, the definition of Rcg, and Lemmas 5.25
and 5.26.

(2)4. a = =Vp: WF(receive_pkt,, (p))
Proor: Directly from (2)3 and the definition of WF.

224 10. The Clock-Based Protocol C

(2)5. Q.E.D.
Proor: (2)4 contradicts Lemma 10.18 Part 2.

(1)8. CasE: o | —¥p : (OO (send_pkt,(p)) = OO (receive_pkt, (p)))

Proor: Similar to (1)6 using Lemma 10.19 Part 1.
(1)9. Cask: o' | =Vp: WF(receive_pkt, (p))

Proor: Similar to (1)7 using Lemma 10.19 Part 2.
(1)10. Q.E.D.

Proor: By (1)1 and the exhaustive cases (1)2—(1)9.

With this result, the timed refinement mapping result of the previous section, and Lemma 5.24
we can prove that cr’ correctly implements G’

Lemma 10.21
C Cp G

Proof
Immediate by Lemmas 10.15, 10.20, and 5.24.
|

This lemma allows us to prove that H correctly implements patient(G).

Theorem 10.22
C Ly patient(Q)

Proof

By Lemma 10.21 and Lemma 5.30 we get
C’ Cy; patient(G')
which by substitutivity (Lemma 2.33) implies
C'\ Ac Cy patient(G') \ Ac
which, by definition of Ag and Ac, gives
C'\ Ac Cy patient(G') \ Ag
By Proposition 2.38 we then get
C'\ Ac Cy, patient(G'\ Ag)
which finally, by definition of C and G, gives the result
C Ly patient(G)

Finally, we can state and prove the main result, namely that C correctly implements patient(S).

Theorem 10.23
C Ly patient(S)

10.6. A “Weak” Clock-Based Protocol 225

Proof

By Theorems 7.18 and 8.19 and the fact that Ty, is transitive, we have G T, S. Then the
Embedding Theorem (Theorem 2.37) implies patient(G) Cr patient(S). This, Theorem 10.22,
and the fact that Cp is transitive finally give the result.

10.6 A “Weak” Clock-Based Protocol

In the previous section we have considered the Clock-Based Protocol C and shown that it
correctly implements the patient version of the specification S. In the specification of C we have
made some timing assumptions. Specifically, we have assumed a certain channel retry number
k and a mazimum channel delay d. Now, what if these assumptions are somehow violated in a
physical implementation of the C protocol? What if a communication wire is damaged during
some construction work and rerouting leads to a transmission delay greater than d for some
packet p? Could the C protocol then suddenly reorder or duplicate messages? The answer is
“no”. Cis in [LSW91] designed to guarantee ordered at-most-once delivery even if all the timing
assumptions are violated. However, in case of timing violation the system might lose messages
even if no crashes occur, but message loss is generally considered less damaging than duplication.

We suspect that this scenario is general for timing-based communication protocols: without
timing assumptions the protocols satisfy some minimal requirements (like at-most-once message
delivery), and with timing assumptions the protocols satisfy additional properties (like exactly-
once message delivery in the absence of crashes).

Our proofs above do not indicate that C guarantees at-most-once delivery even if the timing
assumptions are violated. A formal proof of this property would show that a “weak” version of
C with no timing assumptions safely implements a “weak” version of S that allows messages to
be lost at any time. Note, that the reason why we only need to prove safe implementation as
opposed to correct implementation is that “at-most-once message delivery” is a safety property.

In order not to have to redo many of the proofs above when performing the proof between
the weak versions of the protocols, we think that the proofs should be structured as follows:
first prove that the weak version of C safely implements the weak version of S. Then add the
additional assumptions, prove additional invariants, and extend the first proof to prove correct
implementation.

In a temporal logic setting, like TLA [Lam91], “additional assumptions” are added as new
conjuncts to the specifications. Proof of safe implementation, which is expressed as implication
in the logic, should then use the new conjuncts of the specification to prove the new conjuncts
of the implementation. Exactly how this should be performed in our setting is left for future
research.

10.7 The Clock-Based Protocol With One Receiver and Multi-
ple Senders

Consider the situation depicted in Figure 10.2. The picture shows a situation where several
receivers—each interacting with a single sender—are placed on the same node. Thus, n copies
of the sender, receiver, and channels from above are put in parallel. Instead of implementing n
identical copies of the receiver on the receiver node, a single optimized process can be designed

226 10. The Clock-Based Protocol C

Sender; | Receiver;

Sender,, | Receiver,,

Figure 10.2

The Clock-Based Protocol with several receivers on the same node.

that implements the parallel composition of the receivers. Then, due to the substitutivity results
for live timed I/O automata (Proposition 2.33), such a multiple-sender receiver senders (called
the ms-receiver) will work in concert with the n senders. Below, we let ss-receiver denote the
single-sender receiver from above.

In [LSWO1], the receiver of the Clock-Based Protocol is in fact designed to handle multiple
senders. This receiver has a structure very similar to the ss-receiver. However, it is optimized so
that only one single upper, variable is needed. This is important since upper, variables must be
kept stable and stable updates are expensive. Furthermore, “old” lower, variables, i.e., lower,
variables for senders that have not sent messages for a long time, can be cleaned up such that
sufficient information about these old variables can be kept in a single common lower, variable.

This section discribes the design of the ms-receiver of [LSW91] and sketches the proof that it
implements the parallel composition of n ss-receiver. It turns out that because of the similarities
between the ms-receiver and the ss-receiver, the proof is very simple.

Figure 10.3 shows the visible actions of the ms-receiver. There are n versions of the channel
actions, receive message actions, and recovery actions but only one of both crash, and tick,.
This user interface is then the same as one would get by composing n copies of the ss-receiver in
parallel after indexing all locally-controlled actions with the index of the ss-receiver. It may seem
strange to have a recovery action for each index; however, since the ms-receiver should implement
and, thus, have the same user interface as the parallel composition of n (renamed) ss-receivers,
and since live timed I/O automata cannot synchronize on output actions (like recovery), it is
inevitable that the ms-receiver has n recovery actions. One should, thus, think of the ms-receiver
as offering recovery of its n parts, one by one.

Let C,,;, be a live timed I/O automaton modeling the ms-receiver. It should, then, be
proved that

Cms,r ELt Cr,l” U HCr,n

where C, ; = pi(C,) and the function p; maps each locally-controlled action of C, to an indexed

10.7. The Clock-Based Protocol With One Receiver and Multiple Senders 227

recetve_msg, (m)

receive_pkt,, ,(p)

send_pkt, | (p) recetve_msg,,(m) .

crash,

ms-receiver

recez’ve_pktmn(p) recovery 1

send_pkt,; . (p)

recover: n

tick,

Figure 10.3

The visible actions of the ms-receiver.

version of the same action, and is the identity mapping for the remaining actions. For instance,
pi maps receive pkt (p) to receive_pkt,, ,(p). (Actually, the processes C,,...,C,, are not
compatible in the strong sense where the ordinary state variable names of different processes
are required to be non-overlapping. So, for present purposes, assume that all state variables of
C,; (except now) are indexed with 1.)

We do not define C,,, , completely formally but sketch how it works. First, recall that in C,,
lower, indicates a lower bound on timestamps that the receiver will accept. Every time a new
message is accepted, lower, is advanced to the timestamp of that message. Furthermore, special
increase-lower, steps are in C,. allowed to increase lower, as long as it is kept small enough to
allow very slow messages from the sender to be accepted.

C,ns,» contains n versions (lower, 1, ..., lower, ,) of lower,—one for each sender—and each
variable lower, ; remembers the last timestamp received from the ith sender in order to ensure
that only messages with later timestamps will be accepted from that sender in the future.
In C,,,, lower,; is only advanced when packets are accepted from the ith sender, i.e., in
receive pkt, ;(p) steps.

Now, C,,,, furthermore contains a common-lower, variable. This variable is increased in
special increase-common-lower, steps, and whenever it advances past the value of a lower,;
variable, this lower,; variable is changed to nil, i.e., is cleaned up. Thus, common-lower,
captures all relevant information about the timestamps that must be accepted from senders
that have not sent for a while, as long as common-lower, is kept sufliciently small.

Also, C,,, , only needs a single upper, variable, which gives the upper bound on timestamps
that can be accepted from any sender.

Figure 10.4 shows how an increase-common-lower, step changes a lower, ; variable tonil. In
situation a), C,,, ,» will accept timestamps in the interval (common-lower, , upper,] from sender

228 10. The Clock-Based Protocol C

lower,» = nil lowery 1 lowery 3

f f

common-lower, upper,_.

lower,» = nil lower,1 =nil lowery 3

! f

common-lower, upper,

Figure 10.4

The difference between situation a) and b) is that an increase-common-lower, step of Cp
has advanced common-lower, and thereby has cleaned up lower; 3 (by changing it to nil).

2 and timestamps in the interval (lower,;,upper,] from sender i € {1,3}. In situation b),
lower, ; has been cleaned up and C,,,, will consequently now only accept timestamps in the
interval (common-lower,, upper,] from sender 1. However, this is safe since common-lower, is
kept sufficiently small (in the same way the lower, variable is kept sufficiently small in C,).

All other variables of C,, except time,, have n versions in C,,, .. For instance, C,,, , has the n
buffers buf, ,,..., buf, ,. However, of course, only one local receiver clock time, is needed.

We only specify the most interesting steps of C,,,,. These are the steps labeled with
receive_pkt . ,(m,t) or increase-common-lower,(t) actions.

57,1
receive pkt, ;(m,t)
Effect:
if mode,; # rec then
if (lowery; # nil A lowery; <t < upper,) V

(lower,; =nil A common-lower, < t < upper,) then
mode,; :=rcvd
buf, ;= buf, ;" m
lasty; =t
rm-time,; := 00
lower,; :==1
else if (lower,; # nil A last,; < t < lower, ;) V
(lower,; = nil A last,; < t < common-lower,) then

nack-buf, ; 1= nack-buf, , "t
else if mode,; = idle A last,; = t then
mode,; := ack

increase-common-lower, (t)
Precondition:
Vi: (mode,; # rec) A
common-lower, <t < time, — p
Effect:
common-lower, ==t
for all ¢ with lower,; # nil:
if common-lower, > lower,; then
lower,; :=nil

Note, that the timing constant p, which occurs in the definition of increase-common-lower,
steps, is the same constant as for the ss-receiver above.

10.7. The Clock-Based Protocol With One Receiver and Multiple Senders 229

Steps labeled by crash, should in C,,, change all mode, ; variables to rec.

It requires a timed refinement mapping to verify that C,,; , correctly implements C, || - - -||C,. .
This refinement mapping R,,, maps most variables one-to-one. Let s be any state of C,,, ,.
Then R,,;(s) is the state u that for all ¢ satisfies

® u.upper,, = s.upper,.

o u.time,; = s.time,.

o u.lower,; = (if s.lower,; # nil then s.lower, ; else s.common-lower,).
o u.z = s.x for the remaining variables z.

It is fairly straightforward to verify that R,,, actually is a timed refinement mapping. The way
lower, ; is defined in the mapping implies that a receive pkt, ;(m,t) step of C,,, . directly corre-
sponds to a receive pkt,, ;(m,t) step of C, || ---[|C, . In fact, there is the same one-to-one cor-
respondence for all other actions, except for increase-common-lower,(t) and increase-upper . (t).

