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Chapter 1IntroductionDuring the past few years, the technology for formal speci�cation and veri�cation of commu-nication protocols has matured to the point where we believe that it now provides practicalassistance for protocol design and validation. Several models for distributed systems in gen-eral and communication protocols in particular have been developed, and recent advances in-clude formal models that allow reasoning about untimed systems as well as timed systems, e.g.,[AL92a, GSSL93, LV93a, LV93b].In connection with these models a host of proof techniques have been developed for provingthat one protocol implements another. One class of proof techniques is the simulation techniques(including re�nement mappings, and forward and backward simulations) [AL91, GSSL93, Jon91,LV92, LV93a, LV93b].In this work, we show how one approach to formal speci�cation and veri�cation of distributedsystems|the live (timed) I/O automata of [GSSL93]|can be used to verify an important classof communication protocols|those for reliable at-most-once message delivery .Thus, the report has two main parts: �rst, the formal framework of [GSSL93] is presentedand augmented with additional theory (including a new temporal logic). Second, we consider theveri�cation example. The purpose of our work is to provide better understanding, documentationand proof for the relaible at-most-once message delivery protocols, and to test the adequacy ofthe formal framework.Formal FrameworkWhen formally developing new protocols or proving correctness of existing ones with respectto some speci�cation, a stepwise approach is usually used: the speci�cation is given in a veryabstract manner in which abstract data types are used and where possibly no distributed struc-ture is present. In a series of development steps this speci�cation is re�ned (or implemented)by introducing more low-level data types and by introducing a distributed view of the system,where di�erent nodes (protocol entities) are connected by more or less reliable channels.By using a formal approach to systems speci�cation, it is possible to prove formally that alow-level (concrete) protocol correctly implements the high-level (abstract) speci�cation. Sucha proof is performed by proving that each level in the step-wise development is correct withrespect to (i.e., implements) the next more abstract level. This approach to veri�cation impliesthat the task of proving correctness of a complicated protocol is split into more managerablesubtasks, and this greatly reduces the complexity of the overall proof.The models of [GSSL93] for untimed and timed systems use an automaton (or state machine)1



2 1. Introductionto express safety properties. A safety property ensures that the system never does anythingwrong by specifying the steps the system is allowed to perform during execution. However, asafety requirement does not guarantee that the system does anything at all. For that purposethe models of [GSSL93] contain an extra liveness condition. The liveness condition restrictsthe long-term behavior of the system by specifying what must eventually happen. An exampleof a liveness condition is the requirement that each process in a parallel system be given fairchances to proceed. In timed systems it is furthermore possible to specify timing requirementslike deadlines, response times, etc..The models of [GSSL93] are entirely semantic: they describe an abstract view of how dis-tributed systems behave when executed. Thus, they do not o�er any syntax for writing downobjects of the models. Such a syntax is presented in this work:� For writing down the automaton part of the models we use a Pascal-like notation whichmakes our speci�cations look close to traditional ways of describing protocols for dis-tributed systems.� The liveness part of the models is speci�ed using the language of an extended temporal logicthat we develop. This approach has the advantage that parts of the proofs of correctnesscan be performed using rules of the logic.An important property of the models of [GSSL93] is that they are compositional . This meansthat each component (e.g., node) in a complex system can be speci�ed separately and thatwe can implement each component separately and yet obtain an implementation of the entiresystem. This enables a modular approach to systems speci�cation and veri�cation.We test the adequacy of the models and proof techniques by formalizing two existing protocolsfor solving the at-most-once message delivery problem and showing how these protocols can beproved correct.The At-Most-Once Message Delivery ProblemThe at-most-once message delivery problem is that of delivering a sequence of messages submit-ted by a user at one location to a user at another location. Ideally, we would like to insist thatall messages be delivered in the order in which they are sent, each exactly once, and that anacknowledgement be returned for each delivered message.1Unfortunately, it is expensive to achieve these goals in the presence of failures (e.g., nodecrashes). In fact, it is impossible to achieve them at all unless some change is made to thestable state (i.e., the state that survives a crash) each time a message is delivered. To permitless expensive solutions, we weaken the statement of the problem slightly. We allow somemessages to be lost when a node crash occurs; however, no messages should otherwise be lost,and those messages that are delivered should not be reordered or duplicated. (The speci�cationis weakened in this way because message loss is generally considered to be less damaging thanduplicate delivery.) Now it is required that the user receive either an acknowledgement that themessage has been delivered, or in the case of crashes, an indication that the message might havebeen lost.There are various ways to solve the at-most-once message delivery problem. All are based onthe idea of tagging a message with an identi�er and transmitting it repeatedly to overcome the1Our de�nition of at-most-once message delivery is di�erent from what some people call at-most-once messagedelivery in that we include acknowledgements and require messages to be delivered in order.



3unreliability of the channel. The receiver2 keeps a stock of \good" identi�ers that it has neveraccepted before; when it sees a message tagged with a good identi�er, it accepts it, deliversit, and removes that identi�er from the set. Otherwise, the receiver just discards the message,perhaps after acknowledging it. In order for the sender to be sure that its message will bedelivered rather than discarded, it must tag the message with a good identifer. What makesthe implementations tricky is that the receiver will be keeping track of at least some of its goodidenti�ers in volatile (non-stable) memory, which gets lost in case the receiver node crashes. Butthe sender does not immediately learn about the crash, so it may go on using these identifers andthus transmit messages that the receiver will reject. Di�erent protocols use di�erent methodsto keep the sender and the receiver more or less in agreement about what identi�ers to use.A desirable property, which is not directly related to correctness, is that the implementationso�er a way of cleaning up \old" information when this cannot a�ect the future behavior.In this work, we consider two protocols that are important in practice: the Clock-BasedProtocol (which we call C) of Liskov, Shrira and Wroclawski [LSW91] and the Five-PacketHandshake Protocol (which we call H) of Belsnes [Bel76]. The latter is the standard protocol forsetting up network connections, used in TCP, ISO TP-4, and many other transport protocols.It is sometimes called the three-way handshake, because only three packets are needed formessage delivery; the additional packets are required for acknowledgement and cleaning up thestate. The former protocol was developed as an example to show the usefulness of clocks innetwork protocols [Lis91] and has been implemented at M.I.T.. Both protocols are su�cientlycomplicated that formal speci�cation and proof seem useful.Survey of the ExampleWe express both protocols, H and C, as well as the formal speci�cation S of the at-most-oncemessage delivery problem, in terms of the models of [GSSL93].Although the two protocols appear to be quite di�erent, we have found that both can beexpressed formally as implementations of a common Generic Protocol G, which, in turn, is animplementation of the problem speci�cation. To prove that G implements the speci�cation, forproof-technical reasons we introduce an additional level of abstraction, the Delayed-DecisionSpeci�cation D. This is depicted in Figure 1.1. Introducing intermediate levels of abstraction,like G and D, is a general proof strategy that allows large, complicated proofs to be split intosmaller and more managerable subproofs.The speci�cation S is stated in the untimed model of [GSSL93] whereas the Clock-BasedProtocol C uses the timed model. This apparent model inconsistency is resolved by consideringS to be a timed system that does not put any constraints in real time. In [GSSL93] certainembedding results provide the formal basis for moving between the timed and untimed model.In this report we provide almost complete proofs of correctness. Some parts of the proofsare omitted however but we treat all di�erent kinds of proofs and provide informal justi�cationfor the missing parts.Outline of the ReportThe report is structured as follows. In Part I we consider the formal framework: Chapter 2gives a brief introduction to the models of [GSSL93] and the embedding results. Chapters 3 and2We denote by \receiver" the protocol entity that is situated on the receiver node, and use phrases like \theuser at the receiver end" to denote the user that communicates with the receiver. Correspondingly for \sender".



4 1. Introduction
C HGDS Speci�cationDelayed-Decision Speci�cationGeneric ProtocolFive-Packet HandshakeProtocolClock-Based Protocol ??���+ QQQsFigure 1.1Overview of the levels of abstraction.4 describe the syntax we use for specifying systems: �rst, in Chapter 3, we de�ne an extendedtemporal logic, and then, in Chapter 4, we speci�cally show how this temporal logic is usedto specify liveness conditions. Chapter 5 describes the proof techniques we use when provingcorrectness of the protocols. These techniques are mainly taken from [GSSL93].The remaining part of the report Part II deals with the at-most-once message deliveryexample. First, in Chapter 6, we present the formal speci�cation S of the at-most-once messagedelivery problem. In Chapter 7 we present the Delayed-Decision Speci�cation D and show thatit correctly implements S. Chapters 8|10 then formally specify the G, H, and C levels andconsider their correctness.Finally, in Chapter 11, we give concluding remarks.The report contains three appendices. Appendix A introduces some basic notation andshould be read before the rest of the report. Appendix B and Appendix C contain proofs ofcertain results in the main parts of the report.AcknowledgementsWe thank Hans Henrik L�vengreen for his valuable criticism and useful comments on this report,and for his contribution to the de�nition of the temporal logic developed in this report.This work is supported in part at the Technical University of Denmark by the Danish ResearchAcademy and the Danish Technical Research Council. Supported at MIT by NSF grants CCR-89-15206 and 9225124-CCR, by DARPA contracts N00014-89-J-1988 and N00014-92-J-4033, andby ONR contract N00014-91-J-1046.



Part IThe Formal Framework





Chapter 2The ModelTo make this report self-contained, we give a brief presentation of the operational models fordistributed systems that are developed in [GSSL93]. We give all formal de�nitions and resultsthat are needed but refer to [GSSL93] for details about, e.g., proofs and for a more thoroughtreatment of the models.We �rst present the model for untimed systems. Then the model for timed systems ispresented, and �nally we show how an untimed system can be thought of as a timed systemthat allows time to pass arbitrarily.2.1 The Model for Untimed SystemsThe model for untimed systems, called live I/O automata, which is developed in [GSSL93]consists of an automaton part (or state machine), with a labeled transition relation, and aliveness condition. The automaton speci�es the possible steps of the system, i.e., it speci�eswhat is allowed to happen, thus, the safety of the system. The liveness condition restricts thelong-term behavior of the system by specifying what must eventually happen.The liveness condition can be seen as a way of restricting the way the automaton is \executed"whenever it is working properly. A liveness condition for a system of two parallel processes mightrequire that each component be given the possibility of making progress in�nitely often. In thisway executions where one component wishes to proceed but is never given a chance are ruledout. This kind of liveness is known as weak fairness and is implemented on a physical machineby executing the parallel processes on separate processors or by using a fair scheduler. In theexamples in this work we will see examples of more complicated liveness requirements.As mentioned above the automaton part has a labeled transition relation. This means thateach step of the automaton is labeled by a name, called an action. The set of actions arepartitioned into external and internal actions, where only the external actions are visible fromthe environment. The model is event-based in the sense that communication between parallelcomponents of a system or between system and environment is modeled by joint actions. Thatis, communication is modeled as the joint executions of steps labeled by the same action. Thus,the states cannot be observed. For this reason correctness is based on the sequences of externalactions (called traces) that can occur when the system is working properly, i.e., when its livenesscondition is satis�ed.To express a notion of system vs. environment, the external actions are partitioned into in-put and output actions, i.e., an I/O distinction is introduced. Intuitively output (and internal)7



8 2. The Modelactions are controlled by the system, and are thus called locally-controlled actions, whereas inputactions are controlled by the environment of the system. Since a system cannot control its envi-ronment, live I/O automata are required to be environment-free which intuitively means that nomatter which inputs the environment provides during execution, the system can perform locally-controlled actions and in this way satisfy its liveness condition. Thus, the environment-freedomrequirement ensures that live I/O automaton do not have liveness conditions like: \sooner orlater input a arrives".The environment-freedom requirement also implies that the automaton part of a live I/Oautomaton must be input-enabled which means that the automaton should be able to receiveany input in any state.Even though our live I/O automaton model is not as general as a model without I/O dis-tinction and the environment-freedom requirement, a large number of systems can be speci�edusing this model. In particular many distributed systems have a clear distinction between theoutput from the system and the input from the environment, and furthermore such systems areusually designed to be able to receive input at any time since processes are usually connectedby networks that are not capable of bu�ering messages. In [GSSL93] a technical justi�cation ofenvironment-freedom is o�ered. This justi�cation deals with the fact that without I/O distinc-tion and environment-freedon, a trace-based correctness notion as the one mentioned above isnot adequate in that it cannot form the base of a notion of implementation that corresponds toour intuition. Furthermore, there exists simpler proof techniques for live I/O automata than formore general models.We �rst present the automaton part, called safe I/O automata. Then we add the livenesscondition, discuss the notion of implementation, and state an important substitutivity propertyof the model.2.1.1 Safe I/O AutomataDe�nition 2.1 (Safe I/O Automaton)A safe I/O automaton A consists of four components:� A set states(A) of states.� A nonempty set start(A) of start states (start(A) � states(A)).� An action signature sig(A) = (in(A); out(A); int(A)) of disjoint sets of input, output, andinternal actions, respectively. Denote by ext(A) the set in(A)[out(A) of external actions,by local(A) the set out(A) [ int(A) of locally-controlled actions, and by acts(A) the setext(A) [ int(A) of actions.� A transition relation steps(A) � states(A)� acts(A)� states(A). The transition relationsteps(A) must have the property that for each state s 2 states(A) and each input actiona 2 in(A) there exists a state s0 2 states(A) such that (s; a; s0) 2 steps(A). A is said to beinput-enabled.An action a is enabled in a state s if there exists a state s0 such that (s; a; s0) is a step, i.e.,(s; a; s0) 2 steps(A). A set A of actions is said to be enabled in state s if there exists an action



2.1. The Model for Untimed Systems 9a 2 A such that a is enabled in s. An action or set of actions which is not enabled in a state sis said to be disabled in s.An execution fragment � of a safe I/O automatonA is a (�nite or in�nite) sequence of alternatingstates and actions starting with a state and, if the execution fragment is �nite, ending in a state� = s0a1s1a2s2 � � �where each (si; ai+1; si+1) 2 steps(A). Denote by fstate(�) the �rst state of � and, if � is �nite,denote by lstate(�) the last state of �. Furthermore, denote by frag�(A), frag!(A), and frag(A)the sets of �nite, in�nite and all execution fragments of A, respectively. An execution is anexecution fragment whose �rst state is a start state. Denote by exec�(A); exec!(A) and exec(A)the sets of �nite, in�nite and all execution of A, respectively. A state s of A is reachable if thereexists a �nite execution of A that ends in s.A �nite execution fragment �1 = s0a1s1 � � �ansn of A and an execution fragment �2 =snan+1sn+1 � � � of A can be concatenated . In this case the concatenation, written �1 a �2, isthe execution fragment s0a1s1 � � �ansnan+1sn+1 � � �. Clearly, �1 a �2 is an execution i� �1 is anexecution.An execution fragment �1 of A is a pre�x of an execution fragment �2 of A, written �1 � �2,if either �1 = �2 or �1 is �nite and there exists an execution fragment �01 of A such that�2 = �1 a �01.Let � = s0a1s1a2s2 � � � be an execution fragment. The length of � is the number of actionsoccurring in �. Thus,j�j 4= ( n if � is �nite and ends in sn1 if � is in�niteDe�ne the ith pre�x and ith su�x of �, for 0 � i � j�j1, as�ji 4= s0a1s1 � � �aisiij� 4= ( siai+1si+1 � � � if i < j�jsj�j if � is �nite and i = j�jThe trace of an execution fragment � ofA, written traceA(�), or just trace(�) when A is clear,is the list obtained by restricting � to the set of external actions of A, i.e., trace(�) = ��ext(A).For a set E of executions of A, denote by tracesA(E), or just traces(E) when A is clear fromcontext, the set of traces of the executions in E. We say that � is a trace of A if there exists anexecution � of A with trace(�) = �. Denote by traces�(A); traces!(A) and traces(A) the sets of�nite, in�nite and all traces of A, respectively. Note, that a �nite trace might be the trace of anin�nite execution. Furthermore, for any list l of actions of A, de�ne traceA(l), or just trace(l)when A is clear from context, to be l � ext(A).When specifying complex distributed systems, it is important to be able to specify each processseparately and then obtain the speci�cation of the entire system as the parallel composition ofthe speci�cations of the processes. This modular approach greatly reduces the complexity ofspecifying large systems. The parallel composition operator in this model uses a synchronizationstyle where automata synchronize on their common actions and evolve independently on theothers. It is required that each external action be under the control of at most one automaton,1The index i ranges over the natural numbers so if j�j =1, then i � j�j is the same as i < j�j.



10 2. The Modelthus, parallel composition is de�ned only for compatible safe I/O automata. Compatibilityrequires that each action be an output action of at most one safe I/O automaton. Furthermore,to avoid action name clashes, compatibility requires that internal action names be unique.De�nition 2.2 (Parallel composition of safe I/O automata)Safe I/O automata A1; : : : ; AN are compatible if for all 1 � i; j � N with i 6= j1. out(Ai) \ out(Aj) = ;2. int(Ai) \ acts(Aj) = ;The parallel composition A1 k � � � k AN of compatible safe I/O automata A1; : : : ; AN is the safeI/O automaton A such that1. states(A) = states(A1)� � � � � states(AN)2. start(A) = start(A1)� � � � � start(AN)3. out(A) = out(A1) [ � � � [ out(AN)4. in(A) = (in(A1) [ � � � [ in(AN)) n out(A)5. int(A) = int(A1) [ � � � [ int(AN)6. ((s1; : : : ; sN); a; (s01; : : : ; s0N)) 2 steps(A) i� for all 1 � i � N(a) if a 2 acts(Ai) then (si; a; s0i) 2 steps(Ai)(b) if a =2 acts(Ai) then si = s0iThe executions of the parallel composition of compatible safe I/O automata A = A1k : : :kAncan be projected to the component automata. First, for any state s of A, denote by sdAi thestate of Ai obtained by projecting s to Ai. Then, for any execution � of A denote by �dAi theexecution of Ai obtained from � by projecting the states in � to Ai and by removing each actionnot in acts(Ai) together with the state preceding the action.Parallel composition is typically used to build complex systems based on simpler components.Some actions are meant to represent internal communications between the subcomponents ofthe complex system. The action hiding operator allows us to change some external actions intointernal ones.De�nition 2.3 (Action hiding)Let A be a safe I/O automaton and let A be a set of actions such that A � local(A). Thende�ne A n A to be the safe I/O automaton such that1. states(A n A) = states(A)2. start(A n A) = start(A)3. in(A n A) = in(A)



2.1. The Model for Untimed Systems 114. out(A n A) = out(A) n A5. int(A n A) = int(A) [ A6. steps(A n A) = steps(A)The �nal operator on safe I/O automata is action renaming . Several processes might be identicalexcept for their actions' names. A classical example is given by the processes of a token ringcommunication network. Such processes could be easily speci�ed by �rst de�ning a genericprocess and then creating an instance for each process through renaming of the actions. Actionrenaming can also be used to resolve name clashes that lead to incompatibilities in De�nition 2.2.De�nition 2.4 (Action renaming)A mapping � from actions to actions is applicable to a safe I/O automaton A if it is injectiveand acts(A) � dom(�). Given a safe I/O automaton and a mapping � applicable to A, we de�ne�(A) to be the safe I/O automaton such that1. states(�(A)) = states(A)2. start(�(A)) = start(A)3. in(�(A)) = �(in(A))4. out(�(A)) = �(out(A))5. int(�(A)) = �(int(A))6. steps(�(A)) = f(s; �(a); s0) j (s; a; s0) 2 steps(A)g2.1.2 Live I/O AutomataWe have now described the safety component of a live I/O automaton. The liveness conditionshould specify which executions of a safe I/O automaton are considered to represent a properlyworking system. For this reason a liveness condition, in this model, is a subset of the executions ofthe safe I/O automaton. However, a liveness condition is used to restrict the long-term behaviorof a system, i.e., to specify what must happen sooner or later. Thus, any �nite execution ofthe safe I/O automaton should have an extension in the liveness condition. In other words, nomatter what the safe I/O automaton has done up to some time, there is still a way for it tobehave properly according to the liveness condition.This de�nition of a liveness condition only ensures that the liveness condition does notintroduce more safety than is already speci�ed by the safe I/O automaton. It does not, however,capture the fact that a live I/O automaton must not constrain its environment. To express thisidea (the environment-freedom condition) formally, we set up a game between the system andits environment, and the system is then environment-free if it can win the game no matter whatmoves the environment performs, i.e., if the system has a winning strategy. The environmentmoves by providing any �nite number of input actions, and the system moves by performing alocal step, i.e., a step labeled by a locally-controlled action, or by making no step (a ? move).



12 2. The ModelThe fact that the environment is allowed to provide any �nite number of input actions at anymove expresses that the environment can be arbitrarily but not in�nitely fast compared to thesystem. Note also that the environment provides actions and not steps. This is because theenvironment has no control over the state of the system: the environment provides the actionand the system decides which of the possible states it should reach in response.The behavior of the system during the game is determined by a strategy . A strategy is apair (g; f) of functions, where g determines which state to reach in response to an input action,and f determines the moves of the system. The notion of strategy is formalized as follows.De�nition 2.5 (Strategy)Consider any safe I/O automaton A. A strategy de�ned on A is a pair of functions (g; f) whereg : exec�(A)� in(A)! states(A) and f : exec�(A)! (local(A)� states(A))[ f?g such that1. g(�; a) = s implies (lstate(�); a; s) 2 steps(A)2. f(�) = (a; s) implies (lstate(�); a; s) 2 steps(A)The moves of the environment during the game are represented as an in�nite sequence I, calledan environment sequence, of input actions interleaved with in�nitely many � symbols. Thesymbol � is used to represent the points at which the system is allowed to move. The occurrenceof in�nitely many � symbols in an environment sequence guarantees that each environment moveconsists of only �nitely many input actions.Remember from the discussion above that after any �nite execution the system should stillhave a way of behaving properly. This is reected in the following de�nition of the outcome ofa strategy.De�nition 2.6 (Outcome of a strategy)Let A be a safe I/O automaton and (g; f) a strategy de�ned on A. De�ne an environmentsequence for A to be any in�nite sequence of symbols from in(A) [ f�g with in�nitely manyoccurrences of �. Then de�ne R(g;f), the next-function induced by (g; f), as follows: for any�nite execution � of A and any environment sequence I for A,R(g;f)(�; I) = 8>>>>><>>>>>: (�as; I0) if I = �I 0; f(�) = (a; s)(�; I0) if I = �I 0; f(�) = ?(�as; I0) if I = aI 0; g(�; a) = sLet � be any �nite execution of A and I any environment sequence for A. The outcome sequenceof (g; f) given � and I is the unique in�nite sequence (�n; In)n�0 that satis�es:� (�0; I0) = (�; I) and� For all n > 0, (�n; In) = R(g;f)(�n�1; In�1).



2.1. The Model for Untimed Systems 13Note, that (�n)n�0 forms a chain ordered by pre�x .The outcome O(g;f)(�; I) of the strategy (g; f) given � and I is the execution limn!1 �n, where(�n; In)n�0 is the outcome sequence of (g; f) given � and I and the limit is taken under pre�xordering.It is easy to see that any outcome of a strategy is an execution of the safe I/O automaton.The concepts of strategies and outcomes are used to de�ne formally the environment-freedom-property.De�nition 2.7 (Environment-freedom)A pair (A;L), where A is a safe I/O automaton and L � exec(A), is environment-free if thereexists a strategy (g; f) de�ned on A such that for any �nite execution � ofA and any environmentsequence I for A, the outcome O(g;f)(�; I) is an element of L. The strategy (g; f) is called anenvironment-free strategy for (A;L).Clearly, if a pair (A;L) is environment-free, then any �nite execution of A has an extention inL. Finally we can present the notion of live I/O automaton.De�nition 2.8 (Live I/O automata)A live I/O automaton is a pair (A;L) where A is a safe I/O automaton and L � exec(A) suchthat (A;L) is environment-free. We refer to the executions in L as the live executions of (A;L).Similarly the traces in traces(L) are referred to as the live traces of (A;L).In Chapter 4 we will de�ne some standard liveness conditions, like weak fairness, for safe I/Oautomata and show once and for all that the resulting pairs are environment-free.The operators on safe I/O automata can now be extended to live I/O automata. For parallelcomposition the liveness condition for a composed system consists of all those executions whoseprojection to the components yield live executions of the components. That corresponds to theintuitive idea that a composed system works properly if all components work properly.De�nition 2.9 (Parallel composition of live I/O automata)Live I/O automata (A1; L1); : : : ; (AN ; LN) are compatible if the safe I/O automata A1; : : : ; ANare compatible.The parallel composition (A1; L1) k � � � k (AN ; LN) of compatible live I/O automata (A1; L1),: : : ; (AN ; LN) is de�ned to be the pair (A;L) where A = A1 k � � � k AN and L = f� 2 exec(A) j�dA1 2 L1; : : : ; �dAN 2 LNg.De�nition 2.10 (Action hiding of live I/O automata)



14 2. The ModelLet (A;L) be a live I/O automaton and let A be a set of actions such that A � local(A). Thende�ne (A;L) n A to be the pair (A n A; L).De�nition 2.11 (Action renaming of live I/O automata)A mapping � from actions to actions is applicable to a live I/O automaton (A;L) if it is applicableto A. Let � be any execution of A. De�ne �(�) to be the sequence that results from replacingeach occurrence of every action a in � by �(a). Given a live I/O automaton (A;L) and a mapping� applicable to (A;L), we de�ne �((A;L)) to be the pair (�(A); �(L)).2An important property of the operators is that they are closed for live I/O automata in thesense that they produce new live I/O automata.Proposition 2.12 (Closure of parallel composition)Let (A1; L1); : : : ; (AN ; LN) be compatible live I/O automata. Then (A1; L1) k � � � k (AN ; LN) isa live I/O automaton.Proposition 2.13 (Closure of action hiding)Let (A;L) be a live I/O automaton and let A � local(A). Then (A;L) n A is a live I/Oautomaton.Proposition 2.14 (Closure of action renaming)Let (A;L) be a live I/O automaton and let � be a mapping applicable to (A;L). Then �((A;L))is a live I/O automaton.2.1.3 CorrectnessThe notion of correct implementation between live I/O automata is based on their live traces.A live I/O automaton (A;L) is said to correctly implement a live I/O automaton (B;M), withthe same input and output actions, if all live traces of (A;L) are also live traces of (B;M).This correctness notion ensures that whatever (A;L) does, (B;M) could have done the same.That is, (A;L) does nothing wrong which in other words means that (A;L) satis�es the safetyspeci�ed by (B;M). Furthermore, the correctness notion also guarantees that (A;L) in factdoes something because the correctnotion is based on live traces, i.e., traces where something\good" happens.Sometimes one is not interested in the liveness of a system and therefore speci�es a systemas a safe I/O automaton. One safe I/O automaton is said to safely implement a safe I/O2As notational convention we allow a function to be applied to subsets of elements from the domain of thefunction. The result is then the set obtained by applying the function to each element of the subset. Thus,�(L) = f�(�) j � 2 Lg.



2.1. The Model for Untimed Systems 15automaton B, with the same input and output actions, if all traces of A are also traces of B.This notion of safe implementation does not guarantee that A does anything at all. In fact, asafe I/O automaton A with one state, no local steps, and \self-loop" steps for each of its inputactions, is a safe implementation of any safe I/O automaton with the same input and outputactions. The notion of safe implementation trivially extends to live I/O automata.De�nition 2.15 (Implementation relations)Given two live I/O automata (A;L) and (B;M) such that in(A) = in(B) and out(A) = out(B),de�ne the following implementation relations:Safe: A vS B i� traces(A) � traces(B)Safe: (A;L) vS (B;M) i� A vS BCorrect : (A;L) vL (B;M) i� traces(L) � traces(M)The symbol vS indicates that this relation is based on Safe traces. Similarly vL is based onLive traces. All implementation relations are clearly preorders.2.1.4 SubstitutivityAn important property of the model is that it allows a modular approach to systems speci�cationand veri�cation. If, for instance, a system S is made up of several parallel components, it ispossible to implement separately each component of S and yet obtain an implementation of S.This is usually referred to as the substitutivity of the implementation relations with respect tothe parallel composition operator. Similar results exist for the other two operators as stated inthe following proposition.Proposition 2.16 (Substitutivity)Let (Ai; Li); (Bi;Mi), i = 1; : : : ; N , be live I/O automata with in(Ai) = in(Bi) and out(Ai) =out(Bi), and let vX be one relation among vS and vL. If, for each i, (Ai; Li) vX (Bi;Mi),then1. if (A1; L1); : : : ; (AN ; LN) are compatible and (B1;M1); : : : ; (BN ;MN) are compatible then(A1; L1)k � � � k(AN ; LN) vX (B1;M1)k � � � k(BN ;MN).2. if A � local(A1) and A � local(B1) then(A1; L1) n A vX (B1;M1) n A3. if � is a mapping applicable to both A1 and B1 then�((A1; L1)) vX �((B1;M1))Note, in Part 1 of the proposition, that even though (A1; L1); : : : ; (AN ; LN) are compatible, thenthe speci�cations (B1;M1); : : : ; (BN ;MN) are not compatible if they contain internal actionsthat collide with already existing actions of other components. Thus, we must require that also(B1;M1); : : : ; (BN ;MN) be compatible. However, in practice the problem is usually solved bychoosing brand new names for new internal actions in an implementation. Similar considerationsapply to Parts 2 and 3.



16 2. The Model2.2 The Model for Timed SystemsThe timed model, called live timed I/O automata, is very similar to the untimed model in that itconsists of an automaton part (safe timed I/O automaton) and a liveness condition. Each stateof the safe timed I/O automaton has an associated time, returned by the mapping :now , and acertain time-passage action � representing the passage of time. The steps of a safe timed I/Oautomaton are restricted such that time-passage steps must increase time and all other stepsmust not change time. Thus, all other steps than time-passage steps are thought of as occurringinstantaneously. There are a few other restrictions representing natural properties of time.2.2.1 Safe Timed I/O AutomataTimes are speci�ed using a dense time domain T = R�0, i.e., the set of non-negative reals.De�nition 2.17 (Safe timed I/O automata)A safe timed I/O automaton A consists of �ve components� A set states(A) of states.� A nonempty set start(A) of start states (start(A) � states(A)).� A mapping :nowA : states(A)! T (called :now when A is clear from context), indicatingthe current time in a given state.� An action signature sig(A) = (in(A); out(A); int(A)) of disjoint sets of input, output, andinternal actions, respectively. Denote by ext(A) the set in(A) [ out(A) [ f�g of externalactions, where � is a special time-passage action, by vis(A) the set in(A)[out(A) of visibleactions, by local(A) the set out(A) [ int(A) of locally-controlled actions, and by acts(A)the set ext(A) [ int(A) of actions.� A transition relation steps(A) � states(A)� acts(A)� states(A).A must be input-enabled and satisfy the following �ve axiomsS1 If s 2 start(A) then s:now = 0.S2 If (s; a; s0) 2 steps(A) and a 6= �, then s0:now = s:now .S3 If (s; �; s0) 2 steps(A) then s0:now > s:now .S4 If (s; �; s0) 2 steps(A) and (s0; �; s00) 2 steps(A), then (s; �; s00) 2 steps(A).To be able to state the last axiom, the following auxiliary de�nition is needed. Let I be aninterval of T. Then a function ! : I ! states(A) is an A-trajectory , sometimes called trajectorywhen A is clear from context, if1. !(t):now = t for all t 2 I , and2. (!(t); �; !(t0)) 2 steps(A) for all t; t0 2 I with t < t0.



2.2. The Model for Timed Systems 17That is, ! assigns to each time t in the interval I a state having the given time t as its nowcomponent. The assignment is done in such a way that time-passage steps can span between anypair of states in the range of !. Denote inf (I) and sup(I) by ftime(!) and ltime(!), respectively.If I is left closed, then denote !(ftime(!)) by fstate(!). Similarly, if I is right closed, then denote!(ltime(!)) by lstate(!). If I is closed, then ! is said to be an A-trajectory from fstate(!) tolstate(!). An A-trajectory ! whose domain dom(!) is a singleton set [t; t] is also denoted bythe set f!(t)g.The �nal axiom then becomesS5 If (s; �; s0) 2 steps(A) then there exists an A-trajectory from s to s0.Axiom S1 states that time must be 0 in any start state. Axiom S2 says that non-time-passagesteps occur instantaneously, at a single point in time. In this framework, operations with someduration in time are modeled by a start action and an end action. Axiom S3 says that time-passage steps cause time to increase. Axiom S4 gives a natural property of time, namely that iftime can pass in two steps, then it can also pass in a single step. Finally, Axiom S5 says that iftime can pass from time t to time t0, then it is possible to associate states with all times in theinterval in a consistent way. This axiom opens the possibility of specifying hybrid systems, i.e.,systems where the state can change coutinuously when time passes. However, in the systems wewill look at in this work the states consists of a \basic" state and a now variable, and the basicstate does not change during time-passage.2.2.1.1 Timed ExecutionsThe notions of executions and traces and operations on these carry over from the untimedsetting. However, executions do not adequately capture the behavior of a system since they donot tell us what states the system goes through during time-passage. For this reason a notionof timed executions is introduced.A timed execution fragment � of a safe timed I/O automaton A is a (�nite or in�nite) sequenceof alternating A-trajectories and actions in vis(A) [ int(A), starting in a trajectory and, if thesequence is �nite, ending in a trajectory� = !0a1!1a2!2 � � �such that the following holds for each index i:1. If !i is not the last trajectory in �, then its domain is a closed interval. If !i is the lasttrajectory of � (when � is a �nite sequence), then its domain is a left-closed interval (andeither open or closed to the right).2. If !i is not the last trajectory of �, then (lstate(!i); ai+1; fstate(!i+1)) 2 steps(A).A timed execution is a timed execution fragment !0a1!1a2!2 � � � for which fstate(!0) is a startstate.If � is a timed execution fragment, then de�ne ftime(�) and fstate(�) to be ftime(!0) andfstate(!0), respectively, where !0 is the �rst trajectory of �. Also, de�ne ltime(�) to be thesupremum of the union of the domains of the trajectories of �. Finally, if � is a �nite sequencewhere the domain of the last trajectory ! is a closed interval, de�ne lstate(�) to be lstate(!).



18 2. The Model2.2.1.2 Finite, Admissible, and Zeno Timed ExecutionsThe timed executions and timed execution fragments of a safe timed I/O automaton can bepartitioned into �nite, admissible, and Zeno timed executions and timed execution fragments.A timed execution (fragment) � is de�ned to be �nite, if it is a �nite sequence and the domainof the last trajectory is closed. A timed execution (fragment) � is admissible if ltime(�) = 1.Finally, a timed execution (fragment) � is Zeno if it is neither �nite nor admissible.There are basically two types of Zeno timed executions: those containing in�nitely manyoccurrences of non-time-passing actions but for which there is a �nite upper bound on the timesin the domains of the trajectories, and those containing �nitely many occurrences of non-time-passing actions and for which the domain of the last state set is right-open. Thus, Zeno timedexecutions represent executions of a safe timed I/O automaton where an in�nite amount ofactivity occurs in a bounded period of time. (For the second type of Zeno timed executions, thein�nitely many time-passage steps needed to span the right-open interval should be thought ofa the \in�nite amount of activity".)There are idealized processes that natually exhibit Zeno behaviors. As an example considera ball which is bouncing on the oor and is losing a fraction of its energy at each bounce. Ideallythe ball will bounce in�nitely many times within a �nite amount of time. Note, however, thatthe safe timed I/O automaton model cannot suitably model this process since there is no wayof specifying what happens after the ball stops bouncing. On the other hand, Zeno behaviorswill not occur in the computer systems we usually want to specify.Below we will be mostly interested in the admissible timed executions since they correspondto our intuition that time is a force beyond our control that happens to approach in�nity.Denote by t-frag�(A), t-frag1(A), t-fragZ(A), and t-frag(A) the sets of �nite, admissible,Zeno, and all timed execution fragments of A. Similarly, denote by t-exec�(A), t-exec1(A),t-execZ(A), and t-exec(A) the sets of �nite, admissible, Zeno, and all timed executions of A.A �nite timed execution fragment �1 = !0a1!1 � � �an!n of A and a timed execution fragment�2 = S!0nan+1!n+1an+2!n+2 � � � of A can be concateneted if lstate(�1) = fstate(�2). The con-catenation, written �1 a �2, is de�ned to be � = !0a1!1 � � �an(!n a !0n)an+1!n+1an+2!n+2 � � �,where (! a !0) is de�ned to be !(t) if t is in dom(!), and !0(t) if t is in dom(!0)ndom(!). It iseasy to see that � is a timed execution fragment of A.The notion of timed pre�x, called t-pre�x , for timed execution fragments is de�ned as follows.A timed execution fragment �1 of A is a t-pre�x of a timed execution fragment �2 of A, written�1 �t �2, if either �1 = �2 or �1 is �nite and there exists a timed execution fragment �01 of Asuch that �2 = �1 a �01. Likewise, �1 is a t-su�x of �2 if there exists a �nite timed executionfragment �01 such that �2 = �01 a �1.De�ne � 2 t, read \� before t", for all t � ftime(�), to be the t-pre�x of � that includesexactly all states with times not bigger than t.Likewise, de�ne � 3 t, read \� after t", for all t < ltime(�) or all t � ltime(�) when � is�nite, to be the t-su�x of � that includes exactly all states with times not smaller than t.2.2.1.3 Timed TracesIn the untimed setting automata are compared based on their traces. This turns out to beinadequate in the timed setting because traces do not capture the invisible nature of time-passage actions and furthermore do not contain information about the time of occurrence of thevisible actions. For this reason a notion of timed traces is introduced. We �rst de�ne the notion



2.2. The Model for Timed Systems 19of timed sequence.A timed sequence over a set K is de�ned to be a (�nite or in�nite) sequence � over K � T inwhich the second components (the time components) are nondecreasing. De�ne � to be Zeno ifit is in�nite and the limit of the time components is �nite. For any nonempty timed sequence�, de�ne ftime(�) to be the time component of the �rst pair in �.Now, let � = !0a1!1a2!2 � � � be a timed execution fragment of a safe timed I/O automatonA. For each ai, de�ne the time of occurrence ti to be ltime(!i�1), or equivalently, ftime(!i).Then, de�ne t-seq(�) to be the timed sequence consisting of the actions in � paired with theirtime of occurrence:t-seq(�) = (a1; t1)(a2; t2) � � �Then t-trace(�), the timed trace of �, is de�ned to be the pairt-trace(�) 4= (t-seq(�) � (vis(A)� T); ltime(�))Thus, t-trace(�) records the occurrences of visible actions together with their time of occurrence,and the limit time of the timed execution fragment. The timed trace suppresses both internaland time-passage actions.Let t-traces�(A), t-traces1(A), t-tracesZ(A), and t-traces(A) denote the sets of timed tracesof A obtained from �nite, admissible, Zeno, and all timed executions of A, respectively.2.2.1.4 Operations on Safe Timed I/O AutomataAs in the untimed setting, there are three operators de�ned on safe (timed) I/O automata. Theseare parallel composition, action hiding , and action renaming . The de�nitions are similar to theones in the untimed setting except that special care has to be taken concerning the handling oftime. For instance, in the parallel composition, all components must agree on real time.De�nition 2.18 (Parallel composition)Safe timed I/O automata A1; : : : ; AN are compatible if for all 1 � i; j � N with i 6= j1. out(Ai) \ out(Aj) = ;2. int(Ai) \ acts(Aj) = ;The parallel composition A1k � � � kAN of compatible safe timed I/O automata A1; : : : ; AN is thesafe timed I/O automaton A such that1. states(A) = f(s1; : : : ; sN) 2 states(A1)� � � � � states(AN) j s1:nowA1 = � � �= sN :nowANg2. start(A) = start(A1)� � � � � start(AN)3. (s1; : : : ; sN):nowA = s1:nowA1 (= s2:nowA2 = � � �= sN :nowAN )4. out(A) = out(A1) [ � � � [ out (AN)5. in(A) = (in(A1) [ � � � [ in(AN)) n out(A)6. int(A) = int(A1) [ � � � [ int(AN)



20 2. The Model7. ((s1; : : : ; sN); a; (s01; : : : ; s0N)) 2 steps(A) i� for all 1 � i � N(a) if a 2 acts(Ai) then (si; a; s0i) 2 steps(Ai)(b) if a =2 acts(Ai) then si = s0iNote, how Condition 7 of the de�nition captures both time-passage steps (where all componentsparticipate) and other steps (where a subset of the components participate).Just like (ordinary) execution fragments can be projected to components in a composedsystem, it is possible to de�ne projection on timed execution fragments. If � = !0a1!1a2!2 � � �is a timed execution fragment of a safe timed I/O automaton A = A1k � � � kAN , de�ne �dAi tobe the timed execution fragment of Ai obtained by �rst projecting each state in the range ofeach trajectory to Ai, and then, for each action aj =2 acts(Ai), removing aj and merging the two(projected) trajectories to the left and right of aj . (Thus, if none of the actions belongs to Ai,the result is one big trajectory representing time-passage of Ai.)Action hiding and action renaming for safe timed I/O automata can also be de�ned.De�nition 2.19 (Action hiding)Let A be a safe timed I/O automaton and let A be a set of actions such that A � local(A).Then de�ne A n A to be the safe timed I/O automaton such that1. states(A n A) = states(A)2. start(A n A) = start(A)3. :nowAnA = :nowA4. in(A n A) = in(A)5. out(A n A) = out(A) n A6. int(A n A) = int(A) [ A7. steps(A n A) = steps(A)De�nition 2.20 (Action renaming)A mapping � from actions to actions is applicable to a safe timed I/O automaton A if it isinjective, acts(A) � dom(�), and �(�) = �. Given a safe timed I/O automaton and a mapping� applicable to A, de�ne �(A) to be the safe timed I/O automaton with1. states(�(A)) = states(A)2. start(�(A)) = start(A)3. :now�(A) = :nowA4. in(�(A)) = �(in(A))5. out(�(A)) = �(out(A))



2.2. The Model for Timed Systems 216. int(�(A)) = �(int(A))7. steps(�(A)) = f(s; �(a); s0) j (s; a; s0) 2 steps(A)g2.2.2 Live Timed I/O AutomataIn the untimed setting a liveness condition for a safe I/O automaton A is a subset of theexecutions of A such that a special environment-freedom condition is satis�ed. Similarly, in thetimed setting a liveness condition for a safe timed I/O automaton is a set of timed executionssuch that a special timed version of the environment-freedom condition is satis�ed.As in the untimed setting the environment-freedom condition is stated in terms of a gamebetween the system and its environment.The notion of strategy is similar to the one used for the untimed case. However, the presenceof time has a strong impact on the kind of interactions that can occur between an automatonand its environment.In the untimed case the environment is allowed to provide any �nite number of input actionsat each move, whereas the system is allowed to perform at most one of its locally-controlledsteps at each move. In this way it is taken into account that the environment can be arbitrarilyfast with respect to a system, however, not in�nitely fast. In the timed case there is no needto assume the environment to be arbitrarily fast because each action occurs at a speci�c time.Therefore, the relative speeds of the system and the environment are given by their timingconstraints. As a consequence the moves of the environment in the timed setting are inputactions associated with their time of occurrence. Thus, the behavior of the environment duringthe game can be represented as a timed sequence over input actions.If a strategy in the timed setting decides to let time pass, it has to specify explicitly allintermediate states since the system must be able to respond to possible inputs during sucha time-passage phase. Remember, that in our model it is generally not possible to deducedeterministically states at intermediate times given a time-passage step.De�nition 2.21 (Strategy)Consider any safe timed I/O automaton A. A strategy de�ned on A is a pair of functions (g; f)where g : t-exec�(A)�in(A)! states(A) and f : t-exec�(A)! (traj (A)� local(A)�states(A))[traj (A), where traj (A) denotes the set of A-trajectories, such that1. g(�; a) = s implies �afsg 2 t-exec�(A)2. f(�) = (!; a; s) implies � a !afsg 2 t-exec�(A)3. f(�) = ! implies � a ! 2 t-exec1(A)4. f is consistent , i.e., if f(�) = (!; a; s), then, for each t, ftime(!) � t � ltime(!), f(� a(! 2 t)) = (! 3 t; a; s), and, if f(�) = !, then, for each t, ftime(!) � t < ltime(!),f(� a (! 2 t)) = ! 3 t.For notational convenience de�ne f(�):trj 4= ( ! if f(�) = (!; a; s)! if f(�) = !



22 2. The ModelA strategy is a pair of function (g; f). Function f takes a �nite timed execution and decides howthe system behaves till its next locally-controlled action under the assumption that no input arereceived in the meantime, whereas function g decides what state to reach whenever some inputis received. Condition 1 states that g returns a \legal" next state given the input. Conditions2 and 3 give two possibilities for the system moves given by f : either f speci�es time-passagefollowed by a local step, or f speci�es that the system simply lets time pass forever. Note, thatf speci�es all states during time passage. This is because, as mentioned above and as we shallsee formally below, a move given by f might be interrupted by input actions, and in that caseit is necessary to know the current state when the inputs arrive. The consistency condition(Condition 4) for f says that, whenever after a �nite timed execution � the system decides tobehave according to !afsg or !, after performing a part of ! the system would decide to behaveaccording to the rest of the step !afsg or !. The consistency condition is fundamental for thesubstitutivity results below.The game between the system and the environment works as follows. The environment canprovide any input at any time, while the system lets time pass and provides locally-controlledactions according to its strategy. If an input arrives, the system will perform its current steptill the time at which the input occurs, and then use function g to compute the state to reachafter the input has occurred.In the timed setting the system might decide to perform a step at the same time at whichthe environment provides some input. Such situations are modeled as nondeterministic choices.As a consequence, the outcome, i.e., the result of the game, for a timed strategy is a set of timedexecutions.De�nition 2.22 (Outcome of a strategy)Let A be a safe timed I/O automaton and (g; f) a strategy de�ned on A. De�ne a timedenvironment sequence for A to be a timed sequence over in(A), and de�ne a timed environ-ment sequence I for A to be compatible with a timed execution fragment � of A if either I isempty, or � is �nite and ltime(�) � ftime(I). Then de�ne R(g;f), the next-relation induced by(g; f), as follows: for any �;�0 2 t-exec(A) and any I; I 0 compatible with �;�0, respectively,((�; I); (�0; I0)) 2 R(g;f) i�(�0; I0) = 8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:
(� a !afsg; I) where � is �nite, I = "; f(�) = (!; a; s);(� a !; I) where � is �nite, I = "; f(�) = !;(� a !afsg; I) where � is �nite, I = (b; t)I 00; f(�) = (!; a; s);ltime(!) � t;(� a !0afs0g; I 00) where � is �nite, I = (a; t)I 00; f(�):trj = !;ltime(!) � t; !0 = ! 2 t; g(� a !0; a) = s0; or(�; I) where � is not �nite:Let � be a �nite timed execution of A, and I be a timed environment sequence for A compatiblewith �.An outcome sequence of (g; f) given � and I is an in�nite sequence (�n; In)n�0 that satis�es:� (�0; I0) = (�; I) and



2.2. The Model for Timed Systems 23� for all n > 0, ((�n�1; In�1); (�n; In)) 2 R(g;f).Note, that (�n)n�0 forms a chain ordered by t-pre�x .The outcome O(g;f)(�; I) of the strategy (g; f) given � and I is the set of timed executions�0 for which there exists an outcome sequence (�n; In)n�0 of (g; f) given � and I such that�0 = limn!1�n.In the de�nition of outcome of a strategy (g; f), the next-relation R(g;f) determines allowablemoves based on incoming inputs or performance of locally-controlled actions. In this way theoutcome sequences of (g; f) given some � and I are determined step by step.In the de�nition of R(g;f), the �rst, second, and third cases deal with di�erent situationswhere no input occurs during the system move chosen by f ; the fourth case, instead, takes careof new incoming inputs; �nally, the �fth case of the above de�nition is needed for technicalreasons to generate a �xpoint in the outcome sequences since the second case generates anadmissible timed execution. Note, that the third and fourth cases might both be applicablewhenever an input occurs exactly at the same time at which the system decides to perform alocally-controlled action. This is the reason for which the outcome is a set of timed executions.Assume that the liveness condition for a safe timed I/O automaton could consist of Zeno timedexecutions only. If another safe timed I/O automaton has a liveness condition consisting ofadmissible timed executions, both of these systems could never work properly when composedin parallel since the �rst system would keep time from passing beyond some bound, which couldnever yield live timed execitions of the second system. (Remember that all components in aparallel composition have to agree on real time.)In this model this problem is solved by restricting attention to admissible timed executionssince these timed executions correspond to our intuition that time grows unboundedly. Thus, ina live timed I/O automaton a liveness condition is a nonempty subset of the admissible timedexecutions.However, a problem arises as illustrated by the following example, which is due to Lamport:Consider two almost identical safe timed I/O automata with the following characteristics. Theyboth have one input action and one output action, and if they receive an input before 12 o'clockthey will issue an output after exactly half the time between the input was received and 12o'clock. Otherwise no output will be issued. To break the symmetry, one of the safe timedI/O automata will unconditionally issue an output some time before 12 o'clock. Both of thesesafe timed I/O automata have a nonempty set of admissible timed executions, so adopt thesesets to be the liveness conditions of the safe timed I/O automata, respectively. Now, composethese systems in parallel by connecting the output of one system to the input of the other,and vice versa. Then the resulting system has no admissible timed executions but only Zenotimed executions where time is constrained from passing beyond 12 o'clock. Seen from any ofthe components the other component prevents time from passing, and none of the componentswill behave properly in the parallel composition. Thus, the parallel composition would not bean element of the model (since it has no admissible timed executions), which contradicts therequirement that the parallel composition operator be closed for live timed I/O automata.The problem illustrated in the example arises because the two components collaborate onperforming the Zeno timed executions. To solve the problem, systems that can collaborate inthis fashion need to be excluded from the model. We do this by identifying a special class of



24 2. The ModelZeno timed executions, the Zeno-tolerant timed executions. A Zeno-tolerant timed execution isa Zeno timed execution containing in�nitely many input actions but only �nitely many locally-controlled actions. We denote by t-execZt(A) the set of Zeno-tolerant timed executions of a safetime I/O automaton A.The Zeno-tolerant timed executions represent Zeno behaviors that are exclusively due to aZeno environment. Thus, there is no collaboration between system and environment. This givesrise to a notion of Zeno-tolerant strategy .De�nition 2.23 (Zeno-tolerant strategy)A strategy (g; f) de�ned on a safe timed I/O automaton A is said to be Zeno-tolerant if, forevery �nite timed execution � 2 t-exec�(A) and every timed environment sequence I for Acompatible with �, O(g;f)(�; I) � t-exec1(A) [ t-execZt(A).Thus, any Zeno timed execution in an outcome of a Zeno-tolerant strategy is Zeno-tolerant andthus represents a behavior that is Zeno only because of Zeno inputs from the environment. Note,that in the Lamport example above it is not possible to �nd a Zeno-tolerant strategy de�ned onany of the two components: if one component behaves in a Zeno fashion, the other componentwill collaborate, and the resulting outcome cannot contain Zeno-tolerant timed executions.We are now ready to present the timed de�nition of environment-freedom.De�nition 2.24 (Environment-freedom)A pair (A;L), where A is a safe timed I/O automaton and L � t-exec(A), is environment-free i�there exists a Zeno-tolerant strategy (g; f) de�ned on A such that for each �nite timed execution� of A and each timed environment sequence I for A compatible with �, O(g;f)(�; I) � L. Thepair (g; f) is called an environment-free strategy for (A;L).A pair (A;L) is environment-free if, after any �nite timed execution and with any (Zeno or non-Zeno) sequence of input actions, it can behave according to some admissible or Zeno-toleranttimed execution in A.This leads to the de�nition of live timed I/O automata, where the liveness condition con-tains only admissible timed executions, but where the strategy is allowed to yield Zeno-tolerantoutcomes when given a Zeno timed environment sequence.De�nition 2.25 (Live timed I/O automata)A live timed I/O automaton is a pair (A;L), where A is a safe timed I/O automaton andL � t-exec1(A), such that the pair (A;L[ t-execZt(A)) is environment-free.2.2.2.1 Operations on Live Timed I/O AutomataThe parallel composition, action hiding, and action renaming operators de�ned for safe timedI/O automata are now extended to live timed I/O automata in a fashion similar to the way theoperators were extended in the untimed setting.



2.2. The Model for Timed Systems 25De�nition 2.26 (Parallel composition of live timed I/O automata)Live timed I/O automata (A1; L1); : : : ; (AN ; LN) are compatible i� the safe timed I/O automataA1; : : : ; AN are compatible.The parallel composition (A1; L1)k � � � k(AN ; LN) of compatible live timed I/O automata(A1; L1); : : : ; (AN ; LN) is de�ned to be the pair (A;L) where A = A1k � � �kAN and L = f� 2t-exec1(A) j �dA1 2 L1; : : : ;�dAN 2 LNg.De�nition 2.27 (Action hiding of live timed I/O automata)Let (A;L) be a live timed I/O automaton and let A be a set of actions such that A � local(A).Then de�ne (A;L) n A to be the pair (A n A; L).De�nition 2.28 (Action renaming of live timed I/O automata)A mapping � from actions to actions is applicable to a live timed I/O automaton (A;L) if itis applicable to A. Let � be a timed execution of (A;L). De�ne �(�) to be the sequence thatresults from replacing each occurrence of every action a in � by �(a). Given a live timed I/Oautomaton and a mapping � applicable to (A;L), de�ne �((A;L)) to be the pair (�(A); �(L)).As expected the three operators above are closed for live timed I/O automata in the sense thatthey produce a new live timed I/O automaton. This is a consequence of the environment-freedomproperty.Lemma 2.29 (Closure of timed parallel composition)Let (A1; L1); : : : ; (AN ; LN) be compatible live timed I/O automata. Then the parallel composition(A1; L1)k : : :k(AN ; LN) is a live timed I/O automaton.Lemma 2.30 (Closure of action hiding)Let (A;L) be a live timed I/O automaton and let A � local(A). Then (A;L) n A is a live timedI/O automaton.Lemma 2.31 (Closure of action renaming)Let (A;L) be a live timed I/O automaton and let � be a mapping applicable to (A;L). Then�((A;L)) is a live timed I/O automaton.2.2.3 CorrectnessIn the timed setting the safe and correct implementation relations are based on timed traces.



26 2. The ModelDe�nition 2.32 (Timed implementation relations)Given two live timed I/O automata (A;L) and (B;M) such that in(A) = in(B) and out(A) =out(B), de�ne the following implementation relations:Safe: A vSt B i� t-traces(A) � t-traces(B)Safe: (A;L) vSt (B;M) i� A vSt BCorrect : (A;L) vLt (B;M) i� t-traces(L) � t-traces(M)2.2.4 SubstitutivityThe timed model, like the untimed model, o�ers a modular approach to systems speci�cationand veri�cation as stated by the following substitutivity results.Proposition 2.33 (Substitutivity)Let (Ai; Li); (Bi;Mi), i = 1; : : : ; N , be live timed I/O automata with in(Ai) = in(Bi) andout(Ai) = out(Bi), and let vX be one relation among vSt and vLt. If, for each i, (Ai; Li) vX(Bi;Mi), then1. if (A1; L1); : : : ; (AN ; LN) are compatible and (B1;M1); : : : ; (BN ;MN) are compatible then(A1; L1)k � � � k(AN ; LN) vX (B1;M1)k � � �k(BN ;MN).2. if A � local(A1) and A � local(B1) then(A1; L1) n A vX (B1;M1) n A3. if � is a mapping applicable to both A1 and B1 then�((A1; L1)) vX �((B1;M1))2.3 Embedding ResultsThe untimed model is used to specify systems where the actual amount of time that passesbetween actions is considered unimportant. Many problems in distributed computing can bestated and solved using this model. However, it is not possible to state anything about, e.g.,response times. It is implicitly assumed that the �nal implementation on a physical machine is\fast enough" for practical usage.An untimed system can be thought of as a timed system that allows arbitrary time-passage,as long as possible liveness restrictions are satis�ed. This indicates that our timed model is, insome sense, more general than our untimed model, and that we could use the timed model forall purposes. However, the timed model is more complicated than the untimed model due tothe time-passage action, the :now component, etc., and furthermore it does not seem natural tohave to deal with time, when the problem to be solved does not mention time at all.Thus, it is preferable to work within the untimed model as much as possible and only switch tothe timed model when it is needed. The work in this report shows how the untimed speci�cation(of the at-most-once message delivery problem) is implemented by a system that assumes uppertime bounds on certain process steps and channel delays. Figure 2.1 depicts such a stepwise



2.3. Embedding Results 27SPEC
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Figure 2.1A stepwise development from an untimed speci�cation to a timed implementation.development. The question is of course what it means to implement an untimed speci�cationby a timed implementation. Our approach is to convert the untimed levels to the timed modelby applying an operator, called patient , that adds arbitrary time-passage steps as mentionedabove. We then have an Embedding Theorem which states that if a concrete level implements anabstract level in the untimed model, then the patient version of the concrete level implementsthe patient version of the abstract level in the timed model, and vice versa. Thus, the �rst partof the stepwise development of Figure 2.1 can be carried out entirely in the simpler untimedmodel, and the last part in the timed model. In the intermediate development step which goesfrom untimed to timed, one must prove that the timed level implements the patient version ofthe untimed level. The embedding lemma can then be applied to show that the implementationIMPL implements the patient version of the speci�cation SPEC.We start by de�ning a patient safe I/O automaton.De�nition 2.34 (Patient safe I/O automaton)Let A be a safe I/O automaton where � =2 acts(A). Then de�ne patient(A) to be the safe timedI/O automaton with� states(patient(A)) = states(A)� TIf s = (s0; t) is a state of patient(A), we let s:basic denote s0.� start(patient(A)) = start(A)� f0g� :nowpatient(A)(s; t) = t� ext(patient(A)) = ext(A) [ f�g� in(patient(A)) = in(A)



28 2. The Model� out(patient(A)) = out(A)� int(patient(A)) = int(A)� steps(patient(A)) consists of the steps{ f((s; t); a; (s0; t)) j (s; a; s0) 2 steps(A)g{ f((s; t); �; (s; t0)) j t0 > tgIn order to state what it means to apply the patient operator to a live I/O automaton, we needthe following auxiliary de�nition of what it means to untime a timed execution: Let A be a safeI/O automaton with � =2 acts(A) and let � = !0a1!1a2!2 � � � be a timed execution of patient(A).Then de�neuntime(�) = (fstate(!0):basic)a1(fstate(!1):basic)a2(fstate(!2):basic) � � �Similarly, let  = ((a1; t1)(a2; t2) � � � ; t) be a timed trace of patient(A). Then de�neuntime() = a1a2 � � �The notion of a patient live I/O automaton can now be de�ned. For any live I/O automaton(A;L), the patient live I/O automaton of (A;L) should be the live timed I/O automaton whosesafety part is patient(A) and whose liveness part consists of all those admissible executions that,when being made untimed, are live according to L. Thus, the liveness condition of the patientlive I/O automaton allows time to pass arbitrarily, as long as the liveness prescribed by L issatis�ed.De�nition 2.35 (Patient live I/O automaton)Let (A;L) be a live I/O automaton with � =2 acts(A). Then, de�ne patientA(L) = f� 2t-exec1(patient(A)) j untime(�) 2 Lg and de�ne patient(A;L), the patient live I/O automatonof (A;L), to be the pair (patient(A); patientA(L)).It can be proved that for any live I/O automaton (A;L), patient(A;L) is a live timed I/Oautomaton.Lemma 2.36Let (A;L) be a live I/O automaton. Then patient(A;L) is a live timed I/O automaton.We now state the Embedding Theorem, thus that the safe and correct implementation relationsfor live I/O automata coincide with the safe and correct implementation relations for the patientversions of the live I/O automata.Theorem 2.37 (Embedding Theorem)Let (A;L) and (B;M) be live I/O automata with � =2 (acts(A) [ acts(B)). Then



2.3. Embedding Results 291. (A;L) vS (B;M) i� patient(A;L) vSt patient(B;M).2. (A;L) vL (B;M) i� patient(A;L) vLt patient(B;M).Finally we state a result which is important when doing speci�cation and veri�cation in amodular fashion. Namely, the patient operator commutes with the three operators on safe andlive (timed) I/O automata. First, let �St and �Lt denote the kernels of the preorders vSt andvLt, respectively.3Proposition 2.38Let (A;L) and (A1; L1); : : : ; (AN ; LN) be live I/O automata and let �X be one of �St and �Lt.1. Let (A1; L1); : : : ; (AN ; LN) be compatible. Then,patient((A1; L1)k � � � k(AN ; LN)) �X patient(A1; L1)k � � � kpatient(AN ; LN)2. Let A � local(A). Then,patient((A;L) n A) �X patient(A;L) n A3. Let � be an action mapping applicable to A and let �� be � [ [� 7! �]. Then,patient(�(A;L))�X ��(patient(A;L))This concludes the introduction to the basic models of untimed and timed systems that we willuse in this work.
3The kernel of a preorder v is de�ned to be the equivalence � de�ned by x � y 4= x v y ^ y v x.





Chapter 3A Temporal Logic with StepFormulasChapter 2 de�ned the models of distributed systems we use in this work. One component of themodels is the liveness condition which is a set of (timed) executions. Since such sets may bein�nite (and each execution in the set may be an in�nite sequence), it is necessary to have someway of denoting them without explicitly having to write down any executions. For this purposewe shall use a temporal logic which will be able to express properties of (ordinary) executions ofsafe (timed) I/O automata. Exactly how this temporal logic is used to specify liveness conditionsfor timed and untimed systems will be one of the issues of Chapter 4. This chapter is devotedto de�ning the temporal logic.In [MP92], Manna and Pnueli develop a temporal logic and give several examples of its use.For two reasons we cannot use their temporal logic directly. First, Manna and Pnueli evaluatetemporal formulas over sequences of states and not over sequences of alternating states andactions. Second, they only deal with in�nite sequences of states whereas (even live) executionsof our systems may be �nite. In a section below we show, however, how our temporal logic isrelated to that of [MP92].The �rst reason suggests that maybe Lamport's Temporal Logic of Actions (TLA) [Lam91]could be used. However, TLA is still state based in the sense that the semantics of a TLAformula is a set of sequences of states. Actions are in TLA merely state changes. It is possiblethat by having special TLA variables ranging over action names we could use TLA. However,due to the inherent importance of actions in our approach, we chose to develop our own temporallogic dealing with actions in a more intuitive manner.The rest of this chapter is organized as follows: In order to be able to state and prove results inthis and later chapters, we start by introducing notions of stuttering and stuttering-equivalencein Section 3.1. Sections 3.2{3.4 then introduce the basic building blocks of our temporal logic:�rst, in Section 3.2, we introduce the notion of state functions and the special notion of statepredicates . Section 3.3 then describes the notion of state transition functions , which are statefunctions that are evaluated over pairs of states. Finally, in Section 3.4, we introduce theimportant notion of step formulas . A step formula is a boolean valued function which is evaluatedover steps. Thus, step formulas can express properties of both the states and the action of astep.Sections 3.5 and 3.6 now introduce the formulas of our temporal logic, i.e., the temporal31



32 3. A Temporal Logic with Step Formulasformulas , by �rst, in Section 3.5, giving some basic temporal operators and then, in Section 3.6,de�ning some important derived operators. In Section 3.7 we see how temporal formulas can beseen as formulas over safe (timed) I/O automata, and Section 3.8 deals with satisfaction andvalidity as well as validity with respect to safe (timed) I/O automata or sets of executions.Sections 3.9 and 3.10 provide results, mainly about special stuttering-insensitive formulas,which will prove very important in the next chapter.Then, in Section 3.11 we compare out temporal logic with that of Manna and Pnueli [MP92].Finally, in order for our temporal logic to be useful for proving correctness of the protocols inthe second part of this report, Section 3.12 provides certain rules of the logic. We do not in thiswork attempt to develop a completely axiomatized temporal logic, but merely state the rules wehave found useful. Further research should investigate a basic set of rules of our temporal logic.Even though, strictly speaking, executions are only de�ned with respect to speci�c automata,we will in this chapter use the term \execution" to denote any alternating sequence of statesand actions. As usual we let � range over executions.3.1 StutteringFor technical reasons which will become clear below, we introduce a notion of stuttering stepsand stuttering-equivalence of executions.Denote by � a special stuttering action. We will assume that � cannot be used as an ordinaryaction of any safe (timed) I/O automaton. Below we will let A denote an arbitrary set of actionsand, hence, it will always be the case that � =2 A. A stuttering step is any triple of the form(s; �; s), where s is a state.Since � can never be an action of a safe (timed) I/O automaton A, it can never occur inany execution of A. However, we will allow stuttering steps to occur in the more broad sense ofexecutions used in this chapter. As we shall see below, we will not be able in temporal formulasto refer to the stuttering actions in executions, but it turns out to be important to be able toevaluate temporal formulas over executions possibly containing stuttering.De�ne \� to be the execution obtained by replacing every maximal (�nite or in�nite) sequences�s�s � � � in � by the single state s. Thus, the \ operator removes all stuttering. Now, de�netwo executions �1 and �2 to be stuttering-equivalent , written �1 ' �2, if \�1 = \�2.For any execution � = s0a1s1a2s2 � � � de�neb� 4= (� if � is in�nites0a1s1a2s2 � � �ansn�sn�sn � � � if � is �nite and ends in snThus, if � is �nite, b� is the in�nite execution obtained by concatenating in�nite stuttering atthe end of �. Clearly, � ' b�.3.2 States, State Functions, and State PredicatesIn Chapter 2 we de�ned the state space of a safe (timed) I/O automaton to be any set ofindividual states. We did not assume any structure of these states but merely assumed thatstates are names. In practical examples, especially those presented in this work, the state spacewill be described as a mapping from state variables to their values. Thus, a safe (timed) I/Oautomaton is assumed to contain a number of (typed) state variables, and the individual statesare then distinguished by having di�erent assignments of values to these state variables. For this



3.3. State Transition Functions 33reason the temporal logic de�ned below will reference states using variable names. This approachis also used in [MP92, Lam91]. Below we will let V denote a set of variables. Furthermore, inorder to avoid the complexity of carrying around the types of the variables, we assume that thetype of a variable is given implicitly by the name of the variable. For example, i, j and k willtypically range over the natural numbers.We assume that we have a language for writing state functions|using variables, constants,standard operators, boolean connectives, and quanti�cation|that can be evaluated over states.We will not give a language for writing down state functions since such languages are fairlystandard. We refer to, e.g., [MP92] for a more thorough treatment of state functions.A state function over V is a state function whose free variables are a subset of V . If f isa state function over V , then clearly f is also a state function over V [ V 0, where V 0 is any setof variables. For any state function f over V and any V-state s (i.e., any assignment of propervalues to all variables in V), we let s[[f ]] denote the value of f in state s.A state predicate over V is a boolean valued state function over V . Below we shall see that statepredicates are a special case of a more general notion of step formula.3.3 State Transition FunctionsA state transition function f over V is a state function over V [V�, where V� is the set obtainedby tagging each variable in V with �. State transition functions over V are evaluated over pairs(s; s0) of V-states. The variables in V refer to state variables in s and variables in V� refer tothe corresponding state variables in s0. Formally, the value of a state transition function f overV in a pair s; s0 of V-states, written (s; s0)[[f ]], is de�ned as(s; s0)[[f ]] 4= (s [ [x� 7! s0(x) j x 2 V ])[[f ]]Action Functions and State Transition PredicatesAn action function f over (V ;A) is a state transition function over V that yields a subset ofthe actions in A when evaluated in any pair of V-states. Note, that the stuttering action � cannever be in the range of an action function.A state transition predicate P over V is any boolean valued state transition function over V .3.4 Step FormulasA step formula over (V ;A) is a formula that can be evaluated over triples (s; a; s0), where s ands0 are V-states and a 2 A[f�g, i.e., step formulas are evaluated over (possibly stuttering) steps.There are two kinds of step formulas: those based on action functions and those based onstate transition predicates. We consider these two possibilities and in each case we de�ne whatit means for a step formula P to hold in (s; a; s0), written (s; a; s0) j= P .If f is an action function over (V ;A), then hfi is a step formula over (V ;A), and we de�ne(s; a; s0) j= hfi i� a 2 (s; s0)[[f ]]Since � can never be in the range of f , the step formula hfi can never hold in a stuttering step.