A increase-common-lower,(t) step of C,,,, may change several lower,; variables to nil.
This corresponds at the abstract level to these lower,; variables being advanced. Thus, an
increase-common-lower,(t) step of C,,, . corresponds to a series of increase-lower, ;(t)—one for
each process identifier 7 for which lower,; = nil in C,,;, after the increase-common-lower,(t)
step.

An increase-upper,(t) step simply corresponds a sequence of steps labeled increase-upper, (),

.., increase-upper, . (t).

We do not complete the modeling of C,,; , in this report but leave this and the complete simu-
lation and liveness proofs for future work.

Chapter 11

Conclusion

11.1 Summary

This report contains two parts. Part I describes the formal models of [GSSL93] for timed and
untimed systems, and the associated simulation-based proof techniques. Also, an extended tem-
poral logic is developed, in which temporal formulas evaluate over executions of alternating states
and actions and, thus, are well-suited for describing and reasoning about liveness conditions—in
the timed setting via sampling characterizations of timed executions. It is furthermore shown
how application of the semantic operators of parallel composition, action hiding, and action
renaming is reflected in the syntax.

The proof techniques are used to prove that one system correctly implements a more abstract
system. A proof generally consists of three parts. First, several invariants of the systems are
proved. Then, secondly, a relation is defined and proved to be a simulation relation from the
concrete to the abstract system. During this process, one generally has to go back and prove
additional invariants. Finally, a liveness proof builds on top of the simulation result.

Part II presents a case study intended to check the adequacy of the formal framework on
large examples. In particular, two practical protocols for solving the at-most-once message
delivery problem on channels that may delete, duplicate, and reorder packets are considered.
One protocol is the Five-Packet Handshake Protocol of [Bel76], which is the standard protocol for
setting up network connections, used in TCP, ISO TP-4, and many other transport protocols.
The other protocol is the Clock-Based Protocol of [LSW91], which relies on certain timing
assumptions. Both protocols are sufficiently complicated that it seems that formal proof is the
only means by which their correctness can be verified.

Both the specification S of the at-most-once message delivery problem and the Five-Packet
Handshake Protocol, which we call H, are formalized as live I/O automata, however at very
different levels of abstraction. The specification S corresponds closely the the informal descrip-
tion of the at-most-once message delivery problem, and is easily checked to have the desirable
behavior. H is expressed as the parallel composition of several components.

The Clock-Based Protocol, which we call C, is formalized as a live timed I/O automaton. A
special MMT-specification style is used to specify the sender and receiver in a clear way since
the timing restrictions on these components are of the simple form: if a set of actions becomes
enabled (or stays enabled after being executed), then an action from the set must be executed
after some lower time bound and before some upper time bound, unless the set is disabled in the
meantime. C is formalized in the timed model and S in the untimed model. It is argued that
in this case correctness of C should be expressed with respect to the patient version of S, i.e.,

231

232 11. Conclusion

the object of the timed model that behaves just like S, except that it allows arbitrary passage
of time.

Instead of proving directly that H and C correctly implement S and patient(S), respectively, the
correctness proof is split into smaller parts by introducing intermediate levels of abstraction. In
particular, both H and C can be seen as implementations of an (untimed) Generic Protocol G.
By introducing intermediate levels of abstraction, not only do we get the advantage of splitting
complicated proofs into smaller parts, we also avoid that proofs of similar parts will have to be
repeated in the correctness proofs for both H and C; instead these similar parts are captured
in G and in the proof that G correctly implements S. In fact, we believe that G is sufficiently
general so that other practical protocols can be proved to be correct implementations of G.

A direct proof that G correctly implements S is still very complicated since it involves a
backward simulation, and backward simulations seem to be inherently difficult. Thus, to limit
the backward simulation to a development step as small as possible, the Delayed-Decision Spec-
ification D was defined. In this way the correctness proof for D requires a backward simulation,
whereas the correctness proofs for lower levels of abstraction only require the use of the simpler
(timed) refinements (plus the use of history variables).

The report contains full proof of correctness for the protocols. However, some of the proofs
are only sketched, when similar formal proofs are found elsewhere in the report.

11.2 Evaluation

The operational models of live (timed) I/O automata, the syntax for describing these, and the
proof techniques have proved to provide a powerful formal framework within which both untimed
and timed distributed systems can be formalized and proved correct. The abstract specification
is close to the informal problem statement and the formalism offers a clear, intuitive, and modular
approach to the description of the low-level protocols. In particular, for timed systems, where
the only timing restrictions are lower and upper time bounds on progress, the MMT-style offers
a clear notation.

It should be noted, however, that the example presented in this report only proves correctness
of a timed protocol with respect to the patient version of an (untimed) specification. This means
that the timing assumptions of the timed protocol are only used to prove certain invariants,
whereas the handling of time the simulation proofs is almost trivial. [LA91] deals with timed
simulation proofs (with non-patient specifications) for MMT-style systems.

Some aspects of performing the correctness proofs are intellectually challenging. In particular,
defining simulation relations involves a lot of insight and intuition about the systems, and also
finding the sequence of abstract steps that corresponds to a given concrete step requires key
intuition. In fact these two aspects of the proofs provide important documentation of the
functionality of systems and can be used to convey intuition about these.

However, in a simulation proof one must prove that the sequence of abstract steps has the
right properties. This involves checking that the steps are in fact steps of the abstract system,
which, in turn, amounts to checking that each variable is handled according to the abstract
transition relation. This part of the proof involves a lot of tedious details, and forms a quite
sizable part of the total proof. Because of the details, the proof is very difficult to maintain;
sometimes, during a proof attempt, one has to go back and change either the abstract or the
concrete specification, which may lead to a need to change part of the proof already done.
Unless extreme care is taken, such changes are likely to introduce inconsistencies in the proof.

11.3. Further Work 233

Apart from this, simulation proof techniques scale well to large examples and impose a nice case
structure on the proof.

Liveness proofs are also challenging. They, too, require insight into the way the protocols
work. The temporal logic offers an expressive way formalize liveness conditions and an ad hoc set
of rules. Qur liveness proofs are not proofs of validity of temporal formulas, but instead proofs
of satisfaction, i.e., that certain executions satisfy the temporal formulas. In the proof steps
temporal rules, which have the form of valid implications, meta rules, and semantic reasoning
are used. This seems to provide a straightforward way of performing careful liveness proofs by

hand.

Live (timed) I/O automata, temporal logic, and simulation-based proof techniques are good
tools for formally specifying and verifying timed and untimed communication protocols.

The embedding results of the model tie the untimed and timed models together in a very
general and useful coordinated framework that allows proving that a timed system correctly
implements an untimed specification.

11.3 Further Work

There is a considerable amount of further work remaining. We have already begun the work of
automating simulation proofs in the untimed model, by proving the equivalence of versions of
S and D using the Larch Prover [SGGT93, GG91]. We have been pleased with the preliminary
results: the prover has not only been able to check our hand proofs, but in fact has been able to
fill in many of the details. Current research tries to use the same approach on a timed forward
simulation. Future research should consider automation of more complicated simulation proofs.

Second, if the timing assumptions on C are weakened or removed, the resulting algorithm
still will not deliver any message more than once; however, it may lose messages even in the
absence of a crash. It remains to formulate the weaker specification and prove that the weaker
version of C satisfies it.

Third, there are other algorithms that solve the at-most-once message delivery problem, for
example, using bounded identifier spaces or cryptographic assumptions. We would like also to
verify these, preferably reusing as much of our proofs as possible.

Finally, future research should deal with the extended temporal logic developed in this work,
and try to find a basic set of rules that is adequate for the liveness proofs of typical distributed
systems. The rules presented in this report, which are specifically tailored for the case study,
seem to be a good starting point for such an investigation.

11.4 Conclusions
We can draw several conclusions:

e Live (timed) I/O automata, temporal logic, and simulation-based proof techniques provide
a powerful coordinated framework for formally specifying and verifying timed and untimed
communication protocols.

e The proof techniques, especially simulation proofs, scale well and are not too difficult
to use. It is challenging and requires insight and key intuition to find, e.g., the right
simulation relations, and a lot of detailed work to verify these choices. For large proofs,

234

Bibliography

computer assistance is essential to help with the details; however, the insight will always
be required.

Backward simulation proofs are much harder to do than refinement mapping and forward
simulation proofs but are necessary in certain situations. It seems to be worthwhile to try
to limit the use of backward simulations to as small a development step as possible.

Many practical protocols can be treated as implementations of a common abstract protocol.

Verifying a coordinated collection of protocols, rather than just a single isolated protocol,
is extremely valuable. It leads to the discovery of useful abstractions, and tends to make
the proofs more elegant.

Doing proofs for realistic communication protocols is feasible now. We predict that it will
become more so, and will be of considerable practical importance.

Bibliography

[AL91] M. Abadi and L. Lamport. The existence of refinement mappings. Theoretical Com-

puter Science, 82(2):253-284, May 1991.

[AL92a] M. Abadi and L. Lamport. An old-fashioned recipe for real time. In J. W. de Dakker,

C. Huizing, and G. Rozenberg, editors, Proceedings of REX Workshop “Real-Time:
Theory in Practice”, Mook, The Netherlands, June 1991, number 600 in Lecture
Notes in Computer Science, pages 1-27. Springer- Verlag, 1992.

[AL92b] M. Abadi and L. Lamport. An old-fashioned recipe for real time. Technical report,

DEC, Systems Research Center, October 12 1992.

[Bel76] D. Belsnes. Single message communication. IEEE Transactions on Communications,

Com-24(2), February 1976.

[GGI1] S.J. Garland and J.V. Guttag. A guide to LP, the Larch Prover. Technical Report 82,

DEC, Systems Research Center, December 1991.

[GSSLI93] R. Gawlick, R. Segala, J. Sggaard-Andersen, and N. Lynch. Liveness in timed and un-

timed systems. Technical Report MIT/LCS/TR-587, MIT, Laboratory for Computer
Science, December 1993.

[Jon91] B. Jonsson. Simulations between specifications of distributed systems. In J. C. M.

Baeten and J. F. Groote, editors, Proceedings of CONCUR °91. 2nd International
Conference on Concurrency Theory, Amsterdam, The Netherlands, August 1991,
number 527 in Lecture Notes in Computer Science, pages 346-360. Springer-Verlag,
1991.

[LA91] N. Lynch and H. Attiya. Using mappings to prove timing properties. Technical

Report MIT/LCS/TR-412.d, MIT, Laboratory for Computer Science, October 1991.

[Lam91] L. Lamport. The temporal logic of actions. Research Report 79, DEC, Systems

Research Center, 130 Lytton Avenue, Palo Alto, CA 94301, USA, December 1991.

Bibliography 235

[Lis91]

[LMS85]

[LSW91]

[LT87]

[LTR9]

[LV92]

[LV93a)

[LVO3b]

[MMT91]

[MP92]

[0G76]

[SGG+93]

B. Liskov. Practical uses of synchronized clocks in distributed systems. In Proceedings
of the Tenth Annual ACM Symposium on Principles of Distributed Computing, pages
1-10, 1991.

L. Lamport and P.M. Melliar-Smith. Synchronizing clocks in the presence of faults.
Journal of the ACM, 32(1):52-78, January 1985.

B. Liskov, L. Shrira, and J. Wroclawski. Efficient at-most-once messages based on
synchronized clocks. ACM Transactions on Computer Systems, 9(2):125-142, May
1991.

N. Lynch and M. Tuttle. Hierarchical correctness proofs for distributed algorithms.
Technical Report MIT/LCS/TR-387, MIT, Laboratory for Computer Science, Cam-
bridge, MA, 02139, April 1987.