34 3. A Temporal Logic with Step FormulasA state transition predicate P over V is also a step formula over (V ;A), where A is an arbitraryset of actions, and we de�ne(s; a; s0) j= P i� (s; s0)[[P ]] = true3.4.1 State PredicatesA state predicate P over V can now be seen as a special case of a step formula, namely a statetransition predicate over V that does not mention any variables in V�. Thus, consistent withthe normal semantics of state predicates, we de�ne what it means for a state predicate P overV to hold in a V-state s, written s j= P ,s j= P i� (s; s)[[P ]] = trueWhen de�ning temporal formulas below, we deal with step formulas and thereby also statepredicates.3.5 Temporal FormulasAn execution � = s0a1s1a2s2 � � � over (V ;A) is an execution where each si is a V-state and eachai 2 A [ f�g such that if ai = � then si�1 = si. (Thus, stuttering actions can only occur inexecutions if they are part of stuttering steps.) Below we de�ne the notion of temporal formulasP over (V ;A), and what it means for such a formula to hold at position j 2 N in an execution �over (V ;A), written (�; j) j= P . (If � is �nite, it is thought of as being extended with stutteringsuch that we can also de�ne what it means for P to hold at positions j � j�j.)A temporal formula over (V ;A) contains only free variables in V and can only mention actionsin A. Thus, a temporal formula over (V ;A) is also a temporal formula over (V [ V 0;A [ A0),where V 0 is any set of variables and A0 is any set of actions.Let � = s0a1s1a2s2 � � � below.Step FormulasAny step formula P over (V ;A) is also a temporal formula over (V ;A) and we have,(�; j) j= P i� (0 � j < j�j and (sj ; aj+1; sj+1) j= P ) or(j � j�j and (sj�j; �; sj�j) j= P )Thus, for all positions j in � (except the last one if � is �nite), P has to hold for the stepstarting in state sj . If � is �nite and j is greater than or equal to the last position in �, P hasto hold for the step that stutters the last state.The Next OperatorIf P is a temporal formula over (V ;A), then so is P , read next P .(�; j) j=P i� (�; j + 1) j= P



3.5. Temporal Formulas 35The Unless (Waiting-for) OperatorIf P and Q are temporal formulas over (V ;A), then so is P W Q, read P unless (or waiting-for)Q. (�; j) j= P W Q i� either there exists a k � j, such that (�; k) j= Q,and for every i with j � i < k, (�; i) j= P ,or else for all i with i � j, (�; i) j= PQuanti�cationIf P is a temporal formula over (V ;A), then (8x : P ) and (9x : P ) are temporal formulas over(V n fxg;A).For any V-state s denote by sxv , where v is assumed to be in the type of the variable x, the(V [ fxg)-state obtained from s by either, if x 2 V , changing the value of x in s to v, or, ifx =2 V , extending s with a mapping from x to v. Thus, sxv 4= (s n fxg) [ [x 7! v]. For anyexecution � = s0a1s1a2s2 � � � over (V ;A), let �xv denote the execution (s0)xva1(s1)xva2(s2)xv � � � over(V [ fxg;A). With this de�nition, we can de�ne the semantics of universal quanti�cation.(�; j) j= 8x : P i� for all values v, (�xv; j) j= PThus, P must, for arbitrary (proper) values v, hold for the execution where x is assigned the valuev in every state. This is in [MP92] and [Lam91] known as quanti�cation over rigid variables sincethe variable has a constant value during the execution. In [MP92] and [Lam91] quanti�cationover a program variable x allows x to vary during the execution. We do not consider that kindof quanti�cation in this work.Existential quanti�cation is de�ned in a similar fashion.(�; j) j= 9x : P i� there exists a value v such that (�xv ; j) j= PBoolean OperatorsWe give the standard de�nition of implication and negation. The remaning boolean operatorswill be derived from these below.If P and Q are temporal formulas over (V ;A), then so is P =) Q, and we have(�; j) j= (P =) Q) i� (�; j) j= P implies that (�; j) j= QIf P is a temporal formula over (V ;A), then so is :P , and we have(�; j) j= :P i� (�; j) 6j= PSince we allow boolean operators in both state functions and temporal formulas, there mightbe an ambiguity as to how such boolean operators should be interpreted in a given temporalformula. For example, R 4= (x = 1 =) y = 2) can be regarded as obtained by A) applyingthe next operator to the step formula (x = 1 =) y = 2), or B) �rst applying the temporalimplies operator to the two step formulas x = 1 and y = 2, and then applying the next operatorto the result. It turns out that either interpretation leads to the same result as to whether theformula holds at a certain position in an execution. However, to avoid confusion we adopt theconvention that step formulas in temporal formulas are always \as large as possible", thus, weconsider R in the example to be produced as described in case A).



36 3. A Temporal Logic with Step Formulas3.6 More Temporal FormulasThe rest of the temporal operators can be described syntactically from W , =) and :. Belowwe assume that P and Q are temporal formulas over (V ;A). The formulas we de�ne are thenalso temporal formulas over (V ;A).More Boolean OperatorsDisjunction and conjunction are de�ned in the standard way.P _ Q 4= (:P ) =) QP ^ Q 4= :((:P ) _ (:Q))The Inclusive Unless OperatorThe W operator de�ned above requires a formula P to hold forever or, if another formula Qholds at some point, at least up to but not necessarily including the point where Q starts toholds. Often we need to express that P also holds in the state where Q starts to hold. For thisreason we introduce the inclusive unless operator Wi de�ned asP Wi Q 4= P W (P ^ Q)The Always OperatorTo express that a formula holds forever, we de�ne 2P , read always P .2P 4= P W falseThe Eventually OperatorTo express that sooner or later a temporal formula holds, we de�ne 3P , read eventually P .3P 4= :2(:P )The (Inclusive) Until OperatorThe unless operator expresses that a temporal formula P holds at least until another temporalformula Q starts to hold, but it does not require that Q eventually holds. (If Q does not holdeventually, P should hold forever). To express that Q is required to hold eventually, we de�neP U Q, read P until Q.P U Q 4= (3Q) ^ (P W Q)There is also an inclusive version of the until operator.P Ui Q 4= (3Q) ^ (P Wi Q)The Leads-To OperatorThe leads-to operator is an important temporal operator which expresses that during an execu-tion, if P holds at some point, then Q will hold at a later (or the same) point. Thus, P ; Q,read P leads to Q, is de�ned asP ; Q 4= 2(P =) (3Q))



3.7. Functions and Temporal Formulas over Automata 373.6.1 PrecedenceTo avoid excessive use of parentheses, we use the following convention regarding the precedence(binding power) of the temporal operators. The operators in the group 2 3 :have equal precedence but higher precedence than the operators^ _which, in turn, have equal precedence but higher precedence than the operators=) W Wi U Ui ;which have equal precedence.3.7 Functions and Temporal Formulas over AutomataFor any safe (timed) I/O automata A whose state space is de�ned by state variables, denoteby variables(A) the set of state variables of A. We say that f is a state function or statetransition function over A if f is a state function or state transition function over variables(A),respectively. Similarly, f is said to be an action function over A if it is an action function over(variables(A); acts(A)). This notion trivially extends to step formulas and temporal formulas.3.8 Satisfaction and ValidityAn execution � over (V ;A) is said to satisfy a temporal formula P over (V ;A), written � j= P ,if and only if P holds at position 0 of �, thus� j= P i� (�; 0) j= PA temporal formula P over (V ;A) is said to be valid , written j= P , if every execution � over(V ;A) satis�es P , thusj= P i� for all � over (V ;A), � j= PWe also introduce a notion of validity relative to a set E of executions over (V ;A). A temporalformula P over (V ;A) is then E-valid , written E j= P , if every execution of E satis�es P , thusE j= P i� for all � 2 E, � j= PThis notion extends to A-validity , where A is a safe (timed) I/O automaton. Then, for anytemporal formula P over A, P is said to be A-valid , written A j= P , if every execution of Asatis�es P , thusA j= P i� for all � 2 exec(A), � j= P



38 3. A Temporal Logic with Step Formulas3.9 Finite vs. In�nite ExecutionsAbove � has ranged over in�nite as well as �nite executions. In this section we prove that thequestion whether a temporal formula P holds at position j in execution � is equivalent to thequestion whether P holds at position j in b�. This result is, of course, due to the semantics ofstep formulas which has a special case dealing with stuttering steps.Lemma 3.1Let P be a temporal formula over (V ;A). Then, for all executions � over (V ;A) and all j � 0,(�; j) j= P i� (b�; j) j= PProofIn Appendix B.3.10 Stuttering-Insensitive Temporal FormulasA temporal formula P over (V ;A) is stuttering-insensitive if, for arbitrary executions �1 and�2 over (V ;A) with �1 ' �2, �1 j= P if and only if �2 j= P . Thus, if P is stuttering-insensitiveand holds for �, it holds for all executions that can be obtained from � by adding or removingstuttering.Below, in Proposition 3.4, we prove that certain types of temporal formulas are stuttering-insensitive. However, �rst we need two technical lemmas.Lemma 3.2Let P be a temporal formula over (V ;A) and � = s0a1s1a2s2 � � � an arbitrary in�nite executionover (V ;A). Then, for all j � 0 and all i � j(�; j) j= P i� (j�ij�; i) j= PProofIn Appendix B.Lemma 3.3Let � and �0 be in�nite executions such that � ' �0. Then, for all k � 0, there exists a k0 � 0such that1. kj� ' k0j�02. for all 0 � i0 < k0, there exists an i with 0 � i < k such that ij� ' i0 j�0ProofIn Appendix B.



3.11. Comparison with Manna and Pnueli's Temporal Logic 39We can now characterize certain temporal formulas which are stuttering-insensitive. State pred-icates are always stuttering-insensitive. This is because stuttering-equivalent executions willalways start in the same state. General state transition predicates are not, however, stuttering-insensitive in general. This is due to the fact that stuttering-equivalent executions do not neces-sarily agree on the �rst step. All state transition predicates that hold in all stuttering steps are,however, stuttering-insensitive. Also, step formulas of the form hfi are not stuttering-insensitive,but 3hfi is.For the temporal operators, formulas of the form P are not stuttering-insensitive in gen-eral. Assume for instance that �1 = s0a1s1a2s2 � � � and �1 = s0�s0a1s1a2s2 � � �. Then �1 ' �2.Assume that (�1; j) j= P only if j = 1. Then �1 j= P but �2 6j= P . Thus, P is not stuttering-insensitive. However, all other temporal operators yield stuttering-insensitive temporal formulaswhen applied to stuttering-insensitive formulas.Proposition 3.41. Every state predicate P is stuttering-insensitive.2. If P is a state transition predicate such that for all states s, (s; �; s) j= P , then P isstuttering-insensitive.3. If f is an action function, then 3hfi is stuttering-insensitive.4. If P and Q are stuttering-insensitive, then(a) P W Q,(b) 8x : P ,(c) 9x : P ,(d) :P , and(e) P =) Qare all stuttering-insensitive.ProofIn Appendix B.3.11 Comparison with Manna and Pnueli's Temporal LogicThe temporal logic of Manna and Pnueli [MP92] is state based in the sense that temporal for-mulas are evaluated over sequences of states, i.e., with no actions interleaved. These sequences(computations) must be in�nite; terminating computations are made in�nite by appending in-�nite stuttering at the end.As Lemma 3.1 indicates we could also have chosen to deal with in�nite executions only: anytemporal formula in our temporal logic is satis�ed by a �nite execution � if and only if thetemporal formula is satis�ed by the in�nite execution obtained by appending in�nite stutteringat the end of �. This indicates that the use of in�nite computations only in [MP92] as opposedto our use of both �nite and in�nite executions is not an important di�erence between the twologics.



40 3. A Temporal Logic with Step FormulasThe real di�erence lies in the important role of actions in our logic. We need to be able toexpress properties of the actions occurring in executions. However, as the following discussionindicates, several results of [MP92] carry over to our logic.Consider any (in�nite) execution� = s0a1s1a2s2 � � �This execution can be encoded as the following state based computation:� = (s0; a1; s1)(s1; a2; s2) � � �Thus, each state of � is a triple. Speci�cally, states of � are assignments of the form:[ x1 7! v1;: : :xn 7! vn;act 7! a;x01 7! v01;: : :x0n 7! v0n ]where the variable assignments to x1; : : : ; xn represent the �rst state in a triple, the specialvariable act holds the action of the triple, and the variable assignments to x01; : : : ; x0n representthe last state in the triple.Now, any valid temporal formula of [MP92] holds, in particular, for computations, whereeach state has the form (s; a; s0) such that the last state of each triple coincides with the �rstpair of the next triple. Thus, valid formulas of [MP92] hold speci�cally for all computationsthat are encodings of our executions.In order for such validity results of [MP92] to carry over to our temporal logic, it is importantthat the operators of [MP92] that we also use have a similar semantics in the two temporal logics,but this is easy to see. In fact, we have been guided by the temporal logic of [MP92] when de�ningthe semantics of our temporal operators.Note, that since our notion of execution in the encoding into computations is more restrictivethan general computations, validities in our logic do not carry over to the temporal logic of[MP92].3.12 Rules and Meta RulesTemporal logics, or any logic for that matter, usually contain inference rules which allow validitiesto be inferred from other validities. This is however not the way we shall use our temporal logicin the veri�cation examples in this work. Typically, we are given a particular execution � whichsatis�es a temporal formula P and then have to show that � satis�es another temporal formulaQ. Thus, our proofs will be proofs of satisfaction as opposed to proofs of validity.So, for our purpose inference rules are not very useful. Instead we shall use rules of the formof valid implications.j= P =) QSuch a rule (together with the de�nition of implication) allows us to conclude � j= Q from� j= P .



3.12. Rules and Meta Rules 41We now present the rules that we use in our correctness proofs below. We do not present simplerule like, e.g., manipulation of Boolean operators or rules likePar: j= (2P ) =) Pbut implicitly use such rules in our proofs. An approach like TLA [Lam91] has invested a lot ofe�ort in �nding rules that are typically used when proving systems correct. Such an investigationstill needs to be done for our temporal logic. Thus, we present the rules we have found a needfor in the particular examples presented in this work and leave the more general investigationfor further research. We do not prove that the rules are actually validities but we note thatthis should follow easily from an encoding into the temporal logic of [MP92] as described inSection 3.11. In the rules we let P (k) denote a formula with k free. Then, e.g., P (0) is theformula obtained from P (k) by replacing all free occurrences of k with 0.MP: j= (((P1 ^ : : : ^ Pk) =) Q) ^ P1 ^ � � � ^ Pk) =) QMP1: j= (2(P =) Q) ^ 3P ) =) 3QPro1: j= (8k : 9k0 : (k > k0 ^ P (k)); P (k0)) =) 3P (0)Pro2: j= (2(P =) (QW R)) ^ (2Q =) 3S) ^ ((Q ^ S); R)) =) (P ; R)Ind: j= ((P (0); Q) ^ 8k : (k > 0 =) 9k0 : (k0 < k ^ (P (k); P (k0) _ Q)))) =)8n : (P (n); Q)Unl: j= (2(P =) :Q) ^ (P Wi Q)) =) 2PUnl1: j= (2(P =) (QWi R)) ^ (2Q =) 3S)) =) 2(P =) (3R _ 23S))The rules allow us to prove that a given execution satis�es a formula, provided it satis�es anotherformula. We shall be using other rules, called meta rules , which cannot be stated as validities.For instance, if � j= 2P and �0 is a su�x of �, then �0 j= 2P . Again, we present the meta ruleswe have found useful in our particular examples, and leave an investigation of a \complete" setof meta rules as well as proofs of our meta rules for further research. We note, however, thatmany of the meta rules can be proved using Lemma 3.2.Lemma 3.51. If � j= 2P and �0 is a su�x of �, then �0 j= 2P .2. If, for all su�xes �0 of �, �0 j= P , then � j= 2P .3. If � j= 3P , then there exists a su�x �0 of � such that �0 j= P .4. If there exists a su�x �0 of � and �0 j= P , then � j= 3P .5. If, for any proper constant v, � j= P (v), then � j= 8k : P (k).6. If � j= 8k : P , then, for any proper constant v, � j= P (v).7. If, for some proper constant v, � j= P (v), then � j= 9k : P (k).8. If � j= 9k : P (k), then there exists a proper constant v such that � j= P (v).Since, in our proofs below, we shall use the di�erent parts of Lemma 3.5 extensively, sometimeswe use several parts at once and then simply refer to the lemma and not the particular parts.



42 3. A Temporal Logic with Step FormulasThis concludes the introduction to our temporal logic. The temporal logic is especially designedso that formulas are evaluated over executions of safe (timed) I/O automata. This allows usto use the temporal logic to specify liveness conditions of live (timed) I/O automata and usethe rules of the temporal logic in correctness proofs. Exactly how we use the temporal logic forspecifying liveness conditions is one of the issues of the next chapter.



Chapter 4Specifying SystemsChapter 2 introduced our basic models of timed and untimed systems. The models are entirelysemantic: they describe the operational meaning of a system, that is, how a system behaveswhen executed.A live I/O automaton consists of mathematical objects like sets and lists. However, thesesets and lists may be in�nite, which indicates that a direct enumeration is not feasible. Thus, weneed a language or some syntax , other than standard mathematical notation, for writing downelements of our models. This chapter describes the syntax we use.Furthermore, we describe how the e�ect of semantic operators (like parallel composition) isreected in the syntax. For instance, we shall use the language of the temporal logic of Chapter 3for specifying liveness conditions. We then show, e.g., that under certain circumstances if theliveness of two systems are described by temporal formulas QA and QB , respectively, then theliveness of the composed system is described by QA ^ QB . This is important since it enables usto obtain a syntactic speci�cation of the composed system directly from the speci�cation of thecomponent systems.The rest of this chapter is organized as follows. We �rst, in Section 4.1, deal with untimedsystems and then, in Section 4.2, show how timed systems can be speci�ed. Finally Section 4.3proves important embedding results.4.1 Specifying Untimed Systems4.1.1 Safe I/O AutomataSafe I/O automata will be speci�ed using the precondition-e�ect style normally used for speci-fying the I/O automata of [LT87, LT89].This style assumes that the state space of the safe I/O automaton is described as a mappingfrom state variable names to their values. Thus, the state space of a safe I/O automaton willbe described by listing the state variable names together with their types. The start states ofa safe I/O automaton are then speci�ed by giving the possible values the state variables canassume initially.As an example, consider the speci�cation of a one-place bu�er with the following functions:a message m can be placed in the bu�er by the input action send(m) and removed from thebu�er by the output action receiver(m). (The environment is thought of as sending messagesto the bu�er and receiving them from the bu�er.) If a new message is sent to the bu�er before43



44 4. Specifying Systemsthe previous message is passed on to the receiver, a special overow ag is set, which leads toan output action overow . Initially the bu�er is empty and the overow ag is not set. Thus,the state space and start state of this safe I/O automaton is described as:Variable Type Initially Descriptionbuf Msg [ f?g ? The one-place bu�er. The symbol ? denotes theempty bu�er.of Bool false The overow ag. A value of true denotesoverow.We denote by variables(A) the set of state variables of the safe I/O automaton A. We use thenormal record-notation for referencing the values of state variables in a given state. For instance,the value of state variable buf in state s is denoted by s:buf . Formally, since s is a mappingfrom variables to values, we have s:buf 4= s(buf ).The action signature of the one-place bu�er is described as follows:Input:send(m), m 2MsgOutput:receive(m), m 2MsgoverowInternal:noneThus, even though there might be in�nitely many actions (Msg might be in�nite), we useonly �nitely many action generator functions to describe these actions. (The action generatorfunctions are assumed to be disjoint and their union to be injective).It now only remains to show how to de�ne the transition relation. Generally, for each actiongenerator function we de�ne one or more step rules . For example, in the case of the actiongenerator function send above we might want to de�ne two step rules based on some partitionof the messages Msg into Msg1 and Msg2. Then one step rule would de�ne steps labeled withactions from fsend(m) j m 2 Msg1g, and the other would de�ne steps labeled with actions fromfsend(m) j m 2 Msg2g. The sets Msg1 and Msg2 could even be overlapping, in which case weintroduce nondeterminism of the send steps. A step rule has the formagf (x; y; : : :)Precondition:PE�ect:Ewhere agf is an action generator function over the variables x, y, etc., P is a precondition, andE is an e�ect clause.The precondition P is a state predicate over the state variables of the system and the variablesx, y, etc.. A particular action, say agf (1; 2; : : :), is then enabled in state s, if P holds in s afterreplacing free occurrences of x with 1, free occurrences of y with 2, and so on.The e�ect clause E uses a Pascal-like style of assignments. Thus, the e�ect clause consistsof a list of assignments (one per line) of the formv := e



4.1. Specifying Untimed Systems 45where v is a state variable and e is an expression (state function)|of the same type as v|overthe state variables and the variables x, y, etc.. Again, for a particular action agf (1; 2; : : :) wemust replace free occurrences of x with 1, free occurrences of y with 2, and so on, in the expressione. If e0 denotes this instantiated expression, then if s is the state before the assignment, theresult of executing the assignment is the state s0 obtained by changing the value of v to s[[e0]].Thus, s0 4= (s n fvg) [ [v 7! s[[e0]]]. The result of executing a list of assignmentsassignment1� � �assignmentnis obtained by �rst executing assignment1, then assignment2, and so on. Thus, the state will bechanged in an sequential manner, but remember that this is just a convenient way of describingthe post-state of the step, namely the state after the last assignment. In TLA [Lam91] thee�ects of steps are given by directly relating the values of the individual state variables in thepre- and post-states, but we have chosen this more program-like notation.To make some assignments conditional we use an if-then-else construct. An example of sucha construct is,if P thenassignment1assignment2elseassignment3assignment4where P is a state predicate. The semantics is of course that if P holds when control has reachedthe if-statement, then assignments 1 and 2 are executed (in that order); otherwise assignments3 and 4 are executed. Note, that we use indentation to indicate the end of the if-then-elseconstruct. This means thatif P thenassignment1assignment2elseassignment3assignment4is di�erent from the previous if-then-else construct in that this construct �rst executes eitherassignments 1 and 2 or assignment 3 depending on the value of P , and then, unconditionally,executes assignment 4. We omit the else part of an if-then-else construct if it contains noassignments.The format of the e�ect-clause described so far does not allow nondeterminism for a particularaction. To specify such nondeterminism we will use optional assignments of the formoptionally x := ewith the meaning that nondeterministically either the assignment is or is not executed.We could have been more formal in de�ning the syntax and semantics of assignments, etc.,but since such syntax and semantics are standard, we have chosen to keep the exposition at amore intuitive level.



46 4. Specifying SystemsFinally, we note that step rules may contain variables which are not state variables or vari-ables occurring in action generator functions. Such variables can be thought of as constants,and we then e�ectively de�nes a step rule for each proper value of the constant. An example isthe following step rule, where n is such an extra variable.agf (x; y; : : :)Precondition:: : : ^ 0 � n < 10E�ect:: : :[76 v := x+ n2: : :Safe I/O automata must be input-enabled (cf. De�nition 2.1). This is ensured by omitting thepreconditions for input actions. This has the same meaning as a precondition of true . Thede�nition of the transition relation for the one-place bu�er now looks like:send(m)E�ect:if buf 6= ? thenof := truebuf :=moverowPrecondition:of = trueE�ect:of := false receive(m)Precondition:buf = mE�ect:buf := ?An operational way to read such a de�nition is as follows. The de�nition for send(m) says thatif the bu�er receives a new message m when buf is not empty, the overow bif of is set. Afterthat the new message is placed in buf (and a possible previous message will thus be overwritten).The one-place bu�er can perform a receive(m) step if m is the message in the bu�er. The resultis to empty the bu�er. Finally, overow can be signaled if the overow ag of is set, and theresult is that of gets reset to false.4.1.1.1 Operations on Safe I/O AutomataIn Section 2.1.1 we de�ned the three operators (parallel composition, action hiding, and actionrenaming) on safe I/O automata. Below we explain how the safe I/O automata resulting fromapplying these operators can be described using syntax derived from the description of the safeI/O automata to which the operators were applied.We start by considering parallel composition of safe I/O automata. In De�nition 2.2, whichde�nes parallel composition, we de�ned a notion of compatibility for safe I/O automata. Thisnotion deals with guaranteeing that each action in a composed system be controlled by at mostone component and that internal actions be unique. De�nition 2.2 also says that the state spaceof a composed system is the cartesian product of the component state spaces. This means thatif we want to reference the value of a certain state variable of one component, we �rst have toextract the state of the component from the total state. This becomes even more cumbersomeif several levels of parallel composition are used. In order to avoid dealing with these not veryinteresting details of extracting component states of component states, etc., we will extend the



4.1. Specifying Untimed Systems 47notion of compatibility to also include the requirement that the sets of state variables of thecomponent systems be disjoint. In this way a state s of the composed system can be uniquelydescribed by an assignment of values to the total set of state variables in the system such thatthe value of any state variable x in s agrees with the value of x in the state of the componentto which x belongs. (More precisely, such a \at" assignment of values to state variables isisomorphic to the state de�ne by the parallel composition operator in Chapter 2.) Thus, if sidescribes the state of the ith component as a mapping from state variables of this componentto their values, the state of the composed system is described by the mapping s1 [ � � � [ sN .Thus, below we shall use the following de�nition of compatibility (cf. De�nition 2.2): SafeI/O automata A1; : : : ; AN are syntactically compatible if for all 1 � i; j � N with i 6= j1. out(Ai) \ out(Aj) = ;2. int(Ai) \ acts(Aj) = ;3. variables(Ai) \ variables(Aj) = ;.Note that the �rst two conditions have not changed. Below we let \compatibility" refer to\syntactical compatibility".This notion of compatibility trivially extends to live I/O automata (cf. De�nition 2.9). Aconsequence of this way of looking at the state space of a composed system is that for compat-ible safe I/O automata A1; : : : ; AN , the set of state variables of A = A1k � � �kAN is given byvariables(A) = variables(A1) [ � � � [ variables(AN ) .Thus, the state variables (together with types and initial values) of a composed system canbe described by writing the lists of state variables for the components one below the other. Ina similar fashion it is easy to list the action signature of the composed system.The question is, how can the description of the steps of the composed system be derivedfrom the description of the steps of the components? Remember, from De�nition 2.2, that ineach step of the composed system several components might participate (each executing statechanges described locally for the action of that step) whereas all other components do notchange their state. Also remember, that the action of the step is locally-controlled by at mostone component. That is, either the action is an input action for all participating components,or it is locally-controlled by one component and an input action for the remaining participatingcomponents. Then, if the step rules for send(m) in three components, one of which controls theactions, are described bysend(m)Precondition:P1E�ect:E1 send(m)E�ect:E2 send(m)E�ect:E3then the send(m) steps of the composed system can be described bysend(m)Precondition:P1E�ect:E1E2E3



48 4. Specifying SystemsNote, that the order of the three e�ect clauses is unimportant since E1, E2, and E3 mentiondisjoint sets of state variables.Since the construction of the step rules of the composed system is so simple, we usually omitthe explicit construction and instead refer to the step rules of the components.For action hiding the situation is much simpler (cf. De�nition 2.3). If, for instance, A is asafe I/O automaton and A is a set of locally-controlled actions of A, the syntactic descriptionof A n A is obtained from the syntactic description of A by simply moving the action generatorfunctions describing output actions in A from the list of action generator function describingoutput actions to the list of action generator functions describing internal actions. Of course,if only some of the actions described by an action generator function are hidden, the actiongenerator function will have to be split. For example, if send-nat(i), where i 2 N, is an actiongenerator function for output actions of A, and A = fsend-nat(i) j i � 100g, then send-nat(i),0 � i < 99, will be in the listing of output actions of A n A and send-nat(i), i � 100, will be inthe listing of internal actions of A n A.Finally, for action renaming we use mappings of the form [send(m) 7! send-message(m) jm 2 Msg] [ � � �, where, intuitively, each entire action generator function is being renamed. Inthis case each action generator function is simply replaced according to the action mapping inthe syntactic descriptions of the action signature and the steps.In the remainder of this work we shall assume that the syntactic changes to safe (timed) I/Oautomata reecting semantic operations on these are well understood and concentrate on themore interesting aspects of de�ning liveness.4.1.2 Live I/O AutomataWe specify a liveness condition L for a safe I/O automaton A indirectly in terms of a temporalformula Q over A in the following way:L = f� 2 exec(A) j � j= Qg (4.1)That is, the liveness condition L consists of all the executions of A that satisfy a certain temporalformula Q. Of course, we have to make sure that what we de�ne is in fact a liveness conditionfor A, i.e., we must make sure that any �nite execution of A can be extended to an executionin L. We shall refer to any temporal formula Q over A that de�nes a liveness condition L forA as a liveness formula for A. Moreover, we call the liveness formula environment-free for A if(A;L) is environment-free and thus is a live I/O automaton.Given a liveness formula Q for A, we shall refer to the liveness condition de�ned by (4.1) asthe liveness condition for A induced by Q.4.1.2.1 Operations on Live I/O AutomataIn Section 2.1.2 we de�ned the three operators (parallel composition, action hiding, and actionrenaming) on live I/O automata. If our approach with specifying liveness using temporal for-mulas should have any practical relevance, it is important that the environment-free livenessformulas inducing the liveness conditions for the resulting live I/O automata can be obtaineddirectly from the environment-free liveness formulas for the original live I/O automata.This section proves that this is the fact given a few restrictions. As always we start bythe result for parallel composition, which requires three preliminary lemmas the �rst of whichembodies the complexity of the proof.



4.1. Specifying Untimed Systems 49To help us state and prove the results below, we �rst de�ne a notion of restriction of an executionover (V ;A) to (V 0;A0). This notion is not similar to the notion of projection of executions toautomata as de�ned in Chapter 2 since it introduces stuttering steps for actions not in A0,whereas the de�nition in Chapter 2 simply removes such steps. Below we shall, however, seehow the two notions are related.For any V-state s, s � V 0, where V 0 � V , is the V 0-state obtained from the mapping s byrestricting the domain to V 0.Then, for any execution � over (V ;A), de�ne � � (V 0;A0), where V 0 � V and A0 � A, tobe the execution over (V 0;A0) obtained from � by replacing each state s in � with s � V 0 andreplacing each action a =2 A0 with �.Lemma 4.1Let P be a temporal formula over (V 0;A0). Then, for all pairs (V ;A) with V 0 � V and A0 � A,all executions � over (V ;A), and all j � 0,(� � (V 0;A0); j) j= P i� (�; j) j= PProofIn Appendix B.We now give an alternative characterization of the projection operator d on executions de�nedin Section 2.1.1. For any execution � of a safe I/O automaton A1k � � � kAN , de�ne� �Ai 4= � � (variables(Ai); acts(Ai))Then �dAi = \(� �Ai) and clearly we have �dAi ' � �Ai.The following lemma is now a direct consequence of Lemma 4.1.Lemma 4.2Let A1; : : : ; AN be compatible safe I/O automata and let Q1; : : : ; QN be temporal formulas overA1; : : : ; AN , respectively. Furthermore, let A = A1k � � �kAN and � 2 exec(A). Then, for all1 � i � N and all j � 0,(� �Ai; j) j= Qi i� (�; j) j= QiProofSince � is an execution over (variables(A); acts(A)) and each Qi is a temporal formula over(variables(Ai); acts(Ai)) with variables(Ai) � variables(A) and acts(Ai) � acts(A), the resultfollows directly from Lemma 4.1 and the de�nition of � �Ai.Lemma 4.3Let A1; : : : ; AN be compatible safe I/O automata and let Q1; : : : ; QN be stuttering-insensitivetemporal formulas over A1; : : : ; AN , respectively. Let A = A1k � � � kAN and � 2 exec(A). Then,�dA1 j= Q1 and � � � and �dAN j= QN i� � j= Q1 ^ : : : ^ QN



50 4. Specifying SystemsProofIn Appendix B.The following important result for parallel composition can now be proved.Proposition 4.4Let (A1; L1); : : : ; (AN ; LN) be compatible live I/O automata and let Q1; : : : ; QN be stuttering-insensitive temporal formulas over A1; : : : ; AN , respectively, such that each Li is induced by Qi.Let (A;L) = (A1; L1)k � � � k(AN ; LN). Then L is induced by Q1 ^ : : : ^ QN .ProofIn Appendix B.It is important to understand the role that stuttering-insensitivity plays in the proposition. Inthe execution of a composed system, each step represents activity in a certain subset of thecomponents while all other components do not engage in the step at all. When projecting theexecution to any component, such steps where the component does not engage (i.e., stutteringsteps) are simply removed. Thus, when specifying the liveness for a component system (Ai; Li),we might write Qi = 32(x� = x + 1) and hence specify that in any live execution (of (Ai; Li))there must be an in�nite su�x where x is incremented by one at each step. Now, in a liveexecution � of the composed system, even though �dAi satis�es Qi, � itself does not necessarilysatisfy Qi since steps performed by other components might result in x being incremented onlyin, e.g., every other step (but still, of course, incremented in every step where Ai engages). In theproposition we solve the problem by simply ruling out Qi since it is not stuttering-insensitive.However, in the example we might write the following stuttering-insensitive liveness conditionwhich captures the same idea: Q0i = 23hacts(Ai)i ^ 32(hacts(Ai)i =) (x� = x + 1)). Thus,Q0i describes that there is a su�x, with in�nite activity of Ai, such that every time Ai engages,x is incremented.Attention is now turned to the simpler operations of action hiding and action renaming.Proposition 4.5Let (A;L) be a live I/O automaton such that L is induced by the temporal formula Q for A andlet A � local(A). Then the liveness condition of (A;L) n A is induced by Q.ProofIn Appendix B.Proposition 4.6Let (A;L) be a live I/O automaton such that L is induced by the temporal formula Q for A, andlet � be an action mapping applicable to (A;L). De�ne �(Q) to be the temporal formula obtainedby applying � to every action function in Q. Then the liveness condition of �((A;L)) is inducedby �(Q).



4.1. Specifying Untimed Systems 51ProofIn Appendix B.4.1.2.2 FairnessFairness is a special form of liveness, where the requirement is that each component of thesystem be given fair turns. Fairness is important since it in most cases is environment-free,and furthermore fairness is easy to implement on a physical system. Traditionally, two di�erentkinds of fairness are considered: weak and strong fairness.Weak fairness to a system component or, as we shall phrase it, to the set of actions repre-senting this component says that actions from the set cannot be enabled inde�nitely withoutbeing executed in�nitely often. Thus, for a safe I/O automaton A and a set C � acts(A), weakfairness to C can be expressed as the temporal formulaWFA(C) 4= 23hCi _ 23:enabledA(C) (4.2)where enabledA(C) is a state predicate over A that holds in exactly the states of A where anaction in C is enabled. As usual we omit the subscript A and write WF (C) and enabled(C)when A is clear.We have in this work found it useful to use a slight variant of weak fairness in which actionsare only forced to occur if they are enabled inde�nitely and a special forcing condition is satis�edinde�nitely. This can be formalized asWF (C; P ) 4= 23hCi _ 23:(enabled(C) ^ P ) (4.3)where P is a state predicate (the forcing condition). When using this variant of weak fairness, itis possible to separate the issues of when actions may occur (are enabled) and when they mustoccur.Strong fairness says that actions from a set must be executed in�nitely often if actions fromthe set are enabled in�nitely often. In other words, we cannot ignore the actions forever if weare given in�nitely many chances to execute them.SF (C) 4= 23hCi _ 32:enabled(C) (4.4)Again, with a forcing condition this looks likeSF (C; P ) 4= 23hCi _ 32:(enabled(C) ^ P ) (4.5)It is easy to see that temporal formulas of the form WF (C), WF (C; P ), SF(C), or SF(C; P ),where C � acts(A) and P is a state predicate over A, are liveness formulas for A. But are theyenvironment-free? First of all environment-freedom must require that C consist of only locally-controlled actions since otherwise we could be restricting the environment to perform certaininput actions. This condition turns out to be su�cient for weak fairness to be environment-free.However, there is a problem with strong fairness as illustrated by the following example: Let L beinduced by the strong fairness formula SF(C) for A, where C � local(A). Then, for any in�niteexecution � in L it is the case that if C is enabled in in�nitely many states in �, then � containsin�nitely many actions from C. Now suppose, in the game between system and environment,that each environment move consists of two input actions: one that is bound to enable C andone that is bound to disable C (thus no g function of a strategy can be de�ned to avoid that



52 4. Specifying SystemsC is enabled between the input actions and disabled afterwards). In this situation no strategyfunction f can be de�ned that can ever execute an action in C during such a game; in otherwords, every time the system gets a chance to move, it is not possible to execute an action in Csince C is not enabled. Thus, any strategy de�ned on A will, when playing against this villainousenvironment, generate an outcome in which C is in�nitely often enabled (namely between thetwo input actions of every environment move) but in which only �nitely many C actions areexecuted. Thus the outcome is not live and it follows that SF(C) is not environment-free.However, strong fairness is environment-free if the safe I/O automaton in question is C-persistent , where C � local(A). De�ne A to be C-persistent if for each state s of A in which Cis enabled and each step (s; a; s0) where a 2 in(A), C is enabled in s0. Thus, in any execution ofA, if C becomes enabled, C will stay enabled at least until a locally-controlled action has beenexecuted.Lemma 4.7Let A be a safe I/O automaton and let Qi, 1 � i � k, be temporal formulas over A of the formWF (Ci), WF (Ci; Pi), SF (Ci), or SF (Ci; Pi), where� Ci � local(A),� Pi is a state predicate over A, and� if Qi = SF(Ci) or Qi = SF(Ci; Pi), then A is Ci-persistent.Then Q1 ^ � � � ^ Qk is an environment-free liveness formula for A.ProofThis proof can be carried out similarly to the proof of Lamport and Abadi's Proposition 4in [AL92b]. (Note that [GSSL93] argues that Lamport and Abadi's notion of �-machine-realizability is similar to our notion of environment-freedom. Furthermore, �-invariance is similarto our notion of C-persistence.)Another important property of the fairness formulas is that they are stuttering-insensitive asexpressed by the following lemma.Lemma 4.8Any conjunction of temporal formulas of the form WF (C), WF (C; P ), SF(C), and SF (C; P )is stuttering-insensitive.ProofDirectly by the de�nition of the fairness formulas and Proposition 3.4.4.2 Specifying Timed SystemsWe now turn attention to timed systems. As above we �rst describe how to specify safe timedI/O automata, and then how to use our temporal logic to specify liveness.



4.2. Specifying Timed Systems 534.2.1 Safe Timed I/O AutomataIn this work we use two approaches for specifying safe timed I/O automata: explicit and implicitspeci�cation. Both approaches describe state spaces using state variables as in the untimedsetting. The de�nition of safe timed I/O automata (De�nition 2.17) describes that the time canbe obtained from any state by the :now mapping. Below we assume thateach safe timed I/O automaton has a special now state variable such that the :nowmapping simply returns the value of this state variable.(We will not be able to see if s:now means the value of the now state variable in state s or theresult of applying the :now mapping to state s, but since, by de�nition, both interpretationsreturn the same time, this does not give rise to ambiguity.)We denote by variables(A) the set of state variables (including now) of the safe timed I/Oautomaton A. With this de�nition we can extend the de�nition of compatibility for safe timedI/O automata (cf. De�nition 2.18) by requiring the state variables of the safe timed I/O automatabe almost mutually disjoint. (They sets of state variables must only have now in common): Safetimed I/O automata A1; : : : ; AN are syntactically compatible if for all 1 � i; j � N with i 6= j1. out(Ai) \ out(Aj) = ;2. int(Ai) \ acts(Aj) = ;3. variables(Ai) \ variables(Aj) = fnowgAs in the untimed setting we use, for brevity, the term \compatibility" to refer to syntacticalcompatibility. The notion of compatibility trivially extends to live timed I/O automata (cf.De�nition 2.26). As in the untimed setting we can now characterize the state of a composedsafe timed I/O automaton A = A1k � � �kAN by a \at" mapping from variables(A1) [ � � � [variables(AN) (i.e., variables(A)) to values such that s is the state of A if s � variables(Ai) isthe state the component Ai. This characterization is possible since all components must agreeon real time (cf. De�nition 2.18).Explicit Speci�cationThe explicit approach to specifying safe timed I/O automata is similar to our way of specifyingsafe I/O automata: the state space and initial states are speci�ed by a list of typed statevariables with possible initial values (the now variable must assume the value 0 initially), theaction signature is speci�ed by using action generator functions to list input, output, and internalactions and the special time-passage action �, and the steps are speci�ed using the precondition-e�ect style.Some of the state variables will typically be used to keep track of deadlines etc. Also, whenspecifying the steps using this explicit approach, the time-passage steps will have to be speci�edexplicitly. The precondition for the time-passage steps will usually state that time is not allowedto pass beyond some deadlines representing times by which some other steps must have beenexecuted.It must be proved that what we specify is in fact a safe timed I/O automaton (cf. De�ni-tion 2.1). The axioms S1{S3 are easy to ensure: S1 is ensured by initializing now to 0, S2 isensured by leaving now unchanged in the step rules for visible and internal actions, and S3 isensured by requiring, in the step rule for �, that time will increase. S4 and S5 are ensured if



54 4. Specifying Systemstime-passage steps change the now variable only and, from any time, time-passage steps to anyfuture time, possibly less than some deadline, is allowed.As in the untimed setting it is easy to construct the syntactic description of a safe time I/Oautomaton from the syntactic description of its components. The only di�erence compared tothe untimed setting is constructing the step-rule for � when dealing with the parallel compositionoperator. In this case the preconditions of the step-rules for � have to be combined so that allcomponents allow the assignment to the (common) now variable. This turns out not to be aproblem in practice.In some situations it is possible to avoid dealing explicitly with deadlines and time-passing whenspecifying safe timed I/O automata. This approach is described next.Implicit Speci�cationIn [MMT91] and [LA91] alternative models for timed systems are developed. We will refer tothese models by \MMT-models" derived from the names of the authors of [MMT91]. As shownin [GSSL93] the model we use is a generalization of the MMT-models.In the MMT-models the locally-controlled actions are partitioned into classes and each classhas associated with it a lower and upper time bound that represent the maximum and minimumdelay of the system when executing these actions.While these models are su�cient for the speci�cation of many timed distributed systems,they are not su�cient for all the examples presented later in this work. However, because theMMT-models handle time implicitly, they tend to be easier to understand.Instead of developing a theory for MMT-models, we will merely, whenever possible, use the styleof these models as a convenient way of specifying our safe timed I/O automata. So below wede�ne a notion of MMT-speci�cation and show what such a speci�cation denotes in the modelof safe timed I/O automata.De�nition 4.9 (MMT-Speci�cation)An MMT-speci�cation AMMT is a triple where� automaton(AMMT ) is a safe I/O automaton,� sets(AMMT ) is a collection C1; : : : ; Ck of disjoint sets of locally-controlled actions of thesafe I/O automaton automaton(AMMT ), and� boundmap(AMMT ) is a mapping that to each Ci 2 sets(AMMT ) associates a lower timebound bl(Ci) 2 T and an upper time bound bu(Ci) 2 (T n f0g) [ f1g, such that bu(Ci) �bl(Ci).We let states(AMMT ), etc., refer to the corresponding components of the underlying safe I/Oautomaton automaton(AMMT ).The intuition behind an MMT-speci�cation is as follows: Let the triple (A; S; b) be an MMT-speci�cation. A itself contains no information about time but we will now \execute" it in a worldthat has a notion of real time and now . Suppose during execution that a set Ci 2 S becomesenabled at time t. Then b speci�es that if Ci stays enabled, then an action from Ci must be



4.2. Specifying Timed Systems 55executed in the time interval [t + bl(Ci); t + bu(Ci)]. Thus, the boundmap speci�es the timeinterval (relative to t) in which an action from Ci must be executed, unless Ci becomes enabledin the meantime. The same has to hold for Ci if it stays enabled after being executed; thus, inthis case a new legal interval is calculated based on the current time, bl(Ci), and bu(Ci). If Cibecomes disabled, the timing constraints on Ci are removed.To encode this idea into the model of safe timed I/O automata, we need to add several statevariables. For instance we need to add the variable now representing real time, and for eachof the sets Ci we need to add two variables: �rst(Ci) and last(Ci) to denote the �rst and last(absolute) times at which an action from Ci must be executed. In the encoding in our model,the �rst and last variables should then be set to the proper interval when the associated setCi becomes (re-)enabled and reset to \no timing constraints" (i.e., the interval [0;1]) whenCi becomes disabled. Furthermore, actions in Ci are only allowed to be executed if real timehas passed beyond �rst(Ci). Additional time-passage steps also need to be added. These stepsshould only change now and are not allowed to let time pass beyond any of the last bounds.This idea is now formalized.De�nition 4.10Let AMMT be an MMT-speci�cation. Then time(AMMT ) is the safe timed I/O automaton A forwhich� each state s of states(A) consists of a state s:basic, which is a state of AMMT , augmentedwith a new state variable now and, for each set Ci of sets(AMMT ), two new state variables�rst(Ci) and last(Ci).� start(A) consists of states s for which s:basic is a start state of AMMT , s:now = 0, and,for each set Ci of sets(AMMT ), if Ci is enabled in s:basic then �rst(Ci) = bl(Ci) andlast(Ci) = bu(Ci); otherwise, �rst(Ci) = 0 and last(Ci) =1.� (in(A); out(A); int(A)) = (in(AMMT ); out(AMMT ); int(AMMT )).� ext(A) = ext(AMMT ) [ f�g.� (s; a; s0) 2 steps(A) i� the following conditions hold:1. If a 2 acts(AMMT ) then(a) s0:now = s:now .(b) (s:basic; a; s0:basic) 2 steps(AMMT ).(c) For each Ci 2 sets(AMMT ):i. If a 2 Ci then s:�rst(Ci) � s:now .ii. If Ci is enabled in both s:basic and s0:basic, and a =2 Ci, then s0:�rst(Ci) =s:�rst(Ci) and s0:last(Ci) = s:last(Ci).iii. If Ci is enabled in s0:basic and either a 2 Ci or Ci is not enabled in s:basic,then s0:�rst(Ci) = s0:now + bl(Ci) and s0:last(Ci) = s0:now + bu(Ci).iv. If Ci is not enabled in s0:basic then s0:�rst(Ci) = 0 and s0:last(Ci) =1.2. If a = � then(a) s0:now > s:now .(b) s0:basic = s:basic.



56 4. Specifying Systems(c) s0:now � s0:last(Ci) for all Ci 2 sets(AMMT ).(d) s0:�rst(Ci) = s:�rst(Ci) and s0:last(Ci) = s:last(Ci) for all Ci 2 sets(AMMT ).It is easy to see that time(AMMT ) is in fact a safe timed I/O automaton (cf. De�nition 2.17).Speci�cally, axiom S1 is ensured since now is initialized to 0, S2 is ensured since, by explicitconstruction, now does not change in steps labeled by visible or internal actions, S3 is ensuredsince time-passage steps are explicitly required to increase time, and �nally S4 and S5 are easilyseen to be ensured since time(AMMT ) from any time allows time-passage to any future time lessthan some deadline (expressed by the last variables) and time-passage steps do not change thebasic part of the state.When using the implicit approach to specifying safe timed I/O automata, we use theprecondition-e�ect style of Section 4.1.1 to specify the underlying safe I/O automaton, andthen use standard notation (cf. Appendix A) to specify the sets of locally-controlled actionsand the boundmap. Based on the simple way the new variables (now and the �rst and lastvariables) are manipulated, it is easy to construct an explicit description of time(AMMT ) basedon the description of AMMT .We refer to Chapter 10 for an example of the implicit style of speci�cation.4.2.2 Live Timed I/O AutomataIf we were to follow the lines of the untimed section when specifying the liveness conditionfor a safe timed I/O automaton, we should devise some temporal logic in which formulas wereevaluated over timed executions. However, we take a di�erent approach. The idea is that atimed execution can be characterized by a set of (ordinary) executions each of which can bethought of as a sampling of the timed execution. Thus, there exists a close relationship betweentimed executions and (ordinary) executions of a safe timed I/O automaton.We proceed by de�ning the notion of sampling. Then we de�ne what constitutes a samplingcharacterization of a liveness condition, show how the operations on live timed I/O automataare reected in the syntax describing the liveness of the live timed I/O automata, and �nallydiscuss the notions of weak and strong fairness in the timed setting.4.2.2.1 SamplingAll de�nitions and lemmas in this section are taken from [GSSL93] and are similar to those of[LV93b].Roughly speaking, an (ordinary) execution fragment can be regarded as \sampling" the stateinformation in a timed execution fragment at a countable number of points in time. Formally,we say that an execution fragment � = s0a1s1a2s2 � � � of A samples a timed execution fragment� = !0b1!1b2!2 � � � of A if there is a monotone increasing mapping f : N ! N such that thefollowing conditions are satis�ed.1. f(0) = 0,2. bi = af(i) for all i � 1,3. aj = � for all j not in the range of f ,



4.2. Specifying Timed Systems 574. For all i � 0 such that !i is not the last trajectory in �,(a) sj 2 rng(!i) for all j, f(i) � j < f(i+ 1),(b) sf(i):now = ftime(!i), and(c) sf(i+1)�1:now = ltime(!i).5. If !i is the last trajectory in �, then(a) sj 2 rng(!i) for all j, f(i) � j,(b) sf(i):now = ftime(!i), and(c) supfsj :now j f(i) � jg = ltime(!i).In other words, the function f in this de�nition maps the (indices of) actions in � to corre-sponding (indices of) actions in �, in such a way that exactly the non-time-passage actions of �are included in the range. Condition 4 is a consistency condition relating the �rst and last timesfor each non-�nal trajectory to the times produced by the appropriate steps of �. Condition 5gives a similar consistency condition for the �rst time of the �nal trajectory (if any); in place ofthe consistency condition for the last time, there is a \co�nality" condition asserting that thetimes grow to the same limit in both executions.The following two straightforward lemmas show the relationship between timed executionfragments and ordinary execution fragments.Lemma 4.11Let A be a safe timed I/O automaton. If � 2 frag(A), then there is a timed execution fragment� 2 t-frag(A) such that � samples �.Lemma 4.12Let A be a safe timed I/O automaton. If � 2 t-frag(A), then there is an execution fragment� 2 frag(A) such that � samples �.Recall that an execution fragment � is �nite if it is a �nite sequence. Furthermore, in the timedsetting, an execution fragment � is de�ned to be admissible if there is no �nite upper boundon the :now values of the states in �. Finally, an execution fragment is said to be Zeno if it isneither �nite nor admissible. We denote by exec�(A), exec1(A), and execZ(A) the sets of �nite,admissible, and Zeno executions of a safe timed I/O automaton A.Lemma 4.13If � samples � then1. � is �nite i� � is �nite,2. � is admissible i� � is admissible, and3. � is Zeno i� � is Zeno.



58 4. Specifying SystemsIt is possible to give a sensible de�nition of the timed trace of an ordinary execution fragmentof a safe timed I/O automaton. Namely, suppose � = s0a1s1a2s2 � � � is an execution fragment ofa safe timed I/O automaton A. First, de�ne ltime(�) to be the supremum of the :now values ofall the states in �. Then let � be the sequence consisting of the actions in � paired with theirtimes of occurrence:� = (a1; s1:now)(a2; s2:now) � � � :Then t-trace(�), the timed trace of �, is de�ned to be the pairt-trace(�) 4= (� � (vis(A)� T); ltime(�))The following lemma shows that the de�nitions of timed traces for execution fragments andtimed execution fragments are properly related:Lemma 4.14If � samples � then t-trace(�) = t-trace(�).4.2.2.2 Sampling Characterization of Liveness ConditionsAs mentioned above we will characterize liveness conditions for safe timed I/O automata by aset of ordinary executions.Let A be a safe timed I/O automaton and let Ls � exec1(A) be a set of admissible (ordinary)executions of A. Then Ls is said to be a sampling characterization of the setL = f� 2 t-exec1(A) j for all �, if � samples �, then � 2 Lsg (4.6)That is, L contains all those admissible timed executions of A that have all their samplings inLs. We say that L is induced by the sampling characterization Ls. Note, that the samplingcharacterization Ls may contain \extra" executions that are not samplings of any timed execu-tions in the set L induced by Ls. (Such an extra execution will be the sampling of some timedexecution �, but since all samplings of � are not in Ls, � is not in L.) If Ls coincides withthe set of all samplings of all timed executions in the set L induced by Ls, i.e., if Ls does notcontain any \extra" executions, then Ls is said to be minimal .If the set L induced by Ls is a liveness condition for A, Ls is said to be a liveness samplingcharacterization for A. Furthermore, if (A;L) is a live timed I/O automaton, i.e., if (A;L [t-execZt(A)) is environment-free, Ls is said to be environment-free for A.A liveness sampling characterization for some safe timed I/O automaton A can now be speci�edindirectly in exactly the same way we de�ned liveness conditions in the untimed setting usingtemporal formulas. Thus, for any temporal formula Q over A we refer to the setLs = f� 2 exec1(A) j � j= Qg (4.7)as the sampling characterization induced by Q. If Ls is a liveness sampling characterization forA, Q is referred to as timed liveness formula for A. Furthermore, if Ls is environment-free orminimal, Q is said to be environment-free or minimal , respectively. Finally, if L is induced byLs which, in turn, is induced by Q, we say that L is induced by Q.



4.2. Specifying Timed Systems 594.2.2.3 Operations on Live Timed I/O AutomataAs in the untimed setting we now show how the liveness of live timed I/O automata obtainedas results of the operators (parallel composition, action hiding, and action renaming) is inducedby temporal formulas derived from the temporal formulas inducing the liveness of the live timedI/O automata to which the operators were applied.We start by looking at parallel composition and for that we need the following result, whichexpresses the relationship between sampling and projection (d). We state the result withoutproof (except we note that point 3 follows from points 1 and 2).Lemma 4.15Let A1; : : : ; AN be compatible safe timed I/O automata, A = A1k � � � kAN , and � 2 t-exec(A).Then, for all 1 � i � N ,1. if � samples �, then �dAi samples �dAi,2. if �i sample �dAi, then there exists an � such that � samples � and �i = �dAi, and3. f�dAi j � samples �g = f�i j �i samples �dAig.Lemmas 4.2 and 4.3 above for safe I/O automata are actually valid for safe timed I/O automataas well. We restate the timed version of Lemma 4.3.Lemma 4.16Let A1; : : : ; AN be compatible safe timed I/O automata and Q1; : : : ; QN be stuttering-insensitivetemporal formulas over A1; : : : ; AN , respectively. Let A = A1k � � � kAN and � 2 exec(A). Then,�dA1 j= Q1 and � � � and �dAN j= QN i� � j= Q1 ^ : : : ^ QNThe main result for parallel composition of live timed I/O automata can now be stated andproved.Proposition 4.17Let (A1; L1); : : : ; (AN ; LN) be compatible live timed I/O automata and Q1; : : : ; QN be stuttering-insensitive temporal formulas over A1; : : : ; AN , respectively, such that each Li is induced by Qi.Let (A;L) = (A1; L1)k � � � k(AN ; LN). Then L is induced by Q1 ^ : : : ^ QN .ProofIn Appendix B.Attention is now turned to the simpler operations of action hiding and action renaming.



60 4. Specifying SystemsProposition 4.18Let (A;L) be a live timed I/O automaton such that L is induced by the temporal formula Q forA and let A � local(A). Then the liveness condition of (A;L) n A is induced by Q.ProofIn Appendix B.Proposition 4.19Let (A;L) be a live timed I/O automaton such that L is induced by the temporal formula Q forA, and let � be an action mapping applicable to (A;L). De�ne �(Q) to be the temporal formulaobtained by applying � to every action function in Q. Then the liveness condition of �((A;L))is induced by �(Q).ProofIn Appendix B.4.2.2.4 FairnessThe fairness formulas (Equations (4.2){(4.5)) presented in the untimed setting also express fair-ness requirements in the timed setting. However, fairness in the timed setting is not necessarilyenvironment-free as in the untimed setting.The problem is that environment-freedom can be jeopardized because the system may col-laborate with the environment to generate non-Zeno-tolerant outcomes, as explained in Sec-tion 2.2.2, regardless of the fairness formulas. We do not investigate further if weak and strongfairness are environment-free for certain classes of safe timed I/O automata.4.3 EmbeddingIn Section 2.3 we introduced the patient operator, which takes a safe or live I/O automaton asargument and returns the corresponding safe or live timed I/O automaton, respectively, thatallows time to pass arbitrarily.The patient operator on safe I/O automata (cf. De�nition 2.34) adds an extra state compo-nent representing real time. When describing state spaces using state variables, we shall assumethat the patient operator adds an extra state variable called now (as well as it adds the extratime-passage action �). Thus, we shall assume that now is not a state variable of any safe I/Oautomaton to which we apply patient .In Section 2.3 we described what it means to untime a timed execution of a patient safeI/O automaton. A similar de�nition can be given for ordinary executions: let A be a safe I/Oautomaton such that now =2 variables(A) and � =2 acts(A), and let Ap = patient(A). Then forany � 2 exec(Ap), de�ne untime(�) to be the execution of A obtained from � by restrictingevery state to the state variables of A and removing every time-passage step (which do notchange the state variables of A). Formally we haveuntime(�) 4= \(� � (variables(A); acts(A)))



4.3. Embedding 61The following lemma, which we state without proof, says that the de�nition of untime(�) issensible.Lemma 4.20Let A be a safe I/O automaton such that now =2 variables(A) and � =2 acts(A), and let Ap =patient(A). Then, for any � 2 t-exec(Ap) and � 2 exec(Ap), if � samples �, then untime(�) =untime(�).Lemma 4.21Let A be a safe I/O automaton and let Q be a stuttering-insensitive temporal formula over A.Furthermore, let Ap = patient(A). Then, for all � 2 exec(Ap),untime(�) j= Q i� � j= QProofIn Appendix B.We can now state and prove the main result of this section, namely that stuttering-insensitivetemporal formulas carry over as environment-free liveness formulas when applying the patientoperator.Proposition 4.22Let (A;L) be a live I/O automaton with L induced by a stuttering-insensitive temporal formulaQ over A. Furthermore, let (Ap; Lp) = patient(A;L). Then, Lp is induced by Q, and Q isminimal.ProofIn Appendix B.The minimality of Q as implied by the proposition will be important when proving that a livetimed I/O automaton correctly implements the patient version of a live I/O automaton. In fact,as we shall see in the next chapter, our proof techniques in the timed setting requires livenessconditions of certain live timed I/O automata to be induced by minimal temporal formulas.This concludes this chapter. We have described how to specify safe (timed) I/O automata usinga precondition-e�ect language and how to use the temporal logic de�ned in Chapter 3 to specifyliveness. Furthermore, this chapter contains several results which state how operations in thesemantic model are reected in the syntax.Before we start the protocol veri�cation example in Part II of this report, the next chapterdeals with presenting a number of proof techniques for proving correctness.





Chapter 5Proof TechniquesThe previous chapters have de�ned the general models of timed and untimed systems that wewill use in this work, and described our approach to specifying objects of these models. Thischapter is devoted to presenting a host of proof techniques for proving that one live (timed) I/Oautomaton correctly or safely implements another live (timed) I/O automaton.In Chapter 2 the notions of safe and correct implementation are de�ned. These notions are,for both untimed and timed systems, based on the (timed) traces that the involved systemscan exhibit. For safe implementation, all (timed) traces are considered, whereas correct imple-mentation restricts attention to live (timed) traces. The respective implementation notions arethen expressed as the subset relation between the sets of all/live (timed) traces of the involvedsystems.For untimed systems, reasoning about implementation directly in terms of trace inclusionis not feasible. First of all, traces are de�ned implicitly as the traces of the executions, andsecond, the liveness condition is de�ned implicitly as the set of executions that satisfy a certaintemporal formula. Thus, the sets of traces and live traces are not readily available but arederived from safe I/O automata and temporal formulas. This calls for some proof techniquesthat are based on this available information and that are sound with respect to the safe andcorrect implementation relations.The same discussion is valid for timed systems as well. In timed systems there is even anextra level of indirection since the liveness condition of a live timed I/O automaton is usuallyinduced by a sampling characterization which, in turn, is induced by a temporal formula.We �rst present, in Section 5.1, the proof techniques used for untimed systems, and then, inSection 5.2, these techniques are extended to timed systems. Most of the techniques are takenfrom [GSSL93] and are included here to make this report self-contained. We refer to [GSSL93]for details and proofs.5.1 Untimed SystemsThis section presents a number of techniques for proving the safe implementation relation andassist in proving the correct implementation relation for live I/O automata. The techniquesare based on simulations between safe I/O automata, which are sound with respect to the safeimplementation relation, i.e., trace inclusion.However, as shown in [GSSL93], it turns out that a stronger result can be proved for thesimulation techniques: that there is a certain correspondence between the executions of the63



64 5. Proof Techniquess s s s s ss s s s s s- - - - -- - - - -6 6? ? 6 6? ?��� �����	 ��	a a bb � � �� � �Simulation RelationHigh LevelLow Level Figure 5.1Example of a simulation. The actions a and b are external actions. The rest of thetransitions are thought of as labeled by internal actions.involved safe I/O automata and not only between their traces. Since the liveness conditions oflive I/O automata are stated in terms of executions and not in terms of traces, this result, whichis called the Execution Correspondence Theorem, can form the basis for the proof of the correctimplementation relation, i.e., live trace inclusion.Thus, when proving correct implementation between two live I/O automata, �rst a simulationresult between the safe I/O automata parts is proved and then this simulation result and theExecution Correspondence Theorem are used to prove live trace inclusion.We proceed by de�ning a number of simulation proof techniques and stating the ExecutionCorrespondence Theorem. Then we present the proof techniques for proving the safe and correctimplementation relations. Finally, we consider the additional proof technique of adding historyvariables .5.1.1 Simulation Proof TechniquesA simulation from A to B, where A and B are safe I/O automata with the same input andoutput actions, is a relation between the states of A and the states of B such that certainconditions hold. A will be referred to as the concrete, low-level , or implementation safe I/Oautomaton, and B as the the abstract , high-level , or speci�cation safe I/O automaton.Exactly what conditions a simulation must satisfy depend on the kind of simulation. Belowwe de�ne notions of, e.g., forward and backward simulations which di�er in few but importantrespects. Generally, however, two conditions must be satis�ed: �rst, the start states of the twosafe I/O automata must be related in a certain way, and, second, each step of the low-level safeI/O automaton must \correspond" to a sequence of steps of the high-level safe I/O automaton.The second condition is depicted in Figure 5.1. For each step of the low-level safe I/Oautomaton, i.e., for each low-level step, there must exist a sequence of (high-level) steps of thehigh-level safe I/O automaton between states related|by the simulation relation|to the pre-and post-state of the low-level step, such that the sequence of high-level steps contains exactlythe same external actions as the low-level step. How the sequence of high-level steps is selecteddepends on what kind of simulation is considered.Below forward simulations, re�nement mappings, and backward simulations are de�ned. Werefer to [GSSL93, LV93a, Jon91] for more details about these simulations.The simulation techniques use invariants of the safe I/O automata to restrict the stepsneeded to be considered. De�ne an invariant of a safe I/O automaton A to be any set of statesof A that is a superset of the reachable states of A. Equivalently, an invariant can be de�ned tobe a state formula over A that is satis�ed by at least all reachable states of A. We will use the



5.1. Untimed Systems 65two de�nitions interchangeably.The following notational convention is used: if R is a relation over S1�S2 and s1 2 S1, thenR[s1] denotes the set fs2 2 S2 j (s1; s2) 2 Rg.De�nition 5.1 (Forward simulation)Let A and B be safe I/O automata with in(A) = in(B) and out(A) = out(B) and with invariantsIA and IB , respectively. A forward simulation from A to B, with respect to IA and IB, is arelation f over states(A)� states(B) that satis�es:1. If s 2 start(A) then f [s] \ start(B) 6= ;.2. If (s; a; s0) 2 steps(A), s; s0 2 IA, and u 2 f [s]\ IB , then there exists an � 2 frag�(B) withfstate(�) = u, lstate(�) 2 f [s0], and trace(�) = trace(a).We write A �F B if there exists a forward simulation fromA toB with respect to some invariantsIA and IB. If f is a forward simulation from A to B with respect to some invariants IA and IB ,we write A �F B via f .A re�nement mapping is a special case of a forward simulation where the relation is a function.Because of its practical importance (cf. [AL91]) we give an explicit de�nition.De�nition 5.2 (Re�nement mapping)Let A and B be safe I/O automata with in(A) = in(B) and out(A) = out(B) and with invariantsIA and IB , respectively. A re�nement mapping from A to B, with respect to IA and IB, is afunction r from states(A) to states(B) that satis�es:1. If s 2 start(A) then r(s) 2 start(B).2. If (s; a; s0) 2 steps(A), s; s0 2 IA, and r(s) 2 IB, then there exists an � 2 frag�(B) withfstate(�) = r(s), lstate(�) = r(s0), and trace(�) = trace(a).We write A �R B if there exists a re�nement mapping from A to B with respect to someinvariants IA and IB. If r is a re�nement mapping from A to B with respect to some invariantsIA and IB , we write A �R B via r.In a forward simulation there has to be a sequence of high-level steps starting from any ofthe high-level states related to the low-level pre-state and ending in some state related to thelow-level post-state. The word \forward" thus refers to the fact that the high-level sequence ofsteps is constructed from any possible pre-state in a forward direction toward the set of possiblepost-states.In a backward simulation, on the other hand, there has to be a sequence of high-level stepsending in any state related to the low-level post-state and starting in some state related to thelow-level pre-state. Thus, in a backward simulation the steps are constructed in a backwarddirection.



66 5. Proof TechniquesThis di�erence between forward and backward simulations implies that they apply to dif-ferent situations. In some cases a forward simulation is needed whereas other situations mightrequire a backward simulation. We shall see examples of this below.We need the auxiliary de�nition of image-�niteness. A relation R over S1�S2 is image-�niteif for each s1 2 S1, R[s1] is a �nite set.De�nition 5.3 (Backward simulation)Let A and B be safe I/O automata with in(A) = in(B) and out(A) = out(B) and with invariantsIA and IB , respectively. A backward simulation from A to B, with respect to IA and IB , is arelation b over states(A)� states(B) that satis�es:1. If s 2 IA then b[s] \ IB 6= ;.2. If s 2 start(A) then b[s] \ IB � start(B).3. If (s; a; s0) 2 steps(A), s; s0 2 IA, and u0 2 b[s]\ IB, then there exists an � 2 frag�(B) withlstate(�) = u0, fstate(�) 2 b[s] \ IB, and trace(�) = trace(a).We write A �B B if there exists a backward simulation from A to B with respect to someinvariants IA and IB. If furthermore the backward simulation is image-�nite, we write A �iB B.If b is a backward simulation from A to B with respect to some invariants IA and IB , we writeA �B B (or A �iB B when b is image-�nite) via b.In [LV93a] abstract notions of history variables [OG76, AL91] and prophecy variables [AL91] aregiven in terms of history relations and prophecy relations. Below, in Section 5.1.5, we considerhistory and prophecy variables and show how history variables can be added to a speci�cation.5.1.2 Execution CorrespondenceThis subsection introduces the Execution Correspondence Theorem (ECT). The ECT states thatif any of the simulations from above has been proven from a low-level safe I/O automaton A toa high-level safe I/O automaton B, then for any execution of A, there exists a \corresponding"execution of B. In order to formalize this notion of correspondence, the notions of R-relationand index mapping are �rst introduced.De�nition 5.4 (R-relation and index mappings)Let A and B be safe I/O automata with in(A) = in(B) and out(A) = out(B) and let R bea relation over states(A) � states(B). Furthermore, let � and �0 be executions of A and B,respectively.� = s0a1s1a2s2 � � ��0 = u0b1u1b2u2 � � �We say that � and �0 are R-related , written (�; �0) 2 R, if there exists a total, nondecreasingmapping1 m : f0; 1; : : : ; j�jg ! f0; 1; : : : ; j�0jg such that1If, e.g., � is in�nite (j�j = 1), then the set f0; 1; : : : ; j�jg is supposed to denote the set of natural numbers(not including 1), and i � j�j lets i range over all natural numbers but not 1.



5.1. Untimed Systems 671. m(0) = 0,2. (si; um(i)) 2 R for all 0 � i � j�j,3. trace(bm(i�1)+1 � � �bm(i)) = trace(ai) for all 0 < i � j�j, and4. for all j, 0 � j � j�0j, there exists an i, 0 � i � j�j, such that m(i) � j.The mapping m is referred to as an index mapping from � to �0 with respect to R.We write (A;B) 2 R if for every execution � of A, there exists an execution �0 of B such that(�; �0) 2 R.Thus, an index mapping maps indices of states in the low-level execution to indices of states in thehigh-level execution. E�ectively, an index mapping maps low-level states to corresponding high-level states such that the start states correspond (Condition 1), corresponding states are relatedby R (Condition 2), and the external actions between two consecutive pairs of correspondingstates are the same at both the low level and the high level (Condition 3). Condition 4 ensuresthat the high-level execution (�0) is not \too long", i.e., �0 must not extend beyond the laststate of �0 corresponding to a state in � (if such a state exists). (Note, that if � is �nite, then�0 must also be �nite. However, even if � is in�nite, �0 can be �nite if the index mapping isconstant for indices above some bound.)The Execution Correspondence Theorem of [GSSL93] is now stated. The theorem states thatif a relation S has been proved to be a forward simulation, re�nement mapping, or image-�nite backward simulation from A to B, then for any execution of A, there exists an S-relatedexecution of B.Theorem 5.5 (Execution Correspondence Theorem)Let A and B be safe I/O automata with in(A) = in(B) and out(A) = out(B). Assume forX 2 fF;R; iBg that A �X B via S. Then (A;B) 2 S.5.1.3 Proving Safe ImplementationThe simulation proof techniques presented above are sound proof techniques for the safe imple-mentation relation. Before we state this result, we �rst show two results relating the traces ofR-related executions.Lemma 5.6Let A and B be safe I/O automata with in(A) = in(B) and out(A) = out(B) and let R be arelation over states(A)� states(B). Assume that (�; �0) 2 R and let m be any index mappingfrom � to �0 with respect to R. Then, for all 0 � i � j�j, trace(ij�) = trace(m(i)j�0).Since for any execution �, 0j� = � and any index mapping maps 0 to 0, the following corollaryis a direct consequence of Lemma 5.6.



68 5. Proof TechniquesCorollary 5.7Let A and B be safe I/O automata with in(A) = in(B) and out(A) = out(B) and let R be arelation over states(A)� states(B). If (�; �0) 2 R, then trace(�) = trace(�0).Using this corollary and ECT, soundness of the simulation techniques can be proved.Theorem 5.8 (Soundness of simulations w.r.t. safe implementation)Let A and B be safe I/O automata with in(A) = in(B) and out(A) = out (B). Assume for someX 2 fF;R; iBg that A �X B. Then A vS B.5.1.4 Proving Correct ImplementationA proof strategy for proving that a live I/O automaton (A;L) correctly implements another liveI/O automaton (B;M) is now described.Lemma 5.9Let (A;L) and (B;M) be live I/O automata with in(A) = in(B) and out(A) = out(B). Also,let L and M be induced by the temporal formulas QL and QM , respectively. Assume for someX 2 fF;R; iBg that A �X B via S. If, for all � 2 exec(A) and �0 2 exec(B) with (�; �0) 2 S,� j= QL implies �0 j= QM , then (A;L) vL (B;M).ProofThis lemma follows directly from a similar result in [GSSL93] and our de�nition of a livenesscondition being induced by a temporal formula.Thus, we have the following proof strategy to prove that (A;L) is a correct implementation of(B;M):1. Prove a simulation S from A to B with respect to some invariants.2. Assume � and �0 are arbitrary executions of A and B, respectively, and assume that(�; �0) 2 S and � is live (i.e., � j= QL).3. Prove that �0 is also live (i.e., �0 j= QM).This will usually be a proof by contradiction. That is, assume that �0 is not live and showthat this leads to a contradiction. This strategy gives a nice way of splitting the proofinto cases since being live usually means satisfying a conjunction of conditions such thatnot being live means not satisfying one (at least) of these conditions. Thus, each of theconditions can be considered separately.It is evident that this proof strategy needs a way to go from temporal formulas satis�ed by thehigh-level execution �0 to temporal formulas satis�ed by the low-level execution �. For thispurpose we have identi�ed the following two basic lemmas which will prove very useful in theveri�cation examples in Part II of this report.



5.1. Untimed Systems 69Lemma 5.10Let A and B be safe I/O automata with in(A) = in(B) and out(A) = out(B) and let R bea relation over states(A) � states(B). Furthermore, let � and �0 be executions of A and B,respectively, such that (�; �0) 2 R. Finally, let C be a set of external actions (from the commonset of external actions). Then� j= 32:hCi i� �0 j= 32:hCiProofIn Appendix B.Lemma 5.11Let A and B be safe I/O automata with in(A) = in(B) and out(A) = out(B) and let Rbe a relation over states(A) � states(B). Furthermore, let � and �0 be executions of A andB, respectively, such that (�; �0) 2 R. Assume P and Q are state formulas over A and B,respectively, such that for all (s; u) 2 R, if u j= Q, then s j= P . Then,if �0 j= 32Q then � j= 32PProofIn Appendix B.5.1.5 History and Prophecy VariablesIn [AL91] history and prophecy variables (together called auxiliary variables) are considered.It is shown that even though it is not possible to �nd a re�nement mapping from A to B, byadding appropriate auxiliary variables to A to obtain Aaux it is in most cases possible to �nda re�nement mapping from Aaux to B. Then, since A can be shown to be equivalent to (i.e.,to have the same traces as) B, the soundness of re�nement mappings implies that A safelyimplements B.History variables are only allowed to record the past history of the system. Thus, historyvariables are allowed in each step to be assigned a value based on all variables in the system, butmust not a�ect the enabledness of actions or the changes made to other (ordinary) variables.As we shall see below, it is easy to syntacticly de�ne how to add a history variable to a system.Prophecy variables, on the other hand, are much more complicated since they are allowedto constrain the future behavior of the system. It is not possible to give a general syntacticcharacterization of prophecy variables.In [GSSL93] and [LV93a] abstract notions of history and prophecy variables are given in termsof history relations and prophecy relations . A system Ah is then said to be obtained from Aby adding history variables if there exists a history relation from A to Ah, and similarly forprophecy variables.The motivation for adding, e.g., history variables to a speci�cation A to obtain Ah is toensure that a re�nement mapping from Ah to some high-level speci�cation B can be devised.But since the existence of a history relation from A to Ah implies that there exists a forward



70 5. Proof Techniquessimulation from A to Ah, it is clear that it is possible to de�ne a forward simulation directlyfrom A to B and thereby avoid mentioning Ah at all. (The forward simulation from A to Bwould be the composition of the forward simulation from A to Ah and the re�nement mappingfrom Ah to B.)Similarly, instead of adding prophecy variables toA to get Ap such that a re�nement mappingfrom Ap to B can be devised, it is possible to de�ne a backward simulation directly from A toB. Now, since history variables can be de�ned using simple syntactic constraints, they are almostfree to use, as opposed to prophecy variables. Thus, the approach we take is to use historyvariables whenever possible (which allows us to use re�nement mappings instead of the morecomplicated notion of forward simulations) but to use backward simulations instead of havingto deal with prophecy variables. Whether to use prophecy variables or backward simulations isa matter of taste and probably amounts to the same e�ort. When using backward simulationsthe complexity lies in showing that the relation is in fact a backward simulation, and whenusing prophecy variables the complexity lies in showing that the variables are in fact prophecyvariables (which is done in a proof that actually has the avor of a backward simulation).Syntactically Adding History VariablesLet there be given a syntactic description of a safe I/O automaton A. Then a history variableh (=2 variables(A)) can be added to A to get Ah as follows:1. To the list of state variables of A, append a line with h, the type of h, and the initial valueof h.2. To each step rule of the formnamePrecondition:PE�ect:Ean assignment to h may be addednamePrecondition:PE�ect:Eh := ewhere e is an expression that may mentions h as well as other variables. Note, thatthe assignment to h may appear in an if-then-else statement, and that it may be movedanywhere in the e�ect clause since this does not a�ect the assignment of values to any ofthe other variables (but of course could a�ect the value assigned to h).For step rules for input actions, which have no precondition, the assignment to the historyvariable can be added to the e�ect clause similarly.



5.1. Untimed Systems 71We say that Ah is obtained from safe I/O automaton A by adding the history variable h if thesyntactic speci�cation of Ah can be obtained from that of A by 1) and 2). In this case, clearly Ahis a safe I/O automaton and variables(Ah) = variables(A) [ fhg. The following simple lemmastates the close correspondence between the steps of A and Ah.Lemma 5.12Let Ah be obtained from A by adding history variable h. Then,1. for each (s; a; s0) 2 steps(A) and each sh 2 states(Ah) with sh � variables(A) = s, thereexists a step (sh; a; s0h) 2 steps(Ah) such that s0h � variables(A) = s0, and2. for each (sh; a; s0h) 2 steps(Ah), (sh � variables(A); a; s0h � variables(A)) 2 steps(A).Lemma 5.13Let Ah be obtained from A by adding history variable h. Then,1. for each execution � 2 exec(A), there exists an execution �h 2 exec(Ah) such that �h �A =�, and2. for each execution �h 2 exec(Ah), �h �A 2 exec(A).ProofIn Appendix B.Instead of proving the existence of a history relation from A to Ah we directly prove that Asafely implements Ah and vice versa.Lemma 5.14Let Ah be obtained from A by adding history variable h. Then A vS Ah and Ah vS A.ProofIn Appendix B.We now turn attention to live I/O automata. Let (A;L) be a live I/O automaton and let Ah bea safe I/O automaton obtained from A by adding history variable h. De�neLh 4= f�h 2 exec(Ah) j �h �A 2 LgThen (Ah; Lh) is a live I/O automaton since any environment-free strategy (g; f) for (A;L) canbe trivially extended to an environment-free strategy (gh; fh) for (Ah; Lh) by letting gh and fhbe like g and f except that they make arbitrary (possible) assignments to the history variable.We say that (Ah; Lh) is a live I/O automaton obtained from (A;L) by adding history variableh.



72 5. Proof TechniquesLemma 5.15Let (Ah; Lh) be obtained from (A;L) by adding history variable h. Then (A;L) vL (Ah; Lh) and(Ah; Lh) vL (A;L).ProofIn Appendix B.The �nal lemma of this section deals with liveness formulas.Lemma 5.16Let (Ah; Lh) be obtained from (A;L) by adding history variable h, and assume that L is inducedby Q. Then Lh is induced by Q.ProofIn Appendix B.We can now turn attention to similar techniques to be used in the timed setting.5.2 Timed SystemsThe structure of this section is similar to the structure of Section 5.1.5.2.1 Timed Simulation Proof TechniquesThere are only two minor di�erences between the simulation relations presented here and thesimulation relations from the untimed case. First, states related by a simulation relation musthave the same time. Second, since the trace operator on execution fragments does not adequatelyabstract from time-passage actions, the simulation techniques below use a notion of visible trace.For any timed automaton A and any execution fragment � of A, de�ne the visible trace of�, written vis-traceA(�), or just vis-trace(�) when A is clear from context, to be � � vis(A).Similarly, given any sequence of actions �, de�ne the visible trace of �, written vis-traceA(�),or just vis-trace(�) if A is clear from context, to be � � vis(A).We now introduce the notions of timed forward simulations, timed re�nement mappings, andtimed backward simulations.De�nition 5.17 (Timed forward simulation)Let A and B be safe timed I/O automata with in(A) = in(B) and out(A) = out(B) and withinvariants IA and IB , respectively. A timed forward simulation from A to B, with respect to IAand IB, is a relation f over states(A)� states(B) that satis�es:1. If u 2 f [s] then u:now = s:now .2. If s 2 start(A) then f [s] \ start(B) 6= ;.



5.2. Timed Systems 733. If (s; a; s0) 2 steps(A), s; s0 2 IA, and u 2 f [s]\ IB , then there exists an � 2 frag�(B) withfstate(�) = u, lstate(�) 2 f [s0], and vis-trace(�) = vis-trace(a).Write A �tF B if there exists a timed forward simulation from A to B with respect to someinvariants IA and IB . If f is a timed forward simulation from A to B with respect to someinvariants IA and IB, we write A �tF B via f .De�nition 5.18 (Timed re�nement mapping)Let A and B be safe timed I/O automata with in(A) = in(B) and out(A) = out(B) and withinvariants IA and IB , respectively. A timed re�nement mapping from A to B, with respect toIA and IB , is a function r from states(A) to states(B) that satis�es:1. r(s):now = s:now .2. If s 2 start(A) then r(s) 2 start(B).3. If (s; a; s0) 2 steps(A), s; s0 2 IA, and r(s) 2 IB, then there exists an � 2 frag�(B) withfstate(�) = r(s), lstate(�) = r(s0), and vis-trace(�) = vis-trace(a).Write A �tR B if there exists a timed re�nement mapping from A to B with respect to someinvariants IA and IB. If r is a timed re�nement mapping from A to B with respect to someinvariants IA and IB, we write A �tR B via r.De�nition 5.19 (Timed backward simulation)Let A and B be safe timed I/O automata with in(A) = in(B) and out(A) = out(B) and withinvariants IA and IB , respectively. A timed backward simulation from A to B, with respect toIA and IB , is a relation b over states(A)� states(B) that satis�es:1. If u 2 b[s] then u:now = s:now .2. If s 2 IA then b[s] \ IB 6= ;.3. If s 2 start(A) then b[s] \ IB � start(B).4. If (s; a; s0) 2 steps(A), s; s0 2 IA, and u0 2 b[s0] \ IB , then there exists an � 2 frag�(B)with lstate(�) = u0, fstate(�) 2 b[s] \ IB , and vis-trace(�) = vis-trace(a).Write A �tB B if there exists a timed backward simulation from A to B with respect tosome invariants IA and IB. If furthermore the timed backward simulation is image-�nite, writeA �itB B. If b is a timed backward simulation from A to B with respect to some invariants IAand IB , we write A �tB B (or A �itB B when b is image-�nite) via b.



74 5. Proof Techniques5.2.2 Execution CorrespondenceAs in the untimed case, the simulation relations imply a certain correspondence between theordinary executions of the involved timed automata. The following de�nition formalizes thiscorrespondence, called timed R-relation, and de�nes a notion of timed index mapping . Thede�nition is similar to De�nition 5.4 in the untimed model; the only di�erences are that the Rrelation must relate states with the same time and that the de�nition below deals with visibletraces as opposed to traces, i.e., the same di�erences as in the simulations.De�nition 5.20 (Timed R-relation and timed index mappings)Let A and B be safe timed I/O automata with in(A) = in(B) and out(A) = out(B), andlet R be a relation over states(A) � states(B) such that if (s; u) 2 R, then s:now = u:now .Furthermore, let � and �0 be (ordinary) executions of A and B, respectively.� = s0a1s1a2s2 � � ��0 = u0b1u1b2u2 � � �Let � and �0 be timed R-related , written (�; �0) 2t R, if there exists a total, nondecreasingmapping m : f0; 1; : : : ; j�jg ! f0; 1; : : : ; j�0jg such that1. m(0) = 0,2. (si; um(i)) 2 R for all 0 � i � j�j,3. vis-trace(bm(i�1)+1 � � � bm(i)) = vis-trace(ai) for all 0 < i � j�j, and4. for all j, 0 � j � j�0j, there exists an i, 0 � i � j�j, such that m(i) � j.The mapping m is referred to as a timed index mapping from � to �0 with respect to R.Write (A;B) 2t R if for every execution � of A, there exists an execution �0 of B such that(�; �0) 2t R.Now the Execution Correspondence Theorem for the timed case [GSSL93] can be stated.Theorem 5.21 (Execution Correspondence Theorem)Let A and B be safe timed I/O automata with in(A) = in(B) and out(A) = out (B). Assumefor X 2 ftF; tR; itBg that A �X B via S. Then (A;B) 2t S.5.2.3 Proving Safe Timed ImplementationDue to the fact that timed R-related executions have the same time in related states and havea correspondence between the their visible traces, it is possible to prove that timed R-relatedexecutions have the same timed traces.Lemma 5.22



5.2. Timed Systems 75Let A and B be safe timed I/O automata with in(A) = in(B) and out(A) = out(B) and let Rbe a relation over states(A)� states(B) such that if (s; u) 2 R then s:now = u:now. Then, if(�; �0) 2t R, then t-trace(�) = t-trace(�0).The soundness of the timed simulations with respect to the timed safe preorders can now bestated.Theorem 5.23 (Soundness of timed simulations w.r.t. safe timed implementation)Let A and B be safe timed I/O automata with in(A) = in(B) and out(A) = out(B). Assumefor some X 2 ftF; tR; itBg that A �X B. Then A vSt B.5.2.4 Proving Correct Timed ImplementationWe can prove the following result which is similar to Lemma 5.9 in the untimed setting. Thislemma will form the basis of any proof of correct implementation in the timed setting.Lemma 5.24Let (A;L) and (B;M) be live timed I/O automata with in(A) = in(B) and out (A) = out(B).Also, let L and M be induced by QL and QM, respectively, and assume that QM is minimal.Assume for some X 2 ftF; tR; itBg that A �X B via S. If, for all � 2 exec1(A) and �0 2exec1(B) with (�; �0) 2 S, � j= QL implies �0 j= QM , then (A;L) vLt (B;M).ProofThis lemma directly follows from a similar result in [GSSL93] and our de�nition of a samplingcharacterization being induced by a temporal formula.Lemma 5.24 can be used to prove the correct timed implementation relation between two livetimed I/O automata in a manner similar to the way Lemma 5.9 is used in the untimed model.However, one must �rst prove that the high-level liveness condition is induced by a minimaltimed liveness formula.The following lemmas correspond to Lemmas 5.10 and 5.11 above.Lemma 5.25Let A and B be safe timed I/O automata with in(A) = in(B) and out(A) = out (B) and let R bea relation over states(A)� states(B) such that if (s; u) 2 R, then s:now = u:now. Furthermore,let � and �0 be executions of A and B, respectively, such that (�; �0) 2 R. Finally, let C be aset of visible actions (from the common set of visible actions). Then� j= 32:hCi i� �0 j= 32:hCi



76 5. Proof TechniquesProofSimilar to the proof of Lemma 5.10.Lemma 5.26Let A and B be safe timed I/O automata with in(A) = in(B) and out(A) = out(B) and let R bea relation over states(A)� states(B) such that if (s; u) 2 R, then s:now = u:now. Furthermore,let � and �0 be executions of A and B, respectively, such that (�; �0) 2 R. Assume P and Q arestate formulas over A and B, respectively, such that for all (s; u) 2 R, if u j= Q, then s j= P .Then,if �0 j= 32Q then � j= 32PProofSimilar to the proof of Lemma 5.11.5.2.5 History and Prophecy VariablesAs in the untimed setting it is possible to add history variables to safe and live timed I/O au-tomata. As above we only deal with history variables and adhere to timed backwards simulationsinstead of using prophecy variables.Syntactically Adding History VariablesThe syntactic rules for adding history variables to a safe timed I/O autoamaton are equal tothe same rules in the untimed setting. However, in the timed setting, we do not allow historyvariables to be updated in time-passage steps since otherwise the resulting object would notnecessarily be a safe timed I/O automaton (that is, the trajectory axiom S5 of De�nition 2.17could be violated). Thus, a history variable h (=2 variables(A)) can be added to a safe timedI/O automaton A to get Ah by following the two rules in Section 5.1.5 with the restrictionthat h must not be changed in the step rule for the time-passage action �. We say that Ah isobtained from A by adding the history variable h. Clearly Ah is a safe timed I/O automatonand variables(Ah) = variables(A) [ fhg.In previous chapters we have de�ned how to restrict ordinary executions to subsets of statevariables and actions. Below we need a similar result for timed executions, however, we needonly deal with restriction to a subset of the state variables. So, let � = !0a1!1a2!2 � � � be a timedexecution of a safe timed I/O automaton A. Then, for any set V � variables(A), de�ne � �V tobe the sequence !00a1!01a2!02 � � �, where for each index i and each t 2 dom(!i), !0i(t) = !i(t) � V .Thus, informally � �V is obtained from � by restricting all states in the range of all trajectoriesto V . If Ah is obtained from A by adding history variable h and �h 2 t-exec(Ah), we let �h �Abe a shorthand for �h � variables(A).As in the untimed case, we have the following lemmas.Lemma 5.27Let Ah be obtained from A by adding history variable h. Then,



5.2. Timed Systems 771. for each (s; a; s0) 2 steps(A) and each sh 2 states(Ah) with sh � variables(A) = s, thereexists a step (sh; a; s0h) 2 steps(Ah) such that s0h � variables(A) = s0, and2. for each (sh; a; s0h) 2 steps(Ah), (sh � variables(A); a; s0h � variables(A)) 2 steps(A).Lemma 5.28Let Ah be obtained from A by adding history variable h. Then,1. for each timed execution � 2 t-exec(A), there exists a timed execution �h 2 t-exec(Ah)such that �h �A = �, and2. for each timed execution �h 2 t-exec(Ah), �h �A 2 t-exec(A).ProofIn Appendix B.These lemmas allow us to prove that a safe timed I/O automaton A is a safe implementation ofany safe timed I/O automaton Ah obtained by adding history variable h to A, and vice versa.Lemma 5.29Let Ah be obtained from A by adding history variable h. Then A vSt Ah and Ah vSt A.ProofSimilar to the proof of Lemma 5.14 by using Lemma 5.28.Now, let (A;L) be a live timed I/O automaton and let Ah be a safe timed I/O automatonobtained from A by adding history variable h. De�neLh 4= f�h 2 t-exec1(Ah) j �h �A 2 LgThen (Ah; Lh) is a live timed I/O automaton since any environment-free strategy (g; f) for (A;L[t-execZt(A)) can be trivially extended to an environment-free strategy (gh; fh) for (Ah; Lh [t-execZt(Ah)) by letting gh and fh be like g and f except that they make arbitrary (possible)assignments to the history variable. We say that (Ah; Lh) is a live timed I/O automaton obtainedfrom (A;L) by adding history variable h.Lemma 5.30Let (Ah; Lh) be obtained from (A;L) by adding history variable h. Then (A;L) vLt (Ah; Lh) and(Ah; Lh) vLt (A;L).ProofSimilar to the proof of Lemma 5.15 by using Lemma 5.28.



78 5. Proof TechniquesBefore we can prove the �nal lemma, which deals with timed liveness formulas, we state thefollowing trivial result without proof.Lemma 5.31Let Ah be obtained from A by adding history variable h. Furthermore let �h and �h rangeover exec(Ah) and t-exec(Ah), respectively, and let � and � range over exec(A) and t-exec(A),respectively. Then,1. if �h samples �h then �h �A samples �h �A, and2. if � samples �h �A, then there exists an �h such that � = �h �A and �h samples �h.Lemma 5.32Let (Ah; Lh) be obtained from (A;L) by adding history variable h, and assume that L is inducedby Q. Then Lh is induced by Q.ProofIn Appendix B.This concludes the theoretical part of the report. We now turn attention to the veri�cationexample of proving correctness of two solutions to the at-most-once message delivery problem.
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Chapter 6Speci�cation SThis chapter describes the top-level speci�cation of the \at-most-once message delivery" prob-lem. The speci�cation will be given in terms of a live I/O automaton. The objective of the Slevel is to give a clear, easy-to-understand speci�cation that can easily be checked to have thedesirable behavior.The at-most-once message delivery problem is that of delivering a sequence of messagessubmitted by a user at one location to another user at another location. Ideally, we would liketo insist that all messages be delivered in the order in which they are sent, each exactly once,and that an acknowledgement be returned for each delivered message.1Unfortunately, it is expensive to achieve these goals in the presence of failures (e.g., nodecrashes). In fact, it is impossible to achieve them at all unless some change is made to thestable state (i.e., the state that survives a crash) for each message. To permit less expensivesolutions, we weaken the statement of the problem slightly. We allow some messages to be lostwhen a node crash occurs; however, no messages should otherwise be lost, and those messagesthat are delivered should not be reordered or duplicated. (The speci�cation is weakened in thisway because message loss is generally considered to be less damaging than duplicate delivery.)Now it is required that the user who sent the message receive either an acknowledgement thatthe message has been delivered, or in the case of crashes, an indication that the message mighthave been lost.Even though our speci�cation S is centralized (i.e., has no distributed structure), the externalactions of S can be partitioned into actions connected to the user at the sender side and actionsconnected to the user at the receiver side. This user interface, which will be the same for allsubsequent implementations, is depicted in Figure 6.1, where the speci�cation S is shown as a\black box".A user can send a message m to the system by issuing a send msg(m) action, and the systemcan pass a message m to the user at the receiver end by means of a receive msg(m) action.Crashes at the sender and receiver sides are modeled as inputs crashs and crashr , respectively2 ,and the corresponding recovery actions are outputs recovers and recoverr . If a crashs but notyet a recovers action has occurred, we say the the sender side is crashed or equivalently thatit is in recovery phase. Correspondingly for the receiver side. During a crash messages can belost. This is in S modeled by a lose(I) actions (not depicted in Figure 6.1 since it is internal).1Our de�nition of at-most-once message delivery is di�erent from what some people call at-most-once messagedelivery in that we include acknowledgements and require messages to be delivered in order.2We will use subscripts s and r on actions and state variables to indicate which are related to the sender andreceiver sides, respectively. 81



82 6. Speci�cation S--�� --�recoverscrashsack(b)send msg(m) recoverrcrashrreceive msg(m)Speci�cation S8>>>>>><>>>>>>: 9>>>>>>=>>>>>>;Sender side Receiver sideFigure 6.1The speci�cation S as a "black box"Finally, there is a simple acknowledgement mechanism incorporated into the speci�cation.An action ack(b), where b is a Boolean, noti�es the user at the sender side about the status ofthe last message sent. If acknowledgements are needed for each message, the user must wait foracknowledgement before sending the next message. Our simpler acknowledgement mechanismreects the way typical low-level protocols work. Thus, if the user sends a sequence of messagesm1; : : : ; mn without waiting for acknowledgement between each pair of messages, a subsequentacknowledgement will be for message mn. Ideally, an ack(true) should be issued if the lastmessage sent has been successfully delivered to the receiver, and an ack(false) should be issuedif the last message has been lost during a crash. This is, again, impossible to obtain in adistributed implementation unless some changes are made to the stable state for each message,so we will use a weaker acknowledgement mechanism: if an ack(true) is issued, the last messagehas been successfully receiver. If, on the other hand, an ack(false) is issued, the only thing theuser can infer is that a crash has occurred. Thus, even in the case of negative acknowledgement,the last message might have been successfully delivered since all messages are not necessarilylost during crashes.6.1 The Speci�cation of SWe now de�ne the live I/O automaton representing the speci�cation S. We will let S representboth the name of this level of development and the name of the live I/O automaton.We specify S by de�ning its components (cf. De�nitions 2.1 and 2.8). We refer to the safeI/O automaton part of S by AS, and to the liveness part by LS. Thus, S = (AS; LS). LS will bespeci�ed implicitly by an environment-free liveness formula QS for AS.6.1.1 States and Start StatesIn S and the lower level protocols we assume that messages are taken from a setMsg. We requirethat nil =2 Msg but assume no other properties of Msg .The state space of S is made up of four state variables as shown in the following table, whichfurthermore shows the types and initial values of the state variables. The status variable ranges



6.1. The Speci�cation of S 83over the setStat 4= Bool [ f?gVariable Type Initially Descriptionqueue Msg� " The list of messages sent but not yet delivered.recs Bool false true i� the sender side has crashed and not yetrecovered.recr Bool false true i� the receiver side has crashed and not yetrecovered.status Stat false Indicates the status of the last message sent. Thespecial value '?' indicates that the last messagesent is still in queue and no crashes have occurredsince it was sent.6.1.2 ActionsThe set of actions of S consists of the input and output actions from Figure 6.1 plus the internallose(I) action.Input:send msg(m), m 2 MsgcrashscrashrOutput:receive msg(m), m 2Msgack(b), b 2 BoolrecoversrecoverrInternal:lose(I), I � N6.1.3 StepsThe transition relation steps(AS) will be speci�ed using the precondition-e�ect style presentedin Section 4.1.1.send msg(m)E�ect:queue := queue ^mstatus := ?ack(b)Precondition:status = bE�ect:none receive msg(m)Precondition:queue 6= " ^head(queue) = mE�ect:queue := tail(queue)if queue = " ^ status = ? thenstatus := truecrashsE�ect:recs := true crashrE�ect:recr := true



84 6. Speci�cation Slose(I)Precondition:(recs = true _ recr = true) ^ I � dom(queue)E�ect:if queue 6= " ^ maxidx(queue) 2 Istatus := falseelseoptionally status := falsequeue := delete(queue; I)recoversPrecondition:recs = trueE�ect:recs := false recoverrPrecondition:recr = trueE�ect:recr := falseThe function delete in the step rule for lose(I) deletes messages with indices in I from queue .Formally, for any list q and any set I � dom(q), de�nedelete(q; I) 4= hq[i] j i 2 dom(q) ^ i =2 IiThe notation to the right of 4= is de�ned in Appendix A.The handling of queue , recs, and recr in the step rules is self-explanatory. The handling ofstatus is a bit more complicated: when a new message m is sent to the system (modeled bysend msg(m) steps), status is changed to ? to indicate that the last message sent is in queue .When a message is delivered to the receiver (modeled by receive msg(m) steps) and queuethereby becomes empty, status should be changed to true , but only if the message deliveredis in fact the last message sent and not another message, which happens to be last on queuebecause the last message sent has been lost in a crash. Thus, at any point a status value of ?indicates that the message at the end of queue is actually the last message sent by the sender.This explains the receive msg(m) steps. The lose(I) action then records if the message at theend of queue is lost by changing status to false. (If the message at the end of queue is not thelast message sent, status would already be false). On the other hand, if the message at the endof queue is not deleted, we are still allowed to change status to false according to our informaldescription of the acknowledge mechanism given in the introduction to this chapter.Note, that it is possible for the system to output a positive acknowledgement for a messageand then \change its mind" and start issuing negative acknowledgements. However, this changeof mind can only happen during a crash. (In such a situation the user knows that the lastmessage has been delivered since she has received a positive acknowledgement.)Another thing to note is the fact that the ack(b) steps do not disable themselves. Thus, oncestatus becomes true or false, acknowledgements can be sent continuously until a new messageis put into queue by a send msg(m) step. (Actually, with the liveness restrictions we presentbelow, acknowledgements must be issued in�nitely often if status stays true or false, and nocrashes occur.) A remedy to this situation would be to introduce an additional ag, which isset when status is changed from ? to a Boolean, and reset when an acknowledgement is issued.Acknowledgements should then only be enabled when this ag is set. We have chosen not tointroduce the ag since it would only add few interesting aspects to the implementations.



6.1. The Speci�cation of S 856.1.4 LivenessWe now present the environment-free liveness formula QS for AS, which induces the livenesscondition LS. The liveness we specify for S is weak fairness to four sets of locally-controlledactions. Two of these sets have associated forcing conditions. Note, that lose(I) actions are notin any set since we do not want to force the system to lose anything. Informally, the sets andforcing conditions are.1. ack(b) actionsForcing condition: recs = recr = false2. receive msg(m) actionsForcing condition: recs = recr = false3. recovers4. recoverrWith these liveness restrictions we guarantee that in the absence of crashes, messages in queuewill be delivered and acknowledgements for the last message will be issued unless new messagesare sent to the system. Furthermore, both the sender side and the receiver side are guaranteedto recover after a crash. (This requirement on recovery could be removed from all levels ofabstraction without a�ecting other liveness properties. All interesting liveness properties are, infact, conditioned by the assumption that no new crashes occur.)The liveness requirements can be formalized in the following way. LetCS;1 4= fack(true); ack(false)gCS;2 4= freceive msg(m) j m 2 MsggCS;3 4= frecoversgCS;4 4= frecoverrgThen the formalization of QS isQS 4= WF (CS;1; recs = false ^ recr = false) ^WF (CS;2; recs = false ^ recr = false) ^WF (CS;3) ^WF (CS;4)By Lemma 4.7, QS is an environment-free liveness formula for AS. Thus, S = (AS; LS) is a liveI/O automaton. Furthermore, by Lemma 4.8, QS is stuttering-insensitive.This concludes the formal speci�cation of the at-most-once message delivery problem.





Chapter 7Delayed-Decision Speci�cation DIn our speci�cation S, presented in Chapter 6, we saw that it is allowed to lose any number ofmessages in the system, but only if either recs or recr is true , i.e., we can only lose messagesbetween crash and recovery. In the low-level protocols we consider, the choice whether or notto lose a message because of a crash may be postponed until after recovery and the choiceis dependent on certain race-conditions on the network channels: a message m traveling on achannel and the receiver have no way of knowing if the sender has crashed, so even if the senderhas crashed, the message might still be successfully received by the receiver. But, if the senderrecovers and sends a new message on the channel, the reception of this new message before m(our channels are not FIFO) will lead to the discartion of m when it is eventually received (sinceotherwise messages could be reordered).This postponing of nondeterministic choices suggests that we at one point have to rely on abackward simulation to prove correctness of the low-level protocols. In a �rst attempt, a timedbackward simulation was proved directly from the Clock-Based Protocol C to S (or rather thepatient version of S). A lot of this work would have had to be repeated in a backward simulationfrom the Five-Packet Handshake Protocol H to S, so after having designed the Generic ProtocolG, we proved a backward simulation from G to S, and could then do with a timed re�nementfrom C to patient(G) and a re�nement from H to G.Still, the proof from G to S was very large and comprehensive. It is our experience thatbackward simulations are generally di�cult to deal with, mainly because they are not so intuitiveas forward simulations. This observation led us to try to \limit" the backward simulation toa development step as small as possible. Generally, one should always try to �nd steps ofdevelopment that are intuitive, and remember that a series of steps (with proofs) are generallyeasier to comprehend than is one big proof, even though the combined length of the small proofsmight exceed the length of the big proof.So, as an intermediate level between S and G we came up with the Delayed-Decision Spec-i�cation D, which looks very much like S, but instead of deleting messages between crash andrecovery, D marks arbitrary messages, and marked messages can then be lost at any point. Dalso deals with postponing of losing (i.e., changing to false) the status as the result of a crash.When we describe the steps of D, we will further explain the di�erences between S and D.It should be noted, that even though we postpone the decision about which messages to lose,only messages which were in the system between crash and recovery can be lost. A system thatdid not satisfy this restriction could not, of course, implement S.The rest of this chapter is organized as follows. First, in Section 7.1, we present D and then, in87



88 7. Delayed-Decision Speci�cation DSection 7.2, we prove that D correctly implements S.7.1 The Speci�cation of DWe specify D = (AD; LD) as a live I/O-automaton using the notation introduced in Chapter 4.LD will be speci�ed implicitly by the environment-free liveness formula QD for AD.7.1.1 States and Start StatesThe marks we put on messages and status are taken from the following set:Flag 4= fOK; markedgVariable Type Initially Descriptionqueue (Msg � Flag)� " The list of messages in the system. Eachmessage has an associated ag . If the agvalue is marked, the message might be lostin a subsequent drop(I) action.recs Bool false true i� the sender has crashed and not yetrecovered.recr Bool false true i� the receiver has crashed and not yetrecovered.status Stat � Flag (false; OK) Indicates the status of the last message sent.If the associated ag is marked, the statusmight be changed to false in a subsequentdrop(I) action.We use the normal record notation to extract components of a value or variable. For instance,status :stat and status :ag extract the status value and status ag from status .We say that status is marked if status :ag = marked, and correspondingly an element e ofqueue is marked if e:ag = marked. If en element of queue or the status is not marked, it is saidto be OK or \not marked".7.1.2 ActionsThe input and output actions, i.e., the user interface, of AD is, of course, the same as for AS.AD has the internal actions mark (I), unmark (I), and drop(I).Input:send msg(m), m 2MsgcrashscrashrOutput:receive msg(m), m 2Msgack(b), b 2 BoolrecoversrecoverrInternal:



7.1. The Speci�cation of D 89mark(I), I � Nunmark(I), I � Ndrop(I), I � N7.1.3 StepsHere we present the steps of AD. An explanation of the steps is o�ered below.send msg(m)E�ect:queue := queue ^ (m;OK)status := (?; OK)ack(b)Precondition:status:stat = bE�ect:status:ag = OK receive msg(m)Precondition:queue 6= " ^(head(queue)):msg =mE�ect:queue := tail(queue)if queue = " ^ status:stat = ? thenstatus:stat := truecrashsE�ect:recs := true crashrE�ect:recr := truemark(I)Precondition:(recs = true _ recr = true) ^ I � dom(queue)E�ect:queue := mark(queue; I)optionally status:ag := markedrecoversPrecondition:recs = trueE�ect:recs := false recoverrPrecondition:recr = trueE�ect:recr := falseunmark(I)Precondition:I � dom(queue)E�ect:queue := unmark(queue; I)optionally status:ag := OKdrop(I)Precondition:I � fi j i 2 dom(queue) ^ queue[i]:ag = markedgE�ect:if queue 6= " ^ maxidx(queue) 2 I thenstatus := (false; OK)else if status:ag = marked thenoptionally status := (false; OK)queue := delete(queue; I)In the step rule for drop we use the function delete, which was de�ned in Chapter 6 and used inthe de�nition of lose(I) at the S level. The precondition of drop(I) guarantees that only markedmessages are deleted. The step rule for mark uses a function mark , which is intended to mark



90 7. Delayed-Decision Speci�cation Dmessages with indices in I . Formally, for any queue q 2 (Msg � Flag)� and any set I � dom(q),de�nemark(q; I) 4= h(if i 2 I then (q[i]:msg; marked) else q[i]) j i 2 dom(q)iSimilarly, the step rule for unmark uses the function unmark de�ned asunmark(q; I) 4= h(if i 2 I then (q[i]:msg; OK) else q[i]) j i 2 dom(q)iFurthermore, note that when a new message is put into queue (by send msg(m)), the messageand status get the ag OK to indicate that they cannot be lost (yet). In the de�nition of thereceive msg(m) steps it is seen that a message might be successfully delivered to the receivereven though it is marked. This is because a marked message only has the possibility of beingdeleted.Recall from the de�nition of S that there are two ways in which status can be lost (i.e., get astatus value of false), and both ways are described in the de�nition of lose(I) in AS: 1) if theelement at the end of the queue is deleted, then the status is required to be lost, and 2) in anylose(I) step the status may be lost.In AD a status ag of marked corresponds to point 2), i.e., that status may be lost. Inthe mark(I) steps of AD permission is given to lose some messages and maybe status . Thenin drop(I) steps of AD, which does the actual deleting performed by lose(I) in AS, status isrequired to be lost if the element at the end of queue is deleted, even though status is OK. Thiscorresponds to point 1) above, where status is required to be lost. Steps labeled by drop(I) is,of course, always allowed to lose a marked status .The e�ect clause in the de�nition of the ack(b) steps is explained as follows: suppose status:stat =? and that status :ag has been changed to marked during a crash (by mark(I)). In a subse-quent receive msg(m) step that empties queue , status :stat is changed to true which enablesan ack(true) action. After the receive msg(m) step, status = (true; marked), so there is stilla possibility of losing status . However, once a positive acknowledgement has been issued, thesystem must not lose status and start issuing negative acknowledgements. Remember from theS level that the system is only allowed to change its mind in this respect during a crash. Thus,by changing status :ag to OK in the ack steps, we disallow this change of mind. Note, that itwould be too restrictive to change status to (true; OK) in receive msg(m) since we want AD tobe as nondeterministic as possible, to allow as many implementations as possible.Another point where we have made AD very nondeterministic is in the way messages (andstatus) are marked and deleted. In a mark (I) step some messages are marked and in anunmark (I) step, which can happen at any time, some of the marked messages can be madeOK again, and �nally in a drop(I) step, some of the marked messages are deleted.Here, again, the point is that we want AD to be as nondeterministic as possible. Of coursethe e�ect of marking some elements could be obtained by a \deterministic" mark that markseverything followed by unmark (I). However, when performing simulation proofs from lowerlevels of abstraction, it is desirable, for clarity, to have as nondeterministic actions of AD aspossible. Thus, by removing nondeterminism fromAD, which could not jeopardize its correctnesswith respect to AS, we might rule out some implementations and make the correctness proofsof other implementations more cumbersome.



7.2. Correctness of D 917.1.4 LivenessAs at the S level, we specify liveness in terms of fairness. Speci�cally, the liveness condition LDat the D level will be speci�ed implicitly as an environment-free liveness formula QD for AD.QD will be stated as a conjunction of four weak fairness formulas, two of which have associatedforcing conditions. We do not require fairness on the actions mark(I), unmark(I), and drop(I).Informally, we have the four weak fairness conjuncts:1. ack(b) actionsForcing condition: recs = recr = false2. receive msg(m) actionsForcing condition: recs = recr = false3. recovers4. recoverrThis ensures the same liveness as at the S level. Formally, letCD;1 4= fack(true); ack(false)gCD;2 4= freceive msg(m) j m 2 MsggCD;3 4= frecoversgCD;4 4= frecoverrgThen the formalization of QD isQD 4= WF (CD;1; recs = false ^ recr = false) ^WF (CD;2; recs = false ^ recr = false) ^WF (CD;3) ^WF (CD;4)By Lemma 4.7, QD is an environment-free liveness formula for AD. Thus, D = (AD; LD) is a liveI/O automaton. Furthermore, by Lemma 4.8, QD is stuttering-insensitive.This concludes the Delayed-Decision Speci�cation of the at-most-once message delivery problemand attention is now turned towards proving that D correctly implements S.7.2 Correctness of DIn this section we prove that D = (AD; LD) is a correct implementation of our speci�cationS = (AS; LS). First we give some invariants of AD. Then we prove, by means of an image-�nitebackward simulation, that AD safely implements AS, and �nally we use this simulation result toprove that D correctly implements S.7.2.1 InvariantsWe only need one invariant in the proof. The invariant should be understood as the conjunctionof the two parts.



92 7. Delayed-Decision Speci�cation DInvariant 7.11. if status:stat = ? then queue 6= "2. if status:stat = true then queue = "ProofBy a simple inductive argument, it is easily proven that all reachable states of AD satisfy thetwo parts of the invariant, so we omit the proof here. At the lower levels of abstraction we willgive examples of proofs of more interesting invariants.Below, we refer to this invariant by ID.7.2.2 SafetyTo show that AD safely implements AS, we show the existence of an image-�nite backwardsimulation from AD to AS with respect to some invariants. However, before we can do this weneed a few preliminary de�nitions and lemmas.Below we let qD be a queue at the D level, i.e., qD 2 (Msg �Flag)�, and let qS be a queue at theS level, i.e., qS 2 Msg�.De�nition 7.2 (Explanation)De�ne an explanation from qS to qD to be any mapping f : dom(qS) ! dom(qD) that satis�esthe following four conditions1. f is total2. f is strictly increasing3. 8i 2 dom(qD) n rng(f) : qD[i]:ag = marked4. 8i 2 dom(qS) : qD[f(i)]:msg = qS[i]Basically, if there exists an explanation from qS to qD, this means that qS can be obtained fromqD by �rst deleting some of the marked elements of qD and then removing the ags from theremaining elements.Lemma 7.3Let f be an explanation from qS to qD. Then jqSj � jqDj.ProofSuppose jqSj > jqDj. Then it is impossible to �nd a mapping from dom(qS) to dom(qD) that istotal and strictly increasing, thus Conditions 1 and 2 of De�nition 7.2 are violated. Hence, wecan conclude jqSj � jqDj.



7.2. Correctness of D 93Now, de�ne #OK(qD) to be the number of elements e of qD with e:ag = OK. Thus, formally#OK(qD) 4= jqD � (Msg � fOKg)jLemma 7.4Let f be an explanation from qS to qD. Then jqSj � #OK(qD).ProofSuppose jqSj < #OK(qD). Then Conditions 1 and 2 of De�nition 7.2 give us that jrng(f)j =jqSj(< #OK(qD)), so there must exist indices i in qD such that qD[i]:ag = OK and i =2 rng(f).But this contradicts Condition 3 of De�nition 7.2. Hence, we can conclude jqSj � #OK(qD).We are now ready to de�ne a relation BDS over states(AD)� states(AS). In Lemma 7.11 belowwe prove that BDS is an image-�nite backward simulation from AD to AS.However, before we give the actual de�nition of BDS, it might be appropriate to discuss howto de�ne a backward simulation in general. What states should be related? Let us give someguide-lines in terms of AD and AS in this example.Recall that a backward simulation is needed when an implementation postpones some non-determinism of the speci�cation. The deletion of messages during a crash in AS can in AD bepostponed until after recovery, which indicates that we need a backward simulation from AD toAS. (It is impossible to �nd a forward simulation from AD to AS. See, e.g., [LV92] for details.)This situation is shown|in a simpli�ed way|in the following picture.
D level - - -HHHHHHj������*s0 s1 s2 s31s32s33mark recovers dropdropdropS level HHHHHHj������*- ---u0 u11u12u13 u21u22u23lose loselose recoversrecoversrecovers

The mark step of AD marks some messages, and after recovery some of the marked messagescan be deleted by the nondeterministic drop steps. In this simpli�ed example we assume thatthere are three ways of deleting messages, leading to states s31, s32, and s33.1 In AS this scenariocorresponds to lose having the \same" three ways of deleting messages, leading to states u11,u12, and u13, followed by recovery.1When dealing with two levels of abstraction, we always let s range over the states of the concrete level andu over the states of the abstract level.



94 7. Delayed-Decision Speci�cation DIt seems fairly intuitive that BDS should relate s3i to u2i for 1 � i � 3. But what about s2?Well, s2 is the state right after AD has recovered, so it should be related to states after AS hasrecovered. Thus, we are down to u21, u22, and u23. Now the point is that s2 actually correspondsto all of these states. In some sense BDS o�ers an explanation of the nondeterminism occurringafter s2 by saying that this nondeterminism corresponds to some previous nondeterminism ofAS, which has led to one of the states u21, u22, or u23.To check that BDS is a backward simulation from AD to AS we have, among other things,to verify that each step of AD corresponds to a sequence of steps of AS with the same trace.More speci�cally, consider, e.g., the step (s2; drop; s32) of AD. According to Condition 3 ofDe�nition 5.3, we have to verify that for each state of AS that is related to s32, here only u22,there exists a state u of AS such that there is a sequence of steps from u to u22 with an emptytrace (since drop is internal). But here we can just choose u to be u22. This makes the sequenceof steps in AS empty which certainly has an empty trace.For s1 we can use similar arguments and �nd that s1 should be related to all of the statesu11, u12, and u13. Now, consider the step (s1; recovers; s2) of AD. Again, we have to considerevery state that is related to s2. Let this state be u2i for some arbitrary 1 � i � 3. We then haveto �nd some state u related to s1 such that there is a sequence of steps from u to u2i with thetrace recovers. But here we just choose u = u1i, and since, for all 1 � i � 3, (u1i; recovers; u2i)is a step of AS, we are done.Finally, of course, s0 should be related to u0.The above example o�ers some guide-lines when de�ning backward simulations, and even thoughthe realBDS fromAD toAS is more complicated|mainly because of the nondeterminism involvedwith the status and the connection between queue and status|the recipe is the same:To any state s of AD, we have to relate all states u of AS that could have resultedfrom some nondeterminism of AS that \corresponds" to nondeterminism that mayhappen after state s of AD.Of course, one has to use ones intuition about the safe I/O automata in question in order toidentify the \corresponding" nondeterminism.BDS can now be de�ned and motivated.De�nition 7.5 (Image-Finite Backward Simulation from AD to AS)If s 2 states(AD) and u 2 states(AS), then de�ne that (s; u) 2 BDS if there exists an explanationf from u:queue to s:queue such that the following conditions hold:1. u:recs = s:recs and u:recr = s:recr2. u:status 2if s:status:ag = OK ^ (s:queue = " _ (last(s:queue)):ag = OK) then fs:status:statgelse fs:status:stat ; falseg3. if u:status = ? ^ s:queue 6= " then maxidx (s:queue) 2 rng(f)We say that an explanation from u:queue to s:queue is a valid explanation from u to s providedthat Conditions 1{3 are satis�ed.



7.2. Correctness of D 95Note, that (s; u) 2 BDS i� there exists a valid explanation from u to s.The requirement that there has to be an explanation from u:queue to s:queue in order for(s; u) 2 BDS is a generalization of the example above. Thus, all states u related to s have queuesthat can be obtained by deleting some marked messages from s:queue and removing the agsfrom the remaining elements.Condition 1 gives the straight-forward correspondence between the rec ags of AD and AS.Condition 2 deals with the status. In AD there are two ways of losing status (i.e., changingstatus:stat to false), and both situations are described in the speci�cation of the drop steps of AD:either the element at the end of queue gets deleted, in which case status must be lost, or statusis marked, in which case status may be lost. Alternatively, we can say that if status :ag = OKand either queue is empty or its last element is OK, the status cannot be changed by a dropstep. Thus, in this case we are not in a situation where AD is \waiting" to perform somenondeterminism on status , which has already been performed by AS. If, on the other hand,status is marked or the last element on queue is marked, drop may lead to loss of status , andthis corresponds to a loss at the S level, which has already occurred in a lose step of S. Thus,in this situation BDS should allow the corresponding state at the S level to have status = false.This explains Condition 2.Finally, Condition 3 in the de�nition of BDS is a consistency condition between the explana-tion f and the value chosen for u:status. The condition should intuitively ensure that wheneverthe last element of s:queue is not in the range of f , i.e., when f states that u describes a situ-ation where the last element of queue has been lost, then u:status must reect this by havingthe value false. Thus, the condition should limit the number of legal combinations of u:queueand u:status due to the fact that these values are not always independent. The condition couldinitially be written asif s:queue 6= " ^ maxidx (s:queue) =2 rng(f) then u:status = falseTaking the contrapositive of this condition gives usif u:status 6= false then s:queue = " _ maxidx (s:queue) 2 rng(f)Now, if u:status = true then Condition 2 gives us that also s:status :stat = true . Invariant 7.1Part 2 then implies that s:queue is empty. Thus, if u:status = true , the condition is triviallysatis�ed. So we only need to deal with the case where u:status = ? and this is exactly Condition3 of the de�nition in a slightly rewritten form.Note, that in de�ning BDS we have used our intuition about AS and AD. It is not at all sure thata �rst attempt to de�ne a simulation relation is correct. However, any errors in the de�nitionwill be caught in the subsequent simulation proof and lead to a revised de�nition, and so on.For instance, the consistency condition (Condition 3) in the de�nition of BDS was added duringa proof attempt that failed. In Lemma 7.11 below we prove that BDS is in fact an image-�nitebackward simulation from AD to AS.The following lemmas make the main simulation proof shorter.Lemma 7.6Let s 2 states(AD) and q 2 Msg� such that there exists an explanation from q to s:queue. Thenthere exists a state u 2 states(AS) with u:recs = s:recs, u:recr = s:recr, u:queue = q, and(s; u) 2 BDS.



96 7. Delayed-Decision Speci�cation DProofLet f be an arbitrary explanation from q to s:queue and let u:recs = s:recs, u:recr = s:recr,and u:queue = q. We must show that we can de�ne u:status such that Conditions 1{3 ofDe�nition 7.5 are satis�ed.Condition 1 is trivially satis�ed.We now consider cases, in each case de�ning u:status and showing that Conditions 2 and 3 aresatis�ed.1. s:queue = "De�ne u:status = s:status:stat . Then Conditions 2 and 3 are vacuously satis�ed.2. s:queue 6= "(a) (last(s:queue)):ag = markedDe�ne u:status = false. This satis�es Conditions 2 and 3, the latter vacuously.(b) (last(s:queue)):ag = OKDe�ne u:status = s:status:stat . Then Condition 2 is vacuously satis�ed.Now, assume that maxidx (s:queue) =2 rng(f). Then Condition 3 of De�nition 7.2 ofan explanation says that s:queue [maxidx (s:queue)]:ag = marked which is the sameas (last(s:queue)):ag = marked, but this contradicts the assumptions in this sub-case. Hence we have that maxidx (s:queue) 2 rng(f). Thus Condition 3 is satis�ed.Now, de�ne the total function maxqueue : (Msg � Flag)� ! Msg� such that for any queueqD in the domain, maxqueue(qD) is de�ned to be the queue qS obtained by removing all agcomponents from qD. Formally, we haveqS = maxqueue(qD) i� jqSj = jqDj and 8i 2 dom(qD) : qS[i] = qD[i]:msgLemma 7.7The identity mapping f from dom(qD) to dom(qD) is an explanation from maxqueue(qD) to qD.ProofWe check Conditions 1{4 of De�nition 7.2 of an explanation. Since the identity mapping is bothtotal and strictly increasing Conditions 1 and 2 are satis�ed. Condition 3 is vacuously satis�edsince rng(f) = dom(qD). From the de�nition of maxqueue we directly see that also Condition 4is satis�ed.Lemma 7.8Let s 2 states(AD). Then there exists a state u 2 states(AS) with u:recs = s:recs, u:recr = s:recr,and u:queue = maxqueue(s:queue), such that (s; u) 2 BDS.



7.2. Correctness of D 97ProofLet qS = maxqueue(s:queue). Then by Lemma 7.7 there exists an explanation (namely theidentity mapping) from qS to s:queue . Lemma 7.6 then gives us the existence of a state u withu:recs = s:recr , u:recr = s:recr, and u:queue = qS such that (s; u) 2 BDS. That su�ces.Corollary 7.9Let s 2 states(AD). Then there exists a state u 2 states(AS) such that (s; u) 2 BDS.ProofImmediate from Lemma 7.8.We state the following trivial lemma without proof.Lemma 7.10Let qD be an element of (Msg � Flag)�. Then, any element qS of Msg�, such that there existsan explanation from qS to qD, can be obtained from maxqueue(qD) by deleting some elements.We can now state and prove the main result of this section, namely that the relation BDSde�ned in De�nition 7.5 is an image-�nite backward simulation from AD to AS (with respect toID (Invariant 7.1) and true). The style of the proof is careful mathematical reasoning.Lemma 7.11AD �iB AS via BDS.ProofWe prove that BDS is an image-�nite backward simulation from AD to AS with respect to IDand true . We �rst show that BDS is image-�nite and then check the three conditions (which wecall nonemptiness, base case, and inductive case, respectively) of De�nition 5.3.Image-FinitenessLet s be an arbitrary state of AD. We must show that there exists only �nitely many statesu of AS such that (s; u) 2 BDS. Since recs, recr, and status can only take on �nitely manyvalues in AS these variables cannot give rise to problems. It now remains to be shown that fora �xed but arbitrary s also queue (in S) can only take on �nitely many values. For (s; u) tobe in BDS there must exist an explanation from u:queue to s:queue . Lemma 7.3 gives us thatju:queuej � js:queue j, thus there are only a �nite number of lengths to choose from (since s:queueis a �nite queue). Also, there exists only a �nite number of mappings (explanations) betweentwo �nite domains. Condition 4 of De�nition 7.2 �nally gives us that the elements of the possibleu:queue values are uniquely determined by s:queue and the (�nitely many) explanations. Hence,u:queue can only take on �nitely many values given s. That su�ces.



98 7. Delayed-Decision Speci�cation DNonemptinessCorollary 7.9 immediately gives the result.Base CaseLet s0 be the (unique) start state of AD. Then if (s; u) 2 BDS, then u:recs = s:recs = false,u:recr = s:recr = false, u:status = s:status :stat = false (since s:status :ag = OK and s:queue ="), and u:queue = " (since the existence of an explanation from u:queue to s:queue and thefact that s:queue = " implies that u:queue = ".) Thus, u is the unique start state of AS. Thatsu�ces.Inductive CaseAssume (s; a; s0) 2 steps(AD) such that s and s0 satisfy ID (Invariant 7.1), and let u0 be anarbitrary state ofAS such that (s0; u0) 2 BDS. Below we consider cases based on a (and sometimessub-cases of each case) and for each (sub)case we de�ne a �nite execution fragment � of ASwith lstate(�) = u0, (s; fstate(�)) 2 BDS, and trace(�) = trace(a). In this particular proof allexecution fragments will be of length zero or one. Thus, in each (sub)case we will either� de�ne an action b 2 acts(AS) and a state u 2 states(AS), such that (u; b; u0) 2 steps(AS),(s; u) 2 BDS, and trace(b) = trace(a), or� show that (s; u0) 2 BDS and a is internal.In the former case, we show that (u; b; u0) 2 steps(AS) by showing that all four state variablesof AS are related in u and u0 according to the de�nition of the b steps of AS.In the proof, when we refer to Conditions 1{3, we mean Conditions 1{3 of De�nition 7.5 of BDSunless otherwise speci�ed.a = send msg(m)In this case we show that we can de�ne u such that (u; send msg(m); u0) 2 steps(AS) and(s; u) 2 BDS. Clearly the step has the right trace.We have s0:queue = s:queue ^(m; OK) and s0:status = (?; OK). Lemma 7.4 implies u0:queue 6= ".De�ne u:recs = s:recsu:recr = s:recru:queue = init(u0:queue)First we �nd an explanation from u:queue to s:queue . Let f 0 be a valid explanation fromu0 to s0. (Such a valid explanation exists since (s0; u0) 2 BDS). Since last(s0:queue):ag =OK, we have from Lemma 7.4 and Conditions 1{3 of De�nition 7.2 of an explanation thatf 0(maxidx (u0:queue)) = maxidx (s0:queue). Then f = f 0 � dom(u:queue) is clearly an expla-nation from u:queue to s:queue .Now, by Lemma 7.6, de�ne u:status such that (s; u) 2 BDS.It remains to show that (u; send msg(m); u0) 2 steps(AS):recs and recr :From the de�nition of the send msg(m) steps of AD, the de�nition of u, and the fact that(s0; u0) 2 BDS, we have that u0:recs = s0:recs = s:recs = u:recs and correspondingly for recr.This is as required by the de�nition of the send msg(m) steps of AS.



7.2. Correctness of D 99status:Since (s0; u0) 2 BDS, Condition 2 implies that u0:status = ?. No matter what the value ofu:status is, this is as required by the de�nition of the send msg(m) steps of AS.queue :We have u0:queue 6= " (by Lemma 7.4) and last(u0:queue) = m (by use of De�nition 7.2 ofan explanation). Then, by de�nition, we have u0:queue = init(u0:queue) ^ last(u0:queue) =u:queue ^m. Again, this is as required by the de�nition of the send msg(m) steps of AS.a = crashsDe�ne u:recs = s:recsu:recr = u0:recru:status = u0:statusu:queue = u0:queueThen it is easy to see that (s; u) 2 BDS (any valid explanation from u0 to s0 is also a validexplanation from u to s) and that (u; crashs; u0) 2 steps(AS).a = crashrSimilar to the case a = crashs.a = receive msg(m)In this case we de�ne u such that (u; receive msg(m); u0) 2 steps(AS) and (s; u) 2 BDS. Clearlythe step has the right trace.From the de�nition of the receive msg(m) steps of AD we have that s:recr = s0:recr, s:recs =s0:recs, s:queue 6= " with (head(s:queue)):msg = m and s0:queue = tail(s:queue).De�ne u:recs = s:recsu:recr = s:recru:queue = m^u0:queueWe �rst �nd an explanation from u:queue to s:queue . Let f 0 be any valid explanation from u0to s0 (we know it exists), and de�ne f in the following way:f = [(i+ 1) 7! (f 0(i) + 1) j i 2 dom(f 0)][ [0 7! 0]Intuitively f relates the same elements in u:queue and s:queue that were related by f 0 in u0:queueand s0:queue (these elements all have their indices increased by one because of the new elementsat the head of the queues), and relates these new messages m. Based on the fact that f 0 is anexplanation from u0:queue to s0:queue, it is easy to check that f is an explanation from u:queueto s:queue .We consider cases, in each case de�ning u:status, showing (s; u) 2 BDS by showing that Condi-tions 2{3 hold (Condition 1 clearly holds) and showing that (u; receive msg(m); u0) 2 steps(AS).For the latter part it is easy to see that a receive msg(m) step is enabled in u and that recs,recr and queue are handled correctly. So all we need to do is to show that also status is handledcorrectly in the receive msg(m) step of AS.



100 7. Delayed-Decision Speci�cation D1. s:status :stat = trueInvariant 7.1 Part 2 implies that this situation cannot occur.2. s:status :stat = falseDe�ne u:status = false.Then clearly (s; u) 2 BDS (Conditions 2 and 3 are vacuously satis�ed)status :Since s:status:stat = false, we have s0:status = s:status, so u0:status = false. Leavingstatus = false unchanged is permitted by the de�nition of the receive msg(m) steps inAS.3. s:status :stat = ?(a) u0:queue 6= "Then also s0:queue 6= " (by Lemma 7.3) so from the de�nition of receive msg(m) inAD we have s0:status = s:status .De�ne u:status = u0:status.Condition 2:Since (s0; u0) satis�es Condition 2, also (s; u) satis�es that condition. (Neither theemptiness of queue , status:ag , nor the ag of the last element in queue are changedin the step in AD).Condition 3:Assume that u:status(= u0:status) = ?. Since s:queue 6= ", we must show thatmaxidx (s:queue) 2 rng(f). Since s0:queue 6= ", and (s0; u0) and f 0 satisfy Condition3, we have maxidx (s0:queue) 2 rng(f 0), so from the construction of f , it is easy tosee that maxidx (s:queue) 2 rng(f).status :Leaving status unchanged is as required by the de�nition of receive msg(m) in ASsince we assume that u0:queue 6= ".(b) u0:queue = "i. s0:queue = "Then the de�nition of receive msg(m) in AD implies that s0:status:stat = true ands0:status:ag = s:status :ag. Then, by de�nition of BDS, u0:status is either true orfalse. We consider cases.A. s0:status:ag = OK or (s0:status:ag = marked and u0:status = true)If s0:status:ag = OK, then by Condition 2 we also have u0:status = true sinces0:status:stat = true .De�ne u:status = ? (= s:status :stat).Condition 2:Vacuously satis�ed by (s; u).Condition 3:Since s0:queue = ", we have js:queuej = 1. Now, since f(0) = 0, we havemaxidx (s:queue) 2 rng(f) as required.status :Changing status from ? to true when u0:queue = " is as required by the de�-nition of receive msg(m) in AS.B. s0:status:ag = marked and u0:status = falseDe�ne u:status = false.Condition 2:



7.2. Correctness of D 101Since s:status :ag = s0:status:ag = false, we have that (s; u) satis�es Condi-tion 2.Condition 3:Vacuously satis�ed.status :Leaving status = false unchanged is allowed by receive msg(m) in AS.ii. s0:queue 6= "The de�nition of receive msg(m) in D implies s0:status:stat = s:status :stat = ?and s0:status :ag = s:status :ag . Since u0:queue = ", s0:queue 6= ", and (s0; u0)and f 0 satisfy Condition 3, we get that u0:status 6= ? (f 0 must be empty). Note,that this is one of the two places in the entire proof where we need the consistencycondition (Condition 3). Condition 2 now gives us that u0:status = false and thateither s0:status:ag = marked or (last(s0:queue)):ag = marked.De�ne u0:status = false.Condition 2:Since s:status :ag = s0:status:ag , (last(s0:queue)):ag = (last(s:queue)):ag,and one of these ag values is marked, we see that (s; u) satis�es Condition 2.Condition 3:Vacuously satis�ed.status :Leaving status = false unchanged is allowed by the de�nition of receive msg(m)in AS.a = ack(b)In this case we de�ne u such that (u; ack(b); u0) 2 steps(AS) and (s; u) 2 BDS. Clearly the stephas the right trace.From the de�nition of ack(b) in AD, we have that s:status :stat = b and that s0 = s except thats0 and s may di�er on the value of status :ag, which is set to OK in the step.We consider cases based on the value of b.1. b = falseThen u0:status = false.De�ne u = u0.It is now easy to see that (s; u) 2 BDS. (The fact that s and s0 may di�er on the value ofstatus:ag could only cause troubles in Condition 2 but this is seen not to be the case sinces:status:stat = false implies that the only choice for u:status is false as we have de�ned itto be.)Now, since u0 = u, we have u:status = false, Thus, an ack(b) step is enabled in u. Againsince u = u0, we now see that (u; ack(b); u0) is a step of AS as required.2. b = trueSince s:status:stat = s0:status:stat = true , Invariant 7.1 Part 2 gives us that s0:queue = "and s:queue = ". Furthermore, since s0:status:ag = OK, we get from Condition 2 thatu0:status = true .De�ne u = u0.As in the previous case clearly (s; u) 2 BDS and (u; ack(b); u0) 2 steps(AS).



102 7. Delayed-Decision Speci�cation Da = recoversDe�ne u:recs = falseu:recr = u0:recru:status = u0:statusu:queue = u0:queueSince u:recs = s:recs = false, it is easy to see that (s; u) 2 BDS (any valid explanation from u0to s0 is also a valid explanation from u to s) and that (u; recovers; u0) 2 steps(AS) (and clearlyhas the right trace).a = recoverrSimilar to the case a = recovers.a = mark(I)In this case we de�ne u and I 0 such that (u; lose(I 0); u0) 2 steps(AS) and (s; u) 2 BDS. Clearlythe step has the right trace (the empty trace).From the de�nition of the mark steps in AD we have s0:recs = s:recs, s0:recr = s:recr, and eithers:recs = true or s:recr = true .De�ne u:recs = s:recsu:recr = s:recru:queue = maxqueue(s:queue)u:status = s:status:statBy Lemma 7.7 the identity mapping f is an explanation from u:queue to s:queue, and it is easyto show that f is a valid explanation from u to s. Thus, (s; u) 2 BDS.To show that (u; lose(I 0); u0) 2 steps(AS), we �rst observe that since (s; u) 2 BDS we haveu:recs = true or u:recr = true , so a lose(I 0) step is enabled in u.recs and recr :u0:recs = s0:recs = s:recs = u:recs and similarly for recr. This is as required by the de�nitionof lose(I 0) in AS.queue :First observe that maxqueue(s:queue) = maxqueue(s0:queue). Then, since by de�nition wehave u:queue = maxqueue(s:queue), Lemma 7.10 implies that u0:queue can be obtained fromu:queue by deleting some (possibly zero) elements. Thus, we can de�ne I 0 accordingly, andthis is as required by the de�nition of lose(I 0) in AS.status :First note that since we might have s0:status:ag = marked, we also might have u0:status =false by Condition 2, but since lose(I 0) can always change status to false in AS, this situationdoes not cause troubles.The situation that could cause troubles is if u0:status 6= false but the lose(I 0) step is requiredto change status to false because the element at the end of u:queue must be deleted in orderto treat queue correctly. We must show that this situation is impossible.Assume that u0:status 6= false. Then Condition 2 and the de�nition of mark (I) in AD giveu0:status = s0:status:stat = s:status :stat 6= false. We consider cases.