N. Lynch and M. Tuttle. An introduction to Input/Output automata. CWI-
Quarterly, 2(3):219-246, September 1989.

N. Lynch and F. Vaandrager. Forward and backward simulations for timing-based
systems. In J. W. de Dakker, C. Huizing, and G. Rozenberg, editors, Proceedings
of REX Workshop “Real-Time: Theory in Practice”, Mook, The Netherlands, June
1991, number 600 in Lecture Notes in Computer Science, pages 397-446. Springer-
Verlag, 1992.

N.A. Lynch and F.W. Vaandrager. Forward and backward simulations — Part I:
Untimed systems, 1993. Submitted for publication. Also, Laboratory for Computer
Science, Massachusetts Institute of Technology Technical Memo MIT/LCS/TM-486.

N.A. Lynch and F.W. Vaandrager. Forward and backward simulations — Part
II: Timing-based systems, 1993. Submitted for publication. Also, Laboratory
for Computer Science, Massachusetts Institute of Technology Technical Memo

MIT/LCS/TM-487.

M. Merritt, F. Modugno, and M. Tuttle. Time-constrained automata. In Proceedings
of CONCUR’91. 2nd International Conference on Concurrency Theory, Amsterdam,
The Netherlands, August 1991, number 527 in Lecture Notes in Computer Science,
pages 408-423. Springer-Verlag, 1991.

7. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer-Verlag, 1992.

S. Owicki and D. Gries. An axiomatic proof technique for parallel programs I. Acta
Informatica, 6(4):319-340, 1976.

J.F. Sggaard-Andersen, S.J. Garland, J.V. Guttag, N.A. Lynch, and A. Pogosyants.
Computer-assisted simulation proofs. In Costas Courcoubetis, editor, Com-
puter Aided Verification. 5th International Conference, CAV ’93. Flounda, Greece,
June/July 1993, volume 697 of Lecture Notes in Computer Science, pages 305-319.
Springer-Verlag, 1993.

Appendix A

Basic Definitions

This appendix gives basic definitions used in this report.

A.1 Record Notation

If a variable or value is of tuple type, e.g., X XY X Z, we will use the normal record notation to
extract the sub-values. For example if d has type X xVY x Z, d.x will extract the first component
of the tuple, etc.

A.2 Sets

We use standard notation for sets. A set consisting of the elements e, e, ... we write as

{61, €9,. . }
and a notation like
{f(@)1eNAgi) =4}
is used to denote the set of all elements f(7), where ¢ is a natural number such that ¢(i) = 4.
A singleton set with the element e is sometimes written e instead of {e}. As usual we use

€ to express set membership, and C and C to express the proper subset and subset relations,
respectively. The empty set is denoted by (). Furthermore we use the normal operators on sets

U Union
N Intersection

Complement (with respect to some given set)
\ Set minus

Set Type
For any set 5, denote by P(5) the set of all (finite or infinite) subsets of 5.

Cardinality
The cardinality of a set S, written |5], is defined as
5] 2 {n if 5 has n elements

oo if 5 has infinitely many elements

237

238 A. Basic Definitions

A.3 Bags (Multisets)

For bags we use the following operators from the previous section:
|s[,, U, €

|s| counts the total number of elements (including duplicates) of s.

Bag Type
For any set 5, denote by B(5) the set of all (finite or infinite) bags with elements from 5.

A.4 Lists and Sequences

In this report we use the terms “sequence”, “list”, and “queues” synonymously.

A list [consisting of the elements ey, e,,... we will write in one of the ways
[= <€07 €1, >
[= €0s€1,5. ..
[= €p€1 ...

We denote by ¢ the empty list.

List Type

For any set 5, denote by 5™ the set of all finite lists of elements in 5.

Length
The length of a list | = (eq, €y, ...), written ||, is defined as
1 a { n %f { %s .ﬁnit(? and ends in e, _1
oo if [is infinite
Head, Tail, Last, and Init
If | = (eg, €1, €q,...) is nonempty, define

head(l)
tail(l)

€o

<€1,€2, .. >

> (>

If furthermore [is finite and ends in €,_;, then define

last(l) 2 e,
init(l) 2 (e, €1y...s€n_s)
Concatenation

Concatenation of two lists [; and [,, written /; " [, or sometimes [,l5, is defined when [; is finite.
Ifly = (eg,...,en_1) and Iy = (€,, €n41,...), then define

~ pay
ll lz = <€0,...,en_l,en,€n+1,...>

A.5. Functions and Mappings 239

List Construction

Let I = {iy,is,...} be a set of totally ordered elements with ¢y < iy < ---. Then define
(fl)lie IAPGE) = e ey

where f is a function, P is a predicate, and

%:{fm)ﬁpm)

€ otherwise

Indexing
If I = (eq,€q,...), then define for all ¢ with 0 < i < |{|

I[i] 2 &
We let dom(l) denote the set of indices of any list {. Thus,

dom(l) = {i|0<i<|l|}
We also let elems(l) be the set of elements in . Thus,

elems(l) = {l[i]| i € dom(l)}
If [is nonempty, we denote by mazidz(l) the maximum index in [. Thus,

mazide(l) = || -1

Restriction

If is alist and 5 is a set, we let [[.S denote the restriction of [to S. For example, (1,3,2,5,4)|
{2,3,4,7} = (3,2,4). Formally,

I1S 2 ([i]| i€ dom(l) Alli] € S)

Set Operations on Lists

As notational convention we allow set operators like €, C, etc., to operate on lists [. This should
just be thought of as a shorthand notation for the same operators operating on elems(l). For
instance, e € [means e € elems(l) and [C 5 means elems(l) C 5 for some set 5.

A.5 Functions and Mappings

We use the terms “function” and “mapping” synonymously. We use standard notation for
function definition and application. When explicitly defining the mapping from elements to
elements we use notation like
[1 = 17
21— 4,
3—9,

9— 81]
or equivalently

[i— i |1<i<9]

240 A. Basic Definitions

Function Type
A function f mapping elements from 57 to S5 has the type
S — 9,
We shall only deal with total functions, i.e., f(s) is defined for all elements s € 5. 5, is referred

to as the domain of f and 55 as the codomain of f.

Domain and Range

For any function f, dom(f) denotes the domain of f. The range (or image) of f is defined as
rng(f) = {f(e)|e € dom(f)}

Operations on Functions

For function f: A — B and g: C — D with B C (', define the composition fog: A — D such
that for all @ € A,

(fog)a)= f(g(a))

For any function f: A — B and set S, denote by f\ S the function with type (A\S) — B such
that for all a € A\ S,

(S\S)(a) = f(a)
Similarly f [.5 denotes the function of type (AN .S) — B such that foralla € ANS
(S 19)(a) = f(a)

For functions f; : A; — B;, 1 <1 <k, with disjoint domains, denote by f; U---U f; the function
of type (A U---U Ay) — (B U---U By) such that for all a € (4, U---U Ay)

(fiU---U fi)la) = fi(a) if a € A

Appendix B

Proofs from Part 1

B.1 Proofs in Chapter 3

Proof of Lemma 3.1:

Let « be an arbitrary execution over (V,.A).
If « is infinite, then @ = « and the result trivially follows.

Now, assume « is finite and let a = spa;s8,a285 - --a,s,. Furthermore, let j > 0 an arbitrary
natural number. Let ¢; = (and s; = s, for all ¢ > n. Then a = sya;8,a285---. We prove the
lemma by structural induction over P.

Base Case: P is a step formula
(@,]) = P
iff (by definition)
(0<j<mnand (s;,a;41,5;41) F P) or
(j > nand (s,,(,8,) E P)
iff (by definition of s; and a; for ¢ > n)
0 <jand (s5,a541,841) F P
(by definition)
(@,7) F P

Inductive Step:

iff

Assume as induction hypothesis that @) is a temporal formula over (Vq, Ag) such that for all
ag over (Vg, Ag) and all jo <0

(ag.jo) EQ iff (ag,jo) F @

Assume a similar induction hypothesis for R. We consider the different possibilities for P (cf.
Section 3.5).

e P=0Q

(a,j) FOQ
iff (by definition)

(a,j+1)EQ
241

242 B. Proofs from Part I

iff (by the induction hypothesis)
(@j+1)FQ
iff (by definition)
(@,7) FOQ
e P=QWR

Similar to case P = (O Q.

e P=Va:Q
Since P is a temporal formula over (V,A), @ is a temporal formula over (VU {z}, A).

(a,) E Ve Q
iff (by definition)

for all values v, (a,7) E Q
iff (by the induction hypothesis)

for all values v, (a?,j) E Q
iff (by definition of ~and a¥)

for all values v, (a,7) E Q
iff (by definition)

(@) Ve : Q

e P=dz:(Q)
Similar to case P =Va :).

e P=0Q —= R
Similar to case P = (O Q.

o P=-(Q
Similar to case P = (O Q.

Proof of Lemma 3.2:

This lemma holds for our temporal logic since we do not have any past operators, i.e., operators
that can reference previous positions in an executions. For instance, some temporal logics (see,
e.g., [MP92]) have a previous operator, which is dual to our nezt operator () and is defined
such that previous P holds at position 7 in an execution if P holds at position j — 1 in that
execution. Since our logic lacks this possibility of referencing previous positions, the question
whether P holds at position j in « only depends on the suffix s;a;415;41--- of a, ie., ;la.
Similarly, the question whether P holds at position 7 in ;_;|a only depends on ;|(;_;|a), and
since ;|(j_;|@) = j|a, the result follows.

Formally, the result can be proven by structural induction over P.

B.1. Proofs in Chapter 3 243

Proof of Lemma 3.3:

Let oo = spa151a252 - -+ and o' = sja)siabs, - . We define inductively a nondecreasing mapping

m : N — N such that ,|a ~ m(k)|0/. Furthermore, for each k we define a mapping my; :
{0,...,m(k) = 1} — {0,...,k — 1}, such that for all 0 < " < m(k), n,n|a ~ ¢|a’. This
inductive definition is clearly sufficient to prove the lemma.

Base Case: k =0
Define m(0) = 0. Then, by assumption, g|a = a ~ o' =)|/, as required.

Let m; be the empty mapping. Then, vacuously, for all 0 < &' < m(0), p,)|a = o]’

Inductive Step:

Assume as induction hypothesis that ;|a ~ ,,,;)|a” and that, for all 0 < &' < m(k), 1| = o]
We consider cases.

® Upy1 = C-

Define m(k + 1) = m(k). Then, clearly, 41| ~ pla = o’ = peenla’s

Define my+, = my. By the induction hypothesis and the definition of m(k + 1) and my4q,
for all 0 <&/ < m(k+1), p,, 0]~ oo

® apy =a#C.
Then, since y|a ~ ,,4|a’ (induction hypothesis), there must be a unique number & > m(k)
such that s}, a;,
action in o/ after position m(k) must be a.

()41 5m(e)1 " Sk = S CSimey - aSyy. Thus, the first non-stuttering

Define m(k + 1) = k’. Then the induction hypothesis, the definition of £, and the case
assumption imply pii]a ~ gla > ple = pnopenle

Define my4, to coincide with my for all 0 < ¢ < m(k), and define myq,(3') = k, for
all m(k) < ¢ < m(k +1). Then the induction hypothesis and the definition of my. 44
give, for all 0 < @ < m(k), n,anle = ola’. For m(k) < & < m(k + 1) we have,
mep (@ = gla 2 popla’ ~ ola’, where the last stuttering-equivalence follows from the
fact that ;/|a’ only differs from m(k)|0/ by having less stuttering in the start.