7.2. Correctness of D 1031. u0:status = s0:status :stat = s:status :stat = true .Invariant 7.1 Part 2 implies s:queue = s0:queue = ". Then Lemma 7.3 implies thatu:queue = u0:queue = ". Thus I 0 = ;. That su�ces.2. u0:status = s0:status :stat = s:status :stat = ?.(a) s:queue = "Similar to Case 1.(b) s:queue 6= "Then Condition 3 and De�nition 7.2 imply f(maxidx (u:queue)) = maxidx (s:queue).It is now easy to see that u0:queue can be obtained by deleting some elements, butnot the element at the end, from u:queue. That su�ces.a = unmark (I)In this case we show that unmark (I) in AD corresponds to an empty step in AS (remember thatunmark(I) is internal). Thus, we show that (s; u0) 2 BDS.From the de�nition of the unmark(I) steps of AD, we have that s0:queue is obtained from s:queueby changing some (maybe zero) ag values from marked to OK. Now, let f 0 be a valid explanationfrom u0 to s0. Then by De�nition 7.2 it is easy to see that f 0 is also an explanation from u0:queueto s:queue . (The only interesting case is Condition 3 of De�nition 7.2 but since messages thatare marked in s0:queue cannot be OK in s:queue , this case is easily checked).We show that f 0 is a valid explanation from u0 to s by checking Conditions 1{3.Condition 1:This condition is satis�ed since the unmark(I) step does not change recs and recr .Condition 2:The unmarking of status and message ags might lead to the requirement that u0:status =s0:status:stat (by Condition 2). But then obviously also (s; u0) satis�es Condition 2 since boththe \then" and the \else" in this condition allow u0:status = s:status :stat(= s0:status:stat).The important thing to note here is that unmark(I) cannot lead from a situation where the\then" clause must be chosen to a situation where the \else" clause must be chosen.Condition 3:Since Condition 3 does not mention any ag values, it is seen that (s; u0) and f 0 satisfy thiscondition.a = drop(I)In this case we show that drop corresponds to an empty step of AS, i.e., that (s; u0) 2 BDS (recallthat drop(I) is internal).Let f 0 be an arbitrary valid explanation from u0 to s0. We now construct an explanation f fromu0:queue to s:queue : I contains the indices of the elements of s:queue that were deleted in thedrop(I) step. Then jdom(s0:queue)j = jdom(s:queue) n I j. Now, let g be the (unique) bijective,strictly increasing mapping from dom(s0:queue) to dom(s:queue) n I . Informally g maps indicesof elements in s0:queue to the indices the same elements had in s:queue .De�ne f = g � f 0. To check that f is an explanation from u0:queue to s:queue , we checkConditions 1{4 of De�nition 7.2:Conditions 1{2 of De�nition 7.2:



104 7. Delayed-Decision Speci�cation DSince f 0 is total and strictly increasing from dom(u0:queue) to dom(s0:queue) and g is total andstrictly increasing from dom(s0:queue) to dom(s:queue) n I , f is total and strictly increasingfrom dom(u0:queue) to dom(s:queue).Condition 3 of De�nition 7.2:We have that dom(s:queue) n rng(g � f 0) = I [ g�1(dom(s0:queue) n rng(f 0)). This informallystates if an element of s:queue is not \hit" by f then this is because either the element isone of the elements that are deleted in the drop(I) step or because the \corresponding" (byg) element in s0:queue is not \hit" by f 0. Now, all elements in s:queue with indices in I aremarked (by the precondition of drop(I)). Since f 0 is an explanation, all elements of s0:queuewith indices in dom(s0:queue) n rng(f 0) are marked, and since g and then also g�1 maps theindex of an element to the index of the same element, we have that all elements of s:queuewith indices in g�1(dom(s0:queue n rng(f 0))) are marked. That su�ces.Condition 4 of De�nition 7.2:By the fact that f 0 is an explanation (and therefore satis�es Condition 4) and the fact thatg maps the index of an element to the index of the same element, it directly follows that fsatis�es Condition 4 of De�nition 7.2.Thus, f is an explanation from u0:queue to s:queue .It now remains to show that f is a valid explanation from u0 to s, i.e., we must check Conditions1{3.Condition 1:Condition 1 is clearly satis�ed (since neither recs nor recr are changed in the drop(I) step and(s0; u0) 2 BDS).Condition 2:We consider the ways status can change in the if-statement in the de�nition of the drop(I)step.Assume that the element at the end of s:queue is deleted in the drop(I) step. Then s0:status =(false; OK) which implies u0:status = false. But in order to be able to delete the element at theend of s:queue we have that s:queue 6= " and (last(s:queue)):ag = marked, so (s; u0) satis�esCondition 2.Then assume that the element at the end of s:queue is not deleted but that u0:queue ischanged to (false; OK) since s:status:ag = marked. Again we have u0:status = false, and sinces:status :ag = marked, we have that (s; u0) satis�es Condition 2.The last possibility is that status is not changed at all in the drop(I) step, but then obviously(s; u0) satis�es Condition 2 since (s0; u0) satis�es it.Condition 3:Assume u0:status = ? and s:queue 6= ". Since u0:status = ? we must have s0:status:stat = ?and then from the de�nition of the drop(I) step we infer s:status = s0:status.Then the element at the end of s:queue is not deleted in the drop(I) step (i.e.,maxidx (s:queue) =2I) since otherwise s0:status = (false; OK). Thus, also s0:queue 6= ". Since f 0 is a valid explana-tion from u0 to s0, Condition 3 gives usmaxidx (s0:queue) 2 rng(f 0), and sincemaxidx (s:queue) =2I we must have g(maxidx(s0:queue)) = maxidx (s:queue) since otherwise g could not be bijec-tive and strictly increasing. All in all we get maxidx (s:queue) 2 rng(f), as required.This concludes the simulation proof.



7.2. Correctness of D 105We can now prove that AD safely implements AS.Theorem 7.12 (AD safely implements AS)AD vS ASProofDirectly by Lemma 7.11 and the soundness of image-�nite backward simulations with respectto the safe implementation relation (Lemma 5.8).7.2.3 CorrectnessBefore we can prove the main theorem of this chapter | that D is a correct implementation ofS | we need to prove some basic lemmas about S and D. In the remainder of this chapter weuse the following abbreviations.SM = fsend msg(m) jm 2 MsggRM = freceive msg(m) jm 2 MsggFrom the safe I/O automata AS and AD we get the following lemmas.Lemma 7.13AS j= 2(2(status 2 Bool) =) 2:hSM i)ProofImmediate from the de�nition of AS since any send msg(m) step would change status to ?.Lemma 7.141. AD j= 2(2:hSM i =) 2(jqueue�j � jqueue j))2. AD j= 2(hRM i =) jqueue�j = jqueuej � 1)ProofImmediate from the de�nition of AD since only send msg(m) steps can add elements to queue ,and receive msg(m) steps remove one element from queue .The following two lemmas prove properties of live executions of D. The lemmas deal with liveexecutions where, from some point on, no send msg(m) actions occur and neither the sender northe receiver is in recovery phase. Then, in the �rst lemma, we prove that eventually elements willbe removed from queue , which, in the second lemma, is used to prove that queue is eventuallyemptied.The proofs of the lemmas introduce the way we write structured proofs of temporal propertiesof our systems. The proof style is due to Lamport. The following description is taken from[AL92b]:



106 7. Delayed-Decision Speci�cation DWe use hierarchically structured proofs. The theorem to be proved is statementh0i1. The proof of statement hiij is either an ordinary paragraph-style proof or thesequence of statements hi+ 1i1, hi+ 1i2, : : :and their proofs. : : : . Within a proof,hkil denotes the most recent statement with that number. A statement has the formAssume: Assump Prove: Goalwhich is abbreviated to Goal if there is no assumption. The assertion Q.E.D. instatement number hi+1ik of the proof of statement hiij denotes the goal of statementhiij. The statementCase: Assumpis an abbreviation forAssume: Assump Prove: Q.E.D.Within the proof of statement hiij, Assumption hii denotes that statement's assump-tion, and Assumption hii:k denotes the assumption's kth item.Lemma 7.15LD j= 8k : 2(2(:hSM i ^ recs = false ^ recr = false) =)((jqueuej = k ^ k > 0); jqueuej < k))ProofAssume: � 2 LDProve: � j= 8k : 2(2(:hSM i ^ recs = false ^ recr = false) =)((jqueuej = k ^ k > 0); jqueue j < k))h1i1. Assume: k � 0Prove: � j= 2(2(:hSM i ^ recs = false ^ recr = false) =)((jqueuej = k ^ k > 0); jqueue j < k))h2i1. Assume: �1 is an arbitrary su�x of �Prove: �1 j= 2(:hSM i ^ recs = false ^ recr = false) =)((jqueuej = k ^ k > 0); jqueue j < k)h3i1. Assume: �1 j= 2(:hSM i ^ recs = false ^ recr = false)Prove: �1 j= (jqueuej = k ^ k > 0); jqueuej < kh4i1. �1 j= 2:hSM i =) 2(jqueue�j � jqueuej)Proof: By Lemma 7.14 Part 1, Lemma 3.5 Part 1 and Rule Par.h4i2. �1 j= 2(jqueue�j � jqueue j)Proof: By h4i1, Assumption h3i, and Rule MP.h4i3. �1 j= 2((jqueuej = k ^ k > 0) =) (jqueuej = k W jqueue j < k))Proof: By h4i2.h4i4. � j=WF (RM; recs = false ^ recr = false)



7.2. Correctness of D 107Proof: By proof assumption (� 2 LD) and de�nition of QD, whichinduces LD.h4i5. � j= 23:(recs = false ^ recr = false ^ jqueue j > 0) _ 23hRMiProof: By h4i4, the de�nition of WF , and noting that enabled(RM ) =(jqueuej � 0).h4i6. �1 j= 23:(recs = false ^ recr = false ^ jqueuej > 0) _ 23hRMiProof: By h4i5, Lemma 3.5 Part 1, and de�nition of disjunction.h4i7. �1 j= 3:(recs = false ^ recr = false ^ jqueuej > 0) _ 3hRMiProof: By h4i6, Rule Par, and the de�nition of disjunction.h4i8. �1 j= 2(recs = false ^ recr = false ^ jqueue j > 0) =) 3hRMiProof: By rewriting h4i7.h4i9. �1 j= 2(jqueuej > 0) =) 3hRMiProof: By Assumption h3i, h4i8, and Rule MP.h4i10. �1 j= (jqueuej = k ^ hRM i); jqueue j < kProof: Implied by Lemma 7.14 Part 2.h4i11. Q.E.D.Proof: By h4i3, h4i9, h4i10, and Rule Pro2.h3i2. Q.E.D.Proof: By h3i1 and the de�nition of implication.h2i2. Q.E.D.By h2i1 and Lemma 3.5 Part 2.h1i2. Q.E.D.Proof: By h1i1 and Lemma 3.5 Part 5.Lemma 7.16LD j= 2(2(:hSM i ^ recs = false ^ recr = false) =) 32(queue = "))ProofAssume: � 2 LDProve: � j= 2(2(:hSM i ^ recs = false ^ recr = false) =) 32(queue = "))h1i1. Assume: �1 is an arbitrary su�x of �Prove: �1 j= 2(:hSM i ^ recs = false ^ recr = false) =) 32(queue = ")h2i1. Assume: �1 j= 2(:hSM i ^ recs = false ^ recr = false)Prove: �1 j= 32(queue = ")h3i1. �1 j= 8k : ((jqueuej = k ^ k > 0); jqueuej < k)



108 7. Delayed-Decision Speci�cation DProof: By Lemma 7.15, Lemma 3.5 Parts 1, 5, and 6, and Rules Par andMP.h3i2. �1 j= 8k : (k > 0 =) 9k0 : (k0 < k ^ (jqueue j = k ; jqueuej = k0)))Proof: By h3i1 and Lemma 3.5 Part 7.h3i3. �1 j= 3(jqueuej = 0)Proof: By h3i2 and Rule Pro1.h3i4. �1 j= 2:hSM i =) 2(jqueue�j � jqueue j)Proof: By Lemma 7.14 Part 1, Lemma 3.5 Part 1 and Rule Par.h3i5. �1 j= 2(jqueue�j � jqueue j)Proof: By h3i4, Assumption h2i, and Rule MP.h3i6. �1 j= 8k : 2(jqueuej = k =) (jqueue j = kW jqueuej < k))Proof: By h3i5.h3i7. �1 j= 2(jqueuej = 0 =) (jqueuej = 0W jqueuej < 0))Proof: By h3i6 and Lemma 3.5 Part 6.h3i8. �1 j= 2(jqueuej = 0 =) 2(jqueuej = 0))Proof: By h3i7, the fact that jqueuej < 0 is always false, and the de�nitionof 2.h3i9. �1 j= 32(jqueuej = 0)Proof: By h3i3, h3i8, and Rule MP1.h3i10. Q.E.D.Proof: Directly by h3i9.h2i2. Q.E.D.Proof: By h2i1 and de�nition of implication.h1i2. Q.E.D.Proof: By h1i1 and Lemma 3.5 Part 2.An important advantage of this way of writing structured proofs of temporal properties is thatat a �rst reading, one can concentrate on the �rst outermost levels of the proof. Once that hasbeen understood, the details at lower levels can be considered.The next lemma contains the main part of the proof that D correctly implements S. Itstates that for any BDS-related executions of AD and AS, if the execution of AD satis�es QD (thetemporal formula which induces the liveness condition LD), then the execution of AS satis�esQS (the temporal formula which induces the liveness condition LS). The proof will be a proofby cases based on a proof by contradiction: if we assume the execution of AS is not live, thismeans that the execution does not satisfy one of the weak fairness formulas in the de�nition ofQS. By considering the weak fairness formulas one by one and deriving a contradiction in eachcase, the result follows.



7.2. Correctness of D 109Lemma 7.17Let � 2 exec(AD) and �0 2 exec(AS) be arbitrary executions of AD and AS, respectively, with(�; �0) 2 BDS. Assume � j= QD. Then �0 j= QS.ProofWe prove the conjecture by contradiction. Thus,Assume: �0 6j= QSProve: Falseh1i1. �0 j= :WF (CS;1; recs = false ^ recr = false) _:WF (CS;2; recs = false ^ recr = false) _:WF (CS;3) _:WF (CS;4)Proof: Immediate by the Assumption, de�nition of QS, and the Boolean operators.h1i2. Case: �0 j= :WF (CS;1; recs = false ^ recr = false)h2i1. �0 j= 32:hCS;1i ^ 32(recs = false ^ recr = false ^ status 2 Bool)Proof: From Case Hypothesis h1i by expanding WF and noting the fact thatenabledAS(CS;1) = (status 2 Bool).h2i2. �0 j= 32:hCS;1i ^ 32:hSM i ^ 32(recs = false ^ recr = false ^ status 2 Bool)Proof: By h2i1, Lemma 7.13, and MP1.h2i3. � j= 32:hCS;1i ^ 32:hSM i ^ 32(recs = false ^ recr = false)Proof: By Lemmas 5.10 and 5.11 since CS;1 consists of external actions and De�ni-tion 7.5 of BDS implies that for all (s; u) 2 BDS, if u j= (recs = false ^ recr = false)then s j= (recs = false ^ recr = false).h2i4. � j= 32:hCS;1i ^ 32(recs = false ^ recr = false ^ queue = ")Proof: By h2i3, Lemma 7.16, and MP1.h2i5. � j= 32:hCS;1i ^ 32(recs = false ^ recr = false ^ status 2 Bool)Proof: By h2i4 and Invariant 7.1 Part 1.h2i6. � j= :WF (CD;1; recs = false ^ recr = false)Proof: By h2i5, the de�nition of WF , the fact that CS;1 = CD;1 and the fact thatenabledAD(CD;1) = (status 2 Bool).h2i7. Q.E.D.Proof: By h2i6, the assumption that � j= QD, and the de�nition of QD.h1i3. Case: �0 j= :WF (CS;2; recs = false ^ recr = false)h2i1. �0 j= (32:hCS;2i ^ 32(recs = false ^ recr = false ^ queue 6= "))Proof: By expanding WF and noting that enabledAS(CS;2) = (queue 6= ").h2i2. � j= 32:hCS;2i ^ 32(recs = false ^ recr = false ^ queue 6= ")Proof: By Lemmas 5.10 and 5.11 since CS;2 consists of external actions and De�ni-tion 7.5 of BDS and Lemma 7.3 imply that for all (s; u) 2 BDS, if u j= (recs = false ^



110 7. Delayed-Decision Speci�cation Drecr = false ^ queue 6= ") then s j= (recs = false ^ recr = false ^ queue 6= ").h2i3. � j= :WF (CD;2; recs = recr = false)Proof: By h2i2, the de�nition of WF , the fact that CS;2 = CD;2 and the fact thatenabledAD(CD;2) = (queue 6= ").h2i4. Q.E.D.Proof: By h2i3, the assumption that � j= QD, and the de�nition of QD.h1i4. Case: �0 j= :WF (CS;3)h2i1. Q.E.D.Proof: Similar to Case h1i3.h1i5. Case: �0 j= :WF (CS;4)h2i1. Q.E.D.Proof: Similar to Case h1i3.h1i6. Q.E.D.Proof: By h1i1 and the exhaustive cases h1i2{h1i5.Finally, we can prove that D correctly implements S.Theorem 7.18D vL SProofImmediate from Lemmas 7.11, 7.17, and 5.9.The total proof of correctness of D has been partitioned into three parts. First, some invariantswere proved. Then, a relation was de�ned and proved to be an image-�nite backward simulationfrom AD to AS. Note, that it is usually during the simulation proof that one realizes whichinvariants are needed. Thus, when performing the proof there is usually not this clear distinctionbetween de�ning invariants and proving the simulation result, but for presentation purposes, wemake the split.The third and �nal part of the proof is the liveness proof which, in conjunction with thesimulation proof, allows us to conclude correctness. In the proofs at lower levels of abstraction,the same partition into three parts is found.The Generic Protocol G is de�ned and proved correct in the next chapter.



Chapter 8The Generic Protocol GWe can now start to introduce a more distributed view of the system. Both low-level protocolsH and C consist of several parallel components: a sender, a receiver, two channels connectingthe sender and receiver, and, for C, a clock subsystem. The G level consists of three parallelprocesses: a sender/receiver process and two channels. This is depicted in Figure 8.1. Thesender/receiver process of G can intuitively be viewed as \partly" distributed. It contains statevariables which are intuitively manipulated by a sender part of the sender/receiver processand state variables which are intuitively manipulated by a receiver part. However, some statevariables are manipulated by both the sender part and the receiver part of the sender/receiverprocess. These \centralized" variables describe aspects which will be implemented di�erentlyby H (using handshakes) and C (using timing assumptions). The \distributed" variables, on theother hand, will basically reoccur in both H and C, and will be manipulated similarly in G, H,and C.Thus, we have developed G to be as distributed as possible according to H and C, and tocontain an abstract handling of the crucial aspects of choosing good identi�ers, where H and Cuse di�erent methods. By looking a little bit forward at H and C, we can make the followingmore detailed introduction to G:As mentioned in Chapter 1, solutions to the at-most-once message delivery problem work bytagging each message with a unique identi�er and sending it repeatedly over the channel. Thereceiver will only accept messages which are marked with \good" identi�ers.Thus, the two protocols H and C both go through three major phases during normal opera-tion. Sender/Receiver Gs=r\Sender" \Receiver"Channel ChrsChannel Chsr--�� --�- -� �recoverscrashsack(b)send msg(m) recoverrcrashrreceive msg(m)receive pktrs(p) send pktrs(p)send pktsr (p) receive pktsr(p)Figure 8.1The Generic Protocol G.111



112 8. The Generic Protocol GChoosing a message identi�er The sender picks an identi�er id that is within the set ofidenti�ers that the receiver is willing to accept. In C time bounds are used to choose agood identi�er; in H an initial handshake between the sender and the receiver is used.Sending the message and getting acknowledgement This phase is similar in both H andC. The sender (re)transmits the current message with the chosen id , until it receives anacknowledgement packet for that id .Cleaning up Here again, C uses time bounds (in particular timeouts) whereas H uses a hand-shake to determine when some \old" information may be discarded.Our Generic Protocol G is designed to capture these three phases in an abstract way that both Hand C implement. The key abstractions incorporated into the protocol G are two \centralized"variables, good s and good r. The variable good s represents the identi�ers that the sender mightshortly assign to messages, and good r represents the identi�ers that the receiver is willing toaccept. Four actions of G deal with \growing" and \shrinking" good s and good r, respectively.The preconditions of the grow and shrink actions are designed to preserve certain key invari-ants. We actually allow more freedom in these actions than is actually needed by H and C. Thisleaves open the possibility that other low-level protocols, other than H and C, can be proved tobe correct implementations of G.The rest of this chapter is organized as follows. Section 8.1 introduces the set of messageidenti�ers. Section 8.2 then formally de�nes the channels in G. Then, in Section 8.3, we presentthe sender/receiver process, and in Section 8.4 we show how G is obtained from the subprocesses.Finally, in Section 8.5 we consider the proof that G correctly implements D.8.1 Message Identi�ersIn G and the lower level protocols we need a set of identi�ers in order to label the messagescommunicated over the channels. In C the identi�ers are timestamps ranging over the non-negative reals; in H the identi�ers are just taken from some in�nite set of elements. In G weuse a set ID on which we place some constraints. When proving correct implementation fora lower-level protocol, ID is then instantiated with the set used at that lower level, and thisset must satisfy the constraints on ID . Thus, G can be seen to be parameterized with ID . Gcorrectly implements S for any proper value of ID ; the low-level protocols correctly implementG for particular proper values of ID . The constraints on ID are:1. ID is in�nite.2. nil =2 ID . We need nil as a special value.8.2 The ChannelsAs depicted in Figure 8.1, the G level contains two channels: a channel Chsr intuitively forsending packets1 from the sender part to the receiver part of the sender/receiver process, and achannel Chrs in the other direction (for acknowledgements).1Here and elsewhere, we use the term \packet" to denote objects sent over the channels; we reserve the term\message" for the \higher-level", user-meaningful messages that appear, e.g., in the speci�cation.



8.2. The Channels 113Below we specify the Chsr channel as a live I/O automaton (ACh;sr ; LCh;sr). The Chrs =(ACh;rs ; LCh;rs) channel is similar and can be obtained from the de�nition of Chsr by replacingthe state variable sr by rs and actions send pkt sr(p) and receive pktsr(p) by send pkt rs(p) andreceive pkt rs(p).8.2.1 States and Start StatesChsr has only one state variable which contains the packets (including duplicates) currently inthe channel. We let Chsr be parameterized with a set P of possible packets.Variable Type Initially Descriptionsr B(P ) ; The packets (including duplicates) in thechannel.8.2.2 ActionsThe channel only has two types of actions: send pkt sr(p), which represents the input of packetp from the environment, and receive pkt sr(p) which represents the output of packet p from thechannel.Input:send pktsr (p), p 2 POutput:receive pktsr(p), p 2 PInternal:none8.2.3 StepsThe channel is not reliable. This means that it may remove or duplicate packets. We havechosen to model this unreliability at the time of a send pkt sr(p) step.send pktsr (p)E�ect:add a �nite number of p to sr receive pktsr(p)Precondition:p 2 srE�ect:sr := sr n fpg (� remove one copy �)In the speci�cation, \a �nite number" could mean 0. Note, that we could have modeled theunreliability of the channel by having internal lose and duplicate actions which could removeor duplicate packets at any time. However, such a channel can be shown to be equivalent toour channel, so by our substitutivity results, we will be able to substitute the channels for eachother.8.2.4 LivenessThe receive pkt sr(p) steps of ACh;sr allow all received packets to be lost. With such a channel wecannot, of course, guarantee any liveness of the composed system, so we shall require that if wekeep sending the same packet to the channel, then in�nitely many will get through. Thus, if a



114 8. The Generic Protocol Gpacket is sent in�nitely often, then it is also received in�nitely often. Furthermore we impose thenatural requirement that if a packet has succeeded in being put into the channel, then eventuallyit will be delivered.Then the liveness condition LCh;sr for the channel is induced by the following liveness formula:QCh;sr 4= 8p : 23hsend pktsr(p)i =) 23hreceive pkt sr(p)i ^8p :WF (receive pktsr(p))We do not prove formally thatQCh;sr is an environment-free liveness formula forACh;sr . However,we provide some intuition by informally describing an environment-free strategy (g; f) for Chsr(cf. De�nitions 2.5 and 2.7): the g function of the strategy should on every input send pkt sr(p)add one copy of p to sr . This means that when we are playing the game against the environment,whenever a send pktsr(p) input arrives, receive pktsr(p) will stay enabled at least until it isexecuted.The f function of the strategy, i.e., the function that determines the moves of the channel,should then work as follows: when the game commences after some �nite execution, thereare only �nitely many packets in sr . The strategy can order these and use its �rst moves onoutputting the packets. In the meantime send pktsr(p) actions occur. When the strategy has�nished outputting initial packets it should start matching each send pkt sr(p) action with areceive pkt sr(p) action. Since f has access to the history of the game so far, it should simply atits �rst move after having output initial packets perform receive pkt sr(p1) if the �rst input actionof the game was send pkt sr(p1), and generally at its nth move perform receive pkt sr(pn) if thenth input action of the game was send pkt sr(pn). Even though the environment may provideseveral (but only a �nite number of) input actions at each move and, thus, might be \faster"than the channel, at any point in time the channel only has �nitely many \unmatched" inputswhich it will eventually have matched. The point is that the environment can never have sentin�nitely many copies of the same packet without the channel having output in�nitely manycopies of the same packet, and all packets put into the channel will eventually be output. If fhas matched all inputs, it should simply return the empty move ? since in this case the channelis empty.Note that, by Proposition 3.4, QCh;sr is stuttering-insensitive.8.3 The Sender/Receiver ProcessWe specify the sender/receiver process as a live I/O automaton Gs=r = (AG;s=r ; LG;s=r).8.3.1 States and Start StatesAs mentioned in the introduction to this chapter, AG;s=r intuitively consists of a sender partand a receiver part such that some state variables are only manipulated by the sender part,some state variables are only manipulated by the receiver part, and some state variables aremanipulated by both parts. Thus, the state variables of AG;s=r are consequently grouped intothe following three classes. (When we write \sender" below, we refer to the sender part of thesender/receiver process. Similarly for \receiver".)



8.3. The Sender/Receiver Process 115Variable Type Initially Descriptionmodes fidle;needid;send, recg idle The mode of the sender. Mode idle indi-cates that the sender is not in the process ofsending a packet over the channel, needidindicates that the sender is ready to choosean identi�er for the current message, andsend indicates that the sender is sending(repeatedly) the current packet (consistingof current message with identi�er) over thechannel. Mode rec denotes that the senderis in recovery phase.buf s Msg� " The list of messages at the sender side.useds ID� " A list containing all identi�ers assigned tomessages in the past. These identi�ers willnever be used again. The list induces a par-tial order on identi�ers (see below).current-msgs Msg [ fnilg nil When modes 2 fneedid; sendg, this vari-able contains the \current" message, i.e.,the message about to be or being sent. Inthe other modes current-msgs is not usedand is set to nil.lasts ID [ fnilg Any value When modes = send this variable containsthe identi�er chosen for the current mes-sage. In all other modes its value is notused. Due to requirements in low-level pro-tocols (where lasts could, e.g., be a time-stamp), lasts is allowed to assume arbitraryvalues when it is not used.current-ack s Bool false Acknowledgement from the receiver.



116 8. The Generic Protocol Gmoder fidle, rcvd,ack, recg idle The mode of the receiver. Mode idle indi-cates that the receiver has delivered all re-ceived messages to the user, rcvd indicatesthat messages have been accepted but notyet delivered to the user, ack indicates thatthe receiver is sending positive acknowl-edgements for the last message accepted tothe sender. Mode rec denotes that the re-ceiver is in recovery phase.buf r Msg� " The list of messages accepted by the re-ceiver but not yet delivered.lastr ID [ fnilg nil Contains the identi�er of the last messageaccepted. When its value is not used, it isassigned the special value nil.issuedr P(ID) Any supersetof good r suchthatjID n issuedrj=1 Includes everything that was ever accept-able by the receiver, i.e., in good r. Thus,issuedr is used to guarantee that \old" iden-ti�ers do not show up in good r again, whichcould otherwise lead to duplicate delivery.nack-buf r ID� " A list of identi�ers for which a negative ac-knowledgement will be issued.good s P(ID) Any set When modes = needid this set contains allthe identi�ers that the sender might choosefor the current message. In all other modesits value is not used.good r P(ID) Any set At any time this set contains the identi�ersthe receiver will accept from the channel.current-ok Bool false If current-ok = true the identi�er chosenfor the current message is considered goodby the receiver, but the current message hasnot been accepted by the receiver yet.8.3.2 Partial Order of Identi�ersIn the G protocol we need an ordering of all the identi�ers used as ids on messages sent bythe sender. As we shall see below, an identi�er id is chosen in a choose id(id) step, so if achoose id(id) step has occurred before a choose id(id 0) step, we will require that id is less thanid 0 in this ordering. Since we collect|as we shall see|all the ids used by the sender in used s,we use the following partial order derived from the state of G:If used s contains distinct elements and id precedes id 0 in useds, then id <u id 0In arbitrary states of G the same identi�er might occur several times in used s; however, belowwe shall prove an invariant (Invariant 8.2 Part 2 on Page 125), which states that the elementsof useds are all distinct, which then implies that all identi�ers ever used by the sender during



8.3. The Sender/Receiver Process 117execution are related by <u. Since identi�ers of ID can be tested for equivalence (=), thede�nition of <u trivially extends to �u.8.3.3 ActionsInput:send msg(m), m 2 Msgreceive pktsr(m; id), m 2Msg, id 2 IDreceive pktrs(id; b), id 2 ID, b 2 BoolcrashscrashrOutput:receive msg(m), m 2Msgack(b), b 2 Boolsend pktsr (m; id), m 2 Msg, id 2 IDsend pktrs (id; b), id 2 ID, b 2 BoolrecoversrecoverrInternal:preparechoose id(id), id 2 IDshrink goods(ids), ids � IDshrink goodr(ids), ids � IDgrow goods(ids), ids � IDgrow goodr(ids), ids � IDcleanupr8.3.4 StepsBefore we formally de�ne steps(AG;s=r) we provide some intuition. During normal operation thesender goes through the cycle idle{needid{send{idle of modes. When the sender is in modeidle and buf s is non-empty, a prepare step moves to mode needid and makes the message atthe head of buf s the current message. Now \good" identi�ers must be put into goods. Exactlyhow this is done will be discussed below. An identi�er id for the current message is chosen fromgoods in a choose id(id) step. In such a step the sender enters send mode in which it repeatedlysends the current message m with associated current identi�er id in send pktsr(m; id) steps.The sender will stay in this mode until it receives a positive (b = true) or negative (b = false)acknowledgement receive pkt rs(id ; b) for the current identi�er. In this case the sender moves tomode idle again from where acknowledgements ack(b) can be issued to the user (but only ofbuf s is empty since otherwise the sender is not acknowledging the last message sent, as required).If the receiver receives a packet (m; id) in a receive pkt sr(m; id) step, it checks to see whetherid is in good r. If this is the case it accepts2 the message m, adds it to the end of buf r and entersmode rcvd (if it was not there already). Mode rcvd indicates that the receiver has messages inbuf r and is in the process of delivering these messages to the user. Once the last message in buf rhas been delivered in a receive msg(m) step, the receiver enters ack mode in which it will issuepositive acknowledgements in send pkt rs(id ; true) steps for the identi�er id of the last messageaccepted from the sender (and thus the last message delivered to the user). These positiveacknowledgements will be issued repeatedly to overcome the unreliability of the channel.2We say that a packet (or the associated message) is \successfully received" or \accepted" when the associatedidenti�er is in goodr at the time of receipt.



118 8. The Generic Protocol GThe above discussion has focused on the normal modes of operation of the sender and receiver,where no crashes have occurred. After the formal de�nition of steps(AG;s=r), we explain whatcan happen when sender or receiver crashes occur.We now look at the manipulation of the good sets. When a prepare step is performed, the goodsset is emptied. The sender is now in needid mode, waiting to perform a choose id(id) step.Since id must be taken from good s, this set must be \grown" with identi�ers. Two types ofsteps can change good s: shrink good s(ids) removes identi�ers from good s and grow goods(ids)adds identi�ers to good s. When the receiver has not been in recovery phase \recently", i.e.,after the prepare step was performed, the sender and receiver should be in agreement aboutwhich identi�ers are considered good. This situation is indicated by the special ag current-okbeing true . In this situation grow good s(ids) can only add elements from goodr to good s, andthe shrink good r(ids) steps, which can remove elements from good r, must not remove elementswhich are already in good s. In this way we preserve the key invariant that if current-ok = true ,then good s � good r, and, thus, the current packet is guaranteed to be accepted by the receiver(unless new crashes occur). A detail is that identi�ers put into good s might immediately be\shrunk" away by a shrink good s(ids) step that empties goods. (If we look forward at C, onlythe value of the local sender clock is considered a good identi�er. Thus, whenever the clockticks, this corresponds, in G, to the old clock value being removed from goods, and the newvalue being added to good s.) When we deal with liveness below, we show how to guarantee thatthe sender will not grow and shrink goods forever but will eventually choose an identi�er in achoose id(id) step.If crashes occur, the low-level implementations H and C have no way of keeping good s asubset of goodr . This must at the G level be reected in the grow and shrink steps. We havedesigned these steps such that they preserve certain key invariants presented below. The stepsactually allow more freedom than is needed by the implementations H and C, but in this waywe have the possibility that other low-level implementations implement G. If, for instance,current-ok = false, it turns out to be necessary to allow shrink goodr to remove elements fromgood r which are already in goods. If, furthermore, moder = rec, good s can be grown fairlyarbitrarily. It is in this situation possible to add elements to good s which have never been issuedby the receiver. This may give rise to a situation where the current identi�er is not in good rwhen the current packet is sent, but is added to good r during transmission over the channel.(For this reason we shall, in the proofs below, introduce a derived variable good-ids containingidenti�ers from goodr and identi�ers not issued yet. Packets with identi�ers in good-ids have achance of being accepted by the receiver.)Other preconditions on the grow and shrink steps deal with guaranteeing that the senderand receiver do not reuse identi�ers in their good sets. In particuler, the set issuedr , which\survives" a crash (and thus has to be implemented in stable storage in the implementations),contains all identi�ers that were ever in good r. No identi�ers in issuedr can ever be put in good r.In this way it is guaranteed that the receiver will never|not even in the case of crashes|acceptthe same packet twice. Similarly, the sender will never choose an identi�er which is in useds.We now de�ne steps(AG;s=r). To increase readability we keep the de�nition of the steps ofthe sender in the left column and the de�nition of the steps of the receiver in the right column.Furthermore, we align the de�nition of the send-pkt steps with the de�nition of the correspondingreceiver-pkt steps.



8.3. The Sender/Receiver Process 119send msg(m)E�ect:if modes 6= rec thenbuf s := buf s ^mpreparePrecondition:modes = idle ^ buf s 6= "E�ect:modes := needidgoods := ;current-msgs := head(buf s)buf s := tail(buf s)if moder 6= rec thencurrent-ok := truechoose id(id)Precondition:modes = needid ^ id 2 goodsE�ect:modes := sendlasts := iduseds := useds ^ idsend pktsr (m; id)Precondition:modes = send ^ lasts = id ^current-msgs = mE�ect:none receive pktsr(m; id)E�ect:if moder 6= rec thenif id 2 goodr thenmoder := rcvdbuf r := buf r ^mlastr := idgoodr := goodr n fid 0 j id 0 �u idgif id = lasts ^ modes = send thencurrent-ok := falseelse if id 6= lastr thenif modes = send ^ id = ids thennack-buf r := nack-buf r ^ idelseoptionally nack-buf r := nack-buf r ^ idelse if moder = idle thenmoder := ackreceive msg(m)Precondition:moder = rcvd ^ buf r 6= " ^ head(buf r) = mE�ect:buf r := tail(buf r)if buf r = " thenmoder := ack



120 8. The Generic Protocol Greceive pktrs(id; b)E�ect:if modes = send ^ lasts = id thenmodes := idlecurrent-acks := blasts := arbitrary valuecurrent-msgs := nilack(b)Precondition:modes = idle ^ buf s = " ^current-acks = bE�ect:none
send pktrs (id; true)Precondition:moder = ack ^ lastr = idE�ect:optionally moder := idlesend pktrs (id; false)Precondition:moder 6= rec ^ nack-buf r 6= " ^head(nack-buf r) = idE�ect:nack-buf r := tail(nack-buf r)crashsE�ect:modes = reccurrent-ok := falserecoversPrecondition:modes = recE�ect:modes := idlelasts := arbitrary valuebuf s := "current-msgs := nilcurrent-acks := false
crashrE�ect:moder = reccurrent-ok := falserecoverrPrecondition:moder = recE�ect:moder := idlelastr := nilbuf r := "nack-buf r := "issuedr := any superset ofissuedr [ useds [ goodssuch that afterwardsjID n issuedrj =1grow goods(ids)Precondition:modes 6= needid _((moder 6= rec =) ids � issuedr) ^(current-ok = true =) ids � goodr) ^(ids \ useds = ;))E�ect:goods := goods [ ids grow goodr(ids)Precondition:ids \ issuedr = ; ^jID n (ids [ issuedr)j =1E�ect:goodr := goodr [ idsissuedr := issuedr [ idsshrink goods(ids)Precondition:noneE�ect:goods := goods n ids shrink goodr(ids)Precondition:current-ok = false _((modes = needid=) ids \ goods = ;) ^(modes = send =) lasts =2 ids))E�ect:goodr := goodr n idscleanuprPrecondition:moder 2 fidle; ackg ^(modes = send =) lasts 6= lastr)E�ect:moder := idlelastr := nil



8.3. The Sender/Receiver Process 121Note that most locally-controlled steps of the sender and receiver are conditioned by modes andmoder , respectively, not being rec. Also, inputs (except crashs and crashr) do not lead to statechanges when the side at which they occur is crashed. Thus, G is \dead" when it is crashed.Furthermore, crashes and subsequent recoveries have the e�ect of resetting all state variables(except issuedr and useds) at the side at which they occur. For instance, even if the sender isabout to issue a positive acknowledgement to the user when a sender crash occurs, the senderhas forgotten about this when it recovers. These choices about the way G behaves with respectto crashes are motivated by the low-level protocols H and C.We now discuss certain special situations that can arise mainly due to crashes or recoveries.Assume that the sender is in send mode with (m1; id1) as the current packet. If a crashs occurs,the sender forgets, among other things, everything about (m1; id1). However, before it crashed,the sender might have succeeded in placing (m1; id1) in the channel. Since we do not assumeany time bounds on channel delays, (m1; id1) might travel very slowly on the channel. In themeantime the sender recovers, receives a new message m2 in a send msg(m2) step, assigns theidenti�er id2 tom2, and starts sending (m2; id2) to the channel. Now both (m1; id1) and (m2; id2)are traveling on the channel, and both id1 and id2 might be in good r. (The receiver has no way ofknowing that the sender has been crashed.) In general, if crashes have occurred, several packets(m1; id1); : : : ; (mk; idk) with identi�ers in good r might be traveling on the channel. This givesrise to a race condition between the packets. Assume (mi; id i) is the �rst packet that reachesthe receiver and gets accepted. Then the receiver is not allowed subsequently to accept any ofthe packets (m1; id1); : : : ; (mi; id i) since then either the receiver would accept the same messagetwice or it would reorder messages (since m1; : : : ; mi�1 were sent before mi). The messagesm1; : : : ; mi�1 are thus e�ectively lost, but since they were in the system during crashes, thisis allowed by the Delayed-Decision Speci�cation D (and consequently by the speci�cation S).This explains the manipulation of good r in the de�nition of the receive pktsr(m; id) steps. If thesender crashes in needid mode, the same kind of race condition does not arise since the currentpacket has not been placed in the channel yet. However, messages get lost but, again, this isallowed by D.If the receiver receives a packet (m; id) and id is not in goodr it will not accept the packet.Now, two situations must be considered (which correspond to the two \else-if" cases in thede�nition of receive pkt sr(m; id) above).1. If id 6= lastr, we are not just receiving another copy of the last packet accepted.� if modes = send and id = lasts, we are, due to crashes, in a situation where thesender is in send mode with a \bad" identi�er. The receiver must inform the senderabout this situation since otherwise the sender would be stuck forever. Thus, thereceiver adds id to nack-buf r which will lead to a send pktrs(id ; false) step. Note,that since only one send pkt rs(id ; false) will be performed, there is no guarantee thatthe packet will actually be put into the channel (which is unreliable). However, thesender continues to send (m; id), so packets will continue to get through (due tochannel liveness) to the receiver. Every time this happens, the receiver will add id tonack-buf r, so (id ; false) will continue to be issued. By channel liveness in the otherdirection the sender will eventually receive (id ; false) and thereby be dislodged.� if modes 6= send or id 6= lasts, the received packet (m; id) is not the current packetof the sender but instead some old packet from the channel. The low-level protocolswe consider cannot always identify this situation|mainly because the receiver in a



122 8. The Generic Protocol Gdistributed implementation does not have access to modes and lasts. The C protocolcan in some situations make some safe guesses, but generally a low-level protocol hasto assume the worst case and thus add id to nack-buf r. The G protocol leaves thispossibility open.2. If id = lastr , we are receiving a new copy of the last packet accepted. In this situationmoder could be idle, in which case it should be changed to ack. The situation is explainedas follows.Due to requirements in the low-level implementations, a send pktrs(id ; true) step musthave the possibility of changing moder to idle, which disables further send pkt rs(id ; true)steps. Thus, due to the unreliability of the channels, we are not sure that (id ; true)actually arrives to inform the sender that the current packet was successfully received.But the sender will then continue to send (m; id) packets, and the (inevitable) receipt ofsome of these by the receiver will lead to mode change to ack, which, in turn, leads tosend pktrs(id ; true) steps. As above, channel liveness ensures that a receive pkt rs(id ; true)step will eventually occur as required.Some of this discussion has dealt with liveness. We now turn to the formal de�nition of theliveness condition for Gs=r .8.3.5 LivenessLet CG;s=r1 4= fprepare; ack(true); ack(false); recoversg [fsend pktsr(m; id) jm 2 Msg ^ id 2 IDgCG;s=r2 4= fchoose id(id) j id 2 IDgCG;s=r3 4= frecoverrg [freceive msg(m) j m 2 Msgg [fsend pktrs(id ; true) j id 2 IDgCG;s=r4 4= fsend pktrs(id ; false) j id 2 IDgThe liveness condition LG;s=r for AG;s=r is now induced by the following temporal formula.QG;s=r 4= WF (CG;s=r1) ^2(2(modes = needid ^ moder 6= rec) =) 3hCG;s=r2i) ^WF (CG;s=r3) ^WF (CG;s=r4)The �rst, third, and fourth conjunct express normal weak fairness to some locally-controlledactions of the sender and receiver, respectively.The second conjunct looks more complicated but simply states that it is always the casethat if the sender stays in mode needid and the receiver does not crash, then eventually achoose id(id) step occurs. Thus, in�nite growing and shrinking of the good sets are avoided.Note, that this kind of liveness condition is more high-level than, e.g., weak fairness, but it



8.4. The Speci�cation of G 123exactly captures the intuitive requirement to the execution of the system, and the general modelof live I/O automata allows such general liveness requirements.As for the liveness formula for the channel Chsr above, we do not formally prove that QG;s=r isan environment-free liveness formula for AG;s=r but instead provide some intuition as to how anenvironment-free strategy (g; f) could be de�ned: on inputs, the g function can choose arbitrarilybetween nondeterministic choices. The f function should deal with the four conjuncts of QG;s=rin a round-robin fashion: if it dealt with the �rst conjunct last time, it should deal with thesecond conjunct now, and so on. If it is time to deal with one of the weak-fairness formulas,f simply performs some step from the appropriate set if possible. The second conjunct needsmore attention. Here f should do the following if modes = needid and moder 6= rec, and donothing otherwise:1. If goods 6= ;, then perform a choose id(id) step.2. Else, if good r 6= ;, perform a grow goods(ids) step (with ids nonempty). Such a step isalways possible when good r 6= ;.3. Else, perform a grow goodr(ids) step with ids nonempty. Such a step is always possiblesince it is true that there are always in�nitely many unused identi�ers left.If Part 3 was performed, then Part 2 will be performed next time the second conjunct of QG;s=ris dealt with. If Part 2 was performed, then Part 1 will be chosen next time. This is underthe assumption that the sender stays in mode needid and the receiver does not crash in themeantime, but if this is not satis�ed, then the second conjunct does not restrict the executionat all.Another thing to note is that, by Lemma 4.8 and Proposition 3.4, QG;s=r is stuttering-insensitive.8.4 The Speci�cation of GAs depicted in Figure 8.1, G consists of the sender/receiver process and the two channels. So,�rst de�ne G0 = (A0G; L0G) to be the following live I/O automatonG0 4= Gs=rkChsrkChrswhere the set P of possible packets of the channels is instantiated with the packets that Gs=rcan send and receive, i.e., packets of the form (m; id) and (id ; b). Thus, G0 is the parallelcomposition of the sender/receiver process and the channels. Since QG;s=r , QCh;sr , and QCh;rsare all stuttering-insensitive, Proposition 4.4 implies that L0G is induced byQG 4= QG;s=r ^ QCh;sr ^ QCh;rsBy De�nition 2.2 the channel actions send pkt sr(m; id), receive pktsr(m; id), send pkt rs(id ; b),and receive pkt rs(id ; b) are output actions of G0. Thus, to get G = (AG; LG) we hide theseactions. LetAG 4= fsend pkt sr(m; id) jm 2 Msg ^ id 2 IDg [freceive pktsr(m; id) jm 2 Msg ^ id 2 IDg [fsend pkt rs(id ; b) j id 2 ID ^ b 2 Boolg [freceive pktrs(id ; b) j id 2 ID ^ b 2 Boolg



124 8. The Generic Protocol GThen, de�neG 4= G0 n AGBy Proposition 4.5, LG is induced by QG.We can now turn attention to proving that G correctly implements D.8.5 Correctness of GIn this section we consider the proof that G = (AG; LG) correctly implements D = (AD; LD).This will be done in terms of a re�nement mapping from AG to AD and a subsequent livenessproof. We perform the re�nement proof in all detail, but only sketch the liveness proof. Werefer to the formal liveness proof at the H level for a similar|but formal|liveness proof.First, we state some invariants of AG.8.5.1 InvariantsAs mentioned in Chapter 7, during the process of performing a simulation proof, it usuallybecomes clear that certain invariants are needed: some situation in the proof is impossible tosolve but it turns out that the state in which the situation occurs is not reachable. Thus, aninvariant that avoids these \bad" states is found. In this section we present the invariantswe need in the re�nement mapping proof from AG to AD. The proofs of the invariants aredeferred to Appendix C, where we furthermore consider the general way to prove invariants ofsafe (timed) I/O automata.In the invariants we use a derived variable good-ids de�ned as follows: in any state s of AG,de�nes:good-ids 4= s:good r [ s:issuedrwhere s:issuedr is the complement of s:issuedr with respect to ID . A message assigned an id ins:good-ids might still be received successfully, i.e, accepted by the receiver.The �rst invariant has two parts which state simple properties of the state when the sender isin send mode. (Recall from Appendix A that lasts 2 used s is shorthand notation for lasts 2elems(useds). Similar notation will be used below.)Invariant 8.11. If modes = send then lasts 2 useds2. If modes = send then lasts 6= nilWhen the sender is in needid mode, it can never choose among identi�ers that have been usedbefore (since such identi�ers cannot be put into good s again). As a consequence useds containsdistinct elements.Invariant 8.21. If modes = needid then used s \ good s = ;



8.5. Correctness of G 1252. All elements of used s are distinctAs expected a receiver mode of rcvd indicates that there are some messages in the receiverbu�er which have not yet been delivered to the user.Invariant 8.31. If moder = rcvd then buf r 6= "The following invariant is a key invariant. It states relationships between and properties of thedi�erent sets of identi�ers in AG.In this invariant and other invariants below, we use the following de�nition: de�ne in anystate s of AG ids(sr) to be the set of id components of the packets in the sr channel. Formally,we haveids(sr) 4= fid jm 2 Msg ^ (m; id) 2 srgSimilarly,ids(rs) 4= fid j b 2 Bool ^ (id ; b) 2 rsgInvariant 8.41. issuedr � good s if modes = needid ^ moder 6= rec2. issuedr � good r3. issuedr � used s if moder 6= rec4. used s � ids(sr) [ (if modes = send then flastsg else ;)5. used s � nack-buf r6. used s � ids(rs)7. lastr =2 good-ids8. If lastr 6= nil then lastr 2 usedsThe following invariant states the fact that for any two packets in sr (possibly including thecurrent packet), if the packets have the same identi�er, then the packets are equal (and thusrepresent two copies of the same packet).Invariant 8.51. Let pkts = sr [ (if modes = send then f(current-msgs; lasts)g else ;), andlet (m; id) 2 pkts and (m0; id 0) 2 pkts . ThenIf id = id 0 then m = m0



126 8. The Generic Protocol GThe next invariant states properties of reachable states where current-ok = true . Recall thatcurrent-ok intuitively is a ag which is true whenever the sender is in the process of sending thenext message (packet), the receiver has not been in recovery phase since the last prepare action,and the current packet has not been received yet. Thus, current-ok = true indicates that thesender and receiver are synchronized and in agreement about which identi�ers to use.Invariant 8.61. If current-ok = true then modes 2 fneedid; sendg2. If current-ok = true then moder 6= rec3. If current-ok = true ^ modes = send then lasts 6= lastr4. If current-ok = true ^ modes = send then (lasts; b) =2 rs5. If current-ok = true ^ modes = needid then goods � goodr6. If current-ok = true ^ modes = send then lasts 2 good r7. If current-ok = true ^ modes = send then lasts =2 nack-buf rIn certain situations current-ok is guaranteed to be false. For instance, if the sender is in sendmode and the current packet has been accepted by the receiver (indicated by either lasts = lastror the fact that an acknowledgement for lasts is in rs).Invariant 8.71. If modes = send ^ lasts = lastr then current-ok = false2. If modes = send ^ (lasts; b) 2 rs then current-ok = falseWe now state properties of the identi�ers in sr . Part 1 states that each identi�er in sr hasbeen chosen before (or is equal to) the current identi�er when modes = send. This is expressedusing the ordering <u induced by used s. Parts 2{4 state that if either (2) the current packethas been accepted by the receiver, (3) the receiver has sent positive acknowledgement for thecurrent packet to rs, or (4) the sender has received the positive acknowledgement, then none ofthe identi�ers in sr (possibly including the current identi�er lasts) can never become \good",i.e., can never reappear in goodr . (These invariants among other things guarantee that AG cannever reorder messages or accept the same packet twice.)Invariant 8.81. If modes = send ^ id 2 ids(sr) then lasts �u id2. If modes = send ^ lasts = lastr then (flastsg [ ids(sr))\ good-ids = ;3. If modes = send ^ (lasts; true) 2 rs then (flastsg [ ids(sr)) \ good-ids = ;



8.5. Correctness of G 1274. If modes = idle ^ current-ack s = true then ids(sr) \ good-ids = ;In certain situations buf r is guaranteed to be empty. Part 1 of the following invariant statesthat if moder = idle then buf r is empty. This situation occurs if the receiver has just sentacknowledgement after having delivered the last message to the user, or if the receiver has justrecovered. Parts 2{4 deal with the situation where the current message is being acknowledgedover rs . Either (2) the receiver is sending positive acknowledgements for the last messagereceived (and passed on to the user), (3) the receiver has succeeded in placing the positiveacknowledgement in rs, or (4) the sender has already received the positive acknowledgement.Invariant 8.91. If moder = idle then buf r = "2. If moder = ack then buf r = "3. If modes = send ^ (lasts; true) 2 rs then buf r = "4. If modes = idle ^ current-ack s = true then buf r = ".The following invariant states that identi�ers for which the receiver will or has sent negativeacknowledgements can never (again) be considered \good" by the receiver.Invariant 8.101. nack-buf r \ good-ids = ;2. ids(rs) \ good-ids = ;Furthermore, the receiver can never issue negative acknowledgements for the current identi�erif it has accepted the current packet (unless new crashes have occurred).Invariant 8.111. If modes = send ^ lasts 2 nack-buf r then lasts 6= lastr.2. If modes = send ^ (lasts; false) 2 rs then lasts 6= lastr .Our �nal invariant states that there are always \enough" (read: in�nitely many) identi�ersleft that have not been issued. This is an important invariant since it ensures that a messageto be sent can always be associated with an identi�er. The invariant will not be used in thesafety proof since not being able to choose an identi�er does not violate any safety requirement.Instead the invariant is essential for the system to guarantee any liveness requirements.



128 8. The Generic Protocol GInvariant 8.121. jID n issuedrj =1The conjunction of all invariants above (which is itself an invariant) will be referred to by IG.8.5.2 SafetyIn this section we show the existence of a re�nement mapping from AG to AD. However, �rstwe need some preliminary de�nitions.Let s be any state of AG which satis�es IG. De�ne the possible pairs in s in the followingway s:pos-pairs 4= f(m; id) 2 s:sr j id 2 s:good-ids ^ (s:modes = send =) id 6= s:lasts)gThe pairs in s:pos-pairs represent the \old" packets in sr that still have a chance of beingsuccessfully received by the receiver. Note, that we do not count (s:current-msgs; s:lasts) as apossible pair when s:modes = send. Thus, the set of possible pairs in a state consists of packetsfor which the sender never stayed around to receive acknowledgement because of sender crashes.If no crashes have ever occurred the set is empty.We want to order the possible pairs of a state into a list reecting the order in which thepairs were sent. For this reason we|for any state s of AG which satis�es IG|de�ne a total orderon the packets in s:sr based on the partial order on ids imposed by s:useds (see Section 8.3.2):(m0; id 0) <u (m00; id 00) if id 0 <u id 00Invariant 8.4 Part 4 and Invariant 8.5 Part 1 imply that the order is indeed total on all packetsin s:sr for reachable states s of AG.Now, for any state s of AG which satis�es IG, de�ne the possible list , written s:pos-list,to be the list obtained by ordering the elements of s:pos-pairs according to the ordering justintroduced. (The closer to the head of the list the smaller the value according to the ordering).Thus, s:pos-list is the list of those packets (excluding the current packet) that still might besuccessfully received, and is ordered according to the order in which the packets were sent, witholder packets occurring towards the head of the list. For all states s of AG not satisfying IG,de�ne s:pos-list to be ".De�ne the function messages to extract the list of messages from a list of packets of sr .Thus, if l = h(m1; id1); : : : ; (mn; idn)i then messages(l) 4= hm1; : : : ; mni.When the mode of the sender is either needid or send, the value of current-msgs is the messageto be sent to the receiver. (This message has already been removed from buf s). Now, the destinyof this message might be unknown if there has been a crash, because then the id that has been(or is to be) assigned to the message might not be in good-ids or it might be removed fromgood-ids before the message is received. The variable current-ok in AG is precisely what we needto state this uncertainty. So, the ag (OK or marked) to be associated with the current messagein the re�nement mapping below is then derived from current-ok in state s in the following way:s:current-ag 4= (if s:current-ok then OK else marked)



8.5. Correctness of G 129We now de�ne the current queue, i.e., the part of the queue at the D level that corresponds tothe current message at the G level, as followss:current-queue 4= if s:modes = needid _ (s:modes = send ^ s:lasts 2 s:good-ids)then h(s:current-msgs; s:current-ag)ielse "When the mode of the sender is send and lasts 2 good-ids we denote by current pair the setcontaining the pair (current-msgs; lasts). In all other states this set is empty. Thuss:current-pair 4= if s:modes = send ^ s:lasts 2 s:good-idsthen f(s:current-msgs; s:lasts)gelse ;We de�ne a function RGD from states(AG) to states(AD). This function will in Lemma 8.14 beproved to be a re�nement mapping from AG to AD with respect to IG and ID. In the de�nition,when we write e.g. \buf r paired with OK", we mean the element of (Msg �Flag)� obtained frombuf r by pairing every message with OK.De�nition 8.13 (Re�nement Mapping From AG to AD)If s 2 states(AG) then de�ne RGD(s) to be the state u 2 states(AD) such that1. u:recs = (s:modes = rec)u:recr = (s:moder = rec)2. u:queue is the concatenation of� s:buf r paired with OK� messages(s:pos-list) paired with marked� s:current-queue� s:buf s paired with OK3. u:status =(false; OK) if s:modes = rec Aelse (?; OK) if s:buf s 6= " Belse (?; s:current-ag) if s:modes = needid C(i)(?; s:current-ag) if s:modes = send ^ s:lasts 2 s:good-ids C(ii)(?; OK) if s:modes = send ^ s:lasts = s:lastr ^ s:buf r 6= " C(iii)(true ; OK) if s:modes = send ^ s:lasts = s:lastr ^ s:buf r = " C(iv)(true ; marked) if s:modes = send ^ s:lasts 6= s:lastr ^(s:lasts; true) 2 s:rs C(v)(false; OK) if s:modes = send ^ s:lasts =2 s:good-ids ^s:lasts 6= s:lastr ^(s:lasts; true) =2 s:rs C(vi)(s:current-ack s; OK) if s:modes = idle C(vii)



130 8. The Generic Protocol GIt is easy to see that the cases in Part 3 of the de�nition are exhaustive. However, the casesC(ii){C(vi) are overlapping in some non-reachable states (where s:lasts 2 s:good-ids ^ (s:lasts =s:lastr _ (s:lasts; true) 2 s:rs), cf. Invariants 8.4 Part 7 and 8.10 Part 2). Since we shall onlybe interested in the image of states satisfying the invariants, this is not a problem in practice.However, to make RGD a mapping from all states of AG to states of AD, we adopt the conventionthat in cases C(ii){C(vi) the �rst case (from top to bottom) that is satis�ed by a given state ischosen.The intuition behind RGD is as follows: When either the sender or receiver in AG is in moderec this, of course, corresponds to AD having either recs or recr set to true , respectively. Thisis captured in Part 1.Part 2 associates ags with the messages between the sender and the receiver. The messages inbuf s and buf r all get paired with the ag OK. That is because these messages are \safe" as longas no new crashes occur. If a crash occurs at, e.g., the sender side, then of course the elementsin buf s will be deleted, but this corresponds in AD to marking these elements and droppingthem. So, the ag associated with a message (or the status below) should indicate the situationfor that message (or status) here and now.The messages in pos-list are all paired with marked. As explained above, when pos-listwas de�ned, all elements of pos-list are \old" packets that still might be successfully received.However, elements of pos-list lose this possibility (i.e., are removed from pos-list) if a packet withhigher id is successfully received by the receiver (since otherwise AG could rearrange messages).Thus, messages in pos-list might be lost without any crashes occurring. For this reason thesemessages are paired with marked in RGD.In current-queue the ag is current-ag . If the receiver has not been in rec mode (whichin this situation implies current-ok = true) since the last prepare action, we know that the idassigned (or to be assigned) to the current message is in goodr (cf. Invariant 8.6 Parts 5 and6). Unless crashes occur this will be the case until the current message is successfully received.(Note, that the successful receipt of a message from pos-list cannot cause the id of the currentmessage to be removed from good r since all messages in pos-list have ids less that this id). So, inthis situation current-ag = OK. On the other hand, if a crash has occurred the current messagemight still be successfully received but it could be lost. In this case current-ag = marked asrequired.Part 3 deals with the status . First, recall that in AD status records the status of the last messagesent to the system.Case A deals with the situation where the sender has crashed. In this situation the lastmessage sent can only cause a negative acknowledgement to the user. Therefore status =(false; OK).In Case B, modes 6= rec and buf s 6= ". Thus, the last element sent is, for now, sitting safelyin buf s. For this reason we have status = (?; OK).C(i) and C(ii) describe to the situation where the last element sent is in current-queue . Herestatus = (?; current-ag), where current-ag = marked is there has been a crash so that it ispermitted to \lose" status (i.e., change it to (false; OK)).In C(iii) the last message sent has been received by the receiver and is sitting safely in buf r.In C(iv) this message has been passed on to the user and the receiver is in the process ofsending positive acknowledgements to the sender. This is a sure positive status, thus, status =(true ; OK).



8.5. Correctness of G 131Case C(v) then describes the situation where a positive acknowledgement has been sent bythe receiver, but where the receiver subsequently has crashed. In this situation the positiveacknowledgement might eventually be successfully received by the sender, but, since the senderkeeps on sending its current packet until it receives an acknowledgement, the receiver might issuenegative acknowledgements for the current message and these negative acknowledgements couldpass the positive acknowledgements in rs such that the sender receives a negative acknowledge-ment for the current message. The latter situation corresponds in AD to status being lost. Thisexplains why status = (true ; marked) in case C(v). Note, that in the situation just explained,the current message has been successfully delivered to the user, but a subsequent crash couldcause status to be lost anyway (recall that this is allowed by the speci�cation).Case C(vi) actually describes two situations: (a) the id assigned to the current message issuch that the current message can never be successfully received by the receiver. Thus, thereceiver can only issue negative acknowledgements for this message. The other situation is: (b)the current message has been successfully received, but the receiver crashed before successfullyplacing a positive acknowledgement on the channel rs. Again, only negative acknowledgementscan be received by the sender. This explains status = (false; OK).Finally, case C(vii) reects the acknowledgement received by the sender for the (last) currentmessage.After having used our knowledge and intuition about AG and AD to de�ne RGD, we still needto verify that RGD is in fact a re�nement mapping from AG to AD (with respect to IG and ID).The following lemma states that this is the case.Lemma 8.14AG �R AD via RGD.ProofWe prove that RGD is a re�nement mapping from AG to AD with respect to IG and ID. We checkthe two conditions (which we call base case and inductive case, respectively) of De�nition 5.2.Base CaseIt is easy to see that for any start state s of AG, RGD(s) is a start state of AD.Inductive CaseAssume (s; a; s0) 2 steps(AG) such that s and s0 satisfy IG and RGD(s) satis�es ID (Invariant 7.1).Below we consider cases based on a (and sometimes subcases of each case) and for each (sub)casewe de�ne a �nite execution fragment � of AD of the form (RGD(s); a0; u00; a00; u000; : : : ; RGD(s0))with trace(�) = trace(a). For brevity we let u denote RGD(s) and u0 denote RGD(s0).Unless otherwise stated we let Part 1{3 refer to the three parts of De�nition 8.13.a = send msg(m)We consider cases based on s:modes.1. s:modes 6= recThen, it is easy to see that (u; send msg(m); u0) is a step of AD and thus a �nite executionfragment with the right trace.



132 8. The Generic Protocol G2. s:modes = recThen s0 = s, so also u0 = u.We show that (u; send msg(m); u00;mark(I); u000; drop(I); u0), where u00, u000, and I are de-�ned below, is a �nite execution fragment of AD by showing that (u; send msg(m); u00),(u00;mark(I); u000), and (u000; drop(I); u0) are steps of AD. Clearly the execution fragmenthas the right trace.De�ne u00:recs = u:recsu00:recr = u:recru00:queue = u:queue ^(m; OK)u00:status = (?; OK)Then obviously (u; send msg(m); u00) 2 steps(AD).De�ne u000:recs = u:recs (= true)u000:recr = u:recru000:queue = u:queue ^ (m; marked)u000:status = u00:statusThus the only di�erence between u00 and u000 is that the element at the end of queue ismarked in u000. De�ne I = fmaxidx (u00:queue)g. Then, since u000:recs = true , obviously(u00;mark(I); u000) 2 steps(AD).Finally, we have to show that (u000; drop(I); u0) 2 steps(AD). First note that drop is enabledin u000 since I contains the index of the last element of u000:queue and this element is markedby explicit construction. It now su�ces that the four state variables of AD are handledcorrectly.recs and recr :We have (by construction and the fact that u0 = u) u000:recs = u0:recs and u000:recr =u0:recr as required by the de�nition of drop(I) in AD.queue :We have (again by construction and the fact that u0 = u) u000:queue = u0:queue ^(m; marked). Thus, since drop(I) requires the last element of queue to be deleted, queueis handled correctly.status :Since the element at the end of queue is deleted, the de�nition of drop(I) requires thatu0:status = (false; OK), but this is the case since u:status = (false; OK) (from the de�nitionof RGD) and u0 = u.a = receive msg(m)We show that (u; receive msg(m); u0) 2 steps(AD). The step clearly has the right trace.From the precondition of the receive msg(m) steps in AG we have that s:moder = rcvd,s:buf r 6= ", and head(s:buf r) = m. The de�nition of RGD then implies that u:queue 6= "and head(u:queue) = (m; OK). Thus, from the de�nition of the receive msg(m) steps in AD wesee that receive msg(m) is enabled in u. It now su�ces to show that the four state variables ofAD are handled correctly.recs, recr, and queue :It is easy to see that u0:recs = u:recs, u0:recr = u:recr, and u0:queue = tail(u:queue), asrequired by the de�nition of receive msg(m) in AD.status :



8.5. Correctness of G 133We consider cases based on which condition (A, B, C(i){C(vii)) s satis�es in Part 3.Suppose s satis�es the condition in case A, C(v), C(vi), or C(vii). Then s0 satis�es the samecondition, so u:status = u0:status. Since in all cases u:status :stat 6= ?, leaving status unchangedis permitted by the de�nition of receive msg(m) in AD.Suppose s satis�es the condition in case B, C(i), or C(ii). Then s0 satis�es the same condition,so u:status = u0:status . In all three cases it is easy to see that u0:queue 6= " so it is allowed bythe de�nition of receive msg(m) in AD to leave status unchanged.Suppose s satis�es the condition in case C(iii). If s0:buf r 6= " then s0 also satis�es this conditionbut in this case u0:queue 6= " so it is permitted by the de�nition of receive msg(m) in D to leavestatus unchanged. So, assume s0:buf r = ". Then s0 satis�es the condition in case C(iv). Thus,u:status = (?; OK) and u0:status = (true ; OK). Also, s0:buf s = " and Invariant 8.8 Part 2 impliesthat both s0:pos-list = " and s0:current-queue = ". Then, since s0:buf r = ", u:queue = ". Thus,changing status from (?; OK) to (true ; OK) is as required by receive msg(m) in AD.Finally, the precondition of receive msg(m) in AG implies that s cannot satisfy the conditionin case C(iv).a = ack(b)We show that (u; ack(b); u0) 2 steps(AD). The step clearly has the right trace.By de�nition of ack(b) in AG we have s0 = s so also u0 = u.From the precondition of ack(b) in AG we have s:modes = idle, s:buf s = ", and s:current-ack s =b. Then u:status = (s:current-ack s; OK) = (b; OK) (by case C(vii) of Part 3). Thus, ack(b) isenabled in u.Since u:status :stat = OK, it is now easily seen that (u; ack(b); u0) is a step of D.a = crashsWe show that (u; crashs; u00;mark(I); u000; drop(I 0); u0), where u00, u000, I , and I 0 are de�ned below,is a �nite execution fragment of AD by showing that (u; crashs; u00), (u00;mark(I); u000), and(u000; drop(I 0); u0) are steps of AD. Clearly the execution fragment has the right trace.De�ne u00:recs = trueu00:recr = u:recru00:queue = u:queueu00:status = u:statusThen clearly (u; crashs; u00) 2 steps(AD).First let icq = js:buf rj+ js:pos-listj. Then, de�ne



134 8. The Generic Protocol Gu000:recs = u00:recsu000:recr = u00:recr(u000:queue; I; I 0) = 8>>>>>>>>>>>>>><>>>>>>>>>>>>>>: (u00:queue; ;; ;) if s:modes 2 fidle; recg _(s:modes = send ^s:lasts =2 s:good-ids)(q; ficqg; ;) if s:modes = send ^s:lasts 2 s:good-ids ^(s:current-msgs; s:lasts) 2 s:srwhere q = mark (u00:queue; ficqg)(q; ficqg; ficqg) otherwisewhere q = mark (u00:queue; ficqg)u000:status = (u00:status :stat ; marked)Since u00:recs = true , clearly mark(I) is enabled in u00. To prove that (u00;mark(I); u000) 2steps(AD) it now su�ces to show that all four state variables of AD are handled correctly.recs and recr :Leaving recs and recr unchanged is as required by the de�nition of mark(I) in AD.queue :By explicit construction of u000:queue and I , it is easy to see that queue is handled correctly.AD.status :Marking status is allowed by the de�nition of mark(I) in AD.Thus, (u00;mark ; u000) 2 steps(AD).Finally, we must show that (u000; drop(I 0); u0) 2 steps(AD). Slearly drop(I 0) is enabled in u000, soit su�ces to show that the four state variables of AD are handled correctly.recs and recr :We have u0:recs = true = u000:recs and u0:recr = u:recr = u000:recr. Leaving recs and recrunchanged is as required by the de�nition of drop(I 0) in AD.status :We have u0:status = (false; OK) since s0:modes = rec, and this is allowed by the de�nition ofdrop(I 0) in AD.queue :First, assume s:modes 2 fidle; recg or s:modes = send ^ s:lasts =2 s:good-ids. Then it iseasy to see that u0:queue = u000:queue = u:queue . Leaving queue unchanged is as required bythe de�nition of drop(I 0) in AD since in this case I 0 = ;.Next, assume (s:modes = send ^ s:lasts 2 s:good-ids ^ (s:current-msgs; s:lasts) =2 s:sr) ors:modes = needid. Then we have s:current-queue = h(s:current-msgs; s:current-ag)i ands0:current-queue = ". But the other three (buf r , buf s, and pos-list) parts that make up theabstraction of a queue in AD are unchanged. (Note, in the de�nition of u000:queue is this casethat the element in u00:queue that corresponds to s:current-queue has index icq). Then, it iseasy to see that u0:queue = delete(u000:queue ; ficqg). Thus, by explicit construction of I 0 andthe de�nition of drop(I 0) it is seen that queue is handled as required.Finally, assume (s:modes = send ^ s:lasts 2 s:good-ids ^ (s:current-msgs; s:lasts) 2 s:sr).Again, we have s:current-queue = h(s:current-msgs; s:current-ag)i and s0:current-queue = ".But in this case we have s0:pos-pairs = s0:pos-pairs [ (s:current-msgs; s:lasts). Then Invari-ant 8.8 Part 1 implies that s0:pos-list = s:pos-list ^ (s:current-msgs; s:lasts). We now havethat the only di�erence between u0:queue and u:queue is that one of the elements (the one



8.5. Correctness of G 135corresponding to (s:current-msgs; s:lasts)) in u0:queue is marked (which it might not be inu:queue). But this gives us u0:queue = u000:queue , and since I 0 = ; in this case, it is seen thatqueue is handled as required by the de�nition of drop(I 0) in AD.Thus, (u000; drop; u0) 2 steps(AD) as required.a = crashrWe show that (u; crashr ; u00;mark(I); u0), where u00 and I are de�ned below, is a �nite executionfragment of AD by showing that (u; crashr ; u00) and (u00;mark(I); u0) are steps of AD. Clearlythe execution fragment has the right trace.De�ne u00:recr = trueu00:recs = u:recsu00:queue = u:queueu00:status = u:statusClearly (u; crashr; u00) 2 steps(AD).De�ne,I = ( fjs:buf r j+ js:pos-listjg if s:modes = needid _ (s:modes = send ^ s:lasts 2 s:good-ids); otherwiseWe now show that (u00;mark(I); u0) 2 steps(AD). First note that since u00:recr = true , thede�nitions of I and RGD imply that mark (I) is enabled in u00. It thus su�ces to show that thefour state variables of AD are handled correctly.recs and recr:We have u0:recr = true = u00:recr and u0:recs = u:recs = u00:recs. Leaving recs and recrunchanged is as required by the de�nition of mark(I) in AD.queue and status :First assume s:modes = needid or s:modes = send ^ s:lasts 2 s:good-ids . In this case theonly di�erence in states s and s0 of the four components that make up the abstraction of aqueue in Part 2 is that the element in current-queue is marked in s0 whereas it might be OKin s. So, the only di�erence between u00:queue(= u:queue) and u0:queue is that the elementwith index js:buf r j+ js:pos-listj has changed its ag to marked, but by de�nition of I in thiscase, this is as required by the de�nition of mark (I) in AD. For status , if s:buf s 6= " thenu:status = u0:status = (?; OK) by Part 3B. But leaving status unchanged is allowed by thede�nition of mark (I) in AD. If s:buf s = " then s satis�es either Part 3C(i) or 3C(ii) and s0satis�es the same part. In this case status might change its ag from OK to marked but againthis is allowed by the de�nition of mark(I) in AD.Finally, in all other cases u:queue = u0:queue and u:status = u0:status so mark(I) should be ano-op, but again this is allowed by the de�nition of mark (I) in AD since in this case I = ;.a = recoversWe show that (u;mark(I); u00; drop(I); u000; recovers; u0), where u00, u000, and I are de�ned below,is a �nite execution fragment of AD by showing that (u;mark(I); u00), (u00; drop(I); u000), and(u000; recovers; u0) are steps of D. Clearly the execution fragment has the right trace.De�ne I = fi j maxidx (u:queue)� (js:buf sj � 1) � i � maxidx (u:queue)g.Thus, I contains the indices of the last js:buf sj elements in u:queue.