This concludes the proof.

Proof of Proposition 3.4:
Let oy = 51001151101 2512+ and ay = 85,002,152 102 252 5 - - - be arbitrary executions such that

= .
1. Let P be a state predicate.
aq): P

iff (by definition)
8170): P

244

B. Proofs from Part I

4.

iff (since oy >~ a implies s; 9 = $5)
S2.0): P

iff (by definition)
(85): P

This proves that P is stuttering-insensitive.

. Let P be a state transition predicate, and assume that (s,(,s) | P (which implies

(s,8)[P] = true) for all state s.

a; E P
iff (by definition)
(81.0,511)[P] = true
implies (since a; ~ a, implies either (s;10,81,1) = ($2,0,52,1) OF (81.0,51,1) = (S2,0,52,0))
(82.0,521)[P] = true or (ss,5:0)[P] = true
iff (since (9.9, 59,0)[P] = true by assumption)
(82.0,521)[P] = true
iff (by definition)
ay = P

A symmetric argument gives the implication in the other direction. This proves that P is
stuttering-insensitive.

. Let f be an action function.

ar E O(f)
iff (by definition)
there is a step (81 ;,aq,i41,51,41) in oy such that ay ;41 € (81,4,51,41)[f]
iff (since ¢ can never be in the range of an action function)
there is a step (81 ;,aq 41, 51,41) in oy such that a; ;41 # ¢ and a3 ;41 € (81,4,51,41)[f]
implies (by definition of ~)
there is a step (s2;, s j41,52,41) = (81,4, @1 41,51 441) i1 a5 such that
11 € (82,55 82,541)[f]
iff (by definition)
as £ O(f)

A symmetric argument gives the implication in the other direction. This proves that &(f)
is stuttering-insensitive.

Assume that P and) are stuttering-insensitive temporal formulas.
(a) PWQ
ay): PWQ
iff (by definition)
there exists a k > 0 such that (o, k) E @ and for every 0 <7 < k, (ay,7) E P,

or else, for all ¢ > 0, (ay,?) E P
iff (by Lemma 3.1)

B.1. Proofs in Chapter 3 245

there exists a k > 0 such that (a1, k) E @ and for every 0 < i < k, (a1,1) E P,
or else, for all ¢ > 0, (a1,1) F P
iff (by Lemma 3.2)
there exists a k > 0 such that ;|a; | @ and for every 0 < i < k, ;|a; E P,
or else, for all ¢ > 0, ;|a; E P
implies (by Lemma 3.3 and the fact that P and ¢ are stuttering-insensitive)
there exists a k&' > 0 such that /|a; | @ and for every 0 < ¢ < K/, y]|as E P,
or else, for all ¢/ > 0, y|as E P
iff (by Lemma 3.2)
there exists a &' > 0 such that (a3, k') E @ and for every 0 < < ¥/, (a3,7) E P,
or else, for all ¢/ > 0, (az,7) E P
iff (by Lemma 3.1)
there exists a &/ > 0 such that (as, k') E @ and for every 0 < ¢ < K/, (as,7) E P,
or else, for all @' > 0, (as,?) E P
iff (by definition)
a EPWQ

A symmetric argument gives the implication in the other direction. This proves that
P W @) is stuttering-insensitive.
Yz : P

Since ay ~ ay, we have, for all values v, (a1)f ~ (as)?.

ap EVa: P
iff (by definition)
for all values v, (ay)* E P
iff (since P is stuttering-insensitive and (ay)? ~ (as)7)
for all values v, (as)* E P
iff (by definition)
as EVa: P

This proves that Va : P is stuttering-insensitive.
dz: P

Similar to case V& : P

-P

a; E-P
iff (by definition)
a; P
iff (by the fact that P is stuttering-insensitive)
ay P
iff (by definition)
ay =P

This proves that =P is stuttering-insensitive.

P=qQ
Similar to case = P.

246 B. Proofs from Part I

B.2 Proofs in Chapter 4

B.2.1 Untimed Systems

Proof of Lemma 4.1:

Let (V,A) be an arbitrary pair with V' C V and A" C A and let @ = spa;5,a25; -+ be an
arbitrary execution over (V, A). Furthermore, let o/ = a [(V' A) = sia)s,abs,---. Then
ar if ap € A

/ — / d / —

s = s [V and a ¢ otherwise

We prove the lemma by structural induction on P.

Base Case:

In the base case P is a step formula over (', A’). We consider the two kinds of step formulas:

o P =(f), where fis an action function over (', A").

(',5) F (f)
iff (by definition)
(0 <] < |O[| a‘nd (]7]-|—17]-|—1)): <f>) or
(j 2 |a'| and (8|a’|7C78|a’|) E ()
iff (by definition and the fact that { can never be in the range of an action function)
(0 <j<[a'| and aiq € (5}75}4-1)[[][]]) or
(j > |a’| and false)
iff
(0<j <|o'| and aj,, € (s}, s7.)[f])
iff (step 4; see below)
(0<j <lo|and aj41 € (s5,5;41)[f])
iff
(0 <j <|o|and aj41 € (s5,541)[f]) or
(j > |a| and false)
iff (since ¢ can never be in the range of an action function)
(0 <j <|o|and aj41 € (s5,5541)[f]) or
(j = |a| and ¢ € (sja), 510)[f])
iff (by definition)
(0 <j <lal and (s5,a;41,8;41) F (f)) or
(J 2 |al and (8141, ¢, 5101) F (f))
iff (by definition)
(@, 7) F (f)

Step 4 above is justified as follows: first, |a'| = |a| by definition of [. Next, since s} =

si[(V,A), sy = sjp[(V, A), and f is an action function over (V', A’), we have that
(],]+1)[[f]] = (s5,8;40)[f]. Finally, if a},, = ¢, then a;;; ¢ A’ by definition of [,
and since f is an action function over (V', A’), we have a},, € (s},s;)[f]) iff a;41 €
(si> 840 f])- I @y # ¢, then af) = aj;,. That suffices.

o P is a state transition predicate over (V’, A’).

B.2.

Proofs in Chapter 4

247

@)k P
iff (by definition)
(0 <«] < |O/| a‘nd (]7]-|—17]-I—l)): P) or
(«] > |O[| a‘nd (8|QI|7C7 8|a’|)): P)
iff (by definition)
(0 <j <o/ and (s}, s5,,)[P] = true) or
(7 = '] and (8], 8]0)[P] = true)
iff (step 3; see below)
(0 < j < |a| and (s;,s;41)[P] = true) or
(J 2 |af and (sja), 810)[P] = true)
iff (by definition)
(0 <j<laf and (s5,a541,8;41) F P) or
(J = |af and (sja), ¢, 5101) | P)
iff (by definition)
(.)) P

Step 3 is justified as follows: first, |&/| = |al, by definition of [. Then, since P is a state
transition predicate over (V', A") and s}, = s, [(V', A") for all k, the result directly follows.

Inductive Step:

Let () be an arbitrary temporal formula over (Vé, A’Q) and assume as induction hypothesis that
for all pairs (Vq, Ag) with Vi C Vg and Ay C Ag, all executions aq over (Vg,Ag), and all
]Q Z 07

(ag [(Vg, AQ)do) FQ it (ag,jo) F @

Assume a similar induction hypothesis for the temporal formula R over (V, A%). We consider
the different possibilities for P (cf. Section 3.5).

e P=0Q

TV, A5 F OW
y definition)
PV, A+ 1) A

(a
iff (b
(a
iff (by the induction hypothesis)
(a,
(
(a,

iff by deﬁmtlon)

e P=QWR

Similar to case P = O Q.

o P=Vur:Q

(a] (VA j)EVE 1 Q
iff (by definition)
for all values v, ((a [(V', A))*, 1) EQ

248 B. Proofs from Part I

iff (by definition of | and substitution)

for all values v, (af [(V' U{z}, A"),j) EQ
iff (by the induction hypothesis)

for all values v, (a,7) E Q
iff (by definition)

(a,) Ve : Q

e P=dz:(Q)
Similar to case P =Va :).

e P=(Q = R)
Similar to case P = (O Q.

o P=-(Q
Similar to case P = (O Q.

Proof of Lemma 4.3:

=: Assume aA; E @, for all . Then since a[A4; ~ a | 4; and @, is stuttering-insensitive, we
have a [A; E Q;, for all i. Then by Lemma 4.2, o = @, for all 7, and thus a E Q1 A ... A Q.

<: Assume a EF Q1 A ... A Qn. Then a E @, for all ¢, and Lemma 4.2 implies that
al A; EQ;, forall i. Again, since a[A4; ~ a | A; and @Q); is stuttering-insensitive, it follows that
alA; E Q;, for all 4.

Proof of Proposition 4.4:

By Definition 2.9 we have L = {a € exec(A) | a[A; € Ly,...,a]Ay € Ly}. By definition of
[we know that if o € exec(A), then a[A; € exec(A;), for all i. Thus, since L; is induced by
Qi, we get L = {a € exec(A) | a[A; E Q1,...,a[Ax E Qn}. By Lemma 4.3 we finally get
L=Aa€erec(A)|aE Q1 N... N Qn} which proves that L is induced by Q1 A ... A Qn.

Proof of Proposition 4.5:

Let (Aa,L4) = (A, L)\ A. The proof is trivial since, by Definitions 2.3 and 2.10, ezec(A4) =
evec(A) and Ly = L.

|

Proof of Proposition 4.6:
Let (A,,L,) = p((A, L)). By Definition 2.11 we have (A,,L,) = (p(A),{p(a) | a € L}).

First note that since) is a temporal formula over A, Definition 2.4 implies that p(Q) is a
temporal formula over A4,.

Now, it is clear that a | @ iff p(a) | p(Q). Since also exec(A,) = {p(a) | o € exec(A)}, it
follows that L, = {a € exec(A,) | a E p(Q)}, which proves that L, is induced by p(Q).

B.2. Proofs in Chapter 4 249

B.2.2 Timed Systems

Proof of Proposition 4.17:

Let L; ;, for each 1 < ¢ < N, be a sampling characterization of L; such that L, , is induced by
;. We have

L {¥ € t-ewec™(A) | X[A, € Ly,...,X[Ay € Ly}
{¥ € t-exec®(A) | (Vo samples X[A; : a1 € Ly 5),...,
(Vay samples X[Ay t oy € Ly,)}

{¥ € t-exec®(A) | Vo samples ¥ : a[A; € Ly 4,...,a]Ax € Ly}

(I (1=

where Step 1 follows from Definition 2.26, Step 2 follows from the definition of sampling char-
acterizations, and Step 3 follows from Lemma 4.15 Part 3.

This proves (using Lemma 4.13 Part 2) that L is induced by L, = {a € exec™(A) | a[A; €
Lys,...,a[Ay € Ly}, and we have

{a € exec™(A) | a4 E Q1,...,a[Ay EQN}
{a € exec™(A)|laE QLN ---ANQN}

where Step 1 follows from the definition of sampling characterization being induced by temporal
formulas and Step 2 follows from Lemma 4.16.

L,

[l (1=

This proves that L, and, in turn, L are induced by ¢; A ... A Qy.
|

Proof of Proposition 4.18:

Let (A4, La)= (A, L)\ A. The proof is trivial since, by Definitions 2.19 and 2.27, exec(A4) =
evec(A), t-exec(Ay) = t-exec(A), and L = L 4.