136 8. The Generic Protocol GDe�ne u00:recs = u:recsu00:recr = u:recru00:queue = mark(u:queue ; I)u00:status = u:statusSince s:modes = rec we have u:recr = true so the de�nition of I implies that mark(I) is enabledin u. Then it is easy to see that (u;mark(I); u00) 2 steps(AD).De�ne u000:recs = u00:recsu000:recr = u00:recru000:queue = delete(u00:queue; I)u000:status = (false; OK)The de�nitions of I and u00:queue implies that drop(I) is enabled in u00. Now, to show that(u00; drop(I); u000) 2 steps(AD), it su�ces to show that the four state variables of AD are handledcorrectly.recs and recr :Leaving recs and recr unchanged is as required by the de�nition of drop(I) in AD.queue :By explicit construction of u000:queue , clearly queue is handled correctly.status :Since drop(I) is always allowed to change status to (false; OK), status is handled correctly.Thus, (u00; drop(I); u000) 2 steps(AD).Finally, we prove that (u000; recovers; u0) 2 steps(AD). Since u000:recs = u00:recs = u:recs = true ,we have that recovers is enabled in u000. We show that the four state variables of AD are handledcorrectly.recs and recr :Leaving recr unchanged and changing recs from true to false is as required by the de�nitionof recovers in AD.queue :Note that s:current-queue = s0:current-queue = ", s:pos-list = s0:pos-list, and s:buf r =s0:buf r. So, since buf s is emptied in the recovers step of AG, the only di�erence betweenu:queue and u0:queue is that the last js:buf sj elements of u:queue are missing in u0:queue.Thus, u0:queue = u000:queue as required by the de�nition of recovers in AD.status :Since s0:modes = idle, s0:buf s = ", and s0:current-ack s = false, we have u0:status = (false; OK)by Part 3(vii). Thus, u0:status = u000:status as required by the de�nition of recovers in AD.Thus, (u000; recovers; u0) 2 steps(AD).a = recoverrWe show that (u;mark(I); u00; drop(I); u000; recoverr ; u0), where u00, u000, and I are de�ned below,is a �nite execution fragment of AD by showing that (u;mark(I); u00), (u00; drop(I); u000), and(u000; recoverr; u0) are steps of AD. Clearly the execution fragment has the right trace.First, de�ne u00:recs = u:recsu00:recr = u:recru000:recs = u00:recsu000:recr = u00:recr



8.5. Correctness of G 137Below we de�ne I so that it contains indices of u:queue and indices of marked elements inu00:queue. Then, since s:moder = rec we have u:recr = true , so mark(I) is enabled in u, drop(I)is enabled in u00, and �nally recoverr is enabled in u000 since we also have u000:recr = true .We now show that the four state variables in AD are handled correctly by all steps in theexecution fragment.recs and recr:As in the case a = recovers above it is easy to see that recs and recr are handled correctly.queue :Note that s0:good-ids � s:good-ids since issuedr might be extended in the recoverr step ofAG. This leads to the observations that (a) either s0:current-queue = s:current-queue ors0:current-queue = ", and (b) s0:pos-pairs � s:pos-pairs so that s0:pos-list can be obtainedfrom s:pos-list by deleting some elements. Also we have s:buf s = s0:buf s and s0:buf r = ".Thus, u0:queue can be obtained from u:queue by deleting some elements. By letting I be theindices of these elements, the elements are marked in the mark (I) step and then deleted inthe drop(I) step. Thus, queue is handled correctly.status:We consider cases based on which condition in Part 3 is satis�ed by s.Suppose s satis�es condition A. Then so does s0 so we have u:status = u0:status = (false; OK)which is allowed by the execution fragment of AD.If s satis�es condition B, then so does s0 so we have u:status = u0:status = (?; OK). This isallowed by the execution fragment of AD provided that the element at the end of u:queue wasnot deleted in the drop(I) step but this is the case (that it was not deleted) since s:buf s =s0:buf s 6= ".Also, if s satis�es C(i) then so does s0 (with s:current-ag = s0:current-ag), and this isallowed since s:buf s = s0:buf s = " and s:current-queue = s0:current-queue 6= " so the lastelement of u:queue was not deleted in the drop(I) step.If s satis�es C(ii) then s:lasts = s0:lasts =2 ids(s:rs) = ids(s0:rs) (by Invariant 8.10 Part 2)and s:lasts 6= nil (by Invariant 8.1 Part 2). Now, if s0:lasts 2 s0:good-ids then s0 satis�esC(ii) so s:current-queue = s0:current-queue 6= ". As for case C(i) we see that this is allowed.If s0:lasts =2 s0:good-ids then, since s0:lastr = nil 6= s0:lasts, s0 satis�es condition C(vi), sou0:status = (false; OK) which is allowed by the execution fragment.Now, suppose s satis�es C(iii). Then Invariant 8.4 Part 7 implies s:lasts =2 s:good-ids whichagain implies s0:lasts =2 s0:good-ids since s0:good-ids � s:good-ids . Invariant 8.9 Part 3 im-plies (s:lasts; true) =2 s:rs , i.e., (s0:lasts; true) =2 s0:rs. Thus, s0 satis�es condition C(vi), sou:status = (false; OK) which is allowed by the execution fragment of AD.If s satis�es C(iv) we consider two subcases. If (s:lasts; true) =2 s:rs the case is similar to caseC(iii) above. So assume (s:lasts; true) 2 s:rs. Then s0 satis�es C(v) so u:status = (true ; OK)and u0:status = (true ; marked). This marking of status is allowed by mark(I) in AD. Thentotal change of status is allowed is the element at the end of u0:queue is not deleted in thedrop(I) step. Invariant 8.8 Part 2 implies that s:current-queue = s:pos-list = " so u:queue = ",thus there is no last element to be deleted. That su�ces.If s satis�es C(v), then so does s0 (Invariant 8.1 Part 2 implies s0:lasts 6= nil = s0:lastr). Thus,s:status = s0:status = (true ; marked). This is allowed since u:queue = " (so the last element ofthe queue cannot be deleted in the drop(I) step). To see why u:queue = ", we have from C(v)that s:buf s = " and Invariants 8.8 Part 3 and 8.9 Part 3 imply s:current-queue = s:pos-list =s:buf r = ". That su�ces.



138 8. The Generic Protocol GIf s satis�es condition C(vi) then so does s0 (arguments as above). Thus, u:status = u0:status =(false; OK) which is allowed by the execution fragment.Finally, if s satis�es condition C(vii), then so does s0. We then have u:status = u0:status =(s:current-ack s; OK). This is easily seen to be allowed if s:current-ack s = false. So, assumes:current-ack s = true . Then having u:status = u0:status = (true; OK) is allowed provided theelement at the end of u:queue is not deleted in the drop(I) step. A su�cient condition isto show u:queue = ". From C(vii) we have s:buf s = s:current-queue = " and Invariants 8.8Part 4 and 8.9 Part 4 imply s:pos-list = s:buf r = ". Thus, u:queue = ".a = prepareWe consider two cases� s:moder = recWe show that (u;mark(I); u0) 2 steps(AD), where I = js:buf rj+ js:pos-list j. This step (andexecution fragment) clearly has the right trace (the empty trace).Since s:moder = rec, we have u:recr = true , so clearly mark(I) is enabled in u.We show that the four state variables of AD are handled correctly.recs and recr :We have s:modes = idle and s0:modes = needid, so u:recs = u0:recs = false which is asrequired by the de�nition of mark(I) in AD. From the case hypothesis and the de�nitionof prepare in AG, we have s:moder = s0:moder = rec, so u:recr = u0:recr = true which isalso as required by the de�nition of mark(I).queue :Note that the element at the head of buf s is moved to current-msgs in the prepare step ofAG. From the de�nition of RGD we have that this element goes from being OK when it wasin buf s to being marked (s:moder = rec implies, by Invariant 8.6 Part 2, s0:current-ok =false which in turn implies s0:current-ag = marked) when it is in current-queue . Neitherbuf r nor pos-list are changed in the prepare step. Thus, u0:queue is the same as u:queueexcept that the message at position js:buf rj+ js:pos-listj is marked in u:queue and OK inu:queue . This is as required by the de�nition of mark(I) in AD.status :We have u:status = (?; OK) since s:buf s 6= " (from the precondition of the prepare step).Either state s0 satis�es Condition 3B in which case u0:status = (?; OK) or s0 satis�escondition C(i) in which case u0:status = (?; false). Both of these situations are allowedby the de�nition of mark(I) in AD.Thus, (u;mark(I); u0) 2 steps(AD).� s:moder 6= recHere we have s0:current-ag = OK from the e�ect of the prepare step, so with argumentssimilar to those used in the previous case it is easy to show show that u0 = u. Thus, theexecution fragment consisting of only the state u has the right trace. That su�ces.a = choose id(id)We consider two cases



8.5. Correctness of G 139� s0:lasts =2 s0:good-idsWe show that (u; drop(I); u0) 2 steps(AD), where I = fjs:buf r j + js:pos-listjg. This step(and �nite execution fragment) clearly has the right trace (the empty trace).We show that the four state variables of AD are handled correctly.recs and recr:We have s:modes = needid, s0:modes = send, and s:moder = s0:moder which impliesu:recs = u0:recs and u:recr = u0:recr as required by the de�nition of drop(I) in AD.queue :We note that s0:buf s = s:buf s, s0:pos-list = s:pos-list , and s0:buf r = s:buf r. However,s0:current-queue = " but s:current-queue 6= ". Thus, u0:queue can be obtained fromu0:queue by deleting the element that corresponds to s:current-queue . From the casehypothesis and the de�nition of choose id(id) in AG we have s:good s 6� s:good-ids (note,s0:good-ids = s:good-ids). Now, since s:modes = needid, Invariant 8.6 Part 5 impliess:current-ok = false which again implies s:current-ag = marked. Thus, the ag ofthe element s:current-queue is marked. Now, s:current-queue corresponds to positionjs:buf r j+ js:pos-listj in u:queue. Since this element is marked, drop(I) is enabled in u.Furthermore, it is easy to see that queue is handled correctly.status:If s:buf s 6= " then also s0:buf s 6= " so both s and s0 satisfy condition 3B. Thus, u:status =u0:status = (?; OK). This is allowed by drop(I) since the element at the end of queue is notdeleted because s:buf s = s0:buf s 6= ". Now, if s:buf s = ", s satis�es condition 3C(i), i.e.,u:status = (?; false) since s0:current-ag = marked (see the discussion for queue above).We show that s0 satis�es 3C(vi) such that u0:status = (false; OK) which is allowed bydrop(I). This amounts to showing s0:lasts 6= s0:lastr and (s0:lasts; true) =2 s0:rs since thecase hypothesis and the de�nition of choose id(id) give us the rest:From the de�nition of choose id(id) we get id = s0:lasts 2 s:good s. Invariant 8.2 Part 1then implies s0:lasts =2 s:used s. Also, s0:lasts 6= nil by Invariant 8.1 Part 2. Invariant 8.4Part 8 implies (since s:lastr = s0:lastr) that s0:lastr = nil or s0:lastr 2 s:used s. Thus,we get s0:lasts 6= s0:lastr as required. Also, since s0:lasts =2 s:used s, Invariant 8.4 Part 6implies (s0:lasts; true) =2 s:rs = s0:rs as required.Thus, (u; drop(I); u0) 2 steps(AD).� s0:lasts 2 s0:good-idsWe show u0 = u by comparing the four state variables of AD in u and u0. The executionfragment u then has the right properties.recs and recr:We have s:modes = needid, s0:modes = send, and s:moder = s0:moder which impliesu:recs = u0:recs and u:recr = u0:recr as required.queue :Her we have s0:current-queue = s:current-queue . Then it is easy to see that u0:queue =u:queue.status:We have that either both s and s0 satisfy condition 3B, or s satis�es 3C(i) and s0 satis�es3C(ii). In both cases u0:status = u:status as required.a = send pkt sr(m; id)We show u = u0 by comparing the four state variables of AD in u and u0. The execution fragment



140 8. The Generic Protocol Gu then has the right properties.recs and recr :We have s:modes = s0:modes and s:moder = s0:moder which implies u:recs = u0:recs andu:recr = u0:recr as required.queue :We have s0:buf s = s:buf s, s0:current-queue = s:current-queue and s0:buf r = s:buf r. Thesend pkt sr(m; id) step might add some copies of (m; lasts) to the channel sr . However, sincemodes = send, this does not change the value of pos-pairs, so s0:pos-list = s:pos-list. Thus,u0:queue = u:queue .status :Whatever condition in Part 3 of De�nition 8.13 s satis�es, s0 satis�es the same. This impliesu0:status = u:status.a = receive pktsr(m; id)Since this step may remove the last copy of (m; id) from the channel sr (a multiset), we generallyhave s0:pos-pairs � s:pos-pairs . (Note, that the ordering of pairs is unchanged since useds isunchanged). Also, we have s0:buf s = s:buf s.We consider cases.� s:moder = recIn this case the only change in the step of AG is the above mentioned change of the channelsr . We show (u; drop(I); u0) 2 steps(AD), where I is de�ned below. This step (and �niteexecution fragment) clearly has the right trace (the empty trace).De�ne I = ( ; if (m; id) =2 s:pos-list _ (m; id) 2 s0:pos-listfjs:buf rj+ ig otherwise, where s:pos-list [i] = (m; id)Clearly drop(I) is enabled in u (elements in pos-list correspond to marked elements inu:queue). We show that all four state variables of AD are handled correctly.recs and recr :It is easy to see that we have u0:recs = u:recs and u0:recr = u:recr(= false) as requiredby the de�nition of drop(I) in AD.queue :We have s0:current-queue = s:current-queue , s0:buf s = s:buf s, and s0:buf r = s:buf r.Then the de�nition of I implies that queue is handled as required by the de�nition ofdrop(I) in AD.status :We have from Part 3 that u0:status = u:status since none of the variables occurring inPart 3 are changed in the step of AG. This is allowed by drop(I) provided either the valueof status is (false; OK) or the element at the end of queue was not deleted. For conditionsA, B, C(i), C(ii), and C(vi) this is obvious. For C(ii) and C(iii) we get from Invariant 8.8Part 2 that pos-list = ", so u0:queue = u:queue which su�ces. For C(iv) Invariant 8.8Part 3 implies in the same way that u0:queue = u:queue. Finally, for C(vii) only the casewhere current-ack s = true is of interest. But again we get u0:queue = u:queue. This timebecause of Invariant 8.8 Part 4.� s:moder 6= recWe consider cases based on the if-statement in the de�nition of receive pktsr(m; id) inAG;s=r .



8.5. Correctness of G 141{ id 2 s:good rThis implies id 2 s:good-ids .We show that (u; drop(I); u00; unmark(I 0); u0), where u00, I , and I 0 are de�ned below, isa �nite execution fragment of AD. The execution fragment clearly has the right trace(the empty trace).recs and recr:It is easy to see that we have u0:recs = u:recs and u0:recr = u:recr(6= false). De�neu00:recs = u:recs and u00:recr = u:recr. Leaving recs and recr unchanged is as requiredby the de�nitions of drop(I) and unmark(I 0) in AD.queue :Since id 2 s:good-ids we have that (m; id) 2 s:pos-pairs [ s:current-pair where, byde�nition, s:pos-pairs and s:current-pair are disjoint (all ids are di�erent).First, assume (m; id) 2 s:pos-pairs. The e�ect of receiving this pair is to removefrom goodr (and thus from good-ids) all ids less than or equal id . This correspondsto removing an initial pre�x of s:pos-list up to and including (m; id). And at the sametimem is moved to the end of buf r . Invariant 8.8 Part 1 and the fact that s:pos-pairsand s:current-pair are disjoint gives us s:current-queue = s0:current-queue . Thus,u0:queue can be obtained from u:queue by deleting some elements corresponding tothe initial pre�x of s:pos-list and changing the ag of the element corresponding to(m; id) to OK (since now this element is in buf r). Then clearly I and I 0 can be de�nedso that the change in queue is as required by the de�nition on drop(I) and drop(I 0)in ADIf (m; id) 2 s:current-pair a similar argument gives us that u0:queue can be obtainedfrom u:queue by deleting all elements corresponding to elements in s:pos-list andsetting the ag of the element corresponding to s:current-queue to OK. In this cases0:current-queue = ". Again, I and I 0 can be de�ned.status:If s satis�es condition A, B, or C(i) of Part 3 then so does s0. This is allowed bydrop(I) and unmark(I 0) since either u0:status = (false; OK) or the element at the endof u:queue was not deleted.If s satis�es C(ii) then s0 satis�es either C(ii) or C(iii). In both cases the elementend of u:queue was not deleted (as required) and the possible ag change of statusto OK is allowed by unmark(I 0).s cannot satisfy C(iii), C(iv), or C(v) since then Invariant 8.8 Parts 2 and 3 wouldimply that no packets in s:sr could be received successfully which contradicts theassumption that id 2 s:good r.If s satis�es C(vi) then so does s0. This is allowed by drop(I) and unmark(I 0) in AD.Finally, assume s satis�es C(vii). Then s:current-ack s = false since we otherwisewould have a contradiction with Invariant 8.8 Part 4. Thus, u0:status = u:status =(false; OK) which is allowed by drop(I) and unmark (I) in AD.{ id =2 s:good rThen (u; drop(I); u0) 2 steps(AD).The proof is similar to the proof in case s:moder = rec above.a = send pkt rs(id ; b)Here it is easy to see that that u = u0. That su�ces since then the execution fragment u of ADhas the right properties.



142 8. The Generic Protocol Ga = receive pktrs(id ; b)We consider cases� s:modes = send ^ s:lasts = idWe show that (u; drop(;); u00; unmark(;); u0), where u00 is de�ned below, is a �nite executionfragment of AD. The execution fragment clearly has the right trace (the empty trace).De�ne u00:recs = u:recsu00:recr = u:recru00:queue = u:queuerWe will de�ne u00:status below when we consider cases.First note that drop(;) and unmark(;) are enabled in u and u00, respectively, since theseactions have no precondition. We show that all four state variables of AD are handledcorrectly by the two steps in the execution fragment.recs and recr :We obviously have u0:recs = u:recs = u00:recs and u0:recr = u:recr = u00:recr. Leavingrecs and recr unchanged is as required by the de�nitions of drop(;) and unmark(;) inAD.queue :First observe that s0:buf s = s:buf s and s0:buf r = s:buf r. Since (s:lasts; b) 2 s:rs, In-variant 8.10 Part 2 implies that s:lasts =2 s:good-ids thus s:current-queue = ". Alsos0:current-queue = " since s0:modes = idle. The receive pkt rs(id ; b) step in AG mightcause (s:current-msgs; s:lasts) to be added to pos-pairs (the pair might have been put ontosr but did not �gure in s:pos-pairs because s:modes = send). (s:current-msgs; s:lasts)is, however, not added to pos-pairs since s:lasts =2 s:good-ids as explained above. Thus,we have s0:pos-list = s:pos-list. All in all we have u0:queue = u:queue . Leaving queueunchanged is as required by the de�nitions of drop(;) and unmark (;) in AD.status :State s cannot satisfy conditions A, C(i), and C(vii) of Part 3 because s:modes = send.If s satis�es condition B then so does s. By de�ning u00:status = u:status we have thatstatus is unchanged in the execution fragment which is allowed by the de�nitions ofdrop(;) and unmark (;) in AD.State s cannot satisfy condition C(ii) since s0:lasts =2 s:good-ids as explained above.Also, s cannot satisfy condition C(iii). If b = true then Invariant 8.9 Part 3 impliess:buf r = " which contradicts condition C(iii). If b = false then Invariant 8.11 Part 2implies s:lasts 6= s:lastr which is also a contradiction.Assume s satis�es condition C(vi). Then u:status = (true; OK). From the discussion inthe previous condition C(iii), we have b = true . Now, s:current-ack s = b = true ands0:modes = idle so s0 satis�es condition C(vii). Thus, also u0:status = (true ; OK). Byde�ning u00:status = (true; OK) we have that status is unchanges in the execution fragmentwhich is allowed by the de�nitions of drop(;) and unmark(;) in AD.Next, assume s satis�es condition C(v). Then u:status = (true ; marked). If b = truethen by condition C(vii) we have u0:status = (true ; OK). This is allowed by drop(;)and unmark(;) by de�ning u00:status = u:status. If b = false then, again, by conditionC(vii) u0:status = (false; OK) which is allowed by drop(;) and unmark(;) by de�ningu00:status = u0:status .Finally, if s satis�es C(vi) then b must be false since the condition states (s:lasts; true) =2



8.5. Correctness of G 143s:rs. Thus, u:status = (false; OK) and by condition C(vii) also u0:status = (false; OK).So, by de�ning u00:status = u:status, we leave status unchanged, which is allowed by thede�nition of drop(;) and unmark(;) in AD.� s:modes 6= send _ s:lasts 6= idThen the only di�erence between s0 and s is that s0 has one less copy of (m; id) in thechannel rs .We show that u0 = u. Then the execution fragment u clearly has the right properties. Wecheck the state variables of AD.recs, recr, and queue :Obviously recs, recr, and queue are the same in u and u0.status:No matter which condition in Part 3 s satis�es, s0 satis�es the same condition, thus,u0:status = u:status. The only interesting case is if s satis�es condition C(v). Thecondition states that s:modes = send, so the case hypothesis gives us that id 6= s:lasts.Thus, (m; id) 6= (s:lasts; true). Then, since (s:lasts; true) 2 s:rs by condition C(v) wealso have (s0:lasts; true) 2 s0:rs. Thus, also s0 satis�es condition C(v).a 2 fshrink good s(ids); grow good s(ids)gChanging good s clearly does not change anything in the mapping RGD. Thus, u0 = u. Then the�nite execution fragment u clearly has the right properties.a = shrink good r(ids)This step removes elements from good r, thus, s0:good-ids � s:good-ids.We consider cases� s:current-ok = falseWe show (u; drop(I); u0) 2 steps(AD), where I is de�ned below. Clearly the step (and �niteexecution fragment) has the right trace (the empty trace).recs and recr:We clearly have u0:recs = u:recs and u0:recr = u:recr as required by the de�nition ofdrop(I) in AD.queue :By shrinking good-ids we might remove elements from pos-list and current-queue . But,the elements in u:queue corresponding to these elements are all marked (for current-queueremember that s:current-ok = false implies s:current-ag = marked), so by de�ning I tobe the indices of these elements we both get that drop(I) is enabled in u and that queueis handled correctly.status:Assume s satis�es condition A, B, or C(i) in Part 3. Then so does s0, so u0:status =u:status. This is allowed by drop(I) since in the cases (B and C(i)) where status 6=(false; OK) the element at the end of u:queue is not deleted.If s satis�es C(ii) then either s0 also satis�es C(ii) which is allowed since the element atthe end of u:queue (which corresponds to current-queue is no deleted), or s0 satis�es C(vi)(it cannot satisfy C(iii){C(v) because of Invariant 8.4 Part 7 and Invariant 8.10 Part 2)which is allowed by drop(I) since s:current-ok = false implies u:status:ag = marked.



144 8. The Generic Protocol GIf s satis�es C(iii){C(v), then so does s0, so u0:status = u:status. But this is allowed bysince we in these cases have u0:queue = u:queue.If s satis�es C(v) then so does s0. In this situation the element at the end of u:queuemight have been deleted (corresponding to elements being removed from pos-list, butsince status = (false; OK), status is handled correctly.Finally, if s satis�es C(vii) then so does s0. If current-ack s = false then u0:status =u:status = (false; OK) which is allowed by drop(I). If current-ack s = true then Invari-ant 8.8 Part 4 implies that u0:queue = u:queue . Thus the element at the end of u:queueis not deleted, so it is permitted to leave status unchanged at (true ; OK).Thus, (u; drop(I); u0) 2 steps(AD).� s:current-ok = trueAgain we claim that (u; drop(I); u0) 2 steps(AD).The argument is similar to the previous case except that since current-ok = true , we havecurrent-ag = OK, so it is not allowed to lose an element in current-queue or lose status incase C(ii). However, the precondition to shrink good r(ids) ensures that these requirementsare met.a = grow goodr(ids)The precondition ids \ issuedr = ; and the e�ect of grow good r(ids) ensures that s0:good-ids =s:good-ids .Then it is easy to see that u0 = u. Thus, the execution fragment u has the right properties.a = cleanuprWe show that u0 = u. Then the execution fragment u has the right properties. We consider thefour state variables of AD.recs, recr, and queue :We obviously have u0:recs = u:recs, u0:recr = u:recr, and u0:queue = u:queue .status :Here the only problem would be that lastr is changed. The variable lastr only occurs in theconditions of Part 3 when modes = send, so assume s:modes = send. Then s:lasts 6= s:lastrfrom the precondition. Since also s0:modes = send, Invariant 8.1 Part 2 gives us s0:lasts 6= nil.Now, since s0:lastr = nil, we also have s0:lasts 6= s0:lastr. It is now easy to see that whatevercondition in Part 3 that s satis�es, s0 satis�es the same condition. Thus, u0:status = u:status.This concludes the simulation proof.We can now prove that AG safely implements AD.Theorem 8.15 (AG safely implements AD)AG vS ADProofDirectly by Lemma 8.14 and the soundness of re�nement mappings with respect to the safeimplementation relation (Lemma 5.8).



8.5. Correctness of G 1458.5.3 CorrectnessWe do not give a formal proof that G correctly implements D. Instead we provide some intuitivejusti�cation and refer to the formal proof that H correctly implements G which is similar.We �rst give two key lemmas about the live executions of G. We use our temporal logic tostate the results but we only give informal proofs. These lemmas are then use to prove that Gcorrectly implements D.The �rst lemma says that if we are in a situation where no crashes occur in the future, thenwhenever modes = send, eventually the sender will move to idle mode. Note, that due toprevious crashes the sender and the receiver do not necessarily agree on what identi�ers to use.So, in some situations, the sender moves to idle mode because of negative acknowledgementsfrom the receiver, in which case the current message might have been lost.Lemma 8.16LG j= 2(2(modes 6= rec ^ moder 6= rec) =) (modes = send; modes = idle))ProofAssume: 1. � 2 LG2. �1 is an arbitrary su�x of �3. �1 j= 2(modes 6= rec ^ moder 6= rec)4. �2 is an arbitrary su�x of �1.5. �2 j= modes = sendProve: �2 j= 3(modes = idle)We consider what happens in �2. Note that since modes = send and no crashes occur, modes willstay send unless one of the actions receive pkt rs(lasts; true) or receive pkt rs(lasts; false) occurs,in which case modes changes to idle. Furthermore, while modes = send, lasts is unchangedand the sender keeps performing send pkt sr(m; lasts). The latter is due to weak fairness to theset CG;s=r1 containing send pkt sr(m; lasts) since all other actions in the set are never enabled.Now, it su�ces to show that eventually receive pktrs(lasts; true) or receive pktrs(lasts; false)occurs.h1i1. Case: �2 j= lasts =2 good-idsh2i1. Case: �2 j= (lasts; true) 2 rsProof: By the fairness of the rs channel, eventually a receive pktrs(lasts; true)action occurs. That su�ces.h2i2. Case: �2 j= (lasts; true) =2 rs ^ lasts = lastrProof: In this situation the receiver has received the current packet but not yetsent positive acknowledgements.If buf r 6= ", weak fairness to the set CG;s=r3 implies that eventually buf r = ".Furthermore, buf r stays empty as long as the sender does not leave send mode.Now, when buf r = ", we have moder 2 fidle; ackg. If moder = idle, it changesto ack when a receive pktsr(m; lasts) occurs. Since the sender keeps on sending(m; lasts) packets, some will continue to get through (by channel liveness), so ifmoder = idle, eventually moder = ack. When moder = ack the receiver willcontinue to perform send pktrs(lastr; true). Such a step can, however, change moder



146 8. The Generic Protocol Gto idle, but from above we have that eventually moder = ack again and newsend pkt rs(lastr ; true) steps will be performed.By channel liveness, eventually receive pktrs(lastr; true) occurs, and since lastr =lasts, the result follows.h2i3. Case: �2 j= (lasts; true) =2 rs ^ lasts 6= lastrProof: This case actually describes two situations: in the �rst situation the currentpacket never has been and never can be successfully received by the receiver. In thesecond situation the current packet has been successfully received but the receivercrashed before placing a positive acknowledgement in the channel. Both situationsare dealt with in the same way.Every time a receive pktsr(m; lasts) step occurs, lasts is placed into nack-buf r, whichleads to a send pktrs(lasts; false) action (by fairness to the send pkt rs(id ; false) ac-tions). Since receive pktsr(m; lasts) continues to occur, send pkt rs(lasts; false) con-tinues to occur. By channel liveness eventually receive pkt rs(lasts; false) occurs.That su�ces.h2i4. Q.E.D.Proof: By the exhaustive cases h2i1{h2i3.h1i2. Case: �2 j= lasts 2 good-idsProof: Then either always lasts =2 goodr or eventually lasts 2 goodr .If always lasts =2 goodr , then the situation is as described by the case above where �2 j=lasts =2 good-ids ^ (lasts; true) =2 rs ^ lasts 6= lastr.If eventually lastr 2 good r, then still the receiver might have issued send pktrs(lasts; false)actions in the meantime, and these packets could have gotten through to the sender inwhich case the result follows. So, if this is not the case, eventually (m; lasts) is successfullyreceived in which case the situation is as described by the case above where �2 j= lasts =2good-ids ^ (lasts; true) =2 rs ^ lasts = lastr .h1i3. Q.E.D.Proof: By the exhaustive cases h1i1{h1i2.The result now follows from Lemma 3.5 and the de�nition of ;.The next lemma states that if there are elements in the four parts that make up the abstractionof a queue in AD (cf. De�nition 8.13), then eventually a receive msg(m) action occurs. Thus,messages cannot be blocked in the G protocol.Below we use the notation receive msg( ) to denote the set freceive msg(m) jm 2 Msgg.Lemma 8.17LG j= 2(2(modes 6= rec ^ moder 6= rec ^(buf r 6= " _ pos-list 6= " _ current-queue 6= " _ buf s 6= ")) =) 3hreceive msg( )i)ProofAssume: 1. � 2 LG2. �1 is an arbitrary su�x of �



8.5. Correctness of G 1473. �1 j= 2(modes 6= rec ^ moder 6= rec ^(buf r 6= " _ pos-list 6= " _ current-queue 6= " _ buf s 6= "))Prove: �1 j= 3hreceive msg( )ih1i1. Case: �1 j= buf r 6= "Proof: The result follows by weak fairness to the set CG;s=r3.h1i2. Case: �1 j= pos-list 6= "Proof: The packets in pos-list represent \old" packets in the sr channel that might stillsuccessfully be received by the receiver since the packets all have identi�ers in good-ids .Due to channel liveness (the weak fairness requirement on each packet), the packets inpos-list will eventually be received. Two situations can occur.First, a packet from pos-list is accepted because it has an identi�er in goodr at the timeit is received. In this case the message of the packet is placed in buf r, and h1i1 gives theresult.Second, no packets from pos-list are ever accepted. Then eventually pos-list becomesempty (no new packets can be added to pos-list since no crashes occur, and each packet inpos-list has only �nitely many copies in sr and these will eventually all be received (butnot accepted) and thus removed from sr). However, then one of the other disjuncts inPart 3 of the Assumption must be satis�ed, so we refer to the other cases.h1i3. Case: �1 j= current-queue 6= "h2i1. Case: �1 j= current-ok = trueProof: In this situation the sender either will (because of liveness on choose id(id)actions) or has chosen a current identi�er lasts which is in good r (and stays there untilthe current packet is accepted). The sender will send the current packet repeatedly,so by channel liveness it will eventually be received and thus accepted. The messagewill be placed into buf r and Case h1i1 gives the result.h2i2. Case: �1 j= current-ok = falseProof: Here, due to the fact that the receiver was crashed during the last prepareaction, the sender may choose an identi�er which is not in good r. The sender willsend the current packet repeatedly, and two things can happen.Either, the current packet will be accepted at some point by the receiver becauselasts was in good-ids initially and has been added to goodr in the meantime. Thenthe message is placed in buf r and Case h1i1 gives the result.Or, the current packet will never be accepted by the receiver. However, since thecurrent packet will keep on being received by the receiver (due to channel liveness),the receiver will keep on issuing negative acknowledgements for the current iden-ti�er lasts. By channel liveness such a negative acknowledgement will eventuallyget through and move the sender to idle mode. This has the e�ect of emptyingcurrent-queue , so one of the other disjuncts in Part 3 of the Assumption must besatis�ed, so we refer to the other cases.h2i3. Q.E.D.Proof: By exhaustive cases h2i1 and h2i2.h1i4. Case: �1 j= buf s 6= "



148 8. The Generic Protocol GProof: By Fairness to the set CG;s=r1, eventually a prepare action will occur. Sincemoder 6= rec, the sender ends up in needid mode with current-ok = true . The result isnow implied by the �rst subcase of Case h1i3.h1i5. Q.E.D.Proof: By exhaustive cases h1i1{h1i4.The result now follows from Lemma 3.5.With the two lemmas above we can prove the main ingredient in our liveness proofs, namely, if� is a live execution of G and �0 is an execution of AD such that (�; �0) 2 RGD, then �0 is live.We prove the result by contradiction (cf. the similar lemma (Lemma 7.17) in the proof that Dcorrectly implements S). Thus, we assume that �0 is not live and then derive a contradictionwith the fact that � is live.Lemma 8.18Let � 2 exec(AG) and �0 2 exec(AD) be arbitrary executions of AG and AD, respectively, with(�; �0) 2 RGD. Assume � j= QG. Then �0 j= QD.ProofWe prove the conjecture by contradiction. Thus,Assume: �0 6j= QDProve: Falseh1i1. �0 j= :WF (CD;1; recs = false ^ recr = false) _:WF (CD;2; recs = false ^ recr = false) _:WF (CD;3) _:WF (CD;4)Proof: Immediate by the Assumption, de�nition of QD, and the Boolean operators.h1i2. Case: �0 j= :WF (CD;1; recs = false ^ recr = false)h2i1. �0 j= 32(status:stat 2 Bool ^ recs = false ^ recr = false) ^32:hfack(true); ack(false)giProof: By Assumption h1i, the de�nitions ofWF and CD;1, and the fact that ack(b)actions are enabled when status :stat 2 Bool.h2i2. � j= 32(modes 6= rec ^ moder 6= rec ^ buf s = " ^((modes = send ^ lasts = lastr ^ buf r = ") _(modes = send ^ lasts 6= lastr ^ (lasts; true) 2 rs) _(modes = send ^ lasts 6= lastr ^ (lasts; true) =2 rs ^ lasts =2 good-ids) _(modes = idle))) ^32:hfack(true); ack(false)giProof: By h2i1, Lemmas 5.10 and 5.11, the de�nition of RGD, and the fact thatack(b) actions are external.h2i3. � j= 32(modes = idle ^ buf s = ") ^ 32:hfack(true); ack(false)gi



8.5. Correctness of G 149Proof: By h2i2, Lemma 8.16, and the fact that when modes becomes idle, it staysidle since no crashes occur and no prepare action can occur (since buf s = " forever).h2i4. � j= 32(modes = idle ^ buf s = ") ^ 32:hCG;s=r1iProof: By h2i3 since the ack(b) actions are in CG;s=r1 and no other actions in CG;s=r1can occur when modes = idle and buf s = ".h2i5. � j= :WF (CG;s=r1)Proof: By h2i4, the de�nition of WF , and the fact that modes = idle ^ buf s = "implies the enabling condition of CG;s=r1.h2i6. Q.E.D.Proof: h2i5 contradicts the assumption that � is live.h1i3. Case: �0 j= :WF (CD;2; recs = false ^ recr = false)h2i1. �0 j= 32(queue 6= " ^ recs = false ^ recr = false) ^ 32:hreceive msg( )iProof: By Assumption h1i, the de�nitions of WF and CD;2, and the fact that CD;2is enabled when queue 6= ".h2i2. � j= 32(modes 6= rec ^ moder 6= rec ^(buf r 6= " _ pos-list 6= " _ current-queue 6= " _ buf s 6= ")) ^32:hreceive msg( )iProof: By h2i1, Lemmas 5.10 and 5.11, the de�nition of RGD, and the fact thatreceive msg(m) actions are external.h2i3. Q.E.D.Proof: h2i2 contradicts Lemma 8.17.h1i4. Case: �0 j= :WF (CD;3)h2i1. �0 j= 32(recs = true) ^ 32:hrecoversiProof: By expanding WF in Assumption h1i.h2i2. � j= 32(modes = rec) ^ 32:hrecoversiProof: By h2i1, Lemmas 5.10 and 5.11, the de�nition of RGD, and the fact thatrecovers is external.h2i3. � j= 32(modes = rec) ^ 32:hCG;s=r1iProof: From h2i2 since recovers 2 CG;s=r1 and none of the other actions in CG;s=r1are enabled when modes = rec.h2i4. � j= :WF (CG;s=r1)Proof: From h2i3, the de�nition of WF and the fact that modes = rec implies theenabling condition for CG;s=r1.h2i5. Q.E.D.Proof: h2i4 contradicts the assumption that � is live.h1i5. Case: �0 j= :WF (CD;4)Proof: Similar to h1i4.



150 8. The Generic Protocol Gh1i6. Q.E.D.Proof: By h1i1 and the exhaustive cases h1i2{h1i5.Finally, we can show that G correctly implements D.Theorem 8.19G vL DProofImmediate by Lemmas 8.14, 8.18, and 5.9.We are now ready to consider the two low-level protocols: the Five-Packet Handshake ProtocolH and the Clock-Based Protocol C. The next chapter deals with H and then, in Chapter 10, weconsider C.



Chapter 9The Five-Packet Handshake ProtocolHWe have now reached the point where we can present the �rst of the low-level protocols weconsider, namely, the Five-Packet Handshake Protocol of Belsnes [Bel76], which in this work isdenoted by H. The H protocol is entirely distributed: it consists of a sender process, a receiverprocess, and two channels as depicted in Figure 9.1.H is the standard protocol for setting up network connections, used in TCP, ISO TP-4,and many other transport protocols. During normal operation it goes through three phases (cf.Figure 9.2):Agree on identi�er: The sender picks an identi�er, called jd to distinguish it from the identi-�er id used below for the actual communication of the message, and sends it in a needidpacket. On receipt of this packet, the receiver pairs jd with a new identi�er id , and sendsthe pair (jd ; id) back to the sender. On receipt of this pair, the sender knows that it shouldassociate id to the current message.Send and acknowledge: This phase is similar to the send/acknowledge phase of G. Thesender sends the current packet in send packets, and the receiver acknowledges the receiptwith ack packets.Clean up: When the sender has received the acknowledgement, it issues a done packet in orderto inform the receiver that it may forget about the last message accepted.Sender Hs Receiver HrChannel ChrsChannel Chsr--�� --�- -� �recoverscrashsack(b)send msg(m) recoverrcrashrreceive msg(m)receive pktrs(p) send pktrs(p)send pktsr (p) receive pktsr(p)Figure 9.1The Five-Packet Handshake Protocol H.151



152 9. The Five-Packet Handshake Protocol H
? ?XXXXXXXXXXXzXXXXXXXXXXXzXXXXXXXXXXXz�����������9 �����������9 needidacceptsendackdone

Sender Receiver9>=>; Agree on identi�er9>=>; Send and acknowledge� Clean upFigure 9.2The phases of H.Below we look at di�erent abnormal situations which can arise due to crashes. H is sometimescalled the three-way handshake, because only three packet types are needed for message delivery(the �rst three in Figure 9.2).The rest of this chapter is organized as follows. Section 9.1 considers the channels in H. Then,in Section 9.2, we present the sender and receiver processes, and in Section 9.3 we show how His obtained from the subprocesses. Finally, in Section 9.4 we prove that H correctly implementsG.9.1 The ChannelsWe use the same channels as at the G level (cf. Section 8.2). However, the actual packets thatare communicated are di�erent in H and G. This only means that in H we should instantiatethe set P of possible packets with a di�erent set of packets than in G.9.2 The Sender and the ReceiverIn this section we specify the sender and receiver processes as two live I/O automata Hs =(AH;s; LH;s) and Hr = (AH;r; LH;r), respectively. In the subsection de�ning steps(AH;s) andsteps(AH;r) below, we provide more intuition about the H protocol.9.2.1 States and Start StatesThe sender and receiver processes both contain a stable set of used identi�ers. This means thatthese sets should survive crashes when implemented on a physical machine. Speci�cally, wemodel the stability of a state variable by not resetting it on recovery.For instance, the stable set issuedr includes all identi�ers ever considered \good" by thereceiver. Thus, every time the receiver issues a new identi�er id (to be sent to the sender in anaccept packet) this should be remembered forever by adding id to issuedr. This is an expensive



9.2. The Sender and the Receiver 153solution since it requires updates to a stable variable for every message. The �x to this problemwould be to introduce a normal volatile (i.e., non-stable) variable unusedr which is �lled withnew (i.e., non-issued r) identi�ers now and then in steps that update the stable variable issuedrby adding these new identi�ers. Then, for each message, the identi�er can be chosen fromunusedr and no updates to stable variables need to be performed. Of course, unused r will belost in crashes, so it should not be kept too big, but on the other side, the less identi�ers itcontains, the more frequently updates to the stable variable issuedr needs to be performed.This is a typical trade-o�.We do not consider the addition of the variable unusedr to Hr, but the changes needed areboth few and simple.SenderThe sender chooses identi�ers jd from the set JD . This set is similar to the set ID introduced inSection 8.1. We call it JD to distinguish it from ID , which are identi�ers chosen by the receiver.Variable Type Initially Descriptionmodes fidle;needid;send, recg idle The mode of the sender. Similar to themode of the sender at the G level.buf s Msg� " The list of messages at the sender side.jds JD [ fnilg nil The jd chosen for the current messageby the sender.jd-useds S P(JD) ; A set including all the jds ever used bythe sender.ids ID [ fnilg nil The id received from the receiver. Sim-ilar to lasts at the G level.current-msgs Msg [ fnilg nil The message about to be sent to thereceiver. Same as at the G level.current-ack s Bool false Acknowledgement from the receiver.Same as at the G level.done-buf s ID� " A list of ids for which the sender mustissue an done packet to the receiver.S = Stable



154 9. The Five-Packet Handshake Protocol HReceiverVariable Type Initially Descriptionmoder fidle;accept;rcvd, ack;recg idle The mode of the receiver. Similar tothe receiver mode at the G level, exceptfor the extra accept mode. In modeaccept the receiver is sending acceptpackets, which contain the chosen mes-sage identi�er.buf r Msg� " The list of messages accepted. Same asat the G level.jd r JD [ fnilg nil The jd received from the receiver.id r ID [ fnilg nil The id chosen for the received jd .lastr ID [ fnilg nil This variable contains (when non-nil)the id of the last packet accepted.issuedr S P(ID) " A set including all ids ever issued bythe receiver. Same as at the G level.nack-buf r ID� " A list of ids for which the receiverwill issue negative acknowledgements.Same as at the G level.S = Stable9.2.2 ActionsSenderInput:send msg(m), m 2Msgcrashsreceive pktrs(accept; jd; id), jd 2 JD , id 2 IDreceive pktrs(ack; id; b), id 2 ID, b 2 BoolOutput:ack(b), b 2 Boolrecoverssend pktsr (needid; jd), jd 2 JDsend pktsr (send;m; id), m 2Msg, id 2 IDsend pktsr (done; id), id 2 IDInternal:choose jd(jd), jd 2 JDgrow-jd-useds(jds), jds 2 P(JD)ReceiverInput:crashrreceive pktsr(needid; jd), jd 2 JDreceive pktsr(send;m; id), m 2Msg, id 2 IDreceive pktsr(done; id), id 2 IDOutput:receive msg(m), m 2Msgrecoverrsend pktrs(accept; jd; id), jd 2 JD , id 2 ID



9.2. The Sender and the Receiver 155send pktrs (ack; id; b), id 2 ID, b 2 BoolInternal:grow-issuedr(ids), ids 2 P(ID)9.2.3 StepsWe now formally de�ne steps(AH;s) and steps(AH;r). As at the G level we increase readabilityby listing the de�nition of steps(AH;s) in the left column and the de�nition of steps(AH;r) in theright, and by aligning send-pkt with the corresponding receive-pkt.After the de�nition, we provide more intuition about how H works.send msg(m)E�ect:if modes 6= rec thenbuf s := buf s ^mchoose jd(jd)Precondition:modes = idle ^ buf s 6= " ^jd =2 jd-usedsE�ect:modes := needidjds := jdjd-useds := jd-useds [ fjdgcurrent-msgs := head(buf s)buf s := tail(buf s)send pktsr (needid; jd)Precondition:modes = needid ^ jds = jdE�ect:none receive pktsr(needid; jd)E�ect:if moder = idle thenmoder := acceptchoose an id not in issuedrjdr := jdidr := idissuedr := issuedr [ fidgreceive pktrs(accept; jd ; id)E�ect:if modes 6= rec thenif modes = needid ^ jds = jd thenmodes := sendids := idelse if ids 6= id thendone-buf s := done-buf s ^ id send pktrs (accept; jd; id)Precondition:moder = accept ^ jdr = jd ^ idr = idE�ect:nonesend pktsr (send;m; id)Precondition:modes = send ^ current-msgs = m ^ ids = idE�ect:none receive pktsr(send;m; id)E�ect:if moder 6= rec thenif moder = accept ^ idr = id thenmoder := rcvdbuf r := buf r ^mlastr := idelse if lastr 6= id thennack-buf r := nack-buf r ^ id



156 9. The Five-Packet Handshake Protocol Hreceive msg(m)Precondition:moder = rcvd ^ buf r 6= " ^head(buf r) = mE�ect:buf r := tail(buf r)if buf r = " thenmoder := ackreceive pktrs(ack; id; b)E�ect:if modes 6= rec thenif modes = send ^ ids = id thenmodes := idlecurrent-acks := bjds := nilids := nilcurrent-msgs := nilif b = true thendone-buf s := done-buf s ^ id send pktrs (ack; id; true)Precondition:moder = ack ^ lastr = idE�ect:nonesend pktrs (ack; id; false)Precondition:moder 6= rec ^ nack-buf r 6= " ^head(nack-buf r) = idE�ect:nack-buf r := tail(nack-buf r)send pktsr (done; id)Precondition:modes 6= rec ^ done-buf s 6= " ^head(done-buf s) = idE�ect:done-buf s := tail(done-buf s) receive pktsr(done; id)E�ect:if (moder = accept ^ idr = id) _(moder = ack ^ lastr = id) thenmoder := idlejdr := nilidr := nillastr := nilack(b)Precondition:modes = idle ^ buf s = " ^current-acks = bE�ect:nonecrashsE�ect:modes := recrecoversPrecondition:modes = recE�ect:modes := idlejds := nilids := nilbuf s := "current-msgs := nilcurrent-acks := falsedone-buf s := "
crashrE�ect:moder := recrecoverrPrecondition:moder = recE�ect:moder := idlejdr := nilidr := nillastr := nilbuf r := "nack-buf r := "grow-jd-useds(jds)Precondition:jJD n (jd-useds [ jds)j =1E�ect:jd-useds := jd-useds [ jds grow-issuedr(ids)Precondition:jID n (issuedr [ ids)j =1E�ect:issuedr := issuedr [ ids



9.2. The Sender and the Receiver 157The following note about the receive pkt sr(needid; jd) steps should be made: AH;r is requiredto be input-enabled and therefore we do not specify preconditions for input actions. However,in the e�ect clause of receive pkt sr(needid; jd) we must choose an id not in issuedr . But thisis only possible if issuedr 6= ID . However, Invariant 9.11 Part 8.12 below states that this isindeed the case for all reachable states. However, since there exists (non-reachable) states withissuedr = ID , AH;r is not input-enabled. This is not a problem in practice, but to make AH;rinput-enabled we interpret the de�nition of receive pktsr(needid; jd) such that an arbitrary idis chosen if issuedr = ID .We �rst describe the normal mode of operation: the sender performs a choose jd(jd) action(which corresponds to prepare of G) and moves to mode needid, where it repeatedly sends(needid; jd) to the receiver. By channel liveness these packets will continue to get through.One of the major problems in the liveness proof below is to show that eventually the receiverwill be in idle mode. When this happens, the receiver accepts (needid; jd), associates a newidenti�er id with jd , and moves to accept mode, where it repeatedly issues (accept; jd ; id)packets. Again by channel liveness, such a packet gets through and since jd is equal to thecurrent jd (kept in jd s) of the sender, the sender accepts this packet. The value jd is no longerneeded, but id is used for the actual communication.On receipt of (accept; jd ; id) the sender moves to mode send. Note how the accept packetswork as acknowledgements for the needid packets. In send mode the sender repeatedly sendsthe current packet (send; m; id). When one gets through, it is accepted since the id in the packetcorresponds to the current id (kept in id r) of the receiver. The message m is placed in buf rand the identi�er id for which the receiver shall eventually issue positive acknowledgements isremembered in the lastr variable. (Note the di�erence between idr and lastr: id r remembersthe identi�er that the receiver will accept, whereas lastr remembers the identi�er for which thereceiver must issue positive acknowledgements. Due to this di�erence the identi�ers are kept inseparate variables.) Now, eventually m is delivered to the user and the receiver moves to ackmode. Note how the send packets work as acknowledgements for the accept packets.In ack mode the receiver repeatedly sends positive acknowledgements in (ack; id ; true) pack-ets. When one gets through, the sender leaves sendmode and issues a positive acknowledgementack(b) to the user at the sender side.The receiver has no knowledge of whether an (ack; id ; true) packet has gotten through yetor not, so it continues to issue the packets. Somehow the receiver must be informed that thesender has received the acknowledgement. The done packets are used for this purpose. Itwould not work if the sender entered a mode where it repeatedly issued done packets becausethen the receiver would have to acknowledge the receipt of a done packet, and so on. Instead,every time the sender receives (ack; id ; true) it adds id to done-buf s, and this leads to onesend pkt sr(done; id) being issued. There is no guarantee that the packet is not lost, but if itis, the sender will eventually receive another (ack; id ; true) packet, which gives rise to anothersend pkt sr(done; id) step. This cannot go on forever because of channel liveness, so eventuallythe receiver will receive (done; id) and since id is equal to lastr , the receiver leaves ack modeand moves to idle mode, where it is allowed to forget everything about jd r, id r , and lastr.The above discussion has concentrated on normal mode of operation, where the sender andreceiver are synchronized. However, because both the sender and the receiver have modes wherethey repeatedly send certain packets and await acknowledgements, they would be very vulnerableto crashes of the other node if we did not have some means of informing the node about crashes.The \bad" modes are accept for the receiver and send for the sender.



158 9. The Five-Packet Handshake Protocol HFirst consider a situation where the receiver is in accept mode but where the sender due tocrashes is not in the expected needid mode with jd s = jd r . The sender could be in idle modeor even in needid mode with a new jd identi�er such that jds 6= jd r. Now, every time the senderreceives a bad accept packet, it places the associated identi�er id in done-buf s which leads to asend pkt sr(done; id) step, which may or may not succeed in putting the packet into the channel.If it succeeds, the packet will eventually be received and the receiver will be dislodged (cf. thede�nition of the receive pktsr(done; id) steps of the receiver). If it does not succeed, the senderwill eventually receive another accept packet, which gives rise to another send pktsr(done; id)step. This cannot go on forever because of channel liveness, so eventually the receiver willreceive (done; id). Thus, the done packets are used to inform the receiver to leave a bad acceptmode in the same way done packets were used during normal mode of operation to inform thereceiver that the sender has received the positive acknowledgement. An additional problemarises because the receiver immediately could receive an old needid packet and thus reenter abad accept mode. However, there can only be �nitely many such old needid packets in thechannel, so this cannot go on forever. Below we shall see how this is proved formally.Another \bad" situation occurs when the sender is in send mode but where the receiverdue to crashes is not in the expected accept mode with id r = id s. The receiver could be inidle mode or it could have received an old needid packet and thus be in accept mode withid r 6= id s. Now, every time the receiver receives a (send; m; id) packet it will, since id 6= id r,add id to nack-buf r , which leads to send pkt rs(ack; id ; false). This continues, as for the donepackets above, until (ack; id ; false) is receiver by the sender and at that point the sender resetsto idle mode.The actions grow-jd-used s(jds) and grow-issuedr(ids) allow identi�ers to be added to the sets ofused identi�ers of the sender and receiver, respectively, as long as there are still \enough" (i.e.,in�nitely many) unused identi�ers left. These actions are not required for the correctness of Hbut allow a �nal implementation on a physical machine to throw away some identi�ers. This istypically required by algorithms for generating unused identi�ers.It may seem strange that the sender and receiver need to engage in the initial needid/accepthandshake. Why don't they just agree on using, say, the natural numbers in increasing orderas identi�ers? Then the receiver will only accept a message if the associated identi�er is greaterthan the identi�er of the last message accepted. The answer is that H is designed so that thereceiver can use the same set of identi�ers for several senders. Thus, as de�ned, the sender doesnot have to remember (in stable storage!) the last identi�er used by each individual sender. Wedo not in this report show how the receiver should work for several senders.The discussion above has partly been based on liveness assumptions on the sender and receiver.We now consider how to specify this liveness formally.9.2.4 LivenessSenderWe de�ne the following two sets of the locally-controlled actions of the sender:CH;s1 4= fack(true); ack(false); recoversg [fsend pkt sr(needid; jd) j jd 2 JDg [



9.3. The Speci�cation of H 159fsend pktsr(send; m; id) jm 2 Msg ^ id 2 IDgCH;s2 4= fsend pktsr(done; id) j id 2 IDgThe liveness formula QH;s that induces the liveness condition LH;s for AH;s is now de�ned asQH;s 4= WF (CH;s1) ^WF (CH;s2)Note, that the reason we need weak fairness to CH;s2 separately is that sending of done packetscan occur at any time. Then, if we only had weak fairness to CH;s1 [ CH;s2, there would be norequirement to issue done packets if the sender is in send mode and keeps sending send packets.This would not lead to correct operation of H.Thus, Hs can intuitively be seen as consisting of two parallel processes: one dealing withthe actions in CH;s1 and one dealing with issuing done packets. Since the liveness requirementsare weak fairness, the liveness of Hs can be implemented on a physical machine by a schedulergiving fair turns to the two parallel processes.By Lemma 4.7, QH;s is an environment-free liveness formula for AH;s. Thus, Hs is a live I/Oautomaton. Furthermore, by Lemma 4.8, QH;s is stuttering-insensitive.ReceiverWe de�ne the following two sets of locally-controlled actions of the receiver:CH;r1 4= frecoverrg [freceive msg(m) jm 2 Msgg [fsend pkt rs(accept; jd ; id) j jd 2 JD ^ id 2 IDg [fsend pkt rs(ack; id ; true) j id 2 IDgCH;r2 4= fsend pkt sr(ack; id ; false) j id 2 IDgThe liveness formula that induces the liveness condition for the receiver of H can now be ex-pressed asQH;r 4= WF (CH;r1) ^WF (CH;r2)The reason why we need weak fairness to two sets of actions is similar to the reason given abovefor the sender.By Lemma 4.7, QH;r is an environment-free liveness formula for AH;r. Thus, Hr is a live I/Oautomaton. Furthermore, by Lemma 4.8, QH;r is stuttering-insensitive.9.3 The Speci�cation of HAs depicted in Figure 9.1, H consists of the sender and receiver processes and the two channels.So, �rst de�ne H00 = (A00H; L00H) to be the following live I/O automaton.H00 4= HskHrkChsrkChrsSince QH;s, QH;r, QCh;sr , and QCh;rs are all stuttering-insensitive, Proposition 4.4 implies thatL00H is induced byQH 4= QH;s ^ QH;r ^ QCh;sr ^ QCh;rs



160 9. The Five-Packet Handshake Protocol HBy De�nition 2.2 the channel actions send pkt sr(: : :), receive pkt sr(: : :), send pkt rs(: : :), andreceive pkt rs(: : :) are all output actions of H00. We need to hide these in order to get a live I/Oautomaton with the same external actions as S.However, recall from Lemma 5.10 that the existence of an index mapping between execu-tions at two levels of abstraction allows one to conclude certain properties of the (common)external actions of the executions. Thus, the more external actions of two levels, the strongerthe correspondence between the executions.At the G level we de�ned G0 to be the system where channel communication is external, i.e.,G0 was simply the parallel composition of the sender/receiver process and the channels|similarto H00 above. Now, the actions send pkt sr(m; id), receive pktsr(m; id), send pkt rs(id ; b), andreceive pkt rs(id ; b) of G0 correspond to the send pkt sr(send; m; id), receive pktsr(send; m; id),send pkt rs(ack; id ; b), and receive pkt rs(ack; id ; b) actions at the H level. Thus, the channelactions at the H level which deal with needid, accept, and done packets do not correspond toany external actions of G0. Thus, we �rst hide these actions from H00 to get H0. LetA0H 4= fsend pktsr(needid; id) j id 2 IDg [freceive pkt sr(needid; id) j id 2 IDg [fsend pktrs(accept; jd ; id) j jd 2 JD ^ id 2 IDg [freceive pkt rs(accept; jd ; id) j jd 2 JD ^ id 2 IDg [fsend pktsr(done; id) j id 2 IDg [freceive pkt sr(done; id) j id 2 IDgThen H0 = (A0H; L0H) is de�ned asH0 4= H00 n A0HBy Proposition 4.5, L0H is induced by QH.Finally, to get the H protocol, we hide the remaining channel actions. LetAH 4= fsend pktsr(send; m; id) jm 2 Msg ^ id 2 IDg [freceive pkt sr(send; m; id) jm 2 Msg ^ id 2 IDg [fsend pktrs(ack; id ; b) j id 2 ID ^ b 2 Boolg [freceive pkt rs(ack; id ; b) j id 2 ID ^ b 2 BoolgThus, H = (AH; LH) is de�ned asH 4= H0 n AHAgain, by Proposition 4.5, LH is induced by QH.Now, in the proof below we prove that H0 correctly implements G0 (or actually a slightly di�erentversion of G0 in which the channel actions are renamed to completely match the (remaining)external channel actions of H0). Then the substitutivity results of Proposition 2.16 are used toinfer that H correctly implements G.9.4 Correctness of HThe correctness of H with respect to G is now considered. We �rst add history variables to H0to get Hh0 = (AhH0; LhH0) as described in Section 5.1.5. Then we state some invariants of AhH0 andshow the existence of a re�nement mapping from AhH0 to A�G0, where A�G0 is a slightly modi�ed



9.4. Correctness of H 161version of A0G obtained by renaming some channel actions. This re�nement mapping is thenused to show that Hh0 correctly implements G�0, which, in turn, allows us to conclude that Hcorrectly implements G.9.4.1 Adding History Variables to H0We add three history variables to H0 and denote the resulting live I/O automaton by Hh 0 =(AhH0; LhH0).Variable Type Initially Descriptionuseds H ID� " A history variable giving the list of idsever used by the sender (and thus ac-cepted in accept packets from the re-ceiver). Same as at the G level.seenr H P(JD � ID) ; A history variable consisting of all the(jd ; id) pairs the receiver has ever seen.current-ok H Bool false A history variable describing the stateof the current message. Same as at theG level.H = HistoryBy the results in Section 5.1.5, we are allowed to change the history variables anywhere in thee�ect clauses of the step rules de�ning the steps of A0H. The e�ect clauses of step rules of A0Hare, in turn, de�ned by the corresponding e�ect clauses of the components of H0 as describedin Section 4.1.1.1. We show where the changes to the history variables should be placed in thee�ect clauses. We omit the assignments to the original variables (by writing : : : instead) butoutline the if-then-else statements.choose jd(jd)Precondition:(� Precondition from Hs �): : :E�ect:(� E�ect clause from Hs �): : :if moder 6= rec thencurrent-ok := true receive pktsr(needid; jd)Precondition:(� Precondition from Chsr �): : :E�ect:(� E�ect clause from Chsr �): : :(� E�ect clause from Hr �)if modes = idle then: : :seenr := seenr [ f(jdr ; idr)g



162 9. The Five-Packet Handshake Protocol Hreceive pktrs(accept; jd; id)Precondition:(� Precondition from Chrs �): : :E�ect:(� E�ect clause from Chrs �): : :(� E�ect clause from Hs �)if modes 6= rec thenif modes = needid ^ jds = jd then: : :useds := useds ^ idelse if ids 6= id then: : : receive pktsr(send;m; id)Precondition:(� Precondition from Chsr �): : :E�ect:(� E�ect clause from Chsr �): : :(� E�ect clause from Hs �)if moder 6= rec thenif moder = accept ^ idr = id then: : :if id = ids thencurrent-ok := falseelse if lastr 6= id then: : :crashsE�ect:(� E�ect clause from Hs �): : :current-ok := false crashrE�ect:(� E�ect clause from Hr �): : :current-ok := falseFrom Lemma 5.16 we know that LhH0 is induced by QH.9.4.2 InvariantsTo help us in the re�nement mapping proof below, we state some invariants ofAhH0 without proofs.The proofs could be performed similarly to the proofs of the AG invariants in Appendix C.The �rst invariant states properties of issuedr.Invariant 9.11. If id r 6= nil then id r 2 issuedr2. If lastr 6= nil then lastr 2 issuedr3. If (accept; jd ; id) 2 rs then id 2 issuedr4. useds � issuedr



9.4. Correctness of H 163De�ne in any state of AhH0 jds(sr) to be the set of jd components of the packets in the sr channel.Formally, since only needid packets have jd components in the sr channel, we havejds(sr) = fjd j (needid; jd) 2 srgSimilarly,jds(rs) = fjd j (accept; jd ; id) 2 rsgThe following invariant then states that all jds in the system are used by the sender.Invariant 9.21. jd s 2 jd-used s if jd s 6= nil2. jds(sr) � jd-used s3. jd r 2 jd-used s if jdr 6= nil4. jds(rs) � jd-used sThe following invariants state simple properties.Invariant 9.31. If moder 2 fidle; acceptg then lastr = nilInvariant 9.41. If moder = accept then id r 6= nilInvariant 9.51. If modes = rec _ moder = rec then current-ok = falseInvariant 9.61. If id s 6= nil then modes 2 fsend; recgThe next invariant states the identi�ers in the system are in most cases registered in the historyvariable used s.Invariant 9.71. If id s 6= nil then id s 2 used s2. If (send; m; id) 2 sr then id 2 useds



164 9. The Five-Packet Handshake Protocol H3. If moder = rcvd then lastr 2 useds4. If moder = ack then lastr 2 used s5. If (ack; id ; b) 2 rs then id 2 used sThe identi�ers for which the sender will issue or has issued done packets can never be equal tothe current identi�er of the sender.Invariant 9.81. If id 2 done-buf s then id 6= id s2. If (done; id) 2 sr then id 6= idsThe history variable seenr records all the (jd ; id) pairs the receiver has ever seen. Thus, whenthe receiver associates an identi�er id to a received jd , the pair (jd ; id) is added to seenr. Dueto crashes the receiver might associate two di�erent id identi�ers to the same jd identi�er.However, it can never happen that the receiver associates the same id to di�erent jds.Invariant 9.91. If id r 6= nil then (jdr; idr) 2 seenr2. If (jd ; id) 2 seenr ^ (jd 0; id) 2 seenr then jd = jd 03. If (accept; jd ; id) 2 rs then (jd ; id) 2 seenrInvariant 9.101. If modes = needid ^ moder = accept ^ jd s = jd r then(send; ; idr) =2 sr ^ (done; idr) =2 srThe �nal invariant corresponds to Invariant 8.12 at the G level. It states that there are alwaysenough unused ids and jds left.Invariant 9.111. jID n issuedrj =12. jJD n jd-used sj =1Below we refer to the conjunction of the invariants by IHh.



9.4. Correctness of H 1659.4.3 SafetyThe safe I/O automata AhH0 and A0G do not agree on their input and output actions. Thedi�erence is however very small: AhH0 adds packets to the channel in send pkt sr(send; m; id)steps, whereas the corresponding steps in A0G are send pktsr(m; id). There is a similar di�erencewith respect to send pktrs(ack; id ; b) steps and the corresponding receive pktsr and receive pktrssteps. So, de�ne the following action mapping:� 4= [send pktsr(m; id) 7! send pktsr(send; m; id) jm 2 Msg ^ id 2 ID ] [[receive pktsr(m; id) 7! receive pkt sr(send; m; id) jm 2 Msg ^ id 2 ID ] [[send pktrs(id ; b) 7! send pktrs(ack; id ; b) j id 2 ID ^ b 2 Bool] [[receive pktrs(id ; b) 7! receive pktrs(ack; id ; b) j id 2 ID ^ b 2 Bool] [[a 7! a j a 2 acts(A0G) n AG]where AG is de�ned in Section 8.4 and contains all the actions which are not being renamed by�. Clearly � is applicable to G0, so de�ne G�0 = (A�G0; L�G0) as follows.G�0 4= �(G0)By Proposition 4.6, L�G0 is induced by �(QG).We now de�ne a function from states(AhH0) to states(A�G0). Below, in Lemma 9.13, this functionis proved to be a re�nement mapping from AhH0 to A�G0 with respect to IHh and IG. (Note, thatthe invariant IG of AG is also an invariant of A�G0.)De�nition 9.12 (Re�nement Mapping from AhH0 to A�G0)If s 2 states(AhH0) then de�ne RHG(s) to be the state u 2 states(A�G0) such that1. u:modes = s:modesu:buf s = s:buf su:useds = s:usedsu:current-msgs = s:current-msgsu:current-ack s = s:current-ack su:lastr = s:lastru:buf r = s:buf ru:issuedr = s:issuedru:nack-buf r = s:nack-buf ru:current-ok = s:current-ok2. u:lasts = s:id s3. u:goods = (if s:modes = needid thenfid j (accept; s:jds; id) 2 s:rsg [(if s:moder = accept ^ s:jd r = s:jds then fs:idrg else ;)else ;)4. u:moder = (if s:moder = accept then idle else s:moder)5. u:goodr = (if s:moder = accept then fs:idrg else ;)6. The packets in each channel in u are exactly the send and ack packets in the same channelin s.



166 9. The Five-Packet Handshake Protocol HLemma 9.13AhH0 �R A�G0 via RHG.ProofWe prove that RHG is a re�nement mapping from AhH0 to A�G0 with respect to IHh and IG. Wecheck the two conditions (which we call base case and inductive case, respectively) of De�ni-tion 5.2.Base CaseIt is easy to see that for the start state s of AhH0, RGD(s) is a start state of A�G0.Inductive CaseAssume (s; a; s0) 2 steps(AhH0) such that s and s0 satisfy IHh and RHG(s) satis�es IG. Belowwe consider cases based on a (and sometimes subcases of each case) and for each (sub)case wede�ne a �nite execution fragment � of A�G0 of the form (RHG(s); a0; u00; a00; u000; : : : ; RHG(s0)) withtrace(�) = trace(a). For brevity we let u denote RHG(s) and u0 denote RHG(s0).Unless otherwise stated we let Part 1{6 refer to the three parts of De�nition 9.12.a 2 fsend msg(m); receive msg(m); ack(b); recoversgThen it is easy to see that (u; a; u0) 2 steps(A�G0).a = crashsWe show that (u; crashs; u00; shrink good s(I); u0), where u00 and I are de�ned below, is a �niteexecution fragment of A�G0 by showing that (u; crashs; u00) and (u00; shrink goods(I); u0) are stepsof A�G0. Clearly the execution fragment has the right trace.De�ne u00 to be the same as u0 except that u00:goods = u:goods. Then it is easy to see that(u; crashs; u00) 2 steps(A�G0).Now, if s:modes = needid then u00:goods might be nonempty whereas u0:good s = ; accordingto RHG. So, de�ne I = u00:goods. (Note, I = ; if s:modes 6= needid.) Then, obviously,(u00; shrink good s(I); u0) 2 steps(A�G0).a = crashrWe show that (u; crashr ; u00; shrink good r(I); u0), where I = u:good r and u00 is de�ned below, isa �nite execution fragment of A�G0 by showing that (u; crashr ; u00) and (u00; shrink goodr(I); u0)are steps of A�G0. Clearly the execution fragment has the right trace.De�ne u00 to be the same as u0, except that u00:goodr = u:goodr .It is easy to see that (u; crashr; u00) 2 steps(A�G0). The only interesting case is to show thatgood r is handled correctly but from the de�nition of u00 we have u00:good r = u:goodr, which is asrequired.



9.4. Correctness of H 167Since u0:moder = rec, we get from Invariant 9.5 that u0:current-ok and then also u00:current-okare false, so shrink goodr(I) is enabled in u00. The only di�erence between u00 and u0 is the valueof goodr . We have u00:goodr = I and u0:goodr = ; since s0:moder = rec 6= accept. This changein goodr is as required by the de�nition of shrink goodr(I) in A�G0.a = recoverrWe show that (u; recoverr ; u0) 2 steps(A�G0). This step (and �nite execution fragment) clearlyhas the right trace.First note that recoverr is enabled in u. We then carry out a case-by-case check to see that allstate variables change appropriately. The only interesting cases are goodr and issuedr.Both u:goodr = ; and u0:good r = ; by the de�nition of RHG since moder 6= accept in s and s0.Thus, the value of good r is unchanged as required by the de�nition of recoverr in A�G0.From the de�nition of recoverr in AhH0 and RHG we have that u:issuedr = u0:issuedr. To showthat it is allowed by recoverr in A�G0 to leave issuedr unchanged, we must show that u:useds �u:issuedr and u:good s � u:issuedr. But both of these requirements follow directly from thede�nition of RHG and Invariant 9.1.a = choose jd(jd)We show that (u; prepare; u0) 2 steps(A�G0). This step (and �nite execution fragment) clearlyhas the right trace.Since choose jd(jd) is enabled in s and u = RHG(s), it is immediate that prepare is enabled in u.A case analysis on the variables of A�G0 shows that all are modi�ed properly; the only interestingcase is that of good s. There, the de�nition of prepare in A�G0 requires that u0:goods = ;. Wemust show that that is the case:First, assume s:jd r = nil. By the de�nition of choose jd(jd) in AhH0 we have s0:jds 6= nil, sosince s0:jdr = s:jd r , we have s0:jd s 6= s0:jdr .Now assume s:jd r 6= nil. Then Invariant 9.2 gives us that s:jdr 2 s:js-useds and since s0:jd r =s:jdr we have s0:jd r 2 s:js-useds. By the de�nition of choose jd(jd) in AhH0 we have s0:jds =2s0:jd-useds, so also in this case we get s0:jd s 6= s0:jdr .From Invariant 9.2 we get jds(s:rs) � s:jd-used s. By the de�nition of choose jd(jd) in AhH0 wehave s0:jds(s0:rs) = jds(s:rs) and s0:jd s =2 s:jd-used s, so we get s0:jds =2 jds(s0:rs).Finally, since s0:jd s 6= s0:jdr and s0:jds =2 jds(s0:rs), we get from the de�nition of RHG thatu0:good s = ; as required.a = send pkt sr(needid; jd)We show that u0 = u. Then the execution fragment u of A�G0 clearly has the right properties.The only di�erence between s and s0 is that s contains an additional needid message in thesr channel. But this does not a�ect the values of any of the variables of A�G0 according to thede�nition of RHG.a = receive pkt sr(needid; jd)We consider two cases.



168 9. The Five-Packet Handshake Protocol H1. s:moder 6= idle.Then the only di�erence between s and s0 is that the latter is missing one needid packetfrom the sr channel. But this does not a�ect the values of any variables of A�G0, so thatu0 = u. Then the execution fragment u of A�G0 clearly has the right properties.2. s:moder = idle.There are two subcases.(a) s:modes 6= needid or jd 6= s:jds.We show that (u; grow good r(fidg); u0) 2 steps(A�G), where id is the identi�er chosenin the step of AhH0, i.e., id = s0:idr . Clearly the step has the right trace (the emptytrace).The de�nition of the step in AhH0 implies that id =2 s:issuedr . From the de�nition ofRHG we have u:issuedr = s:issuedr, so that grow goodr(fidg) is enabled in u.We consider the state changes. From the de�nition of RHG we have u:good r = ;and u0:good r = fidg. This is the change to goodr speci�ed by the de�nition ofgrow good r(fidg). Also, the step of AhH0 explicitly adds id to issuedr, which is asrequired by the de�nition of grow goodr(fidg) in A�G0.We claim that all variables of A�G0 other than good r and issuedr have the same valuesin u and u0. This is immediate for modes, buf s, used s, current-msgs, current-ack s,buf r , lastr nack-buf r , current-ok , and lasts. For moder, we have a change at the Hlevel, from idle to accept. But both of these correspond to idle at the G level.We now show that u:goods = u0:good s. We make a case analysis based on the de�nitionof this case. First assume s:modes 6= needid. Then also s0:modes 6= needid so fromthe de�nition of RHG we have u:goods = u0:good s = ; as needed.Now, assume s:modes = needid and jd 6= s:jd s. Since s0:jd r = jd and s0:jds = s:jd swe get s0:jds 6= s0:jdr , so even though moder changes to accept in AhH0, it is easy tosee from the de�nition of RHG that u:goods = u0:goods.Finally, the only di�erence between the channels in s and s0 is that the sr channel ins0 is missing one needid packet. But then the values of the channels in u and u0 arethe same.(b) s:modes = needid and jd = s:jd s.We show that (u; grow good r(fidg); u00; grow goods(fidg); u0), where u00 is de�ned be-low and id = s0:idr , is a �nite execution fragment of A�G0. We do this by showingthat (u; grow good r(fidg); u00) and (u00; grow good s(fidg); u0) are steps of A�G0. Theexecution fragment clearly has the right trace.De�ne u00 to be the same as u0, except that u00:goods = u0:goods n fidg.The argument that (u; grow good r(fidg); u00) is a step of A�G0 is the same as the argu-ment for the previous case, except for the part about good s. Here, u:goods = u00:goodsby explicit construction.To show that (u00; grow goods(fidg); u0) is a step of A�G0, it su�ces to note that id 2u00:issuedr , id 2 u00:goodr , and id =2 u00:used s. (This latter claim uses Invariant 9.1.)a = send pktrs(accept; jd ; id)We show that u0 = u. Then the execution fragment u of A�G0 clearly has the right properties.The only di�erence between s and s0 is that s0 contains an additional accept message in the srchannel. We claim that this does not a�ect the values of any of the A�G0 variables.



9.4. Correctness of H 169The only interesting case to check is the value of good s. The only way the step can modifythis variable according to RHG is to add an id to good s, by putting idr to goods, by puttingan (accept; s0:jd s; id) message into the rs channel. By de�nition of the step in H, it must bethat s0:jd s = s:jd r and id = s:id r . Since s:jds = s0:jd s, it follows that s:jd s = s:jd r. But thenid 2 u:goods. This contradicts the assumption that the step modi�ed this variable.a = receive pkt rs(accept; jd ; id)There are two cases.1. s:modes = recIn this case the only di�erence between s0 and s is that s has an extra (accept; id ; jd)packet on rs, but from the de�nition of RHG we see that this does not a�ect any of thevariables in A�G0 since s:modes 6= needid. Thus u0 = u. The the execution fragment u ofA�G0 has the right properties.2. s:modes 6= recWe consider cases(a) s:modes 6= needid or jd 6= s:jd s.We show that u0 = u. The the execution fragment u of A�G0 has the right properties.The only di�erence between s and s0 is that s0 removes a single accept message inthe sr channel and that done-buf s might be updated. We claim that this does nota�ect the values of any of the A�G0 variables; the only interesting case to check is thatof good s, and there, the fact that s:modes 6= needid or jd 6= s:jd s implies that good shas the same value in u and u0.(b) s:modes = needid and jd = s:jd s.We show that (u; choose id(id); u00; shrink goods(I); u0), where I = u:goods and u00 isde�ned below, is an execution fragment of A�G0 by showing that (u; choose id(id); u00)and (u00; shrink goods(I); u0) are steps of A�G0. Clearly the execution fragment has theright trace.De�ne u00 to be the same as u0 except that u00:good s = I .First consider (u; choose id(id); u00). Since s:modes = needid, we have u:modes =needid. Then, to prove that choose id(id) is enabled in u, we need to show thatid 2 u:goods. In s, we have (accept; id ; jd) in the rs channel, and moreover jd = s:jd s.Thus, from the de�nition of RHG we have id 2 u:goods as needed.Now we consider the e�ects on the variables in A�G0. A case analysis shows that thechanges reected in u00 are as speci�ed by the step of A�G0. The only interesting case isthat of good s, where the de�nition of u00:goods = I = u:goods ensures that the value isunchanged, as required by the de�nition of choose id(id) in A�G0.To see that (u00; shrink good s(I); u0) is a step of A�G0, note that u0:goods = ;. Therefore,the changes are as required by the de�nition of shrink good s(I) in A�G0.a = send pkt sr(send; m; id)Then it is easy to see that (u; send pktsr(m; id); u0) 2 steps(A�G0). This step (and executionfragment) clearly has the right trace.



170 9. The Five-Packet Handshake Protocol Ha = receive pktsr(send; m; id)We show that (u; receive pktsr(m; id); u0) 2 steps(A�G0). This step (and execution fragment) hasthe right trace.We consider four (exclusive and exhaustive) cases.1. s:moder = rec.Then the only change from s to s0 is the removal of the single message from the sr channel.Since also u:moder = rec, this corresponds to the right change in A�G0.2. s:moder = accept and id = s:id r.Then, from the de�nition of RHG we have that u:moder = idle and id 2 u:goodr, such thatthe required state change of the receiver variables of A�G0 is described by the �rst alternativein the nested if-then-else construct in the step rule for receive pkt sr(m; id). A case analysisshows that all variables of A�G0 are handled correctly. The interesting cases are current-okand goodr .For current-ok , we consider two cases.First, if id = s:id s, then we have id = u:lasts. Moreover, s:modes 2 fsend; recg byInvariant 9.6. If s:modes = rec then Invariant 9.5 implies that s:current-ok is already false,so setting it to false in AhH0 is a no-op, as required by the step in A�G0. If s:modes = sendboth algorithms set current-ok to false.On the other hand, if id 6= s0:id s, then also id 6= u:lasts. Thus in this case neither levelchanges current-ok .For good r, note that u:good r = fs:id rg since s:moder = accept and u0:goodr = ; sinces0:moder 6= accept. Since id = s:idr , this change is as required by the de�nition ofreceive pkt sr(m; id) of A�G0.3. s:moder 6= rec and (s:moder 6= accept or id 6= s:idr)We show that the required state changes of the receiver variables ofA�G0 are not described bythe �rst alternative inside the nested if-then-else construct. First, if s:moder 6= accept thenu:good r = ; which gives the result. Next, if s:moder = accept we have u:goodr = fs:idrg,but from the de�nition of this case we must have id 6= s:id r, so again the result follows.We now consider two cases(a) id 6= s:lastrThen we have s0:nack-buf r = s:nack-buf r ^ id . Since id 6= u:lastr, by the de�nition ofRHG, we also have u0:nack-buf r = u:nack-buf r ^ id . It is now easy to see that all statevariables of A�G0 are handled correctly.(b) id = s:lastrIn this case, the AhH0 level makes no changes (that is, the only di�erence between s ands0 is that the latter has the one message deleted from the sr channel). We must thusshow that all variables but sr of A�G0 have the same values in u and u0.First we note that the A�G0 step does not choose the second alternative inside thenested if-then-else construct since the de�nition of this case and RHG gives us thatid = u:lastr .We must show that A�G0 does not choose the third alternative. The only way A�G0 canchoose the third alternative is if u:moder = idle. From the de�nition of RHG we seethat this is the case if s:moder 2 fidle; acceptg. Now, Invariant 9.3 gives us that



9.4. Correctness of H 171s:lastr = nil, but this contradicts the de�nition of this case (id = s:lastr), thus, wecannot have u:moder = idle which again implies that A�G0 does not choose the thirdalternative.That su�ces.a = send pkt sr(done; id)This step of AhH0 changes done-buf s and may change the channel sr , but from the de�nition ofRHG we see that this does not change any of the variables in A�G0, so we have u = u0. Thus, the�nite execution fragment u clearly has the right properties.a 2 fsend pktrs(ack; id ; b); receive pktrs(ack; id ; b)gThen it is easy to see that (u0; send pkt rs(id ; b); u) and (u0; receive pkt rs(id ; b); u), respectively,are steps of A�G0.a = receive pkt sr(done; id)We consider cases.1. s:moder = accept and id = s:id r .There are two subcases.(a) s:modes 6= needid or(s:modes = needid and s:jd r 6= s:jd s) or(s:modes = needid and s:jd r = s:jd s and (accept; s:jds; s:idr) 2 s:rs)We show that (u; shrink good r(fidg); u0) 2 steps(A�G0). This step (and execution frag-ment) clearly has the right trace.First, we show that shrink good r(fidg) is enabled in u.i. s:modes 6= needidThen the precondition of shrink good r(fidg) is satis�ed by u. The only interestingcase is if s:modes = send. In this case we must show that u:lasts 6= id , i.e., thats:id s 6= id . Since (done; id) 2 s:sr , Invariant 9.8 gives the result.ii. s:modes = needid and s:jdr 6= s:jd sHere, it su�ces to show that id =2 u:goods. From RHG we get that u:good s = fid 0 j(accept; s:jds; id 0)g. From Invariant 9.9 Part 3 we get that u:goods is a subset ofthe set S de�ned as S = fid 0 j (s:jd s; id 0) 2 s:seenrg, so it su�ces to show thatid =2 S. Since s:id r = id 6= nil, we get from Invariant 9.9 Part 1 that (s:jdr ; id) 2s:seenr and Part 2 of the same invariant then implies that (s:jds; id) =2 s:seenrsince s:jd s 6= s:jd r in the case we consider here. Thus, the result follows.iii. s:modes = needid and s:jdr = s:jd s and (accept; s:jds; s:idr) 2 s:rsInvariant 9.10 implies that this situation cannot occur.We now show that the variable changes are allowed by the step of A�G0.First, we show that goodr is handled correctly. By de�nition of this case and RHG, weget that u:goodr = fidg and u0:goodr = ;. Thus, good r changes in a way allowed byshrink goodr(fidg) in A�G0.We must show that no other variables have di�erent values in u0 and u. The interestingcases are moder , lastr , and goods.



172 9. The Five-Packet Handshake Protocol HFor moder we have s:moder = accept and s0:moder = idle, but then RHG gives usu0:moder = u:moder = idle, as needed.For lastr we have u:lastr = nil from Invariant 9.3 since s:moder = accept, andu0:lastr = nil from the de�nition of the AhH0 step. Thus, lastr is unchanged as needed.Finally, we consider good si. s:modes 6= needidThen, since also s0:modes 6= needid, RHG gives us u0:good s = u:good s(= ;) asneeded.ii. s:modes = needid and s:jd r 6= s:jd sSince s0:modes = needid, we have s0:jds 6= nil (easy invariant), so since s0:jdr =nil we have s0:jd r 6= s0:jd s. Now, since jd s and rs are unchanged in the AhH0 step,we clearly get from RHG that u0:goods = u:goods as needed.iii. s:modes = needid and s:jd r = s:jd s and (accept; s:jds; s:idr) 2 s:rsAgain, Invariant 9.10 implies that this situation cannot occur.(b) s:modes = needid, s:jd r = s:jd s, and (accept; s:jds; s:idr) =2 s:rsWe show that (u; shrink good s(fidg); u00; shrink good r(fidg); u0), where u00 is de�nedbelow, is an execution fragment of A�G0 by showing that (u; shrink good s(fidg); u00)and (u00; shrink good r(fidg); u0) are steps of A�G0. The execution fragment clearly hasthe right trace.De�ne u00 to be the same as u except that u00:good s = u:goods n fidg.Then obviously (u; shrink good s(fidg); u00) 2 steps(A�G0).We show that also (u00; shrink good r(fidg); u0) 2 steps(A�G0).Since u00:modes = u:modes = needid and id =2 u00:goods, shrink goodr(fidg) is enabledin u00.We show that all variables are handled correctly.For all other variables than good s the arguments are as in the case above.We show that u00:good s = u0:goods. We have s0:jdr = nil 6= s0:jds (since s0:modes =needid), so the de�nition of RHG and u00 gives us:u00:goods = (fid 0 j (accept; s:jds; id 0) 2 s:rsg [ fidg) n fidg andu0:goods = fid 0 j (accept; s0:jds; id 0) 2 s0:rsg.Since jd s and rs are unchanged, it su�ces to show id =2 fid 0 j (accept; s:jds; id 0)g, butsince id = s:id r, this follows directly from the de�nition of this subcase.That su�ces.2. s:moder = ack and id = s:lastr .We show that (u; cleanupr ; u0) 2 steps(A�G0). This step (and execution fragment) clearlyhas the right trace.Since (done; id) 2 s:sr we get from Invariant 9.8 that id 6= s:id s, so from the de�nitionof RHG and the hypothesis we get u:lasts 6= u:lastr. Also, since s:moder = ack, we haveu:moder = ack. Thus, cleanupr is enabled in u.All variables are handled correctly. The changes to lastr and moder in AhH0 clearly are asrequired by the de�nition of cleanupr in A�G0. Since moder 6= accept we have u:goodr =u0:goodr(= ;) as needed. The only other interesting case is goods. But since moder 6=accept and jd s and rs are unchanged by the step in AhH0, we get from RHG that u0:goods =u:good s as needed.3. OtherwiseThen we claim that u0 = u.



9.4. Correctness of H 173The only di�erence between s and s0 is the removal of the done packet from the sr channel.This does not a�ect any of the A�G0 variables.a = grow-jd-used s(jds)This step adds some elements to jd-used s, but since jd-used s is not used in the mapping RHG,we have u = u0. Thus, the execution fragment u has the right properties.a = grow-issued r(ids)This transition adds elements to issuedr in AhH0.We show that (u; grow good r(I); u00; shrink goodr(I); u0), where u00 is de�ned below and I =s0:issuedr n s:issuedr , is an execution fragment of A�G0 by showing that (u; grow good r(I); u00)and (u00; shrink goodr(I); u0) are steps of A�G0. The execution fragment clearly has the righttrace.De�ne u00 to be the same as u0 except that u00:good r = u:goodr [ I .From the de�nition ofRHG we get that I = u0:issuedrnu:issuedr which implies that I\u:issuedr =;. Thus, grow good r(I) is enabled in u. Now, the only di�erence between u and u00 is thatu00:goodr = u:goodr[I (by explicit construction) and u00:issuedr = u:issuedr[I (by the de�nitionof grow-issued r, RHG and u00), but this is as required by grow goodr(I) in A�G0.We now consider (u00; shrink good r(I); u0). To show that shrink goodr(I) is enabled in u00, weshow that I \ u00:goods = ; and that u00:lasts =2 I .First, consider the claim that I \ u00:goods = ;. Since u00:goods = u:goods we must show thatI \ u:goods = ;. From Invariant 9.1 and RHG we get that u:goods � s:issuedr , but sinceI \ s:issuedr = ; (by the de�nition of I) the result follows directly.Then, consider the claim that u00:lasts =2 I . Since u00:lasts = u:lasts = s:id s, we must show thats:ids =2 I . If s:id s = nil this is obvious, so assume s:id s 6= nil. Then Invariant 9.7 gives us thats:ids 2 s:useds, and Invariant 9.1 implies that s:id s 2 s:issuedr. Again, since I \ s:issuedr = ;,we get the result.Thus, shrink good r(I) is enabled in u00.The only di�erence between u00 and u0 is by the de�nition of u00 that u00:good r = u:goodr [ I =u0:good r [ I . (The latter equality uses the de�nitions of grow-issuedr and RHG to see thatu0:good r = u:goodr). To satisfy the requirements in A�G0 we must show that u0:goodr = u00:good r nI . This is only the case if u0:goodrnI = u0:good r, i.e., if u0:good r\I = ;. Now, either u0:good r = ;in which case this result follows directly or u0:good r = fs0:id rg (with s0:idr 6= nil). In the lattercase we observe that s0:id r = s:id r, so Invariant 9.1 implies that u0:good r � s:issuedr , and sinceI \ s:issuedr = ;, we get that u0:goodr \ I = ;, as needed.This concludes the simulation proof.With this simulation result we can prove that AH safely implements AG.Theorem 9.14 (AH safely implements AG)AH vS AG



174 9. The Five-Packet Handshake Protocol HProofBy Lemma 9.13 and the soundness of re�nement mappings (Lemma 5.8) we get AhH0 vS A�G0,and from Lemma 5.14 we get A0H vS AhH0. Thus,A0H vS A�G0which by substitutivity (Lemma 2.16) impliesA0H n AH vS A�G0 n AHThen, by the de�nition of �, AH, and AG we getA0H n AH vS A�G0 n �(AG)Now, since � only renames actions which are subsequently hidden, this impliesA0H n AH vS A0G n AGwhich �nally, by de�nition, yields the resultAH vS AG9.4.4 CorrectnessWe can now turn attention to formally proving that Hh 0 correctly implements G�0, which, inturn, then allows us to prove that H correctly implements G.We start out by giving some basic results about AhH0. The �rst results (Lemma 9.15 andLemma 9.16) describe certain possible steps of AhH0 in the absence of crashes. The lemmashave one part for each mode in the system and each part is furthermore divided into two sub-parts. The �rst subpart states that if the system reaches a certain state, then it will stay inthat state at least until a certain action (or certain actions) occur(s). The second subpart thenstates the resulting state if such an action indeed occurs.In the remainder of this section we use notation like send pkt rs(accept; ; ) to denote theaction function fsend pkt(accept; jd ; id) j jd 2 JD ^ id 2 IDg. Similarly, the expression, e.g.,send pkt rs(accept; ; ids) denotes the action function fsend pkt(accept; jd ; ids) j jd 2 JDg.Lemma 9.15AhH0 satis�es each of the following formulas1. (a) 2(2(modes 6= rec) ^ modes = idle =) (modes = idleWi hchoose jd( )i))(b) 2(modes = idle ^ hchoose jd( )i =) mode�s = needid)2. (a) 8jd : 2(2(modes 6= rec) ^ modes = needid ^ jd s = jd =)(modes = needid ^ jd s = jd Wi hreceive pktrs(accept; jd ; )i))(b) 2(modes = needid ^ hreceive pktrs(accept; jds; )i =) mode�s = send)3. (a) 8jd : 8id : 2(2(modes 6= rec) ^ modes = send ^ jd s = jd ^ id s = id =)(modes = send ^ jd s = jd ^ id s = id Wi hreceive pkt rs(ack; id ; )i))(b) 2(modes = send ^ hreceive pkt rs(ack; ids; )i =) mode�s = idle)ProofEasy by careful inspection of the steps of AhH0.



9.4. Correctness of H 175Lemma 9.16AhH0 satis�es each of the following formulas1. (a) 2(2(moder 6= rec) ^ moder = idle =)(moder = idleWi hreceive pkt sr(needid; )i))(b) 8jd : 2(moder = idle ^ hreceive pkt sr(needid; jd)i =)mode�r = accept ^ jd�r = jd)2. (a) 8jd : 8id : 2(2(moder 6= rec) ^ moder = accept ^ jd r = jd ^ idr = id =)(moder = accept ^ jd r = jd ^ id r = id Wihreceive pkt sr(send; ; id)i _ hreceive pkt sr(done; id)i))(b) 2(moder = accept ^ hreceive pktsr(send; ; idr)i =) mode�r = rcvd)2((moder = accept ^ hreceive pkt sr(done; idr)i) =) mode�r = idle)3. (a) 8id : 2(2(moder 6= rec) ^ moder = rcvd ^ lastr = id =)(moder = rcvd ^ lastr = id Wi hreceive msg( )i ^ buf �r = "))(b) 2(moder = rcvd ^ hreceive msg( )i ^ buf �r = " =) mode�r = ack)4. (a) 8id : 2(2(moder 6= rec) ^ moder = ack ^ lastr = id =)(moder = ack ^ lastr = id Wi hreceive pktsr(done; id)i))(b) 2(moder = ack ^ hreceive pkt sr(done; lastr)i =) mode�r = idle)ProofEasy by careful inspection of the steps of AhH0.In the proofs below we furthermore need the following simple lemma.Lemma 9.17AhH0 j= 2(modes = needid ^ moder = accept ^ jd s = jd r =):hreceive pktsr(send; ; idr)i ^ :hreceive pkt sr(done; idr)i)ProofDirectly by Invariant 9.10.We now turn attention to more interesting results about the live executions of Hh0. The �rstlemma states that if the sender stays in needid mode, then it will issue in�nitely many needidpackets. This result is actually a simple consequence of weak fairness to the set CH;s1. We givethe proof in all formal detail.Lemma 9.18 (needid liveness)LhH0 j= 8jd : 2(2(modes = needid ^ jd s = jd) =) 23hsend pkt sr(needid; jd)i)ProofAssume: � 2 LhH0



176 9. The Five-Packet Handshake Protocol HProve: � j= 8jd : 2(2(modes = needid ^ jd s = jd) =) 23hsend pktsr(needid; jd)i)h1i1. Assume: jd is arbitraryProve: � j= 2(2(modes = needid ^ jd s = jd) =) 23hsend pkt sr(needid; jd)i)h2i1. Assume: �1 is an arbitrary su�x of �Prove: �1 j= 2(modes = needid ^ jd s = jd) =) 23hsend pkt sr(needid; jd)ih3i1. Assume: �1 j= 2(modes = needid ^ jd s = jd)Prove: �1 j= 23hsend pkt sr(needid; jd)ih4i1. �1 j= WF (CH;s1)Proof: By the assumption � 2 LhH0 we have � j= WF (CH;s1). ThenAssumption h2i and Lemma 3.5 Part 1 give the result.h4i2. �1 j= 32(modes 2 frec; needid; sendg _(modes = idle ^ buf s = ")) =)23hCH;s1iProof: From h4i1 by expanding WF and noting that enabled(CH;s1) =(modes 2 frec; needid; sendg _ (modes = idle ^ buf s = ")).h4i3. �1 j= 2(modes 2 frec; needid; sendg _(modes = idle ^ buf s = ")) =)23hCH;s1iProof: Directly from h4i2.h4i4. �1 j= 23hCH;s1iProof: By Assumption h3i, h4i3, and Rule MP.h4i5. Q.E.D.Proof: By h4i4 since Assumption h3i yields that send pkt sr(needid; jd)is the only action in CH;s1 which is enabled anywhere in �1.h3i2. Q.E.D.Proof: By h3i1 and the de�nition of implication.h2i2. Q.E.D.Proof: By h2i1 and Lemma 3.5 Part 2.h1i2. Q.E.D.Proof: By h1i1 and Lemma 3.5 Part 5.The following lemmas (Lemmas 9.19{9.23) state similar basic results about the live executionsof Hh 0.Lemma 9.19 (done liveness)1. LhH0 j= 8id : (2(modes 6= rec) ^ id 2 done-buf s); hsend pkt sr(done; id)i2. LhH0 j= 8id : 2(2(modes 6= rec) ^ 23hreceive pktrs(ack; id ; true)i =)23hsend pkt sr(done; id)i



9.4. Correctness of H 1773. LhH0 j= 8jd : 8id : 2(2(modes = needid ^ jds 6= jd) ^23hreceive pktrs(accept; jd ; id)i =)23hsend pktsr(done; id)i)ProofWe sketch the proof.1. Consider an arbitrary su�x of a live execution of Hh0 and assume that the sender is nevercrashed in this su�x. In the �rst state of the su�x, let id be an arbitrary element ofdone-buf s and id 0 the �rst element of done-buf s. Then send pkt sr(done; id 0) is enabled(since 2(modes 6= rec)) and by fairness eventually send pkt sr(done; id 0) occurs and id 0 isremoved from done-buf s. By repeating this argument, we get that eventually id is �rst ondone-buf s and then eventually send pkt sr(done; id) occurs.2. Here id will in�nitely often be put into done-buf s by the receive pkt rs(ack; id ; true) eventssince 2(modes 6= rec). Then Part 1 of this lemma implies the result.3. Similar to Part 2. When modes = needid, Invariant 9.6 implies id s = nil. Then,since jd s 6= jd , the each receive pkt rs(accept; jd ; id) step leads to id being inserted intodone-buf s. Part 1 of this lemma then implies the result.Lemma 9.20 (accept liveness)1. LhH0 j= 8jd : 8id :2(2(moder = accept ^ jd r = jd ^ id r = id) =) 23hsend pkt rs(accept; jd ; id)i)2. LhH0 j= 8jd : 8id : 2(2(moder 6= rec) ^ moder = accept ^ jdr = jd ^ id r = id =)3hreceive pktsr(send; ; id)i _3hreceive pktsr(done; id)i _23hsend pktrs(accept; jd ; id)i)Proof1. Similar to the proof of Lemma 9.18.2. Assume: 1. � 2 LhH02. jd and id are arbitrary3. �1 is an arbitrary su�x of �Prove: �1 j= 2(moder 6= rec) ^ moder = accept ^ jd r = jd ^ id r = id =)3hreceive pktsr(send; ; id)i _3hreceive pktsr(done; id)i _23hsend pktrs(accept; jd ; id)ih1i1. �1 j= 2(moder = accept ^ jd r = jd ^ idr = id) =) 3hsend pkt rs(accept; jd ; id)iProof: From Part 1 of this lemma, the Assumptions, and Lemma 3.5.h1i2. �1 j= 2(2(moder 6= rec) ^ moder = accept ^ jd r = jd ^ idr = id =)((moder = accept ^ jdr = jd ^ id r = id)Wi(hreceive pktsr(send; ; id)i _ hreceive pktsr(done; id)i)))



178 9. The Five-Packet Handshake Protocol HProof: By Lemma 9.16 Part 2(a), The Assumptions, and Lemma 3.5.h1i3. Q.E.D.Proof: By h1i1, h1i2, and Rule Unl1.By Lemma 3.5 the result follows.Lemma 9.21 (rcvd; ack)LhH0 j= 2(2(moder 6= rec) =) (moder = rcvd; moder = ack))ProofWe only sketch this proof. During any live execution of Hh 0, if the receiver is in rcvd modeand never crashes, then, by the de�nition of steps(AhH0), the only mode change of the receiveris a mode change to ack in a receive msg(m) step that empties buf r . Furthermore, whenmoder = rcvd no messages can be put into buf r (which actually implies that buf r will alwayscontain zero or one element). Then, by fairness to receive msg(m) steps, buf r will eventuallybe emptied and hence the result follows.Lemma 9.22 (ack liveness)1. LhH0 j= 8id : 2(2(moder = ack ^ lastr = id) =) 23hsend pktrs(ack; id ; true)i)2. LhH0 j= 8id : 2(2(moder 6= rec) ^ moder = ack ^ lastr = id =)3hreceive pkt sr(done; id)i _ 23hsend pkt rs(ack; id ; true)i)ProofSimilar to the proof of Lemma 9.20.Lemma 9.23 (ack; idle)LhH0 j= 2(2(modes 6= rec ^ moder 6= rec) =) (moder = ack; moder = idle))ProofBy Lemma 3.5 the following proof su�ces.Assume: 1. � 2 LhH02. �1 is an arbitrary su�x of �3. id is arbitrary4. �1 j= 2(modes 6= rec ^ moder 6= rec)Prove: �1 j= moder = ack; moder = idleh1i1. �1 j= 2(2(moder 6= rec) ^ moder = ack ^ lastr = id =)3hreceive pkt sr(done; id)i _ 23hsend pkt rs(ack; id ; true)i)Proof:By Lemma 9.22 Part 2, the Assumptions, and Lemma 3.5.



9.4. Correctness of H 179h1i2. �1 j= 2(2(moder 6= rec) ^ moder = ack ^ lastr = id =)3hreceive pktsr(done; id)i _ 23hreceive pktrs(ack; id ; true)i)Proof: By h1i1 and Channel Liveness (QCh;rs).h1i3. �1 j= 2(2(moder 6= rec) ^ moder = ack ^ lastr = id =)3hreceive pktsr(done; id)i _ 23hreceive pktsr(done; id)i)Proof:By h1i2, Lemma 9.19 Part 2, Rule MP, and Channel Liveness (QCh;sr).h1i4. �1 j= 2(2(moder 6= rec) ^ moder = ack ^ lastr = id =)3hreceive pktsr(done; id)i)Proof: Directly from h1i3.h1i5. �1 j= 2(2(moder 6= rec) ^ moder = ack ^ lastr = id =)((moder = ack ^ lastr = id) Ui 3hreceive pktsr(done; id)i))Proof: By h1i4, Lemma 9.16 Part 4(a), and the de�nition of Ui.h1i6. �1 j= 2(moder = ack ^ lastr = id =)3(moder = ack ^ lastr = id ^ hreceive pkt sr(done; id)i))Proof: By h1i5, The Assumptions, Rule MP, and the de�nition of Ui.h1i7. �1 j= moder = ack ^ lastr = id ;moder = ack ^ lastr = id ^ hreceive pkt sr(done; id)iProof: Directly from h1i6 and the de�nition of ;.h1i8. �1 j= (moder = ack ^ lastr = id); moder = idleProof: By h1i7, the ; property implied by Lemma 9.16 Part 4(b), and transitivity of;.h1i9. Q.E.D.Proof: Directly from h1i8.We are now ready to state and prove a very important result about the live executions of Hh0. InSection 9.2.3 we provided some intuitive justi�cation of the mode of operation of the H protocol.One bad situation that we touched upon was when the sender is in needidmode but the receiveris in some \bad" mode other than idle. We argued that eventually, due to done packets, thereceiver would always be reset to idle but that it immediately could enter a bad accept modeagain as a result of receiving an old needid packet (i.e., a needid packet (needid; jd) for whichjd 6= jds) from the channel. However, since each channel step can only add a �nite number ofpackets to a channel, at any point during execution there are only �nitely many packets|andconsequently only �nitely many old needid packets|in the sr channel. Therefore, since thesender only adds new needid packets to sr , the receiver can only enter a bad accept state �nitelymany times. Thus, sooner or later either the receiver receives a new needid packet (even thoughthere are still old ones in the channel) or all old needid packets have been received, in whichcase the receiver will eventually be reset to idle mode and thereafter receive a new needidpacket. This is formalized in the following lemma. In the proof we use the induction rule Ind.First, we need the following de�nition: in any state where modes = needid, de�ne the num-ber of old needid packets, written #oldneedid, to be the number of needid packets (includingduplicates) in the sr channel with jd 6= jd s.



180 9. The Five-Packet Handshake Protocol HLemma 9.24LhH0 j= 8jd : 2(2(modes = needid ^ jds = jd ^ moder 6= rec) =)3(moder = accept ^ jd r = jd))ProofAssume: � 2 LhH0Prove: � j= 8jd : 2(2(modes = needid ^ jd s = jd ^ moder 6= rec) =)3(moder = accept ^ jd r = jd))h1i1. Assume: 1. jd is arbitrary2. �1 is an arbitrary su�x of �3. �1 j= 2(modes = needid ^ jd s = jd ^ moder 6= rec)Prove: �1 j= 3(moder = accept ^ jd r = jd)h2i1. Case: �1 j= moder = accept ^ jd r = jdh3i1. Q.E.D.Proof: Case Assumption h2i implies the goal.h2i2. Case: �1 j= :(moder = accept ^ jd r = jd)h3i1. �1 j= 3(moder = idle)h4i1. Case: �1 j= moder = idleh5i1. Q.E.D.Proof: Assumption h4i implies the goal.h4i2. Case: �1 j= moder = ackh5i1. Q.E.D.Proof: By Assumptions h4i and h1i.3, and Lemma 9.23.h4i3. Case: �1 j= moder = rcvdh5i1. Q.E.D.Proof: By Assumptions h4i and h1i.3, and Lemmas 9.21 and 9.23.h4i4. Case: �1 j= moder = accept ^ jd r 6= jdh5i1. �1 j= moder = accept ^ jd r 6= jd ^ jdr = jd 0 ^ id r = idProof: From Assumption h4i by letting jd 0 and id be the valuesof jd r and id r, respectively, in the �rst state of �1.h5i2. �1 j= 3hreceive pkt sr(send; ; id)i _ 3hreceive pkt sr(done; id)i _23hsend pkt rs(accept; jd 0; id)iProof: By Lemma 9.20 Part 2, Lemma 3.5, h5i1, Assumptionh1i.3, and Rule MP.h5i3. �1 j= 3hreceive pkt sr(send; ; id)i _ 3hreceive pkt sr(done; id)i _23hreceive pkt sr(done; id)iProof: By h5i2, Channel Liveness (QCh;sr and QCh;rs), Lemma9.19 Part 3, the Assumptions, Lemma 3.5, and Rule 3.5.



9.4. Correctness of H 181h5i4. �1 j= 3hreceive pktsr(send; ; id)i _ 3hreceive pktsr(done; id)iProof: Directly by h5i3.h5i5. �1 j= moder = accept ^ jdr = jd 0 ^ idr = id Uihreceive pktsr(send; ; id)i _ hreceive pktsr(done; id)iProof: By h5i4, Lemma 9.16 Part 2(a), Lemma 3.5, the Assump-tions, and Rule MP.h5i6. �1 j= 3(moder = accept ^ jd r = jd 0 ^ id r = id ^hreceive pkt sr(send; ; id)i) _3(moder = accept ^ jd r = jd 0 ^ id r = id ^hreceive pkt sr(done; id)i)Proof: Implied by h5i5.h5i7. �1 j= 3(moder = rcvd) _ 3(moder = idle)Proof: By h5i6, Lemma 9.16 Part 2(b), the Assumptions, Lemma3.5, and Rule MP.h5i8. Q.E.D.Proof: By h5i7, Lemmas 9.21 and 9.23, and the Assumptions.h4i5. Q.E.D.Proof: By Assumption h2i and the exhaustive cases h4i1{h4i4.h3i2. �1 j= 2(#oldneedid� � #oldneedid)Proof: By Assumption h1i.3, #oldneedid is de�ned in all states of �1 andjd s does not change in �1. Then, since the only actions that can add needidpackets to sr add packets with jd 6= jd s, the result follows.h3i3. Base Case�1 j= (moder = idle ^ #oldneedid = 0); (moder = accept ^ jd r = jd)h4i1. Assume: 1. �2 is an arbitrary su�x of �12. �2 j= moder = idle ^ #oldneedid = 0Prove: �2 j= 3(moder = accept ^ jd r = jd)h5i1. �2 j= 2(#oldneedid = 0)Proof: By h3i2 and Assumption h4i.2.h5i2. �2 j= 2:hfreceive pktsr(needid; jd 0) j jd 0 6= jdgiProof: By h5i1, Assumption h1i.2, Lemma 3.5 Part 1, and thede�nition of the steps of AhH0.h5i3. �2 j= moder = idleWi hreceive pktsr(needid; )iProof: From Lemma 3.5 Part 1, the fact that �2 is a su�x of� (Assumptions h1i.2 and h4i.1), Lemma 9.16 Part 1(a), Assump-tions h1i.3 and h4i.2, and Rule MP.h5i4. �2 j= moder = idleWi hreceive pktsr(needid; jd)iProof: By h5i2 and h5i3.h5i5. �2 j= 3hreceive pktsr(needid; jd)i



182 9. The Five-Packet Handshake Protocol HProof: From Lemma 9.18, Channel Liveness QCh;sr , Assump-tion h1i.3, and Rule MP.h5i6. �2 j= moder = idle Ui hreceive pkt sr(needid; jd)iProof: By h5i4, h5i5, and the de�nition of Ui.h5i7. �2 j= 3(moder = idle ^ hreceive pktsr(needid; jd)i)Proof: By h5i6 and the de�nition of Ui.h5i8. Q.E.D.Proof: By h5i7, Lemma 9.16 Part 1(b), andMP1 (and, as always,Lemma 3.5 Part 1 and the assumption that �2 is a su�x of �).h4i2. Q.E.D.Proof: h3i3, the de�nition of implication, and Lemma 3.5 Part 2 gives�1 j= 2(moder = idle ^ #oldneedid = 0 =) 3(moder = accept ^jd r = jd)) which, by de�nition of ;, immediately gives the result.h3i4. Inductive Case�1 j= 8k : (k > 0 =)9l : (l < k ^(moder = idle ^ #oldneedid = k;(moder = idle ^ #oldneedid = l) _(moder = accept ^ jd r = jd))))h4i1. Assume: 1. k is an arbitrary positive number2. �2 is an arbitrary su�x of �13. �2 j= moder = idle ^ #oldneedid = kProve: �2 j= 3((moder = idle ^ #oldneedid < k) _(moder = idle ^ jd r = jd))h5i1. �2 j= moder = idleWi(hreceive pkt sr(needid; jd)i _hfreceive pktsr(needid; jd 0) j jd 0 6= jdgi)Proof: By Lemma 9.16 Part 1(a), Assumptions h1i.3 and h4i.3,and Rule MP.h5i2. �2 j= 3hreceive pkt sr(needid; jd)iProof: By Lemma 9.18, Assumption h1i.3, Rule MP, and Chan-nel Liveness QCh;sr .h5i3. �2 j= moder = idle Ui(hreceive pkt sr(needid; jd)i _hfreceive pktsr(needid; jd 0) j jd 0 6= jdgi)Proof: By h5i1, h5i2, and the de�nition of Ui.h5i4. �2 j= 3(moder = idle ^ hreceive pktsr(needid; jd)i) _3(moder = idle ^ hfreceive pkt sr(needid; jd 0) j jd 0 6= jdgi ^#oldneedid � k)Proof: By h5i3, the de�nition of Ui, Assumption h4i.3, and h3i2.



9.4. Correctness of H 183h5i5. �2 j= 3(moder = accept ^ jd r = jd) _3(moder = accept ^ jd r 6= jd ^ #oldneedid < k)Proof: By h5i4, Lemma 9.16 Part 1(b) and the fact that receivingan old needid packet reduces #oldneedid by one.h5i6. 3(moder = accept ^ jd r = jd) _3(moder = idle ^ #oldneedid < k)Proof: Similar to Case �1 j= (moder = accept ^ jd r 6= jd) ofh3i1 above (and h3i2).h5i7. Q.E.D.Proof: Directly from h5i6.h4i2. Q.E.D.Proof: From h4i1, The de�nition of ;, and Lemma 3.5.h3i5. �1 j= 8n : 2(moder = idle ^ #oldneedid = n =)3(moder = accept ^ jd r = jd))Proof: By h3i3, h3i4, Rule Ind, and the de�nition of ;.h3i6. For some number n0,�1 j= 3(moder = idle ^ #oldneedid = n0)Proof: Directly from h3i1 when we let n0 be the value of #oldneedid in somestate of �1 where moder = idle.h3i7. �1 j= 2(moder = idle ^ #oldneedid = n0 =)3(moder = accept ^ jdr = jd))Proof: By h3i5 and Lemma 3.5 Part 6.h3i8. Q.E.D.Proof: By h3i6, h3i7, and Rule MP1.h2i3. Q.E.D.Proof: By the exhaustive cases h2i1 and h2i2.h1i2. Q.E.D.Proof: By h1i1 using the de�nition of implication and Lemma 3.5 Parts 2 and 5.Now, since the receiver will eventually enter accept mode with the right jd r, eventually thesender will receive a (accept; jds; id) packet as formalized by the following lemma.Lemma 9.25LhH0 j= 8jd : 2(2(modes = needid ^ jd s = jd ^ moder 6= rec) =)3hreceive pkt rs(accept; jd ; )i)ProofAssume: � 2 LhH0Prove: � j= 8jd : 2(2(modes = needid ^ jd s = jd ^ moder 6= rec) =)



184 9. The Five-Packet Handshake Protocol H3(hreceive pktrs(accept; jd ; )i))h1i1. Assume: 1. jd is arbitrary2. �1 is an arbitrary su�x of �3. �1 j= 2(modes = needid ^ jd s = jd ^ moder 6= rec)Prove: �1 j= 3hreceive pktrs(accept; jd ; )ih2i1. �1 j= 3(moder = accept ^ jd r = jd)Proof: By Lemma 9.24, Assumption h1i, Lemma 3.5, and Rule MP.h2i2. Assume: 1. �2 is a su�x of �1 such that2. �2 j= moder = accept ^ jdr = jd ^ id r = idProve: �2 j= 3hreceive pkt rs(accept; jd ; )ih3i1. �2 j= (moder = accept ^ jdr = jd ^ id r = id)Wi(hreceive pktsr(send; ; id)i _ hreceive pktsr(done; id)i)Proof: By Lemma 9.16 Part 2(a), Lemma 3.5, Assumptions h1i and h2i, andRule MP.h3i2. �2 j= 2(moder = accept ^ jdr = jd ^ id r = id)Proof: By h3i1, Lemma 9.17, Lemma 3.5, and Rule Unl.h3i3. �2 j= 23hsend pktrs(accept; jd ; id)iProof: By h3i2, Lemma 9.20 Part 1, Lemma 3.5, and Rule MP.h3i4. �2 j= 23hreceive pkt rs(accept; jd ; id)iProof: The form of QCh;rs implies that since � j= QCh;rs (� is live) and �2 isa su�x of �, then �2 j= QCh;rs . This and h3i3 together with Rule MP givethe result.h3i5. Q.E.D.Proof: Directly from h3i4.h2i3. Q.E.D.Proof: By h2i1 and h2i2.h1i2. Q.E.D.Proof: By h1i1, the de�nition of implication, and Lemma 3.5.Lemma 9.26AhH0 j= 2(2(modes = needid ^ moder 6= rec) =) 3(modes = send))ProofDirectly from Lemma 9.25 and Lemma 9.15 Part 2(b).We are now ready to prove the main part of the liveness proof that Hh 0 correctly implementsG�0, namely, if � is a live execution of Hh0 and �0 is an execution of G�0 such that (�; �0) 2 RHG,



9.4. Correctness of H 185then �0 is live. As usual, we prove this result by contradiction. Thus, we assume that �0 is notlive and then derive a contradiction with the fact that � is live.Lemma 9.27Let � 2 exec(AhH0) and �0 2 exec(A�G0) be arbitrary executions of AhH0 and A�G0, respectively, with(�; �0) 2 RHG. Assume � j= QH. Then �0 j= �(QG).ProofWe prove the conjecture by contradiction. Thus,Assume: �0 6j= �(QG)Prove: Falseh1i1. �0 j= :WF (�(CG;s=r1)) _:2(2(modes = needid ^ moder 6= rec) =) 3h�(CG;s=r2)i) _:WF (�(CG;s=r3)) _:WF (�(CG;s=r4)) _:8p : (23hsend pktsr(p)i =) 23hreceive pktsr(p)i) _:8p :WF (receive pkt sr(p)) _:8p : (23hsend pktrs(p)i =) 23hreceive pktrs(p)i) _:8p :WF (receive pkt sr(p))Proof: Immediate by the Assumption, de�nition of �(QG), and the Boolean operators.h1i2. Case: �0 j= :WF (�(CG;s=r1))h2i1. �0 j= 32(modes 2 fidle; send; recg) ^ 32:h�(CG;s=r1)iProof: From Case Hypothesis h1i by noting that enabled(�(CG;s=r1)) = (modes 2fidle; send; recg) and by expanding WF .h2i2. � j= 32(modes 2 fidle; send; recg) ^ 32:h�(CG;s=r1) n fpreparegiProof: From h2i1 by de�nition of RHG and by Lemmas 5.10 and 5.11.h2i3. � j= 32(modes 2 fidle; send; recg) ^32:h�(CG;s=r1) n fpreparegi ^32:hfsend pktsr(needid; jd) j jd 2 JDgiProof: By h2i2 there is a su�x of � where alwaysmodes 2 fidle; rec; sendg. Thuswe get that no send pkt sr(needid; ) actions occur in that su�x, since such actionsare only enabled when modes = needid.h2i4. � j= 32(modes 2 fidle; send; rec; needidg) ^32:h(�(CG;s=r1) n fprepareg) [ fsend pktsr(needid; jd) j jd 2 JDgiProof: By h2i3 by noting that if modes is in fidle; send; recg, it is also in thebigger set fidle; send; rec; needidg.h2i5. � j= :WF (CH;s1)Proof: From h2i4 by using the de�nitions of WF and CH;s1.h2i6. Q.E.D.Proof: h2i5 contradicts the assumption that � j= QH.



186 9. The Five-Packet Handshake Protocol Hh1i3. Case: �0 j= :2(2(modes = needid ^ moder 6= rec) =) 3h�(CG;s=r2)i)h2i1. �0 j= 3(2(modes = needid ^ moder 6= rec) ^ 2:h�(CG;s=r2)i)Proof: Directly from Assumption h1i.h2i2. �0 j= 32(modes = needid ^ moder 6= rec) ^ 32:h�(CG;s=r2)iProof: Directly from h2i1.h2i3. � j= 32(modes = needid ^ moder 6= rec)Proof: From h2i2 by Lemma 5.11 and the de�nition of RHG.h2i4. There exists a su�x �1 of � such that�1 j= 2(modes = needid ^ moder 6= rec)Proof: From h2i3 using Lemma 3.5 Part 3.h2i5. �1 j= 2(modes = needid ^ moder 6= rec) =) 3(modes = send)Proof: By Lemma 9.26, Lemma 3.5 Part 1, and Rule Par.h2i6. �1 j= 3(modes = send)Proof: By h2i4, h2i5, and Rule MP.h2i7. Q.E.D.Proof: h2i6 contradicts h2i4.h1i4. Case: �0 j= :WF (�(CG;s=r3))h2i1. �0 j= 32(moder = rec _ (moder = rcvd ^ buf r 6= ") _ moder = ack) ^32:h�(CG;s=r3)iProof: By Assumption h1i and the de�nitions of WF and enabled(�(CG;s=r3)).h2i2. � j= 32(moder = rec _ (moder = rcvd ^ buf r 6= ") _ moder = ack) ^32:h�(CG;s=r3)iProof: From h2i1 by de�nition of RHG, the fact that �(CG;s=r3) contains externalactions only, and Lemmas 5.10 and 5.11.h2i3. � j= 32(moder = rec _ (moder = rcvd ^ buf r 6= ") _ moder = ack) ^32:h�(CG;s=r3)i ^32:hfsend pkt rs(accept; jd ; id) j jd 2 JD ^ id 2 IDgiProof: Since, by h2i2, there is a su�x of � where always moder 2 frec; rcvd; ackgwe get that no send pkt rs(accept; ; ) actions occur in that su�x, since such actionsare only enabled when moder = accept.h2i4. � j= 32((moder = rcvd ^ buf r 6= ") _ moder 2 frec; ack; acceptg) ^32:h�(CG;s=r3) [ fsend pkt rs(accept; jd ; id) j jd 2 JD ^ id 2 IDgiProof: By h2i3 by noting that if eventually moder is always in frec; rcvd; ackg,then it is eventually always in the bigger set frec; rcvd; ack; acceptg.h2i5. � j= :WP(CH;r1)Proof: By h2i4 using the de�nition of WF and the fact that CH;r1 = �(CG;s=r3) [fsend pkt rs(accept; jd ; id) j jd 2 JD ^ id 2 IDg.h2i6. Q.E.D.



9.4. Correctness of H 187Proof: h2i5 contradicts the assumption that � j= QH.h1i5. Case: �0 j= :WF (�(CG;s=r4))h2i1. �0 j= 32(moder 6= rec ^ nack-buf r 6= ") ^ 32:h�(CG;s=r4)iProof: From Assumption h1i by using the de�nition of WF , and the fact thatenabled(�(CG;s=r4)) = (moder 6= rec ^ nack-buf r 6= ").h2i2. � j= 32(moder 6= rec ^ nack-buf r 6= ") ^ 32:h�(CG;s=r4)iProof: By h2i1, the de�nition of RHG, the fact that �(CG;s=r4) consists of externalactions only, and Lemmas 5.10 and 5.11.h2i3. � j= :WF (CH;r2)Proof: By h2i2 using the de�nition of WF and the fact that CH;r2 = �(CG;s=r4).h2i4. Q.E.D.Proof: h2i3 contradicts the assumption that � j= QH.h1i6. Case: �0 j= :8p : (23hsend pkt sr(p)i =) 23hreceive pkt sr(p)i)h2i1. �0 j= 9p : (23hsend pkt sr(p)i ^ 32:hreceive pktsr(p)i)Proof: Directly from Assumption h1i.h2i2. There exists m 2 Msg and id 2 ID such that�0 j= 23hsend pkt sr(send; m; id)i ^ 32:hreceive pktsr(send; m; id)iProof: By h2i1 and Lemma 3.5 Part 8.h2i3. � j= 23hsend pktsr(send; m; id)i ^ 32:hreceive pkt sr(send; m; id)iProof: By h2i2, Lemma 5.10, and the fact that the actions send pkt sr(send; m; id)and receive pkt sr(send; m; id) are external.h2i4. � j= 9p : (23hsend pkt sr(p)i ^ 32:hreceive pktsr(p)i)Proof: By h2i3 and Lemma 3.5 Part 7. (Note that the bound variable p rangesover all packets of the form (needid; id), (send; m; id), and (done; id), whereas thebound variable in h2i1 only ranges over packets of the form (send; m; id).)h2i5. � j= :8p : (23hsend pktsr(p)i =) 23hreceive pkt sr(p)i)Proof: Directly from h2i4.h2i6. Q.E.D.Proof: h2i5 contradicts the assumption that � j= QH.h1i7. Case: �0 j= :8p :WF (receive pktsr(p))h2i1. �0 j= 9p : :WF (receive pktsr(p))Proof: Directly from Assumption h1i.h2i2. For some packet p (of the form (send; m; id)),�0 j= 32:hreceive pktsr(p)i ^ 32(p 2 sr)Proof: By h2i1, Lemma 3.5 Part 8, the de�nition of WF and since receive pktsr(p)is enabled when p 2 sr .h2i3. � j= 32:hreceive pkt sr(p)i ^ 32(p 2 sr)



188 9. The Five-Packet Handshake Protocol HProof: By h2i2, Lemmas 5.10 and 5.11, and the facts that receive pktsr(p) is exter-nal, and if (s; u) 2 RHG and u j= (p 2 sr), then s j= (p 2 sr) (recall that p has theform (send; m; id)).h2i4. � j= :8p :WF (receive pktsr(p))Proof: Directly from h2i3, Lemma 3.5 Part 7 and the de�nition of WF .h2i5. Q.E.D.Proof: h2i4 contradicts the assumption that � j= QH.h1i8. Case: �0 j= :8p : (23hsend pktrs(p)i =) 23hreceive pktrs(p)i)Proof: Similar to h1i6.h1i9. Case: �0 j= :8p :WF (receive pktrs(p))Proof: Similar to h1i7.h1i10. Q.E.D.Proof: By h1i1 and the exhaustive cases h1i2{h1i9.With this result, the simulation result of the previous section, and Lemma 5.9 we can prove thatHh0 correctly implements G�0.Lemma 9.28Hh0 vL G�0ProofImmediate by Lemmas 9.13, 9.27, and 5.9.And, �nally, we can prove that H correctly implements G.Theorem 9.29H vL GProofBy Lemma 9.28 and Lemma 5.15 we getH0 vL G�0which by substitutivity (Lemma 2.16) impliesH0 n AH vL G�0 n AHThen, by the de�nition of �, AH, and AG we getH0 n AH vL G�0 n �(AG)Now, since � only renames actions which are subsequently hidden, this impliesH0 n AH vL G0 n AGwhich �nally, by de�nition, yields the resultH vL G



9.4. Correctness of H 189Due to the fact that the correct implementation relation vL is a preorder, we get the overallresult that H correctly implements S and thus solves the at-most-once message delivery problem.Theorem 9.30H vL SProofBy Theorems 7.18, 8.19, and 9.29, and the fact that the subset relation, and thus the correctimplementation relation (cf. De�nition 2.15), is transitive.We now move to the timed setting to consider the Clock-Based Protocol C.





Chapter 10The Clock-Based Protocol CThe second and last low-level protocol we consider in this work is the Clock-Based Protocol of[LSW91], which in this work is denoted by C. As the name suggests the functionality of theprotocol depends on the sender and receiver having access to certain clocks. Speci�cally, thesender and the receiver each has a local clock which is required to deviate from real time by atmost some constant amount, called the clock skew . The C protocol thus consists of a sender, areceiver, two channels, and a special clock subsystem that guarantees that the local clocks arealmost synchronized with real time. This structure is depicted in Figure 10.1. We model theclock subsystem as a live timed I/O automaton that issues ticks to the sender and the receiver.Exactly how to implement a clock subsystem in a distributed system falls outside the scope ofthis work [LMS85].C is a timed protocol. Besides having the clock subsystem, we shall assume that channeldelays and the maximum time di�erence between certain process steps are bounded. Thus, eachcomponent of C is speci�ed as a live timed I/O automaton, and consequently C itself is a livetimed I/O automaton.The speci�cation S is modeled as an (untimed) live I/O automaton since the problem state-ment did not mention time at all. In Section 2.3 we discussed what it means to implementan untimed speci�cation by a timed implementation. The idea was to to consider the untimedspeci�cation as a timed system that allows tome to pass arbitrarily as long as possible livenessassumptions are satis�ed. For this reason the operator patient on safe and live I/O automatawas introduced.We could have removed all liveness assumptions from C and used timing assumptions instead.However, then it would have been di�cult to see which timing requirements were actually neededto guarantee the correctness of C and which were just additional timing requirements. Thus,we introduce the minimum timing requirements and otherwise use liveness to guarantee theprogress of the system. This means that all external actions of C, which are subject to livenessrequirements in S, will be given liveness requirements in C, whereas certain internal actions,like channel communication, will be given timing requirements. With this approach we cannot,of course, prove any maximum response time on, e.g., acknowledgements ack(b) but if such aresponse time is important, it should have been speci�ed in S. Instead S just assumes that the�nal implementation is \fast enough".The rest of the chapter is organized as follows. First, in Section 10.1, we present the clocksubsystem. In Section 10.2 we specify timed versions of the channels. Then, in Section 10.3, wespecify the sender and receiver and furthermore intuitively describe how the C protocol works.191



192 10. The Clock-Based Protocol CSender Cs Receiver CrChannel ChtrsChannel Chtsr--�� --�- -� �recoverscrashsack(b)send msg(m) recoverrcrashrreceive msg(m)receive pktrs(p) send pktrs(p)send pktsr (p) receive pktsr(p)6 6ClockSubsystemClticks(t) ticks(t)Figure 10.1The Clock-Based Protocol C.Section 10.4 shows how C is obtained from its subprocesses and Section 10.5 then considers thecorrectness of C. Section 10.6 discusses a \weak" version of C, where the timing assumptionsare removed, and �nally Section 10.7 considers a version of C that works for a single receiverbut multiple senders.10.1 The Clock SubsystemThe clock subsystem is speci�ed as a live timed I/O automaton Cl = (ACl; LCl). We use theexplicit speci�cation style (cf. Section 4.2.1) to specify ACl and specify LCl by an environment-free timed liveness formula QCl for ACl.10.1.1 States and Start StatesACl contains three state variables: now is as usual real time (ranging over T which equals thenonnegative real number), and ctimes and ctimes remember the last clock value sent to thesender and receiver, respectively.Variable Type Initially Descriptionnow T 0 Real timectimes T 0 Last clock value sent to the sender.ctimer T 0 Last clock value sent to the receiver.10.1.2 ActionsInput:noneOutput:ticks(t), t 2 Ttickr(t), t 2 TInternal:none



10.1. The Clock Subsystem 193Time-passage:�10.1.3 StepsThe clock subsystem is responsible just for performing outputs of the form tick s(t) and tick r(t).This clock subsystem is constrained to produce ticks that have the property that, at any realtime now , the most recent tick at either station has value within � of now . Thus, �, which ispositive, denotes the clock skew. In addition, each local clock is nondecreasing, that is, successiveticks(t) events have nondecreasing values of t, and similarly for successive tickr(t) events.ticks(t)Precondition:ctimes � t ^jt� nowj � �E�ect:ctimes := ttickr(t)Precondition:ctimer � t ^jt� nowj � �E�ect:ctimer := t
� (time-passage)Precondition:now < t ^jctimes � tj � � ^jctimer � tj � �E�ect:now := tIt is easy to see that ACl is in fact a safe timed I/O automaton, i.e., that is satis�es the �veaxioms in De�nition 2.17. Clearly S1 is satis�ed and since the tick s(t) and tick r(t) do not changethe value of now , also S2 is satis�ed. S3 is satis�ed since the �rst conjunct in the preconditionof the step rule for � explicitly requires real time to increase in time-passage steps. Also clearly,if (s; �; s0) and (s0; �; s00) are steps, then (s; �; s00) is a steps, so S4 is satis�ed. For the trajectorytheorem S5, assume that (s; �; s0) is a step. Then s:ctimes = s0:ctimes and s:ctimer = s0:ctimer .So, the mapping from the interval [s:now ; s0:now ] to states, which to each time t returns thestate [now 7! t; ctimes 7! s:ctimes; ctimer 7! s:ctimer] is a trajectory from s to s0.10.1.4 LivenessWe need no liveness restriction (other that normal admissibility). Thus, LCl should consist ofall admissible timed executions of ACl. This is speci�ed by an environment-free timed livenessformula QCl for ACl as follows.QCl 4= trueIt is easy to see that true actually induces the liveness condition consisting of all admissibletimed executions of ACl. However, generally it is not the case that true is an environment-freetimed liveness formula for a safe timed I/O automaton. However, for the clock subsystem it isthe case. The proof obligation is to show that there exists a (timed) strategy de�ned on AClsuch that any outcome of the strategy can only consist of admissible and Zeno-tolerant timedexecutions. But this is clearly the case. First of all the clock subsystem has no inputs. So,the f function of the strategy should simply be de�ned to provide one tick s(t) step and onetickr(t) step every � time units (remember that � is positive). Then any outcome will consist ofadmissible timed executions only.