Proof of Proposition 4.19:

Let (A,,L,) = p((A, L)) and let L, be a sampling characterization of L such that L, is induced
by @. By Definition 2.28 we have (A,,L,) = (p(A),{p(X) | X € L}).

First note that since) is a temporal formula over A, Definition 2.20 implies that p(Q) is a
temporal formula over A,.

Now, it is clear that exec(A,) = {pa | a € exec(A)} and that a = Q) iff p(a) E p(Q). Thus,
L,s={pla)|a € L;}isinduced by p(Q). Since also t-exec(A,) = {pX | ¥ € t-exec(A)} and «
samples ¥ iff p(«) samples p(X), we immediately get that L, is induced by L, ;. That suffices.

B.2.3 Embedding
Proof of Lemma 4.21:

Since @) is a temporal formula over A, a is an execution over A,, variables(A) C variables(A,),
and acts(A) C acts(A,), Lemma 4.1 yields

(a | (variables(A), acts(A))) E Q iff akEQ ()

250 B. Proofs from Part I

Furthermore, by definition of untime(a) we have untime(a) ~ (a [(variables(A), acts(A))), and
since () is stuttering-insensitive we have

untime(a) = Q iff (o] (variables(A), acts(A))) E Q (k)
Then (*) and (#) imply the result.
|

Proof of Proposition 4.22:

First note that since variables(A) C variables(A,) and acts(A) C acts(A,), @ is a temporal
formula over A,. We have

L, = {Y € t-exec™(A,) | untime(X) e L}
2 (Y € t-exec™(A,) | untime(2) £ Q}
2 (Y € t-exec™(A,) | for all a, if o samples 3, then untime(a) = Q}
2 {ze t-exec™(A,) | for all «, if o samples ¥, then o = Q}

where Step 1 follows from Definition 2.35, Step 2 follows from the fact that L is induced by
@ (and untime(X) € exec(A) by definition of untime), Step 3 follows Lemma 4.20, and Step 4
follows from Lemma 4.21.

This proves, by Lemma 4.13 Part 2, that L, is induced by Q.

We show that ¢ is minimal. Thus, for arbitrary admissible execution a of A, with a E @, we
must show the existence of a timed execution ¥ € L, such that a samples X.

Let o be an arbitrary admissible execution o of A, such that o | @. Let ¥ be a timed
execution of A, such that a samples ¥. By Lemmas 4.11 and 4.13 ¥ exists and is admissible. By
Lemma 4.20 untime(a) = untime(X) and Lemma 4.21 gives untime(a) = Q). Thus, untime(X) =
(), which implies untime(X) € L. Then, by definition of L, (Definition 2.35), ¥ € L,. That
suffices.

B.3 Proofs in Chapter 5

B.3.1 Untimed Systems
Proof of Lemma 5.10:

Let m be an arbitrary index mapping from a to «’ with respect to R.

=: Assume a | $O-(C). Then, by Lemma 3.5 Part 3, there exists an index 7 such that
Jla |E O-(C). Thus, no actions in C' occur in trace(;|o). By Lemma 5.6 and the fact that C'
contains external actions only, no actions in ' occur in the suffix ,,,;)|a’. Thus, ,,,;)|e’ | O=(C),
which, by Lemma 3.5 Part 4, implies that o/ | $O-(C'). That suffices.

<=: Assume o E ¢O=(C). Then, by Lemma 3.5 Part 3, there exists an index j such that
jlo/ = 0=(C). Now, by Condition 4 of Definition 5.4, there exists an ¢ < |a| such that m(z) > j.
Then ,¢;y|a’ is a suffix of ;|a’, and consequently, by Lemma 3.5 Part 1, ,,;|a’ | O=(C).

Thus, no actions in €' occur in trace(,,;)la’). By Lemma 5.6 and the fact that C' contains
external actions only, no actions in C' occur in the suffix ;|Ja. Thus, ;|a E O-(C), which, by
Lemma 3.5 Part 4, implies that a | $O-(C). That suffices.

B.3. Proofs in Chapter 5 251

Proof of Lemma 5.11:

Let m be an arbitrary index mapping from « to o' with respect to R.

Assume o = ¢OQ. Then, by Lemma 3.5 Part 3, there exists an index j such that ;|o/ | 0OQ.
Thus, for each state u in ;|o’, we have u = (). Now, by Condition 4 of Definition 5.4 and the
fact that m is nondecreasing, we get the existence of an index 7 such that for all ¢ < k < |a],
m(k) > j. Then, for each state s of a with index k (¢ < k < |a|) we have s | P since (by
Condition 2 of Definition 5.4) there exists some u in ;|a’ such that (s, u) € R.

This gives us, for all £ > 0, (;|a, k) E P. (Even if ;|a is finite this is true since P holds in
the stuttering step that stutters the last state since it holds in the last state.). Thus, ;|a E OP,
which finally, by Lemma 3.5 Part 4, o £ COP.

Proof of Lemma 5.13:

1. Let a = spa;81a98, - -+ Let s,0 € start(Ay) be such that sy [variables(A) = sq. Define
apo = Spo. Then ayg | (variables(A), acts(A)) = sq.

Define ay, inductively as follows. Assume ap(,—1) = Spo@18p1@2542 « . - Gp_154(n—1) IS al
execution of A, such that ay,_1) [(variables(A), acts(A)) = al,_;. Then, by Lemma 5.12
Part 1, there exists a step (Sp(n—1), @n,Spn) € steps(Ap).

Define ay, = 80018512542 - - - Q1 Sp(n—1)0nShy- Then ay, [(variables(A), acts(A)) = al,.

Then, aj, = lim,_. |4 a3, has the required property.

2. Directly from Lemma 5.12 Part 2.
|

Proof of Lemma 5.14:

A Cg Ap: Let B € traces(A) and let o € exec(A) be such that trace(a) = . By Lemma 5.13
Part 1 there exists an execution oy, € exec(Ay) such that ay [(variables(A), acts(A)) = a. Then,
since ext(A) = ext(Ap), we have trace(ay) = trace(a) = 5. Thus, 3 € traces(Ay). That suffices.

Ay Cg A: Let 8 € traces(Ay) and let oy, € exec(Ay) be such that trace(ay) = 8. By Lemma 5.13
Part 2, o, [A € exec(A). Then, since ext(A) = ext(Ay), we have trace(ay,) = trace(ay [A) = 5.
Thus, § € traces(A). That suffices.

Proof of Lemma 5.15:

(A, L)Cy, (A, Ly): Let 8 € traces(L) and let a € L be such that trace(a) = 5. By Lemma 5.13
Part 1 there exists an execution a; € exec(A,) such that ay, | A = a. Thus, by definition of L,

we have a, € Ly, and since ext(A) = ext(Ay) we finally get trace(ay,) = trace(a) = 3, and thus,
B € traces(Ly). That suffices.

(Ap, Ly) T (A, L): Let g € traces(L,) and let o, € L be such that trace(a,) = 5. By
definition of Ly, o, [A € L. Then, since ext(A) = ext(Ay), we have trace(ay,) = trace(ay [A) =
3. Thus, g € L. That suffices.

252 B. Proofs from Part I

Proof of Lemma 5.16:
We have
L, = {a, € exec(An) | an [AEQ}
= {a, € exec(An) | an E Q}

where the first equality follows from the definition of L, and Lemma 5.13 Part 2, and the last
equality follows from Lemma 4.1. This shows that L; is induced by @.

B.3.2 Timed Systems

Proof of Lemma 5.28:

1. Let ¥ = wpaywiasws -+ -. Define hy to be a value of h such that (fstate(w)U [h — hg]) €
start(Ap). Define, for all t € dom(wy), wyo(t) | variables(A) = wo(t) and wyo(t).h = hy.
Then wyg is a trajectory of Ay,.

Now we define wy, inductively. By the properties of timed executions, (w,_1, a,,w,) €
steps(A). Then by Lemma 5.27 Part 1 where exists a value h, such that (w,_; U[h —
ho_1], @n,wn U [R — hy,]) € steps(An). Then, for all ¢ € dom(w,), define wy,(t) |
variables(A) = wo(t) and wy, ().h = hy,.

Then, ¥), = whoa1wp1 aawys - - - is a timed execution of A, and ¥, | variables(A) = X.

2. Directly from Lemma 5.27 Part 2.
|

Proof of Lemma 5.32:
Let L, be a sampling characterization of L such that L, is induced by ¢ and define

Ln. = {ay € evec™(Ay) | ap | A€ L}

Similar to the proof of Lemma 5.16 it is easy to see that L, , is induced by . It now suffices
to show that Lj is induced by Lj,. We must check two conditions.

1. Assume X, € L. We must show that for all o, that samples ¥, o € Ly ;. So, assume
oy, samples Y. Since Y, is admissible, also aj, is admissible by Lemma 4.13. Thus, by
definition of L , it suffices to show that o), [A € L.

Since 3, € Ly, we have Y | A € L. Lemma 5.31 Part 1 gives ay, [A samples 3, [A. Then
ap [A€ L, since L, is a sampling characterization of L. That suffices.

2. Assume Y, € t-exec™(Aj) and for all a; samples ¥, o, € L ;. We must show that
¥, € Ly,. By definition of L, it suffices to show that X, I A € L.

Let a be an arbitrary execution of A such that a samples ¥j, [A. Then Lemma 5.31 Part
2 gives the existence of an execution «a; of A, such that o = a;, [A and a; samples Y.
Thus, the assumption for this case implies o) € L, ,. By Lemma 4.13 oy, is admissible.
Then the definition of Lj , implies that a € L,. Since a was arbitrary, the definition of
sampling characterization implies that X, [A € L. That suffices.

That concludes the proof.
|

Appendix C

Invariance Proofs

In this chapter we prove the invariants stated in the G and C specifications. We use the normal
proof technique:

e Show that the invariant is satisfied in every initial state.

e Assume the invariant and all previously proved invariants hold in a state s, and for all
steps (s, a, s’) show that the invariant holds in s’

Many of the invariants consist of several parts. We prove that the conjunction of these parts is
an invariant. It follows that each conjunct (part) is then itself an invariant. All the parts of the
invariants are of the form

If ¢ then P

where, in some cases, C' = true. For the sake of brevity we consider only, in the second part
of the proof technique above, the steps that can change C' from false to true or make P false
while ' is true since these are the only steps that might invalidate the invariant. We refer to
such steps as the critical steps for the invariant (part).

C.1 Proof of Invariants at the G Level

Proof of Invariant 8.1

e Since mode, = idle in the initial states of G, it follows that both parts of the invariant
are satisfied in the initial states.

e We now consider the two parts separately

1. We consider the critical steps. (Note that none of the steps in G can remove elements
from used,)

a = choose_id(id, m)

This step changes mode, to send but at the same time the new value of last, is
appended to the end of used,, so Part 1 holds after the step.

a € {receive_pkt, (id,b), recover,}

Both of these steps can change last, but at the same time mode, is changed to non-
send, so Part 1 holds after the steps.

253

254

C. Invariance Proofs

2.

The proof of this part follows directly from the proof of Part 1 and the fact the used,
is a queue of IDs. (Remember that nil ¢ ID).

Proof of Invariant 8.2

e Since mode, = idle and used, = ¢ in initial states of GG, both parts of the invariant hold

in the initial states.

e We assume that both parts hold in state s. For each part we consider the critical steps of
the form (s, a, s').