194 10. The Clock-Based Protocol C10.2 The Timed ChannelsThe channels we use to connect the sender and the receiver in C are basically the same as thechannels we used in G and H. That is, an attempt to send a packet on a channel leads to zeroor more copies (a �nite number) of the packet being put into the channel. The channels we usedin G and H furthermore had some liveness restrictions: if we made in�nitely many attempts tosend a packet, then in�nitely many copies would get through.Now, the C protocol needs certain timing assumptions about the channels. Not only shouldthe channel delay|once a packet has been successfully placed in the channel|be bounded; it isalso necessary to assume an upper bound on the number of attempts needed before a packet hasbeen successfully placed in the channel. Thus, the timed channels should satisfy the followingproperties.1. For each packet p1, if k attempts (for some positive channel retry number k) are made tosend p1, then at least one copy of p1 is put in the channel|even though the k attemptsmay be interspersed with attempts to send other packets p2.2. When a copy of a packet is successfully put in the channel, the copy will be delivered atthe other end of the channel after at most the positive channel delay time d.We give an explicit speci�cation of the timed channel Chtsr = (AChtsr ; LChtsr ). The speci�cationof the other channel Chtrs = (AChtrs ; LChtrs ) is similar (and obtained by replacing sr with rs).10.2.1 States and Start StatesThe timed channel needs, as usual, a now variable to specify real time. As before the main statevariable is a multiset sr . However, in order to specify that each packet must leave the channelat most time d after it entered the channel, we need to mark each packet with a send time (notto be confused with the identi�er timestamp we associate with messages). Thus, the multisetcontains elements of the form (p; t), where p is a packet and t is the real time when p enteredthe channel. Furthermore, to specify that after at most k attempts to send a packet, the packethas been successfully put into the channel, we have for each packet p a variable countsr(p) whichcounts the number of unsuccessful attempts to send p.Variable Type Initially Descriptionnow T 0 Real timesr B(P � T) ; A multiset of packets together with the timewhen the packets were sent.countsr(p) N 0 For each p 2 P , countsr(p) contains thenumber of unsuccessful attempts to send psince last successful attempt.De�ne packets(sr) to be the multiset of packets in sr , i.e., the multiset obtained by removingall send times t0 from all elements (p; t0) in sr .



10.3. The Sender and the Receiver 19510.2.2 ActionsInput:send pktsr (p), p 2 POutput:receive pktsr(p), p 2 PInternal:noneTime-passage:�10.2.3 Stepssend pktsr (p)E�ect:let ps be a �nite multiset of (p;now) such thatps 6= ; if countsr (p) = k � 1sr := sr [ psif ps 6= ; thencountsr (p) := 0elsecountsr (p) := countsr (p) + 1 receive pktsr(p)Precondition:(p; t) 2 srE�ect:sr := sr n f(p; t)g� (time-passage)Precondition:t > now ^8 (p; t0) 2 sr : (t � t0 + d)E�ect:now := tNote, that the operators [ in send pktsr(p) and n in receive pkt sr(p) are operators on multisets ,e.g., sr n f(p; t)g removes one copy of (p; t) from sr .As for the clock subsystem it is easy to see that AChtsr is in fact a safe timed I/O automaton.10.2.4 LivenessWe need no liveness restriction (other that normal admissibility). Thus, LChtsr should consist ofall admissible timed executions of AChtsr . This is speci�ed by an environment-free timed livenessformula QChtsr for AChtsr as follows.QChtsr 4= trueQChtsr clearly is an environment-free timed liveness formula for AChtsr . The g function of a (timed)strategy could be de�ned to add one copy to sr every time send pkt sr(p) occurs. The f functionof the strategy should then simply be de�ned to wait the maximum time (d) before outputtinga packet again. In this way (since d is positive), if the environment provides Zeno input, theresulting outcome will be Zeno-tolerant. In all other cases the outcome will consist of admissibletimed executions only. That su�ces.10.3 The Sender and the ReceiverAbove we have speci�ed the clock subsystem and the timed channels explicitly as live timeI/O automata. To specify the sender and receiver processes in C, we use the implicit approach



196 10. The Clock-Based Protocol Cintroduced in Section 4.2.1. That is, we describe the automaton part of both the sender and re-ceiver live timed I/O automaton as MMT-speci�cations (cf. De�nition 4.9) AMMT ;s and AMMT ;r,respectively.When formally de�ning steps(AMMT ;s) and steps(AMMT ;r) below, we furthermore provide anintuitive description of the functionality of C.10.3.1 States and Start StatesSenderThe identi�ers used to tag messages at the C level are taken from the sender's local clock andare thus also called timestamps . Thus, the domain of the variable lasts, which contains thecurrent timestamp, is T. The sender's local clock is contained in times. This variable must bestable, i.e., it must survive a crash.Variable Type Initially Descriptionmodes fidle, send,recg idle The mode of the sender. Comparedto G, the sender does not need a spe-cial needid mode. Instead the senderenters send mode directly from idlemode.buf s Msg� " The list of messages at the sender side.Same as at the G level.times S T 0 The sender's local clock.current-msgs Msg [ fnilg nil The message about to be sent to thereceiver. Same as at the G level.lasts T 0 The timestamp chosen for the currentmessage. Same as at the G level.current-ack s Bool false Acknowledgement from the receiver.Same as at the G level.S = StableReceiverThe receiver's local clock is called timer and as for the sender's local clock, it must be stable.The receiver also contains the variables lower r and upper r, both ranging over T. The role ofthese variables is to delimit the interval of timestamps that the receiver will accept. The variableupper r, which is stable, is initialized to the special timing constant �. Exactly how lower r andupper r are manipulated and what the properties of � must be will be described below. The �nalnew variable is rm-timer . This variable holds the timestamp of the last message delivered to theuser and is used to calculate when the receiver can safely clean up its state. This mechanism isalso described below.



10.3. The Sender and the Receiver 197Variable Type Initially Descriptionmoder fidle, rcvd,ack, recg idle The mode of the receiver. Same as atthe G level.buf r Msg� " The list of messages accepted. Same asat the G level.timer S T 0 The receiver's local clock.lastr T 0 The timestamp of the last messageaccepted.lower r T 0 A lower bound on the timestamp of anew message that can be accepted.upper r S T � An upper bound on such a timestamprm-timer T [ f1g 1 Remembers the value of the local clockwhen the last message accepted wasdelivered to the user. Is used for clean-up purposes.nack-buf r T� " The list of timestamps for whichthe receiver will issue a negativeacknowledgement.S = Stable10.3.2 ActionsSenderInput:send msg(m), m 2 Msgcrashsreceive pktrs(t; b), t 2 T, b 2 Boolticks(t), t 2 TOutput:ack(b), b 2 Boolrecoverssend pktsr (m; t), m 2Msg, t 2 TInternal:choose id(t), t 2 TReceiverInput:crashrreceive pktsr(m; t), m 2 Msg, t 2 Ttickr(t), t 2 TOutput:receive msg(m);m 2Msgrecoverrsend pkt(t; b), t 2 T, b 2 BoolInternal:increase-lowerr(t), t 2 Tincrease-upperr(t), t 2 Tcleanupr



198 10. The Clock-Based Protocol C10.3.3 StepsWe now provide the formal de�nition of the steps of the underlying automata in the MMT-speci�cations of the sender and receiver. As always we list the de�nition of the steps of thesender in the left column and the de�nition of the steps of the receiver in the right column.However, �rst we provide the intuition behind the functionality of C.Informally C works as follows during normal mode of operation. The sender associates in achoose id(t) step the timestamp t with the next message it wishes to transmit. The timestampis obtained from the sender's local clock times, so the precondition for choose id(t) guaranteesthat the local clock has advanced since the last time a timestamp was chosen (lasts). The senderis now in send mode and starts to transmit repeatedly the current packet over the channel tothe receiver. The time between every retry, as we shall see formally in Section 10.3.6, is at mostthe constant ls. Based on this constant and the channel characteristics, it is possible to derivethe maximum delay before the current packet is received.The receiver now uses the associated timestamp to decide whether or not to accept a receivedmessage|roughly, it will accept a message provided that the associated timestamp is greaterthan the timestamp of the last message that was accepted, which is kept in lastr. However, thereceiver does not always remember the timestamp of the last accepted message: it might forgetthis information because of a crash, or simply because a long time has elapsed since the lastmessage was accepted and it is no longer e�cient to remember it (see below). Therefore, thereceiver uses safe time estimates determined from its own local clock (timer) to decide whento accept a message. The estimates are kept in lower r and upper r ; the receiver accepts if themessage's timestamp is in the interval (lower r; upper r].The lower r bound is designed to be at least as big as the time of the last message accepted. Itcan be bigger, however, but in this case is must be su�ciently less than the receiver's local time(at least a maximum one-way message delay (plus a double clock skew) less). This is becausethe receiver should not accidentally fail to accept a valid message that takes the maximum timeto arrive. We note that the reason why we do not want to remember just the last timestamp isthat we envision using this protocol in parallel for many users, and a single lower r bound couldbe used for all users that have not sent messages for a long while. The special timing constant� signi�es the amount by which lower r must be kept smaller than timer when incremented inincrease-lowerr(t) steps. In Section 10.3.6 we show how � should be related to the other timingconstants of the system.The upper r bound is chosen to be big enough so that the receiver still accepts the most recentmessages, even if they arrive very fast. That is, it should be somewhat larger than the currenttime (at least a double clock skew larger). But this bound is kept in stable storage, and thereforeshould not be updated very often. Thus, it will generally be set to be a good deal larger than thecurrent local time. When we present the timing constraints in Section 10.3.4 below, we show thatat most some time l0r elapses between every time upper r is increased (in an increase-upperr(t)step). The timing constant �, which occurs in the de�nition of increase-upper r(t) below, thenhas to be properly related to l0r in order to guarantee that upper r is always big enough.Unlike the H protocol, C will not continuously issue positive acknowledgements for the lastpacket successfully received. Instead it only issues one positive acknowledgement and returnsto idle mode (cf. the de�nition of the send pkt rs(t; true) steps below). If this packet is lostin the channel, eventually the receiver will receive another copy of the current packet; this willchange moder to ack and a new positive acknowledgement will be issued. After at most k retries,(t; true) is successfully placed in the bu�er and after at most d time units thereafter, the sender



10.3. The Sender and the Receiver 199will receive the acknowledgement. Once send pkt rs(t; true) is enabled, it must occur within lrtime units unless it is disabled in the meantime. This upper bound will be important in orderto specify when the receiver is allowed to clean up its state.This completes a normal cycle of the sender and receiver. After the formal de�nition of thesteps, we return to the description of the special cleanupr action and what can happen due tocrashes and recoveries.send msg(m)E�ect:if modes 6= rec thenbuf s := buf s ^mchoose id(t)Precondition:modes = idle ^buf s 6= " ^times = t ^t > lastsE�ect:modes := sendlasts := tcurrent-msgs := head(buf s)buf s := tail(buf s)send pktsr (m; t)Precondition:modes = send ^current-msgs =m ^lasts = tE�ect:none receive pktsr(m; t)E�ect:if moder 6= rec thenif lowerr < t � upperr thenmoder := rcvdbuf r := buf r ^mlastr := trm-timer :=1lowerr := telse if lastr < t � lowerr thennack-buf r := nack-buf r ^ telse if moder = idle ^ lastr = t thenmoder := ackreceive msg(m)Precondition:moder = rcvd ^buf r 6= " ^head(buf r) =mE�ect:buf r := tail(buf r)if buf r = " thenmoder := ackrm-timer := timer



200 10. The Clock-Based Protocol Creceive pktrs(t; b)E�ect:if modes = send ^ lasts = t thenmodes := idlecurrent-acks := bcurrent-msgs := nilack(b)Precondition:modes = idle ^buf s = "current-acks = bE�ect:none
send pktrs (t; true)Precondition:moder = ack ^lastr = tE�ect:moder := idlesend pktrs (t; false)Precondition:moder 6= rec ^nack-buf r 6= " ^head(nack-buf r) = tE�ect:nack-buf r := tail(nack-buf r)crashsE�ect:modes := rec crashrE�ect:moder := recrecoversPrecondition:modes = recE�ect:modes := idlelasts := timesbuf s := "current-msgs := nilcurrent-acks := false recoverrPrecondition:moder = rec ^upperr + 2� < timerE�ect:moder := idlelastr := 0rm-timer :=1buf r := "lowerr := upperrupperr := timer + �nack-buf r := "increase-lowerr(t)Precondition:moder 6= rec ^lowerr � t < timer � �E�ect:lowerr := tincrease-upperr(t)Precondition:moder 6= rec ^upperr � t = timer + �E�ect:upperr := tcleanuprPrecondition:moder 2 fidle; ackg ^timer > rm-timer + �E�ect:moder := idlelastr := 0rm-timer :=1ticks(t)E�ect:times := t tickr(t)E�ect:timer := t



10.3. The Sender and the Receiver 201All that needs to be kept in stable storage is just the local clocks times and timer , plus theone variable upper r of the receiver. When the receiver side crashes and recovers again (cf. thede�nition of recoverr above), it resets its lower r bound to the old upper r bound, to be surethat it will not accept, and thus deliver, any message twice. This explains why we cannot justset upper r to in�nity. It also explains another detail: the precondition for the recoverr stepsrequires the local clock to grow beyond upper r + 2� before recovery can take place. This isbecause otherwise the new lower r bound would be too big compared to timer which could leadto the rejection of a very fast message sent to the system after the recovery of the receiver. Ifwe were to allow such a rejection, C would not correctly (or even safely) implement S since Sonly allows the loss of messages which are in the system between crash and recovery.The way the receiver informs the sender that the sender is in a bad send state is similarto the way this is done at the G level: when the receiver receives a packet (m; t) where t isnot between lower r and upper r, it should issue a negative acknowledgement for t. However,if t < lastr , the receiver has already successfully received a message with a later timestamp,so (m; t) cannot be the current packet of the sender. In this situation the receiver does notissue the negative acknowledgement. (Note, that due to crashes or clean-ups (see below), thereceiver may forget lastr . However, in this case lastr = 0, and the receiver will issue negativeacknowledgements for all \bad" timestamps and, in particular, the current one.)Finally we consider the clean-up mechanism of the sender. When a long time has elapsedsince the receiver started to issue positive acknowledgements for the last packet accepted, it canbe sure that the sender has received the acknowledgement, and is thus allowed to forget lastrand move to idle mode. This is speci�ed in the de�nition of cleanupr above. Section 10.3.6describes how large the timing constant � occurring in the precondition should be.10.3.4 Timing ConstraintsWe can now specify sets(AMMT ;s), boundmap(AMMT ;s), sets(AMMT ;r), and boundmap(AMMT ;r)and thus complete the MMT-speci�cations of the sender and the receiver.SenderThe correctness of C depends on an upper bound on the send pkt sr(m; t) actions of the sender.Thus, sets(AMMT ;s) contains only one set of locally-controlled actions and boundmap(AMMT ;s)then associates a lower and upper bound on this set. Formally we haveCtC;s 4= fsend pkt sr(m; t) j m 2 Msg ^ t 2 Tgand bl(CtC;s) 4= 0bu(CtC;s) 4= lswhere ls is a positive real.ReceiverSimilarly, as mentioned above we put bounds on two sets of locally-controlled actions of thereceiver. The two constants lr and l0r are both positive reals.CtC;r1 4= fsend pkt rs(id ; true) j id 2 IDgCtC;r2 4= fincrease-upperr(t) j t 2 Tg



202 10. The Clock-Based Protocol Cand bl(CtC;r1) = 0bu(CtC;r1) = lrbl(CtC;r2) = 0bu(CtC;r2) = l0r10.3.5 The Sender and Receiver Safe Timed I/O AutomataThe safe timed I/O automata of the sender and receiver processes in C are now given by (cf.De�nition 4.10)AC;s 4= time(AMMT ;s)AC;r 4= time(AMMT ;r)10.3.6 Derived Timing ConstantsBefore we specify the liveness requirements for the sender and receiver processes of C, we returnto the three timing constants �, �, and � occurring in the de�nition of the steps of the senderand receiver, and show how they should be related to the other timing constants. We give theintuition behind the constants, and in the proofs in Section 10.5 we show that the properties ofthe constants actually guarantee correctness. We �rst repeat the other timing constants, whichare all positive reals:� The maximum clock skew from real time (at both the sender and receiver side).ls An upper time bound between retransmissions of message packets (m; t) from the sender.lr An upper time bound between retransmissions of positive acknowledgement packets (t; true)from the receiver.l0r An upper bound between increase-upperr(t) steps of the receiver. (This upper bound willusually be bigger than lr since increase-upper r(t) writes to stable storage.)d An upper bound on channel delay.Furthermore, the channel retry number k is a �xed positive integer, which represents the numberof retries that will guarantee delivery of a packet.We consider �, �, and � one by one.The Timing Constant �The timing constant � occurs in the de�nition of the increase-upperr(t) steps above and indicatethe amount by which upper r should be set bigger than timer. Assume that the sender's localtime is � ahead of real time and the receiver's time is � behind. If the sender picks a timestampfor the current message and this message arrives very fast (in fact arbitrarily fast since we haveno lower bounds in the system) at the receiver, the timestamp of this message will be 2� largerthan the receiver's local time. Since the message must be accepted, upper r must be at least 2�



10.3. The Sender and the Receiver 203larger than timer at any moment (where the receiver is not crashed). When increase-upperr(t)has occurred, it will recur before l0r time units. Thus, � should satisfy� � 2�+ l0rNote, the smaller � is, the more often increase-upper r(t) steps (and thus writes to stable storage)are required to happen. On the other hand, if � is chosen too big, recovery will be delayed (cf.the de�nition of recoverr).The Timing Constant �The timing constant � occurs in the de�nition of the increase-lowerr(t) steps above and indicatethe amount by which lower r must be smaller than timer. The � bound should guarantee thatvery slow messages from the sender will still be accepted. Assume the sender's local time is �behind real time and the receiver's local time is � ahead. By the time the sender associates a newtimestamp t with the current message, t = timer � 2�. Now, the sender will succeed in placingthe current packet in the channel after at most k retries and the delay between each retry is atmost ls. Thus, after kls time units, from the time the timestamp was chosen, the current packetmust have been placed in the channel, and after at most d time units the packet will be received.Thus, during the time of transmission, the receiver's local time has increased by at most kls+ dtime units (it cannot have increased by more since it was already the maximum amount aheadof real time). We �nally get that the timestamp t will be timer � kls + d + 2� at the time ofreceipt in this worst case. Thus,� � kls + d+ 2�The Timing Constant �We �nally consider � which occurs in the de�nition of cleanupr . Clearly, � is the most compli-cated of the timing constants.There is no bound on how fast new packets can arrive at the receiver, nor are there boundson how fast the receiver delivers accepted messages to the user. The � bound has to indicatethe �rst time by which it is no longer necessary to remember lastr. This bound thus has to becalculated from the time the last message accepted (i.e., the message for which lastr gives thetimestamp) is delivered.We consider a situation where neither the sender nor the receiver crashes.Let now rm be a real time when receive msg(m) occurs and buf r becomes empty, and lettimer;rm be the corresponding value of timer. Also, let nowsend-ack ;i denote the real time whenthe receiver performs its ith send pktrs(t; true) step for the current timestamp t (contained inlastr). We have,now send-ack ;1 � nowrm + lrThe maximum delay until the receiver receives (m; t) again is kls + d. (Just before the receiverperformed send pkt rs(t; true) the sender might have succeeded in putting a copy of (m; t) intothe channel, and this copy could be fast such that it arrives with no delay at the receiver, i.e.,just before send pktrs(t; true). Since such copies are not bu�ered by the receiver, the receiverhas to wait for the next copy which arrives after at most kls + d time units.) Thus,now send-ack ;2 � now send-ack ;1 + (kls + d+ lr)= now rm + lr + (kls + d+ lr)



204 10. The Clock-Based Protocol CAnd for the kth send pktrs(t; true),now send-ack;k � now send-ack;k�1 + (kls + d+ lr)= now send-ack;k�2 + 2(kls + d+ lr)= : : := now send-ack;1 + (k � 1)(kls + d+ lr)= now rm + lr + (k � 1)(kls + d+ lr)Now, let nowack-rcvd be the real time when (t; true) is received by the sender and let timer;ack-rcvdbe the corresponding value of timer .nowack-rcvd � nowsend-ack ;k + d= nowrm + lr + (k � 1)(kls+ d+ lr) + d= nowrm + k(lr + d) + (k � 1)klsSince timer � � � now and timer + � � now , we havetimer;ack-rcvd � � � nowack-rcvd� nowrm + k(lr + d) + (k � 1)kls� timer;rm + �+ k(lr + d) + (k � 1)klsThus,timer;ack-rcvd � timer;rm + k(lr + d) + (k � 1)kls + 2�Since the state variable rm-timer of the receiver is set to timer;rm at the time of the lastreceive msg(m) step, we see from the de�nition of cleanupr that � should satisfy� � k(lr + d) + (k � 1)kls + 2�Note that� � depends on k2 (but fortunately not on k2d).� the 2� in � is actually not obtained as the maximum di�erence between sender and receiverclocks but as two times the maximum receiver clock skew.10.3.7 LivenessThe liveness requirements to the sender and receiver processes of C are weak fairness to sets oflocally-controlled actions.SenderLet CC;s 4= fack(true); ack(false); recoversg [fchoose id(t) j t 2 Tg [fsend pktsr(m; id) j m 2 Msg ^ id 2 IDg



10.4. The Speci�cation of C 205Then the liveness condition LC;s is induced byQC;s 4= WF (CC;s)Note, that it is actually not necessary to add the send pktsr(m; id) actions to CC;s since theseactions are already constrained by the stronger timing requirements.In the untimed setting weak fairness to locally-controlled actions is trivially environment-free.This is not necessarily the case in the timed setting. The problem is that even with the simpleweak fairness requirements, the system might still collaborate with a Zeno environment andgenerate outcome timed executions that are not Zeno-tolerant. However, QC;s is environment-free for AC;s. Intuitively, consider a strategy that for actions in CtC;s always waits the maximumdelay ls before performing an action in CtC;s. The actions in CC;s should then be handledsimilarly with some arbitrary positive real number as bound. If the sets CtC;s and CC;s becomesdisabled, there are no requirements so the strategy should just let time pass forever. With thisstrategy, if the environment is not Zeno, each outcome timed execution will be in LC;s, and ifthe environment is Zeno, each outcome timed execution will be Zeno-tolerant.Finally note that, by Proposition 3.4, QC;s is stuttering-insensitive.ReceiverSimilarly, letCC;r1 4= frecoverrg [ freceive msg(m) j m 2 Msgg [fsend pkt rs(id ; true) j id 2 IDgCC;r2 4= fsend pkt rs(t; false) j t 2 TgThen LC;r is induced byQC;r 4= WF (CC;r1) ^WF (CC;r2)As for the sender, QC;r is stuttering-insensitive and environment-free for AC;r.10.4 The Speci�cation of CC is the parallel composition of sender, receiver, two channels, and clock subsystem. First de�neC00 = (A00C; L00C) as,C00 4= CskCrkChtsrkChtrskClBy Proposition 4.17, L00C is induced by QC, which is de�ned asQC 4= QC;s ^ QC;r ^ QChtsr ^ QChtrs ^ QClC00 has channel communication as well as ticks from the clock subsystem as external (output)actions. To obtain a speci�cation where the ticks are hidden, de�neA0C 4= fticks(t) j t 2 Tg [ fticks(t) j t 2 TgThen C0 = (A0C; L0C) is de�ned asC0 4= C00 n A0C



206 10. The Clock-Based Protocol CBy Proposition 4.18, L0C is induced by QC.Finally, to get C, we hide the channel actions. First de�neAC 4= fsend pkt sr(m; t) jm 2 Msg ^ t 2 Tg [freceive pkt sr(m; t) j m 2 Msg ^ t 2 Tg [fsend pkt rs(t; b) j t 2 T ^ b 2 Boolg [freceive pkt rs(t; b) j t 2 T ^ b 2 BoolgThen the speci�cation of C = (AC; LC) is given byC 4= C0 n ACAgain, by Proposition 4.18, LC is induced by QC.We now turn to proving the correctness of C. This involves, among other things, use of theEmbedding Theorem of Section 2.3.10.5 Correctness of CThe objective of this section is to prove correctness of C|not with respect to G but with respectto the patient version of G. Then the Embedding Theorem of Chapter 2 will allow us to concludethat C correctly implements patient(S).First, recall that the G protocol uses a set ID of identi�ers that has to satisfy certainconditions (cf. Section 8.1). We instantiate this set with the time domain T, which clearlysatis�es the conditions. Thus, we set ID = T in the proofs below.Next, recall from Section 9.4 that we �rst proved that H0 correctly implements G0, whereH0 and G0 are the versions of H and G with channel communication as external actions. Thiswas because the Execution Correspondence Theorem gives a stronger result the more externalactions the systems have in common. The same motivation leads us �rst to consider the proofthat C0 correctly implements patient(G0). Thus, let Gp0 = (ApG0; LpG0) be de�ned asGp0 4= patient(G0)By Proposition 4.22, LpG0 is induced by QG and QG is minimal.In order to prove that C0 correctly implements Gp0, we �rst enhance C0 with history variablesand thereby obtain Ch0 = (AhC0; LhC0). We then prove several invariants of AhC0 and show theexistence of a timed re�nement mapping from AhC0 to ApG0. Finally, this re�nement result is usedto prove that Ch0 correctly implements Gp0 and, in turn, that C correctly implements patient(S).10.5.1 Adding History VariablesWe add two history variables to C0 and denote the resulting live timed I/O automaton byCh 0 = (AhC0; LhC0).Variable Type Initially Descriptionused s H T� " The list of timestamps used by thesender. Same as at the G level.deadline H T [ f1g 1 An estimated deadline on arrival of thecurrent packet.H = History



10.5. Correctness of C 207We now show how the history variables should be updated (cf. Section 9.4.1 where historyvariables are added at the H level). We refer to Section 5.2.5 for a description on how we areallowed to manipulate the history variables.choose id(t)Precondition:(� Precondition from Cs �): : :E�ect:(� E�ect clause from Cs �): : :useds := useds ^ tif moder 6= rec thendeadline := now + kls + d receive pktsr(m; t)Precondition:(� Precondition from Chtsr �): : :E�ect:(� E�ect clause from Chtsr �): : :(� E�ect clause from Cr �)if moder 6= rec thenif lowerr < t � upperr then: : :if t = lasts ^ modes = send thendeadline :=1else if lastr < t � lowerr then: : :else if moder = idle ^ lastr = t then: : :crashsE�ect:(� E�ect clause from Cs �): : :deadline :=1 crashrE�ect:(� E�ect clause from Cr �): : :deadline :=1By Lemma 5.32, LhC0 is induced by QC.10.5.2 InvariantsIn this section we state the invariants of AhC0 we need below. The proofs are deferred to Ap-pendix C.The �rst invariant deals with the local clocks of the sender and receiver in AhC0 and statesthat the maximal clock skew for these is �, which then implies that times and timer can di�erby at most 2�.Invariant 10.11. times = ctimes2. timer = ctimer



208 10. The Clock-Based Protocol C3. jtimes � now j � �4. jtimer � now j � �5. jtimes � timerj � 2�When the receiver is not in recovery mode, upper r is updated regularly to ensure that timestampschosen by the sender are never \too big". This is expressed by the following invariant.Invariant 10.21. If moder 6= rec then upper r � now + �2. If moder 6= rec then upper r � times3. If moder 6= rec then upper r � timerThe following invariant deals with lasts. Since the local clock times can never decrease and dueto the facts that the current timestamp is taken from times, and lasts gets reset to times after acrash, it is the case that lasts is always greater than or equal to times. Furthermore, the currenttimestamp (i.e., the value of lasts when modes = send) can never be 0.Invariant 10.31. lasts � times2. If modes = send then lasts > 0The state variable lastr contains the timestamp of the last message accepted by the receiver (or0 right after recovery or cleanup). The next invariant states that the value of lastr can never beconsidered a good timestamp by the receiver. (Otherwise the receiver could accidentally acceptthe same packet twice). Speci�cally, lastr is always less than or equal to lower r . Furthermore,lower r is always less than or equal to upper r.Invariant 10.41. lastr � lower r2. lower r � upper rThe next invariant states that the number of unsuccessful attempts (since the last successfulattempt) to send a packet (m; t), where t > lasts, is always 0. Actually, no attempts can everhave been made to transmit (m; t) since the sender cannot yet have issued the timestamp t.Furthermore, the number of unsuccessful attempts (since last successful attempt) to send anypacket can never be greater than or equal to k (the channel retry number).



10.5. Correctness of C 209Invariant 10.51. If t > lasts then countsr(m; t) = 02. countsr(m; t) � k � 1The following invariant is a key invariant and states properties of timestamps associated withmessages and acknowledgements in the channels.Invariant 10.61. If (m; t) 2 packets(sr) then t � lasts2. If (m; lasts) 2 packets(sr) ^ modes = send then m = current-msgs3. lastr � lasts4. If (t; true) 2 packets(rs) then t � lasts5. If t 2 nack-buf r then t � lower r6. If (t; b) 2 packets(rs) then t � lower rProperties of the relationship between lower r and lasts are stated in the following invariant.Invariant 10.71. lower r � times2. If lasts < times then lower r < timesThe sender chooses increasing timestamps as indicated by the next invariant.Invariant 10.81. If t precedes t0 in useds then t < t0Due to the way the channels deal with the maximum channel delay d, the following invariantholds.Invariant 10.91. If ((m; t); t0) 2 sr then t0 � now + d



210 10. The Clock-Based Protocol CTo state the next invariant, we need a few de�nitions. De�ne the function mintime with thefollowing signaturemintime : P � (B(P � T))! Tin the following waymintime(p; ch) 4= ( t if (p; t) 2 ch ^ 8(p; t0) 2 ch : (t0 � t)0 otherwiseThus, mintime(p; ch) gives the minimal send time associated with the packet p in ch (anddefaults to 0 if p =2 packets(ch)). Remember from the way we model the channels sr and rs thateach element in the channels has two times associated with it: one is a timestamp chosen bythe sender; the other represents the real time when the element was put into the channel and iscalled the send time of the packet. The function mintime returns send times.For any state s of AhC0 we de�ne s:bound in the following way, where we use m and t asshorthands for s:current-msgs and s:lasts, respectively.s:bound 4= 8>>>>><>>>>>: 1 if s:modes 6= sendd+mintime((m; t); s:sr) if s:modes = send ^(m; t) 2 packets(s:sr)s:last(CtC;s) + (k� 1� s:countsr(m; t))ls+ d if s:modes = send ^(m; t) =2 packets(s:sr)Thus, s:bound represents an estimated time of arrival for the current packet. With this de�nitionwe can prove very important properties of the history variable deadline.Invariant 10.101. bound � deadline2. now � bound3. now � deadline4. If deadline 6=1 then deadline � lasts + �+ kls + d5. If deadline 6=1 then now � lasts + �+ kls + d6. If deadline 6=1 then lasts > lower r7. If deadline 6=1 then modes = send ^ moder 6= recThe receiver is allowed to clean up its state, i.e., to forget the timestamp of the last messageaccepted and move to idle mode, when a su�ciently long time has elapsed since the messagewas delivered to the user. This is because by then the receiver can be certain that the senderhas received a positive acknowledgement packet for the current packet. In the speci�cation ofthe receiver, � indicates how long time the receiver must wait before cleaning up. The followinginvariant captures the fact that � is properly de�ned. We do not prove the invariant but notethat it can be proved in a fashion similar to the proof of Invariant 10.10.



10.5. Correctness of C 211Invariant 10.111. If modes = send ^ moder 6= rec ^ timer > rm-timer + � then lasts 6= lastrThe �nal two invariants are trivial and state that any timestamps occurring in the channels arepositive.Invariant 10.121. If (m; t) 2 packets(sr) then t > 0Invariant 10.131. If (t; b) 2 packets(rs) then t > 0We refer to the conjunction of the invariants above by ICh .10.5.3 SafetyWe now de�ne a function from states(AhC0) to states(ApG0). Below, in Lemma 10.15, this functionis proved to be a timed re�nement mapping from AhC0 to ApG0 with respect to ICh and IG. (Note,that the invariant IG of AG is clearly also an invariant of ApG0.)Below we use the notation (t1; t2] to denote both the left-open interval from a to b and theset ft j t1 < t � t2g. Similar notation is used for the other kinds of intervals.De�nition 10.14 (Re�nement Mapping from AhC0 to ApG0)If s 2 states(AhC0) then de�ne RCG(s) to be the state u 2 states(ApG0) such that1. u:now = s:nowu:modes = s:modesu:buf s = s:buf su:current-msgs = s:current-msgsu:current-ack s = s:current-ack su:useds = s:usedsu:moder = s:moderu:buf r = s:buf ru:nack-buf r = s:nack-buf r2. u:lasts = (if s:lasts = 0 then nil else s:lasts)u:lastr = (if s:lastr = 0 then nil else s:lastr)3. u:good s = fs:timesg n fs:lastsg4. u:good r = (s:lowerr ; s:upperr ]5. u:issuedr = (0; s:upperr]6. u:current-ok = (s:deadline 6=1)



212 10. The Clock-Based Protocol C7. u:sr = packets(s:sr)u:rs = packets(s:rs)Note how the values of most variables at the G level correspond directly to the value of the samevariables at the C level as expressed by Part 1. Part 2 gives the trivial correspondence for thelasts and lastr variables. Parts 3{5 contain the interesting aspects of the mapping: good s|thetimestamps the sender can associate to messages|consists of the value of times, but only ifthe clock has increased since the last timestamp was chosen; otherwise good s is empty; good ris, as expected, the left-open interval from lower r to upper r; �nally, the receiver has issued alltimestamps up to and including upper r. The correspondence in Part 6 between current-ok atthe G level and deadline at the C level is obvious. Finally, Part 7 states that each channel atthe G level is obtained from the corresponding channel at the C level by removing the send timecomponents of all elements.We now prove that RCG is in fact a timed re�nement mapping from AhC0 to ApG0 (with respectto ICh and IG).Lemma 10.15AhC0 �tR ApG0 via RCG.ProofWe prove that RCG is a timed re�nement mapping from AhC0 to ApG0 with respect to ICh and IG.We check the three conditions (which we call real time correspondence, base case, and inductivecase, respectively) of De�nition 5.18.Real Time CorrespondenceFrom the de�nition of RCG we see that for all states s of C, RCG(s):now = s:now as required.Base CaseFor the initial condition, let s be the start state of C. Then it is easy to check that RCG(s) is astart state of ApG0.Inductive CaseAssume (s; a; s0) 2 steps(AhC0) such that s and s0 satisfy ICh and RHG(s) satis�es IG. Belowwe consider cases based on a (and sometimes subcases of each case) and for each (sub)case wede�ne a �nite execution fragment � of ApG0 of the form (RCG(s); a0; u00; a00; u000; : : : ; RCG(s0)) withvis-trace(�) = vis-trace(a). For brevity we let u denote RHG(s) and u0 denote RHG(s0).a = �Then (u; �; u0) 2 steps(ApG0): the only change in going from s to s0 is that the now variableincreases, thus, by de�nition of RCG, the only di�erence between u and u0 is that the nowvariable of ApG0 increases and all such changes are allowed in ApG0.



10.5. Correctness of C 213a 2 fsend msg(m); receive msg(m); ack(b)gThen it is easy to see that (u; a; u0) 2 steps(ApG0). This step (and �nite execution fragment)clearly has the right visible trace.a 2 fcrashs; crashrgThen it is easy to see that (u; a; u0) 2 steps(ApG0). This step (and �nite execution fragment)clearly has the right visible trace.The only thing to note here is the handling of deadline. The step of AhC0 changes deadline to 1but this corresponds, according to the de�nition of RCG, to changing current-ok to false in ApG0as required by the de�nition of the crash actions in ApG0.a = recoversWe show that (u; recovers; u00; shrink good s(s:times); u0), where u00 is de�ned below, is a �niteexecution fragment of ApG0 by showing that (u; recovers; u00) and (u00; shrink good s(s:times); u0)are steps of ApG0. Clearly the execution fragment has the right visible trace.De�ne u00:modes = idleu00:lasts = s:timesu00:buf s = "u00:current-msgs = nilu00:current-acks = falseu00:x = u:x for the remaining state variables xFirst, consider (u; recovers; u00). From the de�nition of recover s in AhC0 we have that s:modes =rec which implies, by the de�nition of RCG, that also u:modes = rec. Thus, recovers is enabledin u. Then, by de�nition of u00 and recover s in ApG0, clearly (u; recovers; u00) 2 steps(ApG0).Next, consider (u00; shrink goods(s:times); u0). The de�nition of shrink good s in ApG0 has noprecondition, so shrink good s(s:times) is enabled in u00. From the de�nitions of u00 and RCG wehave that u00:goods = u:goods � fs:timesg.We must show that the di�erences between u00 and u0 are allowed by the de�nition of theshrink goods(s:times) steps in ApG0. This amounts, by the de�nition of shrink good s(s:times) inApG0, to showing that u0:good s = u00:goods n fs:timesg and that all other state variables of ApG0have the same values in u00 and u0.For good s we have that u0:goods = ; (since s0:times = s0:lasts), but from above we haveu00:goods � fs:timesg, so u0:good s = u00:good s n fs:timesg as required.It is easy to check that the rest of the state variables of ApG0 have the same values in u00 and u0.� = recoverrWe show that(u; shrink goodr((s:lowerr; s:upper r]); u00; grow good r((s:upper r; s:timer + �]); u000; recoverr; u0),where u00 and u000 are de�ned below, is a �nite execution fragment of ApG0 by showing that(u; shrink goodr((s:lowerr; s:upper r]); u00), (u00; grow goodr((s:upper r; s:timer + �]); u000), and(u000; recoverr ; u0) are steps of ApG0. The execution fragment clearly has the right visible trace.



214 10. The Clock-Based Protocol CDe�ne u00:good r = ;u00:x = u:x for the remaining state variables xFirst, consider (u; shrink good r((s:lowerr ; s:upperr ]); u00). From the precondition of the recoverrsteps in AhC0 and the de�nition of RCG we have that u:moder = s:moder = rec. Then In-variant 8.6 Part 2 implies that u:current-ok = false, thus, shrink good r((s:lowerr ; s:upperr ]) isenabled in u. Since the de�nition of RCG implies that u:goodr = (s:lowerr ; s:upperr ], it is easyto see that (u; shrink goodr((s:lowerr; s:upper r]); u00) 2 steps(ApG0).De�ne u000:issuedr = (0; s:timer + �]u000:goodr = (s:upper r ; s:timer + �]u000:x = u00:x for the remaining state variables xNext, consider (u00; grow goodr((s:upperr ; s:timer + �]); u000). By de�nition of u00 and RCG wehave that u00:issuedr = u:issuedr = (0; s:upperr ]. So, (s:upper r ; s:timer + �] and u00:issuedr donot intersect. Also, by adding (s:upper r; s:timer + �] to issuedr we still have in�nitely manyunused timestamps left in T. Thus, grow good r((s:upper r; s:timer + �]) is enabled in u00. Sinceu00:goodr = ; by de�nition, it is easy to see that the change in good r is as required by thede�nition of the grow goodr((s:upper r; s:timer + �]) steps in ApG0. To show that also issuedr ishandled correctly, we must show that u000:issuedr = u00:issuedr [ (s:upper r; s:timer + �], i.e., wemust show that (0; s:timer + �] = (0; s:upperr ] [ (s:upper r ; s:timer + �]. A su�cient conditionfor this to hold is that s:timer + � � s:upper r , but this is implied by the precondition of therecoverr step in AhC0. To leave all other state variables unchanged is also as required by thede�nition of grow good r((s:upper r; s:timer + �]) in ApG0.Finally, consider (u000; recoverr ; u0). We have u000:moder = u:moder = s:moder = rec, so recoverris enabled in u000. We show that all state variables are handled according to the de�nition ofrecoverr in ApG0. The only interesting cases are issuedr and good r.For issuedr we have u000:issuedr = (0; s:timer+�] by de�nition of u000 and furthermore u0:issuedr =(0; s0:upper r] = (0; s:timer + �] by de�nition of RCG and the recoverr step in AhC0. Thus,u000:issuedr = u0:issuedr and this is allowed by the de�nition of recoverr in ApG0 if jTns0:issuedrj =1 which is clearly satis�ed and if u0:issuedr includes a) u000:issuedr, b) u000:useds, and c) u000:good s.Case a) is clearly satis�ed. For b) we have u000:useds = u:used s = (0; s:lasts]. Thus, we must showthat s:lasts � s:timer + �, but this follows from s:lasts � s:times � s:timer + 2� � s:timer + �,where the �rst inequality follows from Invariant 10.3 Part 1, the second inequality follows fromInvariant 10.1 Part 5, and the third inequality follows from the de�nition of �. For c) we haveu000:goods = u:goods = fs:timesg n fs:lastsg. It su�ces to show that s0:times � s0:upper r (sinces0:times = s:times and s0:upper r = s:timer + �), but that follows from Invariant 10.2 Part 2.Thus, issuedr is handled correctly.For good r we have u000:good r = (s:upper r; s:timer + �] and u0:good r = (s0:lower r; s0:upper r ] butsince s0:lower r = s:upper r and s0:upper r = s:timer +�, by de�nition of the recoverr step in AhC0,we have that u000:good r = u0:good r as required by the de�nition of recoverr in ApG0.a 2 fsend pkt sr(m; t); send pkt rs(t; true); send pktrs(t; false)gIt is straightforward to show that (u; a; u0) 2 steps(ApG0). This step (and �nite execution frag-ment) clearly has the right visible trace.a = receive pktsr(m; t)We consider cases.



10.5. Correctness of C 2151. s:moder 6= rec and s:lower r < t � s:upper r.We show that (u; receive pkt sr(m; t); u00; shrink good r((s:lower r; t]); u0), where u00 is de�nedbelow, is a �nite execution fragment of ApG0 by showing that (u; receive pkt sr(m; t); u00) and(u00; shrink goodr((s:lower ; t]); u0) are steps of ApG0. Clearly the execution fragment has theright visible trace.De�ne u00:goodr = u:goodr n ft0 j t0 �u tgu00:x = u0:x for the remaining state variables xFirst, consider (u; receive pkt sr(m; t); u00). By the case assumption and the de�nition ofRCG, we have u:moder 6= rec and t 2 u:goodr. Then, by de�nition of receive pktsr(m; t) inApG0 and u00 it is easy to see that (u; receive pkt sr(m; t); u00) 2 steps(ApG0).Then consider (u00; shrink good r((s:lower r; t]); u0). We show that shrink goodr((s:lowerr; t])is enabled in u00. Assume u00:current-ok = true (otherwise shrink good r((s:lowerr ; t]) istrivially enabled). Then, by de�nition of receive pktsr(m; t) in ApG0 we have u00:lasts 6= t oru00:modes 6= send. By the precondition of shrink goodr((s:lowerr; t]), we must show twoconditions.1) First, since modes ranges over fidle; send; recg in AhC0, we have u:modes(= u00:modes) 6=needid. Thus, the �rst condition is satis�ed.2) Second, assume u00:modes = send. We must show that u00:lasts =2 (s:lower r; t]. Fromabove we have u00:lasts 6= t. Then since s0:lastr = u:lastr = u00:lastr = t, Invariant 10.6Part 3 implies t < u00:lasts. That su�ces.Thus, shrink good r((s:lower r; t]) is enabled in u00.We must show that all state variables of ApG0 are handled correctly. This is easy for allvariables other than good r by explicit de�nition of u00.For good r we must show that u0:goodr = u00:goodr n (s:lower r; t]. Since s0:lower r = t ands0:upper r = s:upper r , the de�nitions of RCG and u00 imply u00:goodr = (s:lower r; s0:upper r ]nft0 j t0 �u tg and u0:goodr = (t; s0:upper r). Thus, it su�ces to show that if t0 �u t, thent0 � t, but that follows directly from Invariant 10.8 Part 1. That su�ces.2. s:moder = rec or :(s:lower r < t � s:upper r)We show that (u; receive pkt sr(m; t); u0) 2 steps(ApG0). This step (and execution fragment)clearly has the right trace.We consider subcases.(a) moder = rec.In this case the only di�erence between s and s0 is that s0:sr is missing one element((m; t); t00) compared to s:sr . Thus, the only di�erence between u and u0 is, by de�nitionof RCG, that u0:sr is missing one packet (m; t) compared to u:sr .Since s:moder = rec we have u:moder = rec, so in this case it is easy to see that(u; receive pkt sr(m; t); u0) 2 steps(ApG0).(b) moder 6= rec, :(s:lower r < t � s:upper r), and lastr < t � lower r.In this case the only di�erence between s and s0 is that s0:nack-buf r = s:nack-buf r ^ tand s0:sr is missing one element ((m; t); t00) compared to s:sr . Then the de�nition ofRCG implies that u0 and u are the same except that u0:nack-buf r = u:nack-buf r ^t andu0:sr is missing one packet (m; t) compared to u:sr .Now, the de�nition of RCG implies that u:moder 6= rec and t =2 u:good r, and sinces:lastr < t, u:lastr 6= t. Thus, by de�nition of receive pkt sr(m; t) in ApG0, it is easy tosee that (u; receive pkt sr(m; t); u0) 2 steps(ApG0).



216 10. The Clock-Based Protocol C(c) moder 6= rec, :(s:lower r < t � s:upper r), :(lastr < t � lower r), moder = idle, andlastr = t.In this case the only di�erence between s and s0 is that s0:moder = ack and s0:sr ismissing one element ((m; t); t00) compared to s:sr . Then the de�nition of RCG impliesthat u0 and u are the same except that u:moder = idle, s:moder = ack and u0:sr ismissing one packet (m; t) compared to s:sr .We have, by de�nition of RCG that u:moder = idle and t =2 u:good r. Furthermore,the case assumption and Invariant 10.12 imply that s:lastr > 0, so, by the de�nition ofRCG, u:lastr = s:lastr = t. Then, by de�nition of receive pkt sr(m; t) in ApG0, it is easyto see that (u; receive pktsr(m; t); u0) 2 steps(ApG0).(d) moder 6= rec, :(s:lower r < t � s:upper r), :(lastr < t � lower r), and (moder 6= idleor lastr 6= t).In this case the only di�erence between s and s0 is that s0:sr is missing one element((m; t); t00) compared to s:sr . Thus, the only di�erence between u and u0 is, by de�nitionof RCG, that u0:sr is missing one packet (m; t) compared to u:sr .We must show that the de�nition of receive pkt sr(m; t) in ApG0 allows all state variablesexcept sr to be unchanged. (The change to sr is as required by receive pkt sr(m; t).)As in the previous case we have u:moder 6= rec and t =2 u:good r. Thus, according tothe de�nition of receive pktsr(m; t) for the receiver of ApG0, the required changes to thestate variables are not given by the �rst alternative in the embedded if-statement.Now assume t 6= s:lastr (cf. the case assumption). Then also t 6= u:lastr. Then,by de�nition of receive pktsr(m; t) in ApG0, we see that in order for ApG0 to allowu0:nack-buf r = u:nack-buf r it su�ces to show that t 6= u:lasts. By the case assumptionand Invariant 10.2 Part 2, Invariant 10.3 Part 1, and Invariant 10.6 Part 1, t < s:lastr.Thus, u:lastr = s:lastr > t. That su�ces.Finally, assume that t = s:lastr and moder 6= idle. Then it is clearly the case that(u; receive pkt sr(m; t); u0) 2 steps(ApG0).a = receive pktrs(t; b)We show that (u; receive pkt rs(t; b); u0) 2 steps(ApG0). This step (and �nite execution fragment)clearly has the right visible trace.Since (t; b) 2 packets(s:rs), the de�nition of RCG gives (t; b) 2 u:rs. Thus, receive pkt rs(t; b) isenabled in u.We consider cases based on the if-statement in the de�nition of receive pktsr(t; b) of the senderin AhC0. In both cases a ((t; b); t0) element of s:rs gets removed and this corresponds, by thede�nition of RCG, to removing a (t; b) element from u:rs, but this is as required by the de�nitionof receive pktrs(t; b) in ApG0. Below we consider the remaining state variables of ApG0.Assume s:modes 6= send or s:lasts 6= t. Then the only di�erence between s and s0 is thechange in the channel rs as described above, so the only di�erence between u0 and u is thecorresponding change in sr (according to RCG). Now, the de�nition of RCG implies thatu:modes 6= send or u:lasts 6= t so we see, from the de�nition of receive pkt sr(t; b) in ApG0,that (u; receive pkt rs(t; b); u0) 2 steps(ApG0).Then, assume s:modes = send and s:lasts = t. From Invariant 10.13 we have t > 0, so thede�nition of RCG implies that u:modes = send and u:lasts = t. Thus, the condition of theif-statement in ApG0 is satis�ed. It is now easy to see that the changes made by AhC0 correspond



10.5. Correctness of C 217to allowed changes in ApG0. (Note that u:lasts = u0:lasts but this is allowed by the de�nition ofreceive pkt rs(t; b) in ApG0).a = choose id(t)We show that (u; prepare; u00; grow good s(t); u000choose id(t); u0000; shrink goods(t); u0), where u00,u000, and u0000 are de�ned below, is an execution fragment of ApG0 by showing that (u; prepare; u00),(u00; grow goods(t); u000), (u000; choose id(t); u0000), and (u0000; shrink good s(t); u0) are steps of ApG0.Clearly the execution fragment has the right visible trace.De�ne u00:modes = needidu00:goods = ;u00:current-msgs = head(u:buf s)u00:buf s = tail(u:buf s)u00:current-ok = (if u:recr 6= rec then true else u:current-ok)u00:x = u:x for the remaining state variables xWe �rst consider (u; prepare; u00). From the precondition of the choose id(t) steps in AhC0 we havethat s:modes = idle and s:buf s 6= ". This implies, by the de�nition of RCG, that u:modes =idle and u:buf s = s:buf s 6= ". Thus,prepare is enabled in u (and furthermore the de�nition ofu00 is well-de�ned). Now, by de�nition of u00, clearly (u; prepare; u00) 2 steps(ApG0).De�ne u000:goods = ftgu000:x = u00:x for the remaining state variables xNext, consider (u00; grow goods(t); u000). We have, from the de�nition of u00, that u00:modes =needid, so from the de�nition of grow good s(t) in ApG0 we have to show three conditions inorder to show that grow goods(t) is enabled in u00. First, assume u00:moder 6= rec. We mustshow t 2 u00:issuedr . We have u00:issuedr = u:issuedr = (0; s:upperr] (by de�nition of u00 andRCG) and t = s:times > s:lasts (from the precondition of choose id(t) in AhC0), so we mustshow that s:times � s:upper r but that follows from Invariant 10.2 Part 2. Second, assumeu00:current-ok = true . We must show t 2 u00:goodr , thus since u00:good = u:goodr , we mustshow times 2 (s:lower r; s:upper r]. The lower bound follows from Invariant 10.7 Part 2 since theprecondition of the choose id(t) step in AhC0 implies that s:lasts < s:times. The upper boundis already shown in the treatment of the �rst part of the precondition above. Third, we mustshow that t =2 u00:useds, thus we must show that s:times =2 (0; s:lasts] but that follows from theprecondition of the choose id(t) steps in AhC0. Thus, we have shown that grow goods(t) is enabledin u00. Now, by de�nition of u000 and since u00:goods = ;, obviously (u00; grow goods(t); u000) 2steps(ApG0).De�ne u0000:modes = sendu0000:lasts = tu0000:useds = u000:useds ^ tu0000:x = u000:x for the remaining state variables xNext, consider (u000; choose id(t); u0000). By the de�nitions of u00, u000, and RCG we have thatu000:modes = needid and t 2 u000:goods (= ftg). Thus, choose id(t) is enabled in u000. Byde�nition of u0000 and choose id(t), clearly (u000; choose id(t); u0000) 2 steps(ApG0).Finally, consider (u0000; shrink good s(t); u0). From the de�nition of shrink good s(t) in ApG0 we seethat we must show that u0000 and u0 are the same except that u0:goods = u0000:goodsnftg. From thede�nition of RCG and the choose id(t) step of AhC0 we have u0:goods = fs0:timesgnfs0:lastsg = ;.



218 10. The Clock-Based Protocol CThus, since u0000:goods = u000:goods = ftg, the condition on goods is satis�ed. It is trivial to checkthat all other state variables of ApG0 are handled correctly.a = increase-lowerr(t)We show that (u; shrink good r((0; t]); u0) 2 steps(ApG0). This step (and �nite execution fragment)clearly has the right visible trace.From the precondition of increase-lowerr(t) in AhC0 we have s:moder 6= rec and s:lower r � t <s:timer � �.We �rst show that shrink good r((0; t]) is enabled in u. If u:current-ok = false then thisis obvious. So assume u:current-ok = true . We must check two conditions. First assumeu:modes = needid. Then we must show that (0; t] \ u:goods = ; which, by de�nition of RCG,amounts to showing (0; t] \ (fs:timesg n fs:lastsg) = ;. Thus, it su�ces to show t < s:timeswhich, by de�nition of increase-lowerr(t) in AhC0, is the same as showing s0:lowerr < s0:times,but this is implied by Invariant 10.3 Part 1 and Invariant 10.10 Part 6, where the latter in-variant applies since u:current-ok = true implies s:deadline 6= 1 which again, by de�nition ofincrease-lowerr(t), implies s:deadline 6= 1. For the second condition in the precondition wemust show, under the assumption that u:modes = send, that u:lasts 6= t, which is implied byproving s0:lasts 6= s0:lower r. Again, Invariant 10.10 Part 6 gives the result.Thus, shrink good r((0; t]) is enabled in u.To show that (u; shrink good r((0; t]); u0) 2 steps(ApG0) we must �nally show that u0:goodr =u:good r nftg and that all other state variables in ApG0 have the same values in u and u0. By de�ni-tion of RCG and increase-lowerr(t) we have u:goodr = (s:lower ; s:upper r ] = (s:lowerr ; s0:upper r]and u0:goodr = (t; s0:upper r], so since t � s:lower r, by the precondition of increase-lowerr(t),it is easy to see that the condition for good r is satis�ed. Since the increase-lowerr(t) step ofAhC0 only changes lower r and lower r is only used in the de�nition of RCG to de�ne good r, it isobvious that all state variables, but good r, of ApG0 have the same values in u and u0.a = increase-upperr(t)We show that then (u; grow goodr((s:upperr ; t]); u0) 2 steps(ApG0). This step (and �nite executionfragment) clearly has the right visible trace.Since, by de�nition of RCG, u:issuedr = (0; s:upperr ], it is obvious that u:issuedr\(s:upper r ; t] =; and that jTn (u:issuedr [ (s:upper r ; t])j =1. Thus, a grow goodr((s:upper r; t]) step is enabledin u.Now we �rst show that u0:issuedr = u:issuedr[(s:upper r; t] and u0:goodr = u:goodr[(s:upper r; t],as required by the de�nition of grow good r((s:upper r; t]) in ApG0. For issuedr we have u:issuedr =(0; s:upperr ] and u0:issuedr = (0; s0:upper r] = (0; t]. Now, since t � s:upper r, by the preconditionof increase-upperr(t), the condition for issuedr is clearly satis�ed. For good r we similarly haveu:good s = (s:lower r; s:upper r] and u0:goodr = (s0:lower r; s0:upper r ] = (s:lower r; t]. Thus, thecondition for good r is also satis�ed.We must �nally show that all other state variables in ApG0 have the same values in u and u0, butthis is obvious since the increase-upperr(t) step of AhC0 only changes upper r , and upper r is onlyused in RCG to de�ne good r and issuedr.



10.5. Correctness of C 219a = cleanuprWe show that (u; cleanupr; u0) 2 steps(ApG0). This step (and �nite execution fagment) clearlyhas the right visible trace.By the precondition of cleanupr we have s:moder 2 fidle; ackg and s:timer > s:rm-timer + �.By the de�nition of RCG and Invariant 10.10, we have u:moder 2 fidle; ackg and u:modes =)u:lasts 6= u:lastr. Thus, cleanupr is enabled in u.It is now easy to see that the variable changes speci�ed by the cleanupr step of AhC0 correspondto the required variable changes of the cleanupr step of ApG0. (The change of rm-timer in AhC0does not a�ect any of the variables of ApG0). Thus, (u; cleanupr; u0) 2 steps(ApG0).a = tick sWe consider cases.1. s0:times = s:timesIn this case clearly s0 = s and thus u0 = u. Then the �nite execution fragment u of ApG0has the right properties.2. s0:times 6= s:timesWe show that (u; shrink goods(s:times); u00; grow good s(s0:time); u0), where u00 is de�nedbelow, is a �nite execution fragment of ApG0 by showing that (u; shrink good s(s:times); u00)and (u00; grow goods(s0:time); u0) are steps of ApG0. Clearly this execution fragment has theright visible trace.De�ne u00:goods = ;u00:x = u:x for the remaining state variables xFirst, consider (u; shrink good s(s:times); u00). Note that trivially shrink good s(s:times) isenabled in u. We check that all state variables of ApG0 are handled correctly. By thede�nition of RCG we have u:goods � fs:timesg. Then, since u00:goods = ;, good s is handledcorrectly. By de�nition all other variables of ApG0 have the same values in u and u00, whichis also as required by the de�nition of shrink goods(s:times) in ApG0.Then, consider (u00; grow good s(s0:time); u0). By de�nition of RCG (and the fact that modesranges over fidle; send; recg in AhC0), we have u:modes 6= needid and consequently, byde�nition of u00, u00:modes 6= needid. This shows that grow good s(s0:time) is enabled inu00.By Invariant 10.3 Part 1, s:lasts � s:times. The Case Assumption together with theprecondition of the tick s steps of the clock subsystem implies that s0:times > s:times.Then since s0:lasts = s:lasts, we have s0:times 6= s0:lasts. This implies, by de�nition ofRCG that u0:good s = fs0:timesg. Thus, good s is handled as required by the de�nition ofgrow good s(s0:time) in ApG0. It is easy to see that all the remaining variables of ApG0 have thesame values in u00 and u0 which is also as required by the de�nition of grow goods(s0:time)in ApG0. That su�ces.a = tick rWe show that u0 = u. Then the �nite execution fragment u clearly has the right properties.Now, clearly u0 = u since the tick r step of AhC0 only changes timer and ctimer, and these variablesare not mentioned in the de�nition of RCG.



220 10. The Clock-Based Protocol CThis concludes the simulation proof.This simulation result allows us to prove that AhC0 safely implements ApG0, and, in turn, that ACsafely implements Gp.Lemma 10.16AhC0 vSt ApG0ProofImmediate by Lemmas 10.15 and 5.23.Theorem 10.17AC vSt patient(AG)ProofBy Lemma 10.16 and Lemma 5.29 we getA0C vSt patient(A0G)which by substitutivity (Lemma 2.33) impliesA0C n AC vSt patient(A0G) n ACwhich, by de�nition of AG and AC, givesA0C n AC vSt patient(A0G) n AGBy Proposition 2.38 we then getA0C n AC vSt patient(A0G n AG)which �nally, by de�nition of AC and AG, gives the resultAC vSt patient(AG)10.5.4 CorrectnessThe liveness proof presented in this section is signi�cantly simpler than the liveness proof inthe proof of correctness of H. The reason is that the sender and receiver processes are verysimilar in C and G, and that the packets sent to the channels at the two levels are of the sametype. Recall that at the H level, additional packet types (needid, accept, and done) made theliveness proof very complex.Actually, the only preliminary lemmas we need, express the fact that the timing requirementsof the timed channels are su�cient to guarantee the liveness requirements speci�ed for theuntimed channels used at the G level.Lemma 10.181. exec1(AhC0) j= 8p : (23hsend pkt sr(p)i =) 23hreceive pktsr(p)i)2. exec1(AhC0) j= 8p :WF (receive pktsr(p))



10.5. Correctness of C 221ProofWe only sketch the proofs.1. Consider any packet p and assume � is an admissible execution of AhC0 such that � j=23hsend pktsr(p)i, thus, send pkt sr(p) occurs in�nitely often in �. For every k occurrencesof send pkt sr(p) at least one element of the form (p; t), where t is the send time for p, isplaced in sr . By the maximum channel delay d, we have that not later than real time t+da receive pktsr(p) action occurs. Then, since � is admissible, for every k occurrences ofsend pkt sr(p) in � there is at least one occurrence of receive pkt sr(p). Thus, since thereare in�nitely many occurrences of send pkt sr(p), there are in�nitely many occurrences ofreceive pkt sr(p), i.e, � j= 23hreceive pktsr(p)i. That su�ces.2. Consider any packet p and assume � is an admissible execution of AhC0 such that for somesu�x �1 of �, �1 j= 2(p 2 packets(sr)) (the enabling condition for receive pktsr(p) is(p 2 packets(sr))). Then, for any time t, a receive pkt sr(p) action occurs not later thantime t + d since all packets much have left the channel after at most the channel delaytime d. Then, since � is admissible, in�nitely many occurrences of receive pkt sr(p) occurin �1. Thus, �1 j= 23hreceive pktsr(p)i. That su�ces by de�nition of WF .Lemma 10.191. exec1(AhC0) j= 8p : (23hsend pkt rs(p)i =) 23hreceive pkt rs(p)i)2. exec1(AhC0) j= 8p :WF (receive pkt rs(p))ProofSimilar to the proof of Lemma 10.18.We can now show the main part of the liveness proof, namely, if � is a live execution of Ch 0 and�0 is an execution of Gp0 such that (�; �0) 2 RCG, then �0 is live. As usual, we prove this resultby contradiction. Thus, we assume that �0 is not live and then derive a contradiction with thefact that � is live.Lemma 10.20Let � 2 exec1(AhC0) and �0 2 exec1(ApG0) be arbitrary admissible executions of AhC0 and ApG0,respectively, with (�; �0) 2 RCG. Assume � j= QC. Then �0 j= QG.ProofWe prove the conjecture by contradiction. Thus,Assume: �0 6j= QGProve: False



222 10. The Clock-Based Protocol Ch1i1. �0 j= :WF (CG;s=r1) _:2(2(modes = needid ^ moder 6= rec) =) 3hCG;s=r2i) _:WF (CG;s=r3) _:WF (CG;s=r4) _:8p : (23hsend pktsr(p)i =) 23hreceive pkt sr(p)i) _:8p : WF (receive pkt sr(p)) _:8p : (23hsend pktrs(p)i =) 23hreceive pkt rs(p)i) _:8p : WF (receive pkt sr(p))Proof: Immediate by the Assumption, the de�nition of QG, and the Boolean operators.h1i2. Case: �0 j= :WF (CG;s=r1)h2i1. �0 j= 32(modes 2 fidle; send; recg) ^ 32:hCG;s=r1iProof: From Case Hypothesis h1i by noting that enabled(CG;s=r1) = (modes 2fidle; send; recg) and by expanding WF .h2i2. � j= 32(modes 2 fidle; send; recg) ^ 32:hCG;s=r1 n fpreparegiProof: From h2i1 by de�nition of RCG and by Lemmas 5.25 and 5.26.h2i3. � j= 32(modes 2 fidle; send; recg) ^32:hCG;s=r1 n fpreparegi ^32:hfchoose id(t) j t 2 TgiProof: By h2i2 and the de�nition of AhC0. Consider a su�x �1 of � that satis�es�1 j= 2:hCG;s=r1 nfpreparegi. Then if modes is send it will stay send unless a crashoccurs, in which case modes changes to rec. However, once in mode rec, the senderwill stay there since no recovers occurs in �1. Now, choose id(t) actions can onlyoccur if modes = idle. However, then the sender never returns to mode idle again,as we have just seen. Thus, there is at most one occurrence of a choose id(t) actionin �1. This gives the result.h2i4. � j= 32(modes 2 fidle; send; recg) ^ 32:hCC;siProof: By h2i3 and the de�nition of CC;s.h2i5. � j= :WF (CC;s)Proof: From h2i4 by using the de�nitions of WF and CC;s.h2i6. Q.E.D.Proof: h2i5 contradicts the assumption that � j= QC.h1i3. Case: �0 j= :2(2(modes = needid ^ moder 6= rec) =) 3hCG;s=r2i)h2i1. �0 j= 32(modes = needid ^ moder 6= rec) ^ 32:hCG;s=r2iProof: Directly by Assumption h1i.h2i2. � j= 32(modes =2 fidle; send; recg)Proof: By h2i1, the de�nition of RCG, and Lemma 5.26.h2i3. Q.E.D.Proof: h2i2 contradicts the fact that always modes 2 fidle; send; recg at the Clevel.



10.5. Correctness of C 223h1i4. Case: �0 j= :WF (CG;s=r3)h2i1. �0 j= 32(moder = rec _ (moder = rcvd ^ buf r 6= ") _ moder = ack) ^32:hCG;s=r3iProof: By Assumption h1i and the de�nitions of WF and enabled(CG;s=r3).h2i2. � j= 32(moder = rec _ (moder = rcvd ^ buf r 6= ") _ moder = ack) ^32:hCG;s=r3iProof: From h2i1 by de�nition of RCG, the fact that CG;s=r3 contains externalactions only, and Lemmas 5.25 and 5.26.h2i3. � j= :WP (CC;r1)Proof: By h2i2 using the de�nition of WF , the fact that CC;r1 = CG;s=r3, and thede�nition of enabled(CC;r1).h2i4. Q.E.D.Proof: h2i3 contradicts the assumption that � j= QC.h1i5. Case: �0 j= :WF (CG;s=r4)h2i1. Q.E.D.Proof: Similar to Case h1i4 we get � j= :WF (CC;r2), which contradicts the as-sumption that � j= QC.h1i6. Case: �0 j= :8p : (23hsend pkt sr(p)i =) 23hreceive pkt sr(p)i)h2i1. �0 j= 9p : (23hsend pkt sr(p)i ^ 32:hreceive pktsr(p)i)Proof: Directly from Assumption h1i.h2i2. � j= 9p : (23hsend pkt sr(p)i ^ 32:hreceive pktsr(p)i)Proof: By h2i2, Lemma 3.5 Parts 7 and 8, and Lemma 5.25.h2i3. � j= :8p : (23hsend pktsr(p)i =) 23hreceive pkt sr(p)i)Proof: Directly from h2i2.h2i4. Q.E.D.Proof: h2i3 contradicts Lemma 10.18 Part 1.h1i7. Case: �0 j= :8p :WF (receive pktsr(p))h2i1. �0 j= 9p : :WF (receive pktsr(p))Proof: Directly from Assumption h1i.h2i2. �0 j= 9p : 32(p 2 sr) ^ 32:hreceive pktsr(p)iProof: By h2i1 and the de�nition of WF .h2i3. � j= 9p : 32(p 2 packets(sr)) ^ 32:hreceive pktsr(p)iProof: By h2i2, Lemma 3.5 Parts 7 and 8, the de�nition of RCG, and Lemmas 5.25and 5.26.h2i4. � j= :8p : WF (receive pkt sr(p))Proof: Directly from h2i3 and the de�nition of WF .