1.

a = prepare
This step changes mode, to needid but at the same time good, is changed to), so
Part 1 holds in s'.

a = choose_id(id, m)

This step adds an id to used, but at the same time mode, is changed to send, so Part
1 holds in .

a = grow_good ,(ids)

We consider this case when s.mode, = needid. The step adds identifiers to used, but
since s.mode, = needid the step can only add ids that do not intersect with s.used,.
Thus, since Part 1 is assumed to hold in s, it also holds in s'.

a = choose_id(id, m)

This step adds the element id from s.good, to used, but since s.mode; = needid, the
assumption that Part 1 holds in s gives us that id ¢ s.used,. Thus Part 2 holds in s'.

Proof of Invariant 8.3

e Initially mode, = idle so the invariant holds.

e Assume that the invariant holds in s. We now consider all the critical steps of the form

(s,a,s).

1.

a = receive_pkt ,.(m, id)

If this step changes mode, to rcvd, it also adds an element to buf,, so Part 1 holds in

s’

a = receive_msg(m)

This step can make buf, empty, but in this case, mode, is changed to ack, so Part 1
holds in s'.

Proof of Invariant 8.4

o Part 1 holds initially because mode, = idle. issued, is initially a superset of good, thus
satisfying Part 2. For Parts 3, 4, 5, and 6 the sets that are supposed to be subsets are
initially empty, so the result follows. Since last, is initially nil, Parts 7 and 8 are also
satisfied.

C.1.

Proof of Invariants at the G Level 255

e lor each part of the invariant we consider the critical steps (s, a, s"), where we assume that
all parts of this invariant hold in s, and that previously proved invariants hold in both s
and . (For Parts 1, 2, and 3, note that issued, can never shrink, and for Parts 4, 5, 6,
and 8, note that used; can never shrink.)

1.

a = prepare
This step changes mode, to needid, but at the same time good, is made empty, so
Part 1 holds in s'.

a = recover,

This step changes mode, from rec to nonrec (idle) but at the same time issued, is

changed to some superset of good,, so Part 1 holds in s'.

a = grow_good ,(ids)

We consider the case where s.mode, = needid and s.mode, # rec. The step adds
some elements to good,, but in the case we consider, the elements that are added are
all in s.issued,. So, since we assume Part 1 holds in s, it also holds in s'.

a = grow_good,.(ids)

This step adds elements to good, but at the same time the same elements are added
to issued,. So, since we assume that Part 2 holds in s, it also holds in s'.

a = TeCoveET,

This step changes mode, from rec to non-rec, but at the same time issued, is changed
to some superset of used,, so Part 3 holds in s'.

a = prepare

Consider this step when s.mode, # rec. We add an element id from s.good, to used,.
From Part 1 we get that id belongs to s.issued, so adding id to used, does not violate
Part 3.

In the proof, we let id-set denote the set ids(sr) U (if mode; = send then {last,}) in
any state of G.

a = choose_id(id, m)

This step changes mode, to send so s'.last, gets added to id-set, but from Invariant 8.1
Part 1 we get that s'.last, € s'.used,, so Part 4 is not violated.

a = send_pkt (m,id)

This step might add a packet to the channel (sr), but since a precondition for the step
is s.mode, = send, the id on the packet is already in id-set, thus this step does not
change id-set. So, since Part 4 holds in s, it also holds in s'.

a = receive_pkt .(m,id)

This is the only step that may add an identifier to nack-buf,. The identifier ¢d added
is in ids(s.sr), so since we assume that Part 4 holds in state s we get that id € s.used,,
so Part 5 is not violated.

256 C. Invariance Proofs

6. a= send_pkt, (id, true)
This step can add a packet with identifier s.last to the return channel rs. The action
is only possible if s.last, € ID, i.e., if s.last, # nil. But then Part 8 gives us that
s.last, € s.used,, thus this step cannot violate Part 6.
a = send_pkt (id, false)
This step can add a packet with an identifier from s.nack-buf to rs. From Part 5 in
state s we get that this identifier is in s.used,, so the step cannot violate Part 6.

7. a = receiwe_pkt . (m,id)
This step can change last, to ¢d which belongs to s.good,. However, at the same time
id is removed from good,. It remains to be shown that id ¢ s'.issued,. Since we
assume that all parts of this invariant hold in s, Part 2 gives us that id € s.issued,
and since issued, is not changed in the step, we get id € s'.issued,. The result follows
directly.
a = recover,
This step changes last, to nil. But since good-ids is a set of elements from ID and
nil ¢ ID, Part 7 holds in state s'.
a = grow_good,.(ids)
This step does not change good-ids, so Part 7 holds in state s'.

8. a = receive_pkt, (m,id)
This is the only step that can change last, to non-nil. last, is changed to an identifier
id in a packet in ¢'.sr. From Part 4 in state s we get that id € s.used,, so since used,
does not change in the step, Part 8 holds in state s'.

|

Proof of Invariant 8.5

e Initially sr =) and mode, # send, so the invariant holds.

e We consider the critical steps (s,a,s’), where we assume that this invariant hold in s,

and that previously proved invariants hold in both s and s’. Note that no step can

change current-msg, and end up in a state with mode, = send. Also, no step, except

choose_id(id, m) can change last, and end up in a state with mode, = send.

1.

a = choose_id(id, m)

This step changes mode, from needid to send. From Invariant 8.4 Part 4 we get that
s.used; D ids(s.sr). From Invariant 8.2 Part 1 and the definition of choose_id(id,m)

we then get that s'.last, ¢ ids(s’.sr), so this step does not invalidate the invariant.

Proof of Invariant 8.6

o Initially current-ok = false, so all parts of the invariant hold.

C.1.

Proof of Invariants at the G Level 257

e lor each part of the invariant we consider the critical steps (s, a, s"), where we assume that
all parts of this invariant hold in s, and that previously proved invariants hold in both
s and s'. Note, for the Parts 3, 4, 6, and 7, that no step, except choose_id(id,m), can
change last, without also changing mode, to something other that send.

1.

a = prepare

This changes current-ok to true if s.mode, # rec, but at the same time mode; is
changed to needid, so Part 1 holds in state s'.

a = receive_pkt, (id,b)

In order for this step to change mode, to idle, we must have s.mode, = send and
(s.lasts,b) € s.rs. In that case the step can only violate Part 1 if s.current-ok = true,
but this cannot be the case since we assume that Part 4 holds in state s. Thus, the
step cannot violate Part 1.

a = crash,

This step can change mode, from needid or send to rec, but at the same time
current-ok is set to false, so Part 4 holds in state s

a = prepare

This step changes current-ok to true, but only if mode, # rec, so Part 2 holds in s.

a = crash,

This is the only step that can change mode, from non-rec to rec but at the same
time current-ok is made false, so Part 2 holds in s.

a = choose_id(id, m)

This is the only step that can change the condition in Part 2 from false to true. This
happens if s.current-ok = true. Since s.mode, = needid, Part 5 which we assume
holds in s gives us that s'.last, € s.good, which again implies that s'.last, € s'.good, .
From Invariant 8.4 Part 7 we get that s'.last, ¢ s'.good,. Thus s'.last, # s'.last,, so
Part 3 holds in s'.

a = receive_pkt .(m,id)

This step can make s'.last, = s'.last, but in this case curremt-ok is changed to false,
so Part 3 holds in .

a = TeCoveET,

Consider this step when mode, = send and current-ok = true. The step changes last,
to nil but from Invariant 8.1 Part 2 we have s’.mode; # nil, so Part 3 holds in s'.

a = choose_id(id, m)

This is the only step that can change the condition in Part 2 from false to true. This
happens if s.current-ok = true, so assume this. In state s we get from Invariant 8.4
Part 6 that all ids on s.rs are in s.used,. From Invariant 8.2 Part 1 we get that s'.last, ¢
s.used,. Since rsis not changed in the step, we finally conclude that (s'.last,,b) ¢ s'.rs,
so Part 4 holds in state s'.

258 C. Invariance Proofs
a = send_pkt (id, true)
Consider this action when mode, = send and current-ok = true. (s.last,, true) might
be added to rs, but from Part 3 we get that Part 4 is not violated.
a = send_pkt (id, false)
Consider this action when mode, = send and current-ok = true. A packet with an ud
from s.nack-buf, might be added to rs, but from Part 7 (which we assume holds in s)
we get that Part 4 is not violated.
a = prepare
This step can make current-ok = true and mode, = needid but at the same time
good, is made empty, so Part 5 holds in state s'.
a = grow_good ,(ids)
This step can only add elements from good, to good, when current-ok = true and
mode, = needid, so Part 5 holds in state s'.
a = shrink_good, (ids)
This step can only remove elements not in good, from good, when current-ok = true
and mode, = needid, so Part 5 holds in state s'.
a = choose_id(id, m)
Consider this step when s.current-ok = true. The step changes mode, to send and
changes last, to a value from s.good,. Since s.mode, = needid, Part 5 gives us that
s'last, € s.good,, so since good, is not changed in the step, Part 6 holds in s'.
a = shrink_good, (ids)
When current-ok = true and mode, = send, this step cannot remove s.last, from
good,., so Part 6 holds in s'.
a = choose_id(id, m)
Consider this step when s.current-ok = true. The step changes mode, to send and
changes last, to a value from s.good,. Since s.mode, = needid, Invariant 8.2 Part 1
gives us that ¢'.last, ¢ s.used,. From Invariant 8.4 Part 5 we then get that s'.last, ¢
s.nack-buf which again implies §'.last, ¢ s'.nack-buf, since nack-buf, is not changed
in the step. So, Part 7 holds in state s'.
a = receive_pkt ,.(m, id)
This step can add an identifier to nack-buf,. Assume s.current-ok = true and
s.mode, = send. We must show that s.last, (= §'.last,) cannot be added to nack-buf,
under these assumptions. From Part 6 we have that that s.last, € s.good,, so from the
definition of receive_pkt .(m,id) we get that nack-buf, is not changed. Thus, Part 7
holds in state s'.

|

Proof of Invariant 8.7

Parts 1 and 2 are reformulations of Invariant 8.6 Parts 3 resp. 4.

C.1.

Proof of Invariants at the G Level 259

Proof of Invariant 8.8

e Since initially mode, = idle and current-ack, = false, all parts hold.

e lor each part of the invariant we consider the critical steps (s, a, s"), where we assume that
all parts of this invariant hold in s, and that previously proved invariants hold in both s
and s’. Note, for the Parts 1, 2, and 3 that no step, except choose_id(id, m), can change
last, without also changing mode, to something other that send. Note also that no steps
can make good-ids grow. good-ids can only shrink.

1.

a = choose_id(id, m)

This step changes mode, to send. In state s we get from Invariant 8.4 Part 4 that
s.usedy D ids(sr). From the definition of choose_id(id, m) we see that s'.last, is placed
at the end of used,, thus by the definition of the partial order of identifiers we see that
Part 1 holds in s'.

a = send_pkt (m,id)

This step might add (m, s.last,) to sr while mode, = send. But since Part 1 is assumed
to hold in s, it is obvious that it also holds in s'.

a = choose_id(id, m)

Although this step changes mode, from needid to send, it does not make last, = last,.
To see why this is so, note that either s'.last, = nil in which case the result follows
directly (since s'.last, # nil by Invariant 8.1 Part 1) or §'.last, = s.last, # nil in
which case Invariant 8.4 Part 8 implies that s'.last, € s.used, and Invariant 8.2 Part 1
implies that s'.last, ¢ s.used,, so again the result follows. Thus, Part 2 holds in s'.

a = receive_pkt .(m,id)

Consider the case where s.mode, = s'.mode, = send, id = s.last, = §'.last, € s.good,.,
and s.mode, = s'.mode, # rec. In this case we get s'.last, = s'.last,. We must
show that ({s".last,} U ids(s'.sr)) N s'.good-ids = (). From Invariant 8.4 Parts 3 and
4 we get that s'.issued, D {s'.last,} U ids(s’.sr). So what remains to be shown is
that ({s'.last,} U ids(s'.sr)) N s.good, = . From Part 1 we get that id > ({s.last,} U
ids(s.sr)). Since we remove all identifiers less than or equal to id from good, in this
step, and since Invariant 8.4 Part 4 ensures that all packets in sr have identifiers that
are related to id, the result follows. Thus, Part 2 holds in ¢'.

a = send_pkt (m,id)

This step can change sr, but only with a packet with the identifier s.last,. Since we
assume that this Part 2 holds in s, it follows that it also holds in s'.

a = choose_id(id, m)

Although this step changes mode, from needid to send, it does not make the packet
(s'.lasts, true) belong to s’.rs. We show why this is so. Since rs is not changed in the
step, we get from Invariant 8.4 Part 6 that s.used; D ids(s'.rs). Invariant 8.2 Part 1
together with the definition of choose_id(id, m) gives us s'.last, ¢ s.used,. Thus we
get s'.last; ¢ ids(s'.rs) which gives the result. So, Part 3 holds in ¢'.

260 C. Invariance Proofs
a = send_pkt (id, true)
Consider this step while s.mode, = s.mode, — send and id = s.last, = s.last, =
§'.last,. The step might succeed in putting the packet (s'.last,, true) into the channel.
We show that ({s'.last,} U ids(s'.sr)) N §'.good-ids = (. From Part 2 we get that
({s.last, }Uids(s.sr))Ns.good-ids = (). Since neither last,, sr, nor good-ids are changed
in the step, the result follows directly. So, Part 3 holds in s'.
a = send_pkt .(m,id)
This step can change sr, but only with a packet with the identifier s.last,. Since we
assume that this Part 2 holds in s, it follows that it also holds in s'.

4. a = receive_pkt, (id,b)

This step can change mode, to idle and current-ack, to true if b = true and id =
s.lasty, thus, (s.last,,true) must be on s.rs. Then Part 3 implies that ids(s.sr) N
good-ids = (). It now directly follows that Part 4 holds in state s'.

|

Proof of Invariant 8.9

e Since initially buf, = ¢, all parts of the invariant hold.

e lor each part of the invariant we consider the critical steps (s,a,s’), where we assume that
all parts of this invariant hold in s, and that previously proved invariants hold in both s
and s'.

1.

a = recover,

This step changes mode, to idle but at the same time buf, is made empty, so Part 1
holds in s'.

a = send_pkt (id, true)

This step can change mode, to idle, but from Part 2 in state s we get buf, = ¢, so
Part 1 holds in s'.

a = cleanup,

This step changes mode, to idle but since s.mode, € {idle, ack} from the precondi-
tion, this part and Part 2 imply that buf, was already empty. Thus, Part 1 holds in

s’

a = receive_pkt ,.(m, id)

We consider this step in two different situations
— The step can make buf, nonempty but at the same time mode, is changed to
rcvd.
— The step can change mode, from idle to ack, but then Part 1 implies that buf,

was already false.

So, Part 2 holds in state 5.

C.1. Proof of Invariants at the G Level 261
a = receive_msg(m)
This step can change mode, to ack but this only happens if s".buf, = ¢, so Part 2
holds in state s'.

3. a = choose_id(id, m)
Although this step makes mode, = send, it does not make the packet (s'.last,, true)
belong to s'.rs. The argument is the same as for the corresponding case in the proof
of Invariant 8.8 Part 3. So, Part 3 holds in state 5.
a = send_pkt (id, true)
This step can put (s'.last,, true) into rs but since s.mode, = ack, Part 2 gives us that
s.buf (= s'.buf) = €. So, Part 3 holds in state s'.
a = receive_pkt .(m,id)
This step might add an element to buf,. We show that this cannot happen while
mode, = send and (last,, true) € rs. If an element is added to buf, in the step, then
id € s.good,, i.e., ids(s.sr) U s.good-ids # () but this contradicts Invariant 8.8 Part 3.
So, Part 3 holds in state s'.
4. a = receive_pkt, (id, true)

Consider this step when id = s.last,. Then (s.last,, true) € s.rs. Since s.mode, =
send, Part 3 implies that s.buf, = ¢ which in turn implies that s".buf,. = ¢. So, Part 4
holds in state s'.
a = receive_pkt .(m,id)
This step might add an element to buf,.. The argument that this cannot happen while
mode, = idle and current-ack, = true is similar to the argument in the corresponding
case in the proof of Part 3, only in this case we get a contradiction with Invariant 8.8
Part 4. So, Part 4 holds in state s'.

|

Proof of Invariant 8.10

e Initially nack-buf, = ¢ and rs = (), so the parts hold.

e lor each part of the invariant we consider the critical steps (s, a, s"), where we assume that
all parts of this invariant hold in s, and that previously proved invariants hold in both s
and s'. Note, that no steps can make good-ids grow.

1.

a = receive_pkt .(m,id)

Consider this step when s.mode, # rec and id ¢ s.good,. Then id might be added to
nack-buf . Since id ¢ s.good, and good, is unchanged in the step we get s'.nack-buf, N
s'.good, = () (since we assume that this Part 1 holds in s). From Invariant 8.4 Parts 3
and 5 it follows that s'.nack-buf, N s'.issued, = §. So, Part 1 holds in state s'.

a = send_pkt (id, true)

This step might add (last,,true) to rs but from Invariant 8.4 Part 7 we get that
last, ¢ good-ids, so this step cannot violate Part 2.

262

C. Invariance Proofs

a = send_pkt (id, false)

Then id € s.nack-buf,., so Part 1 directly gives us that this step cannot violate Part 2.

Proof of Invariant 8.11

e Initially mode, = idle so both parts hold.

e Lor each part of the invariant we consider the critical steps (s,a,s’), where we assume that

both parts of this invariant hold in s, and that previously proved invariants hold in both s
and s’. Note, no action, except choose_id(id, m), can change last, without also changing
mode; to non-send. Also, from Invariant 8.1 Part 2 we get that all steps that change last,
tonil are not critical.

a = choose_id(id, m)

Although this step changes mode, to send, it does not make the packet s'.last, belong
to &' .nack-buf,. We show why this is so. Invariant 8.2 Part 1 implies that ¢'.last, ¢
s.used,. From Invariant 8.4 Part 5 and the fact that nack-buf, is not changed in the
step, we get that s.used; O s'.nack-buf,, which gives the result. So, Part 1 holds in
state s'.

a = receive_pkt(m, id)

We consider two cases.

— Consider the step when id = last;. Then last; can be added to nack-buf, but this
can only happen if last, # last,, so Part 1 is not violated.

— Consider the step when s.mode, # rec, id = last,, and last, € s.good,. Then
s last, = s'.last,. We show that then s.last, ¢ s.nack-buf, (which is the same as
showing '.last, ¢ s'.nack-buf). First assume s.last, € s.nack-buf,. Then Invari-
ant 8.10 Part 1 implies that s.last, ¢ s.good,, but this contradicts the assumption
that last, € s.good,. Thus, Part 1 holds in state s'.

a = choose_id(id, m)

Although this step changes mode, to send, it does not make the packet ('.last,, false)
belong to s’.rs. The argument that this is so is similar to the argument in the corre-
sponding case in the proof of Invariant 8.8 Part 3. So, Part 2 holds in state s'.

a = send_pkt (id, false)

Consider this step when id = last,, i.e., last; is first on s.nack-buf,.. Then Part 1
implies that s.last, # s.last,, so, since neither last, nor last, change in the step,
Part 2 holds in state 5.

a = receive_pkt ,.(m, id)

Assume s.mode, # rec and last, = id € s.good,. Then s'.last, = s .last,. We show
that then (last,, false) ¢ rs. First assume (last,, false) € rs. Then Invariant 8.10
Part 2 implies that last, ¢ s.good-ids, but this contradicts the assumption that last, €
s.good,. Thus, Part 2 holds in state 5.

C.2. Proof of Invariants at the C Level 263

Proof of Invariant 8.12

e The invariant is explicitly required to hold in all start states.

e We consider the critical steps (s, a, s), where we assume that the invariant holds in &', and
that previously proved invariants hold in both s’ and s.

1.

a = recover, or a = shrink_good, (ids)

These steps explicitly require the invariant to hold in s.

C.2 Proof of Invariants at the C Level

In this section we prove the invariants of A’é/ presented in Section 10.5.2. As above we prove
the invariants by induction, proving that they hold in the (unique) start state and that all steps

preserve the invariants. As above, in the inductive step of the inductive arguments we only
consider “critical steps” that might invalidate the invariant.
In the proofs the steps have the form (s, a,s’).

Proof of Invariant 10.1

¢ Initially all the involved variables are 0, so all parts hold.

o 1.

a = tick,(t)
This step changes both ctime, and time, to t.
a = tick,(t)

This step changes both ctime, and time, to t.
a=v

The precondition on the time-passing steps of the clock subsystem (and thus on all of
C) ensures that |s'.ctime; — s’.now| < e. Part 1 then gives the result.

a=v

The precondition on the time-passing steps of the clock subsystem (and thus on all of
C) ensures that |s'.ctime, — s’.now| < e. Part 2 then gives the result.

Parts 3 and 4 directly implies the result.

Proof of Invariant 10.2

o Initially upper, = 3 > 2¢+ 1. > 2e. Since initially now = time, = time, = 0, all the
invariants hold.

o 1.

a = TeCoveET,

This makes s’.mode, # rec but at the same time s'.upper, = s'.time, + 5 > s'.time, +
2¢ + Il > s'.now + €+ I/, where the last inequality follows from Invariant 10.1 Part 4.

a = increase-upper,.(t)

As for the previous case, s’.upper, > s’ .now + ¢+ [

264 C. Invariance Proofs

a=v

Assume s.mode, # rec. From the upper time bound on the class C¢ ., consist-
ing of all increase-upper,(t) actions we have s'.now < s.last(Cg,,). The variable
last(C{) is set to now + [, whenever a recover, step occurs (since then C¢ ., be-
comes enabled) or a increase-upper,(t) step occurs (since then increase-upper,(t) be-
comes reenabled). Now, since we assume s.mode, # rec, let now, and upper, , denote
real time and upper, right after the last recover, or increase-upper,(t) step. Then
s'.now < s.dast(CE) = nowy + 11, so, nowy > s'.now — I. Now, from the recover,
and increase-upper, (t) cases above we finally get s'.upper, = upper, , > nowy+e+1]. >
(s'.now =)+ e+ 1 = s.now + ¢

Note: We are here actually departing from our normal way of proving invariants
since we use more information, like now,, than is available in s. What we could have
done was to introduce a history variables now, that is set to now in recover, and
increase-upper,(t) steps. We could then easily have proved the invariants

If mode, # rec then last(Ct ,,) = nowg + I, and now < nowg + 1,
s .upper, > nowy + ¢ + 1.

from which the result would follow.

We go through the same arguments but have chosen, for brevity, to avoid explicitly
introducing the extra history variable.

This part follows directly from Part 1 and Invariant 10.1 Part 3.
This part follows directly from Part 1 and Invariant 10.1 Part 4.
|

Proof of Invariant 10.3
o Initially last, = time, = 0 and mode, = idle, so both parts hold.

o 1. a € {choose_id(t), recover,, tick,(t)}

All such steps clearly preserve this part.
2. a = choose_id(t)
Changes mode, to send but also explicitly sets s'.last, =t > s.last, > 0.

Proof of Invariant 10.4
Straightforward.
|]

Proof of Invariant 10.5
Straightforward.
|]

Proof of Invariant 10.6
Straightforward.
|]

C.2.

Proof of Invariants at the C Level 265

Proof of Invariant 10.7

o Initially lower, = time, = last, = 0, so both parts of the invariant hold.

o 1.

No steps can make time, smaller, so we need only check the steps that make lower,
bigger.

a = TeCoveET,

Then s'.lower, = s.upper, and s.upper, + 2¢ < s.time,. Therefore, ' .lower, <
s.time, — 2¢ < s.time, — §'.time,, where we have used Invariant 10.1 Part 5.

a = increase-lower, (1)

Then s'.lower, < s.time, — p < s.time, — (kl; + d + 2¢) < s.time, — 2¢ < s.time, =
s'.times, where we again have used Invariant 10.1 Part 5.

a = receive_pkt . (m,t)

The only way for lower, to increase is for '.lower, = ¢ but then, since ((m,t),-) € s.sr,
Invariants 10.6 Part 1 and 10.3 Part 1 imply that s'.lower, < s.last, < s.time, =
s .time,.

a € {recover, , increase-lower,(t)}

Same argument as for the previous part.

a = receive_pkt . (m,t)

Assume ¢'.last, < s'.time,. Since s.last, = s'.last, and s.time, — s'.time,, we also
have s.last, < s.time,. The only way for lower, to increase is for s'.lower, = t but
then, since ((m,t),_) € s.sr, Invariants 10.6 Part 1 implies that s'.lower, < s.last, <
s.time, = s'.time,.

a = tick,(t)
Assume s'.last, < s .time,. From Invariant 10.3 Part 1 we have s.last, < s.time,. We
consider cases:

— s.last, < s.time,
Then s.lower, < s.time, by the inductive hypothesis, so we have s'.lower, =
s.lower, < s.time, < s'.time,, as needed, where the last inequality follows from
the definition of tick,(t).

— s.last, = s.time,
Then since s.last, = s'.last < s'.time, we have s.time < s'.time. Since s'.lower, =
s.lower,, and s.lower, < s.time, by Part 1, we have s'.lower < s'.time,, as needed.

Proof of Invariant 10.8

Straightforward.

Proof of Invariant 10.9

Straightforward.

266

C. Invariance Proofs

Proof of Invariant 10.10

o Initially deadline = oo and now = 0, and since mode, = idle we have bound = oo, so all
parts hold.

1.

a = choose_id(t)

Then s'.last, = t. Let m = s'.current-msy,.

If s.mode, = s’.mode, = rec then s'.deadline = s.deadline and the induction hypoth-
esis Part 7 implies that s.deadline = oo, so we are done.

So, assume s.mode, # rec. From the precondition of choose_id(t) we have t >
s.dast,. Now Invariants 10.5 Part 1 and 10.6 Part 1 imply, since s'.count.(m,t) =
s.counts(m,t) and s'.rs = s.rs, that s'.count,.(m,t) = 0 and (m,t) ¢ packets(s'.sr).
Now, since Cf, , becomes reenabled in s" we have s'.last(C¢, , = s'.now 4 I,. Thus,

s'.bound = '.dast(CE)+ (K — 1 — s'.count,,.(m, 1))l +d
= sdnow+l,+ (k-1 +d

= s'.deadline

That suffices.

a = send_pkt,.(m,1)

We consider cases
— (m,t) € packets(s.sr)
Then s'.bound = s.bound since the mintime of the (p,t) packets does not change.
Since also s'.deadline = s.deadline, the result follows.
— (m,t) ¢ packets(s.sr)
* (m,t) ¢ packets(s'.sr)
Then s'.count,,(m,t) = s.count,.(m,t) + 1. We now have
s'.bound = s'.dast(CE)+ (k — 1 — s'.count,,(m,
smow + 1l + (k—1— s'.count . (m,t
s'.now + (k — 1 — s.counts.(m, 1))l +d
s.last(CL) + (k= 1 = s.count,(m, 1))l +

s.bound

Al
o
.

The induction hypothesis Part 1 now implies
s'.deadline = s.deadline > s.bound > s'.bound
* (m,t) € packets(s'.sr)
Then s'.bound = d + s'.now and
s.bound s.dast(CE) + (k= 1 = s.count ,(m, 1))l + d
s.last(CE)+ d
s .now +d
s'.bound

v IV |

where the first inequality follows from Invariant 10.5 Part 2 and the second
inequality follows from facts that time cannot pass beyond any last(C') variable
and s'.now = s.now.

The induction hypothesis Part 1 now implies

s'.deadline = s.deadline > s.bound > s'.bound

C.2. Proof of Invariants at the C Level 267

a = receive_pkt . (m,t)

For such a step to change either bound or deadline, i.e., for such a step to be able to
invalidate the invariant part under consideration, we must have s.mode, = send(=
s'.mode,) and t = s.last; (= s'.lasty). Invariant 10.6 Part 2 then implies that m =
s.current-msq, (= s'.current-msg,).

If s.deadline = oo, then also s'.deadline = oo and the result follows.

So, assume s.deadline # co. The induction hypothesis Part 7 then implies s.mode, #
rec.

We now show that s.lower, <1 < s.upper,.

The lower bound follows from the induction hypothesis Part 6 and the fact that
t = s.last,.

For the upper bound we have from Invariants 10.2 Part 2 and 10.3 Part 1 that
s.upper, > s.time; > s.last; = t.

Then from the definition of receive_pkt , (m,t) we see that s'.deadline = oo, and the
result follows.

a = receive_pkt, (t,b)

For such a step to be able to invalidate the invariant part under consideration, we
must have s.mode, = send and s.last, = t.

Then Invariant 10.6 Part 6 implies that s.last, = t < s.lower,, but then the induction
hypothesis Part 6 implies that s'.deadline = s.deadline = co. That suffices.

2. a = choose_id(t)
Then Invariant 10.5 Part 1 and the definitions of bound and last(C{,) imply that

s bound = s'.now+ I, + (k— 1)l +d > s .now

a = send_pkt . (m,1)

We consider cases
— (m,t) € packets(s'.sr)

* (m,t) € packets(s.sr) Then s'.bound = s.bound (uses the fact that Invari-
ant 10.9 Part 1 implies that mintime((m,t), s'.sr) = mintime((m,t), s.sr)), so
the result follows from the induction hypothesis.

* (m,t) ¢ packets(s.sr) Then s'.bound = s'.now + d > s'.now.

— (m,t) ¢ packets(s'.sr) Then s'.last(C{) = s'.now + I, so Invariant 10.5 Part 2
implies
s bound = §'.now+ 1,4+ (k — 1 — & .count . (m, 1)), + d > s .now

receive_pkt,, .(m,1)

For such a step to change bound we must have s.mode, = send, s.last, = t, and
s.current-msg, = m. In all other cases the induction hypothesis immediately gives the
result.

The step removes ((m,t),t'), for some t', from sr. If ' # mintime((m,1t),s.sr) then
s".bound = s.bound, and again the induction hypothesis gives the result. So, assume
t = mintime((m, 1), s.sr).

We consider cases

268 C. Invariance Proofs

— (m,t) € packets(s'.sr
Then mintime((m,t), s'.sr) > mintime((m,t), s.sr) which implies that s'.bound >
s.bound and the result follows.

— (m,t) ¢ packets(s'.sr
Then, since §".last(Cg ,) > s'.now we have (with a little help from Invariant 10.5
Part 2)

s'.bound = §'.last(C¢) + (k — 1 — §'.count ,.(m, 1))l + d > s'.now

a=v
If s.mode, = s'.mode, # send, then s'.bound = oo and the result follows. So, assume
s.mode; = s’ .mode, = send
Let m = s.current-msg, = s'.currnet-msg, and t = s.last; = s'.last;. We consider
cases
— (m,t) € packets(s.sr)
Then ((m,t), mintime((m,t),s.sr)) € s.sr and from the precondition of the time

passing steps of the channel sr we have s'.now < mintime((m,t),s.sr). Thus,
since §'.sr = s.sr,

s .now < mintime((m,t), s.sr) < mintime((m,t),s'.sr) + d = s .bound
— (m,t) ¢ packets(s.sr)

Then, since s".last(C{, ;) > s'.now we have (with a little help from Invariant 10.5
Part 2)

s .bound = §'.last(C¢) + (k = 1 = 8'.count . (m, 1))l + d > s .now

This part follows directly from Parts 1 and 2.
4. a = choose_id(t)

If s.mode, = rec then s'.deadline = s.deadline = oo, by the induction hypothesis
Part 7, so the result follows.

So, assume s.mode, < rec. Then ¢'.deadline = s'.now+ ki, +d and ¢.last, = s'.time,.
Invariant 10.1 Part 3 then implies that s'.deadline < s'.last, + ¢ + kl, + d.
a = recover,
Then the induction hypothesis Part 7 implies that s.deadline = oo, and since we have
s'.deadline = s.deadline, the result follows.

5. This part follows directly from Parts 3 and 4.

6. a € {recover,, recover, }

Then by the induction hypothesis Part 7 we have s'.deadline = s.deadline = co. That
suffices.

a = choose_id(t)

Then ¢'.last, = & .time, = s.time, > s.last,, by definition of choose_id. By Invari-
ant 10.7 Part 2, s.lower, < s.time,. But since s'.lower, = s.lower, and s.time, =
s last,, we have ¢ .lower, < s§'.last,, as needed.

C.2. Proof of Invariants at the C Level 269

a = increase-lower, (1)

We only need to check such steps when s'.deadline = s.deadline # .

By definition of increase-lower,(t), we have s'.lower, < §.time, — p < s'.time, —
(kl; + d + 2¢). It suffices to show that this is less than or equal to s'.last,. Since
§'.deadline # oo, Part 5 implies that s'.now < s'.last, + € + ki, + d. By Invariant 10.1
Part 4, we know that s'.time, < ¢’.now+e¢. Therefore, s'.time, < §'.last, + ki, +d+ 2e¢.
This suffices.

a = receive_pkt . (m,t)

This increases lower, if s.mode, # rec and s.lower, < t < s.upper,.
If s.deadline = oo then also s'.deadline = oo and the result follows.

So assume s.deadline # oo. Then induction hypothesis Part 7 implies that s.mode, =
send. Now, if t = s.last, then s'.deadline = oo and the result follows. If ¢ # s.last,,
then Invariant 10.6 Part 1 implies that ¢ < s.last,. Then, since s'.lower, = t and
s last, = s.last,, we get s'.lower, < s'.last,, as needed.

7. Straightforward except for the case a = receive_pkt, (t,b).

a = receive_pkt, (t,b)

This may invalidate the invariant by changing mode, to idle if we have t = s.last,
and s.mode, = send.

Invariant 10.6 Part 6 implies that s.last, < s.lower,. From the induction hypothesis
Part 6 we then get s.deadline = oo, and since s'.deadline = s.deadline the result
follows.

Proof of Invariant 10.12
Straightforward.
|]

Proof of Invariant 10.13
Straightforward.
|]