224 10. The Clock-Based Protocol Ch2i5. Q.E.D.Proof: h2i4 contradicts Lemma 10.18 Part 2.h1i8. Case: �0 j= :8p : (23hsend pktrs(p)i =) 23hreceive pktrs(p)i)Proof: Similar to h1i6 using Lemma 10.19 Part 1.h1i9. Case: �0 j= :8p :WF (receive pktrs(p))Proof: Similar to h1i7 using Lemma 10.19 Part 2.h1i10. Q.E.D.Proof: By h1i1 and the exhaustive cases h1i2{h1i9.With this result, the timed re�nement mapping result of the previous section, and Lemma 5.24we can prove that Ch0 correctly implements Gp0.Lemma 10.21Ch 0 vLt Gp0ProofImmediate by Lemmas 10.15, 10.20, and 5.24.This lemma allows us to prove that H correctly implements patient(G).Theorem 10.22C vLt patient(G)ProofBy Lemma 10.21 and Lemma 5.30 we getC0 vLt patient(G0)which by substitutivity (Lemma 2.33) impliesC0 n AC vLt patient(G0) n ACwhich, by de�nition of AG and AC, givesC0 n AC vLt patient(G0) n AGBy Proposition 2.38 we then getC0 n AC vLt patient(G0 n AG)which �nally, by de�nition of C and G, gives the resultC vLt patient(G)Finally, we can state and prove the main result, namely that C correctly implements patient(S).Theorem 10.23C vLt patient(S)



10.6. A \Weak" Clock-Based Protocol 225ProofBy Theorems 7.18 and 8.19 and the fact that vL is transitive, we have G vL S. Then theEmbedding Theorem (Theorem 2.37) implies patient(G) vLt patient(S). This, Theorem 10.22,and the fact that vLt is transitive �nally give the result.10.6 A \Weak" Clock-Based ProtocolIn the previous section we have considered the Clock-Based Protocol C and shown that itcorrectly implements the patient version of the speci�cation S. In the speci�cation of C we havemade some timing assumptions. Speci�cally, we have assumed a certain channel retry numberk and a maximum channel delay d. Now, what if these assumptions are somehow violated in aphysical implementation of the C protocol? What if a communication wire is damaged duringsome construction work and rerouting leads to a transmission delay greater than d for somepacket p? Could the C protocol then suddenly reorder or duplicate messages? The answer is\no". C is in [LSW91] designed to guarantee ordered at-most-once delivery even if all the timingassumptions are violated. However, in case of timing violation the system might lose messageseven if no crashes occur, but message loss is generally considered less damaging than duplication.We suspect that this scenario is general for timing-based communication protocols: withouttiming assumptions the protocols satisfy some minimal requirements (like at-most-once messagedelivery), and with timing assumptions the protocols satisfy additional properties (like exactly-once message delivery in the absence of crashes).Our proofs above do not indicate that C guarantees at-most-once delivery even if the timingassumptions are violated. A formal proof of this property would show that a \weak" version ofC with no timing assumptions safely implements a \weak" version of S that allows messages tobe lost at any time. Note, that the reason why we only need to prove safe implementation asopposed to correct implementation is that \at-most-once message delivery" is a safety property.In order not to have to redo many of the proofs above when performing the proof betweenthe weak versions of the protocols, we think that the proofs should be structured as follows:�rst prove that the weak version of C safely implements the weak version of S. Then add theadditional assumptions, prove additional invariants, and extend the �rst proof to prove correctimplementation.In a temporal logic setting, like TLA [Lam91], \additional assumptions" are added as newconjuncts to the speci�cations. Proof of safe implementation, which is expressed as implicationin the logic, should then use the new conjuncts of the speci�cation to prove the new conjunctsof the implementation. Exactly how this should be performed in our setting is left for futureresearch.10.7 The Clock-Based Protocol With One Receiver and Multi-ple SendersConsider the situation depicted in Figure 10.2. The picture shows a situation where severalreceivers|each interacting with a single sender|are placed on the same node. Thus, n copiesof the sender, receiver, and channels from above are put in parallel. Instead of implementing nidentical copies of the receiver on the receiver node, a single optimized process can be designed
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SendernSender1qqq ReceivernReceiver1qqq--�� Figure 10.2The Clock-Based Protocol with several receivers on the same node.that implements the parallel composition of the receivers. Then, due to the substitutivity resultsfor live timed I/O automata (Proposition 2.33), such a multiple-sender receiver senders (calledthe ms-receiver) will work in concert with the n senders. Below, we let ss-receiver denote thesingle-sender receiver from above.In [LSW91], the receiver of the Clock-Based Protocol is in fact designed to handle multiplesenders. This receiver has a structure very similar to the ss-receiver. However, it is optimized sothat only one single upper r variable is needed. This is important since upper r variables must bekept stable and stable updates are expensive. Furthermore, \old" lower r variables, i.e., lower rvariables for senders that have not sent messages for a long time, can be cleaned up such thatsu�cient information about these old variables can be kept in a single common lower r variable.This section discribes the design of the ms-receiver of [LSW91] and sketches the proof that itimplements the parallel composition of n ss-receiver. It turns out that because of the similaritiesbetween the ms-receiver and the ss-receiver, the proof is very simple.Figure 10.3 shows the visible actions of the ms-receiver. There are n versions of the channelactions, receive message actions, and recovery actions but only one of both crashr and tick r.This user interface is then the same as one would get by composing n copies of the ss-receiver inparallel after indexing all locally-controlled actions with the index of the ss-receiver. It may seemstrange to have a recovery action for each index; however, since the ms-receiver should implementand, thus, have the same user interface as the parallel composition of n (renamed) ss-receivers,and since live timed I/O automata cannot synchronize on output actions (like recovery), it isinevitable that the ms-receiver has n recovery actions. One should, thus, think of the ms-receiveras o�ering recovery of its n parts, one by one.Let Cms;r be a live timed I/O automaton modeling the ms-receiver. It should, then, beproved thatCms;r vLt Cr;1k � � � kCr;nwhere Cr;i 4= �i(Cr) and the function �i maps each locally-controlled action of Cr to an indexed
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ms-receiver--�� receive pktsr ;1(p)receive pktsr ;n(p)send pktrs ;1(p)send pktrs ;n(p)ppp ----�receive msg1(m)receive msgn(m)recoverr;1recoverr;ncrashr pppppp6tickrFigure 10.3The visible actions of the ms-receiver.version of the same action, and is the identity mapping for the remaining actions. For instance,�i maps receive pkt sr(p) to receive pktsr ;i(p). (Actually, the processes Cr;1; : : : ;Cr;n are notcompatible in the strong sense where the ordinary state variable names of di�erent processesare required to be non-overlapping. So, for present purposes, assume that all state variables ofCr;i (except now) are indexed with i.)We do not de�ne Cms;r completely formally but sketch how it works. First, recall that in Cr,lower r indicates a lower bound on timestamps that the receiver will accept. Every time a newmessage is accepted, lower r is advanced to the timestamp of that message. Furthermore, specialincrease-lowerr steps are in Cr allowed to increase lower r as long as it is kept small enough toallow very slow messages from the sender to be accepted.Cms;r contains n versions (lower r;1; : : : ; lower r;n) of lower r|one for each sender|and eachvariable lower r;i remembers the last timestamp received from the ith sender in order to ensurethat only messages with later timestamps will be accepted from that sender in the future.In Cms;r, lower r;i is only advanced when packets are accepted from the ith sender, i.e., inreceive pkt sr ;i(p) steps.Now, Cms;r furthermore contains a common-lower r variable. This variable is increased inspecial increase-common-lowerr steps, and whenever it advances past the value of a lower r;ivariable, this lower r;i variable is changed to nil, i.e., is cleaned up. Thus, common-lower rcaptures all relevant information about the timestamps that must be accepted from sendersthat have not sent for a while, as long as common-lower r is kept su�ciently small.Also, Cms;r only needs a single upper r variable, which gives the upper bound on timestampsthat can be accepted from any sender.Figure 10.4 shows how an increase-common-lowerr step changes a lower r;i variable to nil. Insituation a), Cms;r will accept timestamps in the interval (common-lower r ; upperr ] from sender
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--lowerr;2 = nillowerr;2 = nil lowerr;3lowerr;3 upperrupperrcommon-lowerrcommon-lowerr lowerr;1lowerr;1 = nil 66 ?? 66?b)a) Figure 10.4The di�erence between situation a) and b) is that an increase-common-lowerr step of Cms;rhas advanced common-lowerr and thereby has cleaned up lowerr;3 (by changing it to nil).2 and timestamps in the interval (lower r;i; upper r] from sender i 2 f1; 3g. In situation b),lower r;1 has been cleaned up and Cms;r will consequently now only accept timestamps in theinterval (common-lowerr ; upper r] from sender 1. However, this is safe since common-lower r iskept su�ciently small (in the same way the lower r variable is kept su�ciently small in Cr).All other variables of Cr, except timer, have n versions in Cms;r. For instance, Cms;r has the nbu�ers buf r;1; : : : ; buf r;n. However, of course, only one local receiver clock timer is needed.We only specify the most interesting steps of Cms;r. These are the steps labeled withreceive pkt sr;i(m; t) or increase-common-lowerr(t) actions.receive pktsr ;i(m; t)E�ect:if moder;i 6= rec thenif (lowerr;i 6= nil ^ lowerr;i < t � upperr) _(lowerr;i = nil ^ common-lowerr < t � upperr) thenmoder;i := rcvdbuf r;i := buf r;i ^mlastr;i := trm-timer;i :=1lowerr;i := telse if (lowerr;i 6= nil ^ lastr;i < t � lowerr;i) _(lowerr;i = nil ^ lastr;i < t � common-lowerr) thennack-buf r;i := nack-buf r;i ^ telse if moder;i = idle ^ lastr;i = t thenmoder;i := ackincrease-common-lowerr(t)Precondition:8i : (moder;i 6= rec) ^common-lowerr � t < timer � �E�ect:common-lowerr := tfor all i with lowerr;i 6= nil:if common-lowerr � lowerr;i thenlowerr;i := nilNote, that the timing constant �, which occurs in the de�nition of increase-common-lowerrsteps, is the same constant as for the ss-receiver above.



10.7. The Clock-Based Protocol With One Receiver and Multiple Senders 229Steps labeled by crashr should in Cms;r change all moder;i variables to rec.It requires a timed re�nement mapping to verify that Cms;r correctly implements Cr;1k � � �kCr;n.This re�nement mapping Rms maps most variables one-to-one. Let s be any state of Cms;r.Then Rms(s) is the state u that for all i satis�es� u:upper r;i = s:upper r.� u:timer;i = s:timer.� u:lower r;i = (if s:lower r;i 6= nil then s:lower r;i else s:common-lower r).� u:x = s:x for the remaining variables x.It is fairly straightforward to verify that Rms actually is a timed re�nement mapping. The waylower r;i is de�ned in the mapping implies that a receive pkt sr;i(m; t) step of Cms;r directly corre-sponds to a receive pktsr ;i(m; t) step of Cr;1k � � � kCr;n. In fact, there is the same one-to-one cor-respondence for all other actions, except for increase-common-lower r(t) and increase-upper r(t).A increase-common-lowerr(t) step of Cms;r may change several lower r;i variables to nil.This corresponds at the abstract level to these lower r;i variables being advanced. Thus, anincrease-common-lowerr(t) step of Cms;r corresponds to a series of increase-lowerr;i(t)|one foreach process identi�er i for which lower r;i = nil in Cms;r after the increase-common-lowerr(t)step.An increase-upperr(t) step simply corresponds a sequence of steps labeled increase-upper r;1(t),: : : , increase-upperr;n(t).We do not complete the modeling of Cms;r in this report but leave this and the complete simu-lation and liveness proofs for future work.





Chapter 11Conclusion11.1 SummaryThis report contains two parts. Part I describes the formal models of [GSSL93] for timed anduntimed systems, and the associated simulation-based proof techniques. Also, an extended tem-poral logic is developed, in which temporal formulas evaluate over executions of alternating statesand actions and, thus, are well-suited for describing and reasoning about liveness conditions|inthe timed setting via sampling characterizations of timed executions. It is furthermore shownhow application of the semantic operators of parallel composition, action hiding, and actionrenaming is reected in the syntax.The proof techniques are used to prove that one system correctly implements a more abstractsystem. A proof generally consists of three parts. First, several invariants of the systems areproved. Then, secondly, a relation is de�ned and proved to be a simulation relation from theconcrete to the abstract system. During this process, one generally has to go back and proveadditional invariants. Finally, a liveness proof builds on top of the simulation result.Part II presents a case study intended to check the adequacy of the formal framework onlarge examples. In particular, two practical protocols for solving the at-most-once messagedelivery problem on channels that may delete, duplicate, and reorder packets are considered.One protocol is the Five-Packet Handshake Protocol of [Bel76], which is the standard protocol forsetting up network connections, used in TCP, ISO TP-4, and many other transport protocols.The other protocol is the Clock-Based Protocol of [LSW91], which relies on certain timingassumptions. Both protocols are su�ciently complicated that it seems that formal proof is theonly means by which their correctness can be veri�ed.Both the speci�cation S of the at-most-once message delivery problem and the Five-PacketHandshake Protocol, which we call H, are formalized as live I/O automata, however at verydi�erent levels of abstraction. The speci�cation S corresponds closely the the informal descrip-tion of the at-most-once message delivery problem, and is easily checked to have the desirablebehavior. H is expressed as the parallel composition of several components.The Clock-Based Protocol, which we call C, is formalized as a live timed I/O automaton. Aspecial MMT-speci�cation style is used to specify the sender and receiver in a clear way sincethe timing restrictions on these components are of the simple form: if a set of actions becomesenabled (or stays enabled after being executed), then an action from the set must be executedafter some lower time bound and before some upper time bound, unless the set is disabled in themeantime. C is formalized in the timed model and S in the untimed model. It is argued thatin this case correctness of C should be expressed with respect to the patient version of S, i.e.,231



232 11. Conclusionthe object of the timed model that behaves just like S, except that it allows arbitrary passageof time.Instead of proving directly that H and C correctly implement S and patient(S), respectively, thecorrectness proof is split into smaller parts by introducing intermediate levels of abstraction. Inparticular, both H and C can be seen as implementations of an (untimed) Generic Protocol G.By introducing intermediate levels of abstraction, not only do we get the advantage of splittingcomplicated proofs into smaller parts, we also avoid that proofs of similar parts will have to berepeated in the correctness proofs for both H and C; instead these similar parts are capturedin G and in the proof that G correctly implements S. In fact, we believe that G is su�cientlygeneral so that other practical protocols can be proved to be correct implementations of G.A direct proof that G correctly implements S is still very complicated since it involves abackward simulation, and backward simulations seem to be inherently di�cult. Thus, to limitthe backward simulation to a development step as small as possible, the Delayed-Decision Spec-i�cation D was de�ned. In this way the correctness proof for D requires a backward simulation,whereas the correctness proofs for lower levels of abstraction only require the use of the simpler(timed) re�nements (plus the use of history variables).The report contains full proof of correctness for the protocols. However, some of the proofsare only sketched, when similar formal proofs are found elsewhere in the report.11.2 EvaluationThe operational models of live (timed) I/O automata, the syntax for describing these, and theproof techniques have proved to provide a powerful formal framework within which both untimedand timed distributed systems can be formalized and proved correct. The abstract speci�cationis close to the informal problem statement and the formalism o�ers a clear, intuitive, and modularapproach to the description of the low-level protocols. In particular, for timed systems, wherethe only timing restrictions are lower and upper time bounds on progress, the MMT-style o�ersa clear notation.It should be noted, however, that the example presented in this report only proves correctnessof a timed protocol with respect to the patient version of an (untimed) speci�cation. This meansthat the timing assumptions of the timed protocol are only used to prove certain invariants,whereas the handling of time the simulation proofs is almost trivial. [LA91] deals with timedsimulation proofs (with non-patient speci�cations) for MMT-style systems.Some aspects of performing the correctness proofs are intellectually challenging. In particular,de�ning simulation relations involves a lot of insight and intuition about the systems, and also�nding the sequence of abstract steps that corresponds to a given concrete step requires keyintuition. In fact these two aspects of the proofs provide important documentation of thefunctionality of systems and can be used to convey intuition about these.However, in a simulation proof one must prove that the sequence of abstract steps has theright properties. This involves checking that the steps are in fact steps of the abstract system,which, in turn, amounts to checking that each variable is handled according to the abstracttransition relation. This part of the proof involves a lot of tedious details, and forms a quitesizable part of the total proof. Because of the details, the proof is very di�cult to maintain;sometimes, during a proof attempt, one has to go back and change either the abstract or theconcrete speci�cation, which may lead to a need to change part of the proof already done.Unless extreme care is taken, such changes are likely to introduce inconsistencies in the proof.



11.3. Further Work 233Apart from this, simulation proof techniques scale well to large examples and impose a nice casestructure on the proof.Liveness proofs are also challenging. They, too, require insight into the way the protocolswork. The temporal logic o�ers an expressive way formalize liveness conditions and an ad hoc setof rules. Our liveness proofs are not proofs of validity of temporal formulas, but instead proofsof satisfaction, i.e., that certain executions satisfy the temporal formulas. In the proof stepstemporal rules, which have the form of valid implications, meta rules, and semantic reasoningare used. This seems to provide a straightforward way of performing careful liveness proofs byhand.Live (timed) I/O automata, temporal logic, and simulation-based proof techniques are goodtools for formally specifying and verifying timed and untimed communication protocols.The embedding results of the model tie the untimed and timed models together in a verygeneral and useful coordinated framework that allows proving that a timed system correctlyimplements an untimed speci�cation.11.3 Further WorkThere is a considerable amount of further work remaining. We have already begun the work ofautomating simulation proofs in the untimed model, by proving the equivalence of versions ofS and D using the Larch Prover [SGG+93, GG91]. We have been pleased with the preliminaryresults: the prover has not only been able to check our hand proofs, but in fact has been able to�ll in many of the details. Current research tries to use the same approach on a timed forwardsimulation. Future research should consider automation of more complicated simulation proofs.Second, if the timing assumptions on C are weakened or removed, the resulting algorithmstill will not deliver any message more than once; however, it may lose messages even in theabsence of a crash. It remains to formulate the weaker speci�cation and prove that the weakerversion of C satis�es it.Third, there are other algorithms that solve the at-most-once message delivery problem, forexample, using bounded identi�er spaces or cryptographic assumptions. We would like also toverify these, preferably reusing as much of our proofs as possible.Finally, future research should deal with the extended temporal logic developed in this work,and try to �nd a basic set of rules that is adequate for the liveness proofs of typical distributedsystems. The rules presented in this report, which are speci�cally tailored for the case study,seem to be a good starting point for such an investigation.11.4 ConclusionsWe can draw several conclusions:� Live (timed) I/O automata, temporal logic, and simulation-based proof techniques providea powerful coordinated framework for formally specifying and verifying timed and untimedcommunication protocols.� The proof techniques, especially simulation proofs, scale well and are not too di�cultto use. It is challenging and requires insight and key intuition to �nd, e.g., the rightsimulation relations, and a lot of detailed work to verify these choices. For large proofs,
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Appendix ABasic De�nitionsThis appendix gives basic de�nitions used in this report.A.1 Record NotationIf a variable or value is of tuple type, e.g., X�Y �Z, we will use the normal record notation toextract the sub-values. For example if d has type X�Y �Z, d:x will extract the �rst componentof the tuple, etc.A.2 SetsWe use standard notation for sets. A set consisting of the elements e1; e2; : : : we write asfe1; e2; : : :gand a notation likeff(i) j i 2 N ^ g(i) = 4gis used to denote the set of all elements f(i), where i is a natural number such that g(i) = 4.A singleton set with the element e is sometimes written e instead of feg. As usual we use2 to express set membership, and � and � to express the proper subset and subset relations,respectively. The empty set is denoted by ;. Furthermore we use the normal operators on sets[ Union\ IntersectionComplement (with respect to some given set)n Set minusSet TypeFor any set S, denote by P(S) the set of all (�nite or in�nite) subsets of S.CardinalityThe cardinality of a set S, written jSj, is de�ned asjSj 4= (n if S has n elements1 if S has in�nitely many elements237



238 A. Basic De�nitionsA.3 Bags (Multisets)For bags we use the following operators from the previous section:jsj;\;[;2jsj counts the total number of elements (including duplicates) of s.Bag TypeFor any set S, denote by B(S) the set of all (�nite or in�nite) bags with elements from S.A.4 Lists and SequencesIn this report we use the terms \sequence", \list", and \queues" synonymously.A list l consisting of the elements e1; e2; : : : we will write in one of the waysl = he0; e1; : : :il = e0; e1; : : :l = e0e1 : : :We denote by " the empty list.List TypeFor any set S, denote by S� the set of all �nite lists of elements in S.LengthThe length of a list l = he0; e1; : : :i, written jlj, is de�ned asjlj 4= ( n if l is �nite and ends in en�11 if l is in�niteHead, Tail, Last, and InitIf l = he0; e1; e2; : : :i is nonempty, de�nehead(l) 4= e0tail(l) 4= he1; e2; : : :iIf furthermore l is �nite and ends in en�1, then de�nelast(l) 4= en�1init(l) 4= he0; e1; : : : ; en�2iConcatenationConcatenation of two lists l1 and l2, written l1^ l2 or sometimes l1l2, is de�ned when l1 is �nite.If l1 = he0; : : : ; en�1i and l2 = hen; en+1; : : :i, then de�nel1 ^ l2 4= he0; : : : ; en�1; en; en+1; : : :i



A.5. Functions and Mappings 239List ConstructionLet I = fi1; i2; : : :g be a set of totally ordered elements with i1 < i2 < � � �. Then de�nehf(i) j i 2 I ^ P (i)i 4= ei1 ^ei2 ^ � � �where f is a function, P is a predicate, andeik = ( f(ik) if P (ik)" otherwiseIndexingIf l = he0; e1; : : :i, then de�ne for all i with 0 � i < jljl[i] 4= eiWe let dom(l) denote the set of indices of any list l. Thus,dom(l) 4= fi j 0 � i < jljgWe also let elems(l) be the set of elements in l. Thus,elems(l) 4= fl[i] j i 2 dom(l)gIf l is nonempty, we denote by maxidx (l) the maximum index in l. Thus,maxidx (l) 4= jlj � 1RestrictionIf l is a list and S is a set, we let l �S denote the restriction of l to S. For example, h1; 3; 2; 5; 4i�f2; 3; 4; 7g= h3; 2; 4i. Formally,l � S 4= hl[i] j i 2 dom(l) ^ l[i] 2 SiSet Operations on ListsAs notational convention we allow set operators like 2, �, etc., to operate on lists l. This shouldjust be thought of as a shorthand notation for the same operators operating on elems(l). Forinstance, e 2 l means e 2 elems(l) and l � S means elems(l) � S for some set S.A.5 Functions and MappingsWe use the terms \function" and \mapping" synonymously. We use standard notation forfunction de�nition and application. When explicitly de�ning the mapping from elements toelements we use notation like[ 1 7! 1;2 7! 4;3 7! 9;: : :9 7! 81 ]or equivalently[i 7! i2 j 1 � i � 9]



240 A. Basic De�nitionsFunction TypeA function f mapping elements from S1 to S2 has the typeS1 ! S2We shall only deal with total functions, i.e., f(s) is de�ned for all elements s 2 S1. S1 is referredto as the domain of f and S2 as the codomain of f .Domain and RangeFor any function f , dom(f) denotes the domain of f . The range (or image) of f is de�ned asrng(f) 4= ff(e) j e 2 dom(f)gOperations on FunctionsFor function f : A! B and g : C ! D with B � C, de�ne the composition f � g : A! D suchthat for all a 2 A,(f � g)(a) = f(g(a))For any function f : A! B and set S, denote by f nS the function with type (A nS)! B suchthat for all a 2 A n S,(f n S)(a) = f(a)Similarly f � S denotes the function of type (A \ S)! B such that for all a 2 A \ S(f � S)(a) = f(a)For functions fi : Ai ! Bi, 1 � i � k, with disjoint domains, denote by f1[ � � �[ fk the functionof type (A1 [ � � � [ Ak)! (B1 [ � � � [Bk) such that for all a 2 (A1 [ � � � [Ak)(f1 [ � � � [ fk)(a) = fi(a) if a 2 Ai



Appendix BProofs from Part IB.1 Proofs in Chapter 3Proof of Lemma 3.1:Let � be an arbitrary execution over (V ;A).If � is in�nite, then b� = � and the result trivially follows.Now, assume � is �nite and let � = s0a1s1a2s2 � � �ansn. Furthermore, let j � 0 an arbitrarynatural number. Let ai = � and si = sn for all i > n. Then b� = s0a1s1a2s2 � � �. We prove thelemma by structural induction over P .Base Case: P is a step formula(�; j) j= Pi� (by de�nition)(0 � j < n and (sj; aj+1; sj+1) j= P ) or(j � n and (sn; �; sn) j= P )i� (by de�nition of si and ai for i > n)0 � j and (sj ; aj+1; sj+1) j= Pi� (by de�nition)(b�; j) j= PInductive Step:Assume as induction hypothesis that Q is a temporal formula over (VQ;AQ) such that for all�Q over (VQ;AQ) and all jQ � 0(�Q; jQ) j= Q i� (c�Q; jQ) j= QAssume a similar induction hypothesis for R. We consider the di�erent possibilities for P (cf.Section 3.5).� P =Q(�; j) j=Qi� (by de�nition)(�; j + 1) j= Q 241



242 B. Proofs from Part Ii� (by the induction hypothesis)(b�; j + 1) j= Qi� (by de�nition)(b�; j) j=Q� P = QW RSimilar to case P =Q.� P = 8x : QSince P is a temporal formula over (V ;A), Q is a temporal formula over (V [ fxg;A).(�; j) j= 8x : Qi� (by de�nition)for all values v, (�xv ; j) j= Qi� (by the induction hypothesis)for all values v, (c�xv ; j) j= Qi� (by de�nition of b and �xv)for all values v, (b�xv ; j) j= Qi� (by de�nition)(b�; j) j= 8x : Q� P = 9x : QSimilar to case P = 8x : Q.� P = Q =) RSimilar to case P =Q.� P = :QSimilar to case P =Q.Proof of Lemma 3.2:This lemma holds for our temporal logic since we do not have any past operators, i.e., operatorsthat can reference previous positions in an executions. For instance, some temporal logics (see,e.g., [MP92]) have a previous operator, which is dual to our next operator  and is de�nedsuch that previous P holds at position j in an execution if P holds at position j � 1 in thatexecution. Since our logic lacks this possibility of referencing previous positions, the questionwhether P holds at position j in � only depends on the su�x sjaj+1sj+1 � � � of �, i.e., j j�.Similarly, the question whether P holds at position i in j�ij� only depends on ij(j�ij�), andsince ij(j�ij�) = j j�, the result follows.Formally, the result can be proven by structural induction over P .



B.1. Proofs in Chapter 3 243Proof of Lemma 3.3:Let � = s0a1s1a2s2 � � � and �0 = s00a01s01a02s02 � � �. We de�ne inductively a nondecreasing mappingm : N ! N such that kj� ' m(k)j�0. Furthermore, for each k we de�ne a mapping mk :f0; : : : ; m(k) � 1g ! f0; : : : ; k � 1g, such that for all 0 � i0 < m(k), mk(i0)j� ' i0 j�0. Thisinductive de�nition is clearly su�cient to prove the lemma.Base Case: k = 0De�ne m(0) = 0. Then, by assumption, 0j� = � ' �0 = m(0)j�0, as required.Let m0 be the empty mapping. Then, vacuously, for all 0 � i0 < m(0), m0(i0)j� ' i0 j�0Inductive Step:Assume as induction hypothesis that kj� ' m(k)j�0 and that, for all 0 � i0 < m(k), mk(i0)j� ' i0 j�0.We consider cases.� ak+1 = �.De�ne m(k + 1) = m(k). Then, clearly, k+1j� ' kj� ' m(k)j�0 = m(k+1)j�0.De�ne mk+1 = mk. By the induction hypothesis and the de�nition of m(k+1) and mk+1,for all 0 � i0 < m(k + 1), mk+1(i0)j� ' i0 j�0.� ak+1 = a 6= �.Then, since kj� ' m(k)j�0 (induction hypothesis), there must be a unique number k0 > m(k)such that s0m(k)a0m(k)+1s0m(k)+1 � � �a0k0s0k0 = s0m(k)�s0m(k) � � �as0k0 . Thus, the �rst non-stutteringaction in �0 after position m(k) must be a.De�ne m(k + 1) = k0. Then the induction hypothesis, the de�nition of k0, and the caseassumption imply k+1j� ' kj� ' m(k)j�0 = m(k+1)j�0.De�ne mk+1 to coincide with mk for all 0 � i0 < m(k), and de�ne mk+1(i0) = k, forall m(k) � i0 < m(k + 1). Then the induction hypothesis and the de�nition of mk+1give, for all 0 � i0 < m(k), mk+1(i0)j� ' i0 j�0. For m(k) � i0 < m(k + 1) we have,mk+1(i0)j� = kj� ' m(k)j�0 ' i0 j�0, where the last stuttering-equivalence follows from thefact that i0 j�0 only di�ers from m(k)j�0 by having less stuttering in the start.This concludes the proof.Proof of Proposition 3.4:Let �1 = s1;0a1;1s1;1a1;2s1;2 � � � and �2 = s2;0a2;1s2;1a2;2s2;2 � � � be arbitrary executions such that�1 ' �2.1. Let P be a state predicate.�1 j= Pi� (by de�nition)s1;0 j= P



244 B. Proofs from Part Ii� (since �1 ' �2 implies s1;0 = s2;0)s2;0 j= Pi� (by de�nition)�2 j= PThis proves that P is stuttering-insensitive.2. Let P be a state transition predicate, and assume that (s; �; s) j= P (which implies(s; s)[[P ]] = true) for all state s.�1 j= Pi� (by de�nition)(s1;0; s1;1)[[P ]] = trueimplies (since �1 ' �2 implies either (s1;0; s1;1) = (s2;0; s2;1) or (s1;0; s1;1) = (s2;0; s2;0))(s2;0; s2;1)[[P ]] = true or (s2;0; s2;0)[[P ]] = truei� (since (s2;0; s2;0)[[P ]] = true by assumption)(s2;0; s2;1)[[P ]] = truei� (by de�nition)�2 j= PA symmetric argument gives the implication in the other direction. This proves that P isstuttering-insensitive.3. Let f be an action function.�1 j= 3hfii� (by de�nition)there is a step (s1;i; a1;i+1; s1;i+1) in �1 such that a1;i+1 2 (s1;i; s1;i+1)[[f ]]i� (since � can never be in the range of an action function)there is a step (s1;i; a1;i+1; s1;i+1) in �1 such that a1;i+1 6= � and a1;i+1 2 (s1;i; s1;i+1)[[f ]]implies (by de�nition of ')there is a step (s2;j; a2;j+1; s2;i+1) = (s1;i; a1;i+1; s1;i+1) in �2 such thata2;j+1 2 (s2;j; s2;j+1)[[f ]]i� (by de�nition)�2 j= 3hfiA symmetric argument gives the implication in the other direction. This proves that 3hfiis stuttering-insensitive.4. Assume that P and Q are stuttering-insensitive temporal formulas.(a) P W Q�1 j= P W Qi� (by de�nition)there exists a k � 0 such that (�1; k) j= Q and for every 0 � i < k, (�1; i) j= P ,or else, for all i � 0, (�1; i) j= Pi� (by Lemma 3.1)



B.1. Proofs in Chapter 3 245there exists a k � 0 such that (c�1; k) j= Q and for every 0 � i < k, (c�1; i) j= P ,or else, for all i � 0, (c�1; i) j= Pi� (by Lemma 3.2)there exists a k � 0 such that kjc�1 j= Q and for every 0 � i < k, ijc�1 j= P ,or else, for all i � 0, ijc�1 j= Pimplies (by Lemma 3.3 and the fact that P and Q are stuttering-insensitive)there exists a k0 � 0 such that k0 jc�2 j= Q and for every 0 � i0 < k0, i0 jc�2 j= P ,or else, for all i0 � 0, i0 jc�2 j= Pi� (by Lemma 3.2)there exists a k0 � 0 such that (c�2; k0) j= Q and for every 0 � i0 < k0, (c�2; i0) j= P ,or else, for all i0 � 0, (c�2; i0) j= Pi� (by Lemma 3.1)there exists a k0 � 0 such that (�2; k0) j= Q and for every 0 � i0 < k0, (�2; i0) j= P ,or else, for all i0 � 0, (�2; i0) j= Pi� (by de�nition)�2 j= P W QA symmetric argument gives the implication in the other direction. This proves thatP W Q is stuttering-insensitive.(b) 8x : PSince �1 ' �2, we have, for all values v, (�1)xv ' (�2)xv .�1 j= 8x : Pi� (by de�nition)for all values v, (�1)xv j= Pi� (since P is stuttering-insensitive and (�1)xv ' (�2)xv)for all values v, (�2)xv j= Pi� (by de�nition)�2 j= 8x : PThis proves that 8x : P is stuttering-insensitive.(c) 9x : PSimilar to case 8x : P .(d) :P�1 j= :Pi� (by de�nition)�1 6j= Pi� (by the fact that P is stuttering-insensitive)�2 6j= Pi� (by de�nition)�2 j= :PThis proves that :P is stuttering-insensitive.(e) P =) QSimilar to case :P .



246 B. Proofs from Part IB.2 Proofs in Chapter 4B.2.1 Untimed SystemsProof of Lemma 4.1:Let (V ;A) be an arbitrary pair with V 0 � V and A0 � A and let � = s0a1s1a2s2 � � � be anarbitrary execution over (V ;A). Furthermore, let �0 = � � (V 0;A0) = s00a01s01a02s02 � � �. Thens0k = skdV 0 and a0k = ( ak if ak 2 A0� otherwiseWe prove the lemma by structural induction on P .Base Case:In the base case P is a step formula over (V 0;A0). We consider the two kinds of step formulas:� P = hfi, where f is an action function over (V 0;A0).(�0; j) j= hfii� (by de�nition)(0 � j < j�0j and (s0j; a0j+1; s0j+1) j= hfi) or(j � j�0j and (s0j�0j; �; s0j�0j) j= hfi)i� (by de�nition and the fact that � can never be in the range of an action function)(0 � j < j�0j and a0j+1 2 (s0j; s0j+1)[[f ]]) or(j � j�0j and false)i� (0 � j < j�0j and a0j+1 2 (s0j; s0j+1)[[f ]])i� (step 4; see below)(0 � j < j�j and aj+1 2 (sj ; sj+1)[[f ]])i� (0 � j < j�j and aj+1 2 (sj ; sj+1)[[f ]]) or(j � j�j and false)i� (since � can never be in the range of an action function)(0 � j < j�j and aj+1 2 (sj ; sj+1)[[f ]]) or(j � j�j and � 2 (sj�j; sj�j)[[f ]])i� (by de�nition)(0 � j < j�j and (sj ; aj+1; sj+1) j= hfi) or(j � j�j and (sj�j; �; sj�j) j= hfi)i� (by de�nition)(�; j) j= hfiStep 4 above is justi�ed as follows: �rst, j�0j = j�j by de�nition of �. Next, since s0j =sjd(V 0;A0), s0j+1 = sj+1d(V 0;A0), and f is an action function over (V 0;A0), we have that(s0j; s0j+1)[[f ]] = (sj ; sj+1)[[f ]]. Finally, if a0j+1 = �, then aj+1 =2 A0 by de�nition of �,and since f is an action function over (V 0;A0), we have a0j+1 2 (s0j ; s0j+1)[[f ]]) i� aj+1 2(sj; sj+1)[[f ]]). If a0j+1 6= �, then a0j+1 = aj+1. That su�ces.� P is a state transition predicate over (V 0;A0).



B.2. Proofs in Chapter 4 247(�0; j) j= Pi� (by de�nition)(0 � j < j�0j and (s0j ; a0j+1; s0j+1) j= P ) or(j � j�0j and (s0j�0j; �; s0j�0j) j= P )i� (by de�nition)(0 � j < j�0j and (s0j ; s0j+1)[[P ]] = true) or(j � j�0j and (s0j�0j; s0j�0j)[[P ]] = true)i� (step 3; see below)(0 � j < j�j and (sj; sj+1)[[P ]] = true) or(j � j�j and (sj�j; sj�j)[[P ]] = true)i� (by de�nition)(0 � j < j�j and (sj; aj+1; sj+1) j= P ) or(j � j�j and (sj�j; �; sj�j) j= P )i� (by de�nition)(�; j) j= PStep 3 is justi�ed as follows: �rst, j�0j = j�j, by de�nition of �. Then, since P is a statetransition predicate over (V 0;A0) and s0k = skd(V 0;A0) for all k, the result directly follows.Inductive Step:Let Q be an arbitrary temporal formula over (V 0Q;A0Q) and assume as induction hypothesis thatfor all pairs (VQ;AQ) with V 0Q � VQ and A0Q � AQ, all executions �Q over (VQ;AQ), and alljQ � 0,(�Q � (V 0Q;A0Q); jQ) j= Q i� (�Q; jQ) j= QAssume a similar induction hypothesis for the temporal formula R over (V 0R;A0R). We considerthe di�erent possibilities for P (cf. Section 3.5).� P =Q(� � (V 0;A0); j) j=Qi� (by de�nition)(� � (V 0;A0); j + 1) j= Qi� (by the induction hypothesis)(�; j + 1) j= Qi� (by de�nition)(�; j) j=Q� P = QW RSimilar to case P =Q.� P = 8x : Q(� � (V 0;A0); j) j= 8x : Qi� (by de�nition)for all values v, ((� � (V 0;A0))xv; j) j= Q



248 B. Proofs from Part Ii� (by de�nition of � and substitution)for all values v, (�xv � (V 0 [ fxg;A0); j) j= Qi� (by the induction hypothesis)for all values v, (�xv ; j) j= Qi� (by de�nition)(�; j) j= 8x : Q� P = 9x : QSimilar to case P = 8x : Q.� P = (Q =) R)Similar to case P =Q.� P = :QSimilar to case P =Q.Proof of Lemma 4.3:=): Assume �dAi j= Qi for all i. Then since �dAi ' � �Ai and Qi is stuttering-insensitive, wehave � �Ai j= Qi, for all i. Then by Lemma 4.2, � j= Qi, for all i, and thus � j= Q1 ^ : : : ^ QN .(=: Assume � j= Q1 ^ : : : ^ QN . Then � j= Qi, for all i, and Lemma 4.2 implies that� �Ai j= Qi, for all i. Again, since �dAi ' � �Ai and Qi is stuttering-insensitive, it follows that�dAi j= Qi, for all i.Proof of Proposition 4.4:By De�nition 2.9 we have L = f� 2 exec(A) j �dA1 2 L1; : : : ; �dAN 2 LNg. By de�nition ofd we know that if � 2 exec(A), then �dAi 2 exec(Ai), for all i. Thus, since Li is induced byQi, we get L = f� 2 exec(A) j �dA1 j= Q1; : : : ; �dAN j= QNg. By Lemma 4.3 we �nally getL = f� 2 exec(A) j � j= Q1 ^ : : : ^ QNg which proves that L is induced by Q1 ^ : : : ^ QN .Proof of Proposition 4.5:Let (AA; LA) = (A;L) n A. The proof is trivial since, by De�nitions 2.3 and 2.10, exec(AA) =exec(A) and LA = L.Proof of Proposition 4.6:Let (A�; L�) = �((A;L)). By De�nition 2.11 we have (A�; L�) = (�(A); f�(�) j � 2 Lg).First note that since Q is a temporal formula over A, De�nition 2.4 implies that �(Q) is atemporal formula over A�.Now, it is clear that � j= Q i� �(�) j= �(Q). Since also exec(A�) = f�(�) j � 2 exec(A)g, itfollows that L� = f� 2 exec(A�) j � j= �(Q)g, which proves that L� is induced by �(Q).



B.2. Proofs in Chapter 4 249B.2.2 Timed SystemsProof of Proposition 4.17:Let Li;s, for each 1 � i � N , be a sampling characterization of Li such that Li;s is induced byQi. We haveL 1= f� 2 t-exec1(A) j �dA1 2 L1; : : : ;�dAN 2 LNg2= f� 2 t-exec1(A) j (8�1 samples �dA1 : �1 2 L1;s); : : : ;(8�N samples �dAN : �1 2 LN;s)g3= f� 2 t-exec1(A) j 8� samples � : �dA1 2 L1;s; : : : ; �dAN 2 LN;sgwhere Step 1 follows from De�nition 2.26, Step 2 follows from the de�nition of sampling char-acterizations, and Step 3 follows from Lemma 4.15 Part 3.This proves (using Lemma 4.13 Part 2) that L is induced by Ls = f� 2 exec1(A) j �dA1 2L1;s; : : : ; �dAN 2 LN;sg, and we haveLs 1= f� 2 exec1(A) j �dA1 j= Q1; : : : ; �dAN j= QNg2= f� 2 exec1(A) j � j= Q1 ^ � � � ^ QNgwhere Step 1 follows from the de�nition of sampling characterization being induced by temporalformulas and Step 2 follows from Lemma 4.16.This proves that Ls and, in turn, L are induced by Q1 ^ : : : ^ QN .Proof of Proposition 4.18:Let (AA; LA) = (A;L) n A. The proof is trivial since, by De�nitions 2.19 and 2.27, exec(AA) =exec(A), t-exec(AA) = t-exec(A), and L = LA.Proof of Proposition 4.19:Let (A�; L�) = �((A;L)) and let Ls be a sampling characterization of L such that Ls is inducedby Q. By De�nition 2.28 we have (A�; L�) = (�(A); f�(�) j � 2 Lg).First note that since Q is a temporal formula over A, De�nition 2.20 implies that �(Q) is atemporal formula over A�.Now, it is clear that exec(A�) = f�� j � 2 exec(A)g and that � j= Q i� �(�) j= �(Q). Thus,L�;s = f�(�) j � 2 Lsg is induced by �(Q). Since also t-exec(A�) = f�� j � 2 t-exec(A)g and �samples � i� �(�) samples �(�), we immediately get that L� is induced by L�;s. That su�ces.B.2.3 EmbeddingProof of Lemma 4.21:Since Q is a temporal formula over A, � is an execution over Ap, variables(A) � variables(Ap),and acts(A) � acts(Ap), Lemma 4.1 yields(� � (variables(A); acts(A))) j= Q i� � j= Q (�)



250 B. Proofs from Part IFurthermore, by de�nition of untime(�) we have untime(�) ' (� � (variables(A); acts(A))), andsince Q is stuttering-insensitive we haveuntime(�) j= Q i� (� � (variables(A); acts(A))) j= Q (��)Then (�) and (��) imply the result.Proof of Proposition 4.22:First note that since variables(A) � variables(Ap) and acts(A) � acts(Ap), Q is a temporalformula over Ap. We haveLp 1= f� 2 t-exec1(Ap) j untime(�) 2 Lg2= f� 2 t-exec1(Ap) j untime(�) j= Qg3= f� 2 t-exec1(Ap) j for all �, if � samples �, then untime(�) j= Qg4= f� 2 t-exec1(Ap) j for all �, if � samples �, then � j= Qgwhere Step 1 follows from De�nition 2.35, Step 2 follows from the fact that L is induced byQ (and untime(�) 2 exec(A) by de�nition of untime), Step 3 follows Lemma 4.20, and Step 4follows from Lemma 4.21.This proves, by Lemma 4.13 Part 2, that Lp is induced by Q.We show that Q is minimal. Thus, for arbitrary admissible execution � of Ap with � j= Q, wemust show the existence of a timed execution � 2 Lp such that � samples �.Let � be an arbitrary admissible execution � of Ap such that � j= Q. Let � be a timedexecution of Ap such that � samples �. By Lemmas 4.11 and 4.13 � exists and is admissible. ByLemma 4.20 untime(�) = untime(�) and Lemma 4.21 gives untime(�) j= Q. Thus, untime(�) j=Q, which implies untime(�) 2 L. Then, by de�nition of Lp (De�nition 2.35), � 2 Lp. Thatsu�ces.B.3 Proofs in Chapter 5B.3.1 Untimed SystemsProof of Lemma 5.10:Let m be an arbitrary index mapping from � to �0 with respect to R.=): Assume � j= 32:hCi. Then, by Lemma 3.5 Part 3, there exists an index i such thatij� j= 2:hCi. Thus, no actions in C occur in trace(ij�). By Lemma 5.6 and the fact that Ccontains external actions only, no actions in C occur in the su�x m(i)j�0. Thus, m(i)j�0 j= 2:hCi,which, by Lemma 3.5 Part 4, implies that �0 j= 32:hCi. That su�ces.(=: Assume �0 j= 32:hCi. Then, by Lemma 3.5 Part 3, there exists an index j such thatj j�0 j= 2:hCi. Now, by Condition 4 of De�nition 5.4, there exists an i � j�j such that m(i) � j.Then m(i)j�0 is a su�x of j j�0, and consequently, by Lemma 3.5 Part 1, m(i)j�0 j= 2:hCi.Thus, no actions in C occur in trace(m(i)j�0). By Lemma 5.6 and the fact that C containsexternal actions only, no actions in C occur in the su�x ij�. Thus, ij� j= 2:hCi, which, byLemma 3.5 Part 4, implies that � j= 32:hCi. That su�ces.



B.3. Proofs in Chapter 5 251Proof of Lemma 5.11:Let m be an arbitrary index mapping from � to �0 with respect to R.Assume �0 j= 32Q. Then, by Lemma 3.5 Part 3, there exists an index j such that jj�0 j= 2Q.Thus, for each state u in jj�0, we have u j= Q. Now, by Condition 4 of De�nition 5.4 and thefact that m is nondecreasing, we get the existence of an index i such that for all i � k � j�j,m(k) � j. Then, for each state s of � with index k (i � k � j�j) we have s j= P since (byCondition 2 of De�nition 5.4) there exists some u in jj�0 such that (s; u) 2 R.This gives us, for all k > 0, (ij�; k) j= P . (Even if ij� is �nite this is true since P holds inthe stuttering step that stutters the last state since it holds in the last state.). Thus, ij� j= 2P ,which �nally, by Lemma 3.5 Part 4, � j= 32P .Proof of Lemma 5.13:1. Let � = s0a1s1a2s2 � � �. Let sh0 2 start(Ah) be such that sh0 � variables(A) = s0. De�ne�h0 = sh0. Then �h0 � (variables(A); acts(A)) = s0.De�ne �hn inductively as follows. Assume �h(n�1) = sh0a1sh1a2sh2 : : :an�1sh(n�1) is anexecution of Ah such that �h(n�1) � (variables(A); acts(A)) = �jn�1. Then, by Lemma 5.12Part 1, there exists a step (sh(n�1); an; shn) 2 steps(Ah).De�ne �hn = sh0a1sh1a2sh2 : : : an�1sh(n�1)anshn. Then �hn �(variables(A); acts(A)) = �jn.Then, �h = limn!j�j�hn has the required property.2. Directly from Lemma 5.12 Part 2.Proof of Lemma 5.14:A vS Ah: Let � 2 traces(A) and let � 2 exec(A) be such that trace(�) = �. By Lemma 5.13Part 1 there exists an execution �h 2 exec(Ah) such that �h �(variables(A); acts(A)) = �. Then,since ext(A) = ext(Ah), we have trace(�h) = trace(�) = �. Thus, � 2 traces(Ah). That su�ces.Ah vS A: Let � 2 traces(Ah) and let �h 2 exec(Ah) be such that trace(�h) = �. By Lemma 5.13Part 2, �h �A 2 exec(A). Then, since ext(A) = ext(Ah), we have trace(�h) = trace(�h �A) = �.Thus, � 2 traces(A). That su�ces.Proof of Lemma 5.15:(A;L) vL (Ah; Lh): Let � 2 traces(L) and let � 2 L be such that trace(�) = �. By Lemma 5.13Part 1 there exists an execution �h 2 exec(Ah) such that �h �A = �. Thus, by de�nition of Lhwe have �h 2 Lh, and since ext(A) = ext(Ah) we �nally get trace(�h) = trace(�) = �, and thus,� 2 traces(Lh). That su�ces.(Ah; Lh) vL (A;L): Let � 2 traces(Lh) and let �h 2 Lh be such that trace(�h) = �. Byde�nition of Lh, �h �A 2 L. Then, since ext(A) = ext(Ah), we have trace(�h) = trace(�h �A) =�. Thus, � 2 L. That su�ces.



252 B. Proofs from Part IProof of Lemma 5.16:We haveLh = f�h 2 exec(Ah) j �h �A j= Qg= f�h 2 exec(Ah) j �h j= Qgwhere the �rst equality follows from the de�nition of Lh and Lemma 5.13 Part 2, and the lastequality follows from Lemma 4.1. This shows that Lh is induced by Q.B.3.2 Timed SystemsProof of Lemma 5.28:1. Let � = !0a1!1a2!2 � � �. De�ne h0 to be a value of h such that (fstate(!) [ [h 7! h0]) 2start(Ah). De�ne, for all t 2 dom(!0), !h0(t) � variables(A) = !0(t) and !h0(t):h = h0.Then !h0 is a trajectory of Ah.Now we de�ne !hn inductively. By the properties of timed executions, (!n�1; an; !n) 2steps(A). Then by Lemma 5.27 Part 1 where exists a value hn such that (!n�1 [ [h 7!hn�1]; an; !n [ [h 7! hn]) 2 steps(Ah). Then, for all t 2 dom(!n), de�ne !hn(t) �variables(A) = !0(t) and !hn(t):h = hn.Then, �h = !h0a1!h1a2!h2 � � � is a timed execution of Ap and �h � variables(A) = �.2. Directly from Lemma 5.27 Part 2.Proof of Lemma 5.32:Let Ls be a sampling characterization of L such that Ls is induced by Q and de�neLh;s 4= f�h 2 exec1(Ah) j �h �A 2 LsgSimilar to the proof of Lemma 5.16 it is easy to see that Lh;s is induced by Q. It now su�cesto show that Lh is induced by Lh;s. We must check two conditions.1. Assume �h 2 Lh. We must show that for all �h that samples �h, �h 2 Lh;s. So, assume�h samples �h. Since �h is admissible, also �h is admissible by Lemma 4.13. Thus, byde�nition of Lh;s it su�ces to show that �h �A 2 Ls.Since �h 2 Lh, we have �h �A 2 L. Lemma 5.31 Part 1 gives �h �A samples �h �A. Then�h �A 2 Ls since Ls is a sampling characterization of L. That su�ces.2. Assume �h 2 t-exec1(Ah) and for all �h samples �h, �h 2 Lh;s. We must show that�h 2 Lh. By de�nition of Lh it su�ces to show that �h �A 2 L.Let � be an arbitrary execution of A such that � samples �h �A. Then Lemma 5.31 Part2 gives the existence of an execution �h of Ah such that � = �h �A and �h samples �h.Thus, the assumption for this case implies �h 2 Lh;s. By Lemma 4.13 �h is admissible.Then the de�nition of Lh;s implies that � 2 Ls. Since � was arbitrary, the de�nition ofsampling characterization implies that �h �A 2 L. That su�ces.That concludes the proof.



Appendix CInvariance ProofsIn this chapter we prove the invariants stated in the G and C speci�cations. We use the normalproof technique:� Show that the invariant is satis�ed in every initial state.� Assume the invariant and all previously proved invariants hold in a state s, and for allsteps (s; a; s0) show that the invariant holds in s0.Many of the invariants consist of several parts. We prove that the conjunction of these parts isan invariant. It follows that each conjunct (part) is then itself an invariant. All the parts of theinvariants are of the formIf C then Pwhere, in some cases, C = true . For the sake of brevity we consider only, in the second partof the proof technique above, the steps that can change C from false to true or make P falsewhile C is true since these are the only steps that might invalidate the invariant. We refer tosuch steps as the critical steps for the invariant (part).C.1 Proof of Invariants at the G LevelProof of Invariant 8.1� Since modes = idle in the initial states of G, it follows that both parts of the invariantare satis�ed in the initial states.� We now consider the two parts separately1. We consider the critical steps. (Note that none of the steps in G can remove elementsfrom useds)a = choose id(id ; m)This step changes modes to send but at the same time the new value of lasts isappended to the end of used s, so Part 1 holds after the step.a 2 freceive pkt rs(id ; b); recoversgBoth of these steps can change lasts but at the same time modes is changed to non-send, so Part 1 holds after the steps.253



254 C. Invariance Proofs2. The proof of this part follows directly from the proof of Part 1 and the fact the usedsis a queue of IDs. (Remember that nil =2 ID).Proof of Invariant 8.2� Since modes = idle and useds = " in initial states of G, both parts of the invariant holdin the initial states.� We assume that both parts hold in state s. For each part we consider the critical steps ofthe form (s; a; s0).1. a = prepareThis step changes modes to needid but at the same time goods is changed to ;, soPart 1 holds in s0.a = choose id(id ; m)This step adds an id to used s but at the same time modes is changed to send, so Part1 holds in s0.a = grow good s(ids)We consider this case when s:modes = needid. The step adds identi�ers to used s butsince s:modes = needid the step can only add ids that do not intersect with s:used s.Thus, since Part 1 is assumed to hold in s, it also holds in s0.2. a = choose id(id ; m)This step adds the element id from s:goods to used s but since s:modes = needid, theassumption that Part 1 holds in s gives us that id =2 s:useds. Thus Part 2 holds in s0.Proof of Invariant 8.3� Initially moder = idle so the invariant holds.� Assume that the invariant holds in s. We now consider all the critical steps of the form(s; a; s0).1. a = receive pkt sr(m; id)If this step changes moder to rcvd, it also adds an element to buf r, so Part 1 holds ins0.a = receive msg(m)This step can make buf r empty, but in this case, moder is changed to ack, so Part 1holds in s0.Proof of Invariant 8.4� Part 1 holds initially because modes = idle. issuedr is initially a superset of goodr thussatisfying Part 2. For Parts 3, 4, 5, and 6 the sets that are supposed to be subsets areinitially empty, so the result follows. Since lastr is initially nil, Parts 7 and 8 are alsosatis�ed.



C.1. Proof of Invariants at the G Level 255� For each part of the invariant we consider the critical steps (s; a; s0), where we assume thatall parts of this invariant hold in s, and that previously proved invariants hold in both sand s0. (For Parts 1, 2, and 3, note that issuedr can never shrink, and for Parts 4, 5, 6,and 8, note that useds can never shrink.)1. a = prepareThis step changes modes to needid, but at the same time good s is made empty, soPart 1 holds in s0.a = recoverrThis step changes moder from rec to nonrec (idle) but at the same time issued r ischanged to some superset of good s, so Part 1 holds in s0.a = grow good s(ids)We consider the case where s:modes = needid and s:moder 6= rec. The step addssome elements to good s, but in the case we consider, the elements that are added areall in s:issuedr . So, since we assume Part 1 holds in s, it also holds in s0.2. a = grow good r(ids)This step adds elements to good r but at the same time the same elements are addedto issuedr. So, since we assume that Part 2 holds in s, it also holds in s0.3. a = recoverrThis step changes moder from rec to non-rec, but at the same time issuedr is changedto some superset of useds, so Part 3 holds in s0.a = prepareConsider this step when s:moder 6= rec. We add an element id from s:good s to useds.From Part 1 we get that id belongs to s:issuedr so adding id to useds does not violatePart 3.4. In the proof, we let id-set denote the set ids(sr) [ (if modes = send then flastsg) inany state of G.a = choose id(id ; m)This step changes modes to send so s0:lasts gets added to id-set , but from Invariant 8.1Part 1 we get that s0:lasts 2 s0:useds, so Part 4 is not violated.a = send pkt sr(m; id)This step might add a packet to the channel (sr), but since a precondition for the stepis s:modes = send, the id on the packet is already in id-set , thus this step does notchange id-set . So, since Part 4 holds in s, it also holds in s0.5. a = receive pktsr(m; id)This is the only step that may add an identi�er to nack-buf s. The identi�er id addedis in ids(s:sr), so since we assume that Part 4 holds in state s we get that id 2 s:useds,so Part 5 is not violated.



256 C. Invariance Proofs6. a = send pkt rs(id ; true)This step can add a packet with identi�er s:last to the return channel rs . The actionis only possible if s:lastr 2 ID , i.e., if s:lastr 6= nil. But then Part 8 gives us thats:lastr 2 s:used s, thus this step cannot violate Part 6.a = send pkt rs(id ; false)This step can add a packet with an identi�er from s:nack-buf to rs . From Part 5 instate s we get that this identi�er is in s:useds, so the step cannot violate Part 6.7. a = receive pkt sr(m; id)This step can change lastr to id which belongs to s:good r. However, at the same timeid is removed from good r. It remains to be shown that id =2 s0:issuedr. Since weassume that all parts of this invariant hold in s, Part 2 gives us that id 2 s:issuedrand since issuedr is not changed in the step, we get id 2 s0:issuedr . The result followsdirectly.a = recoverrThis step changes lastr to nil. But since good-ids is a set of elements from ID andnil =2 ID , Part 7 holds in state s0.a = grow good r(ids)This step does not change good-ids , so Part 7 holds in state s0.8. a = receive pkt sr(m; id)This is the only step that can change lastr to non-nil. lastr is changed to an identi�erid in a packet in s0:sr . From Part 4 in state s we get that id 2 s:useds, so since usedsdoes not change in the step, Part 8 holds in state s0.Proof of Invariant 8.5� Initially sr = ; and modes 6= send, so the invariant holds.� We consider the critical steps (s; a; s0), where we assume that this invariant hold in s,and that previously proved invariants hold in both s and s0. Note that no step canchange current-msgs and end up in a state with modes = send. Also, no step, exceptchoose id(id ; m) can change lasts and end up in a state with modes = send.1. a = choose id(id ; m)This step changes modes from needid to send. From Invariant 8.4 Part 4 we get thats:useds � ids(s:sr). From Invariant 8.2 Part 1 and the de�nition of choose id(id ; m)we then get that s0:lasts =2 ids(s0:sr), so this step does not invalidate the invariant.Proof of Invariant 8.6� Initially current-ok = false, so all parts of the invariant hold.



C.1. Proof of Invariants at the G Level 257� For each part of the invariant we consider the critical steps (s; a; s0), where we assume thatall parts of this invariant hold in s, and that previously proved invariants hold in boths and s0. Note, for the Parts 3, 4, 6, and 7, that no step, except choose id(id ; m), canchange lastr without also changing modes to something other that send.1. a = prepareThis changes current-ok to true if s:moder 6= rec, but at the same time modes ischanged to needid, so Part 1 holds in state s0.a = receive pktrs(id ; b)In order for this step to change modes to idle, we must have s:modes = send and(s:lasts; b) 2 s:rs . In that case the step can only violate Part 1 if s:current-ok = true ,but this cannot be the case since we assume that Part 4 holds in state s. Thus, thestep cannot violate Part 1.a = crashsThis step can change modes from needid or send to rec, but at the same timecurrent-ok is set to false, so Part 4 holds in state s2. a = prepareThis step changes current-ok to true , but only if moder 6= rec, so Part 2 holds in s.a = crashrThis is the only step that can change moder from non-rec to rec but at the sametime current-ok is made false, so Part 2 holds in s.3. a = choose id(id ; m)This is the only step that can change the condition in Part 2 from false to true . Thishappens if s:current-ok = true . Since s:modes = needid, Part 5 which we assumeholds in s gives us that s0:lasts 2 s:good r which again implies that s0:lasts 2 s0:goodr .From Invariant 8.4 Part 7 we get that s0:lastr =2 s0:goodr . Thus s0:lasts 6= s0:lastr, soPart 3 holds in s0.a = receive pktsr(m; id)This step can make s0:lasts = s0:lastr but in this case curremt-ok is changed to false,so Part 3 holds in s0.a = recoverrConsider this step when modes = send and current-ok = true . The step changes lastrto nil but from Invariant 8.1 Part 2 we have s0:modes 6= nil, so Part 3 holds in s0.4. a = choose id(id ; m)This is the only step that can change the condition in Part 2 from false to true . Thishappens if s:current-ok = true , so assume this. In state s we get from Invariant 8.4Part 6 that all ids on s:rs are in s:useds. From Invariant 8.2 Part 1 we get that s0:lasts =2s:useds. Since rs is not changed in the step, we �nally conclude that (s0:lasts; b) =2 s0:rs,so Part 4 holds in state s0.



258 C. Invariance Proofsa = send pkt rs(id ; true)Consider this action when modes = send and current-ok = true . (s:lastr; true) mightbe added to rs, but from Part 3 we get that Part 4 is not violated.a = send pkt rs(id ; false)Consider this action when modes = send and current-ok = true . A packet with an idfrom s:nack-buf r might be added to rs, but from Part 7 (which we assume holds in s)we get that Part 4 is not violated.5. a = prepareThis step can make current-ok = true and modes = needid but at the same timegoods is made empty, so Part 5 holds in state s0.a = grow good s(ids)This step can only add elements from goodr to good s when current-ok = true andmodes = needid, so Part 5 holds in state s0.a = shrink good r(ids)This step can only remove elements not in good s from good r when current-ok = trueand modes = needid, so Part 5 holds in state s0.6. a = choose id(id ; m)Consider this step when s:current-ok = true . The step changes modes to send andchanges lasts to a value from s:good s. Since s:modes = needid, Part 5 gives us thats0:lasts 2 s:good r, so since good r is not changed in the step, Part 6 holds in s0.a = shrink good r(ids)When current-ok = true and modes = send, this step cannot remove s:lasts fromgoodr , so Part 6 holds in s0.7. a = choose id(id ; m)Consider this step when s:current-ok = true . The step changes modes to send andchanges lasts to a value from s:good s. Since s:modes = needid, Invariant 8.2 Part 1gives us that s0:lasts =2 s:useds. From Invariant 8.4 Part 5 we then get that s0:lasts =2s:nack-buf r which again implies s0:lasts =2 s0:nack-buf r since nack-buf r is not changedin the step. So, Part 7 holds in state s0.a = receive pkt sr(m; id)This step can add an identi�er to nack-buf r. Assume s:current-ok = true ands:modes = send. We must show that s:lasts (= s0:lasts) cannot be added to nack-buf runder these assumptions. From Part 6 we have that that s:lasts 2 s:good r, so from thede�nition of receive pktsr(m; id) we get that nack-buf r is not changed. Thus, Part 7holds in state s0.Proof of Invariant 8.7Parts 1 and 2 are reformulations of Invariant 8.6 Parts 3 resp. 4.



C.1. Proof of Invariants at the G Level 259Proof of Invariant 8.8� Since initially modes = idle and current-ack s = false, all parts hold.� For each part of the invariant we consider the critical steps (s; a; s0), where we assume thatall parts of this invariant hold in s, and that previously proved invariants hold in both sand s0. Note, for the Parts 1, 2, and 3 that no step, except choose id(id ; m), can changelastr without also changing modes to something other that send. Note also that no stepscan make good-ids grow. good-ids can only shrink.1. a = choose id(id ; m)This step changes modes to send. In state s we get from Invariant 8.4 Part 4 thats:useds � ids(sr). From the de�nition of choose id(id ; m) we see that s0:lasts is placedat the end of used s, thus by the de�nition of the partial order of identi�ers we see thatPart 1 holds in s0.a = send pkt sr(m; id)This step might add (m; s:lasts) to sr while modes = send. But since Part 1 is assumedto hold in s, it is obvious that it also holds in s0.2. a = choose id(id ; m)Although this step changes modes from needid to send, it does not make lasts = lastr .To see why this is so, note that either s0:lastr = nil in which case the result followsdirectly (since s0:lasts 6= nil by Invariant 8.1 Part 1) or s0:lastr = s:lastr 6= nil inwhich case Invariant 8.4 Part 8 implies that s0:lastr 2 s:useds and Invariant 8.2 Part 1implies that s0:lasts =2 s:useds, so again the result follows. Thus, Part 2 holds in s0.a = receive pktsr(m; id)Consider the case where s:modes = s0:modes = send, id = s:lasts = s0:lasts 2 s:goodr ,and s:moder = s0:moder 6= rec. In this case we get s0:lasts = s0:lastr . We mustshow that (fs0:lastsg [ ids(s0:sr)) \ s0:good-ids = ;. From Invariant 8.4 Parts 3 and4 we get that s0:issuedr � fs0:lastsg [ ids(s0:sr). So what remains to be shown isthat (fs0:lastsg [ ids(s0:sr)) \ s:good r = ;. From Part 1 we get that id � (fs:lastsg [ids(s:sr)). Since we remove all identi�ers less than or equal to id from good s in thisstep, and since Invariant 8.4 Part 4 ensures that all packets in sr have identi�ers thatare related to id , the result follows. Thus, Part 2 holds in s0.a = send pkt sr(m; id)This step can change sr , but only with a packet with the identi�er s:lasts. Since weassume that this Part 2 holds in s, it follows that it also holds in s0.3. a = choose id(id ; m)Although this step changes modes from needid to send, it does not make the packet(s0:lasts; true) belong to s0:rs. We show why this is so. Since rs is not changed in thestep, we get from Invariant 8.4 Part 6 that s:useds � ids(s0:rs). Invariant 8.2 Part 1together with the de�nition of choose id(id ; m) gives us s0:lasts =2 s:used s. Thus weget s0:lasts =2 ids(s0:rs) which gives the result. So, Part 3 holds in s0.



260 C. Invariance Proofsa = send pkt rs(id ; true)Consider this step while s:modes = s0:modes = send and id = s:lastr = s:lasts =s0:lasts. The step might succeed in putting the packet (s0:lasts; true) into the channel.We show that (fs0:lastsg [ ids(s0:sr)) \ s0:good-ids = ;. From Part 2 we get that(fs:lastsg[ids(s:sr))\s:good-ids = ;. Since neither lasts, sr , nor good-ids are changedin the step, the result follows directly. So, Part 3 holds in s0.a = send pkt sr(m; id)This step can change sr , but only with a packet with the identi�er s:lasts. Since weassume that this Part 2 holds in s, it follows that it also holds in s0.4. a = receive pkt rs(id ; b)This step can change modes to idle and current-ack s to true if b = true and id =s:lasts, thus, (s:lasts; true) must be on s:rs. Then Part 3 implies that ids(s:sr) \good-ids = ;. It now directly follows that Part 4 holds in state s0.Proof of Invariant 8.9� Since initially buf r = ", all parts of the invariant hold.� For each part of the invariant we consider the critical steps (s; a; s0), where we assume thatall parts of this invariant hold in s, and that previously proved invariants hold in both sand s0.1. a = recoverrThis step changes moder to idle but at the same time buf r is made empty, so Part 1holds in s0.a = send pkt rs(id ; true)This step can change moder to idle, but from Part 2 in state s we get buf r = ", soPart 1 holds in s0.a = cleanuprThis step changes moder to idle but since s:moder 2 fidle; ackg from the precondi-tion, this part and Part 2 imply that buf r was already empty. Thus, Part 1 holds ins0.2. a = receive pkt sr(m; id)We consider this step in two di�erent situations{ The step can make buf r nonempty but at the same time moder is changed torcvd.{ The step can change moder from idle to ack, but then Part 1 implies that buf rwas already false.So, Part 2 holds in state s0.



C.1. Proof of Invariants at the G Level 261a = receive msg(m)This step can change moder to ack but this only happens if s0:buf r = ", so Part 2holds in state s0.3. a = choose id(id ; m)Although this step makes modes = send, it does not make the packet (s0:lasts; true)belong to s0:rs. The argument is the same as for the corresponding case in the proofof Invariant 8.8 Part 3. So, Part 3 holds in state s0.a = send pkt rs(id ; true)This step can put (s0:lasts; true) into rs but since s:moder = ack, Part 2 gives us thats:buf r(= s0:buf r) = ". So, Part 3 holds in state s0.a = receive pktsr(m; id)This step might add an element to buf r. We show that this cannot happen whilemodes = send and (lasts; true) 2 rs. If an element is added to buf r in the step, thenid 2 s:good r, i.e., ids(s:sr) [ s:good-ids 6= ; but this contradicts Invariant 8.8 Part 3.So, Part 3 holds in state s0.4. a = receive pktrs(id ; true)Consider this step when id = s:lasts. Then (s:lasts; true) 2 s:rs. Since s:modes =send, Part 3 implies that s:buf r = " which in turn implies that s0:buf r = ". So, Part 4holds in state s0.a = receive pktsr(m; id)This step might add an element to buf r. The argument that this cannot happen whilemodes = idle and current-ack s = true is similar to the argument in the correspondingcase in the proof of Part 3, only in this case we get a contradiction with Invariant 8.8Part 4. So, Part 4 holds in state s0.Proof of Invariant 8.10� Initially nack-buf r = " and rs = ;, so the parts hold.� For each part of the invariant we consider the critical steps (s; a; s0), where we assume thatall parts of this invariant hold in s, and that previously proved invariants hold in both sand s0. Note, that no steps can make good-ids grow.1. a = receive pktsr(m; id)Consider this step when s:moder 6= rec and id =2 s:goodr . Then id might be added tonack-buf r. Since id =2 s:good r and goodr is unchanged in the step we get s0:nack-buf r\s0:goodr = ; (since we assume that this Part 1 holds in s). From Invariant 8.4 Parts 3and 5 it follows that s0:nack-buf r \ s0:issuedr = ;. So, Part 1 holds in state s0.2. a = send pkt rs(id ; true)This step might add (lastr ; true) to rs but from Invariant 8.4 Part 7 we get thatlastr =2 good-ids , so this step cannot violate Part 2.



262 C. Invariance Proofsa = send pkt rs(id ; false)Then id 2 s:nack-buf r, so Part 1 directly gives us that this step cannot violate Part 2.Proof of Invariant 8.11� Initially modes = idle so both parts hold.� For each part of the invariant we consider the critical steps (s; a; s0), where we assume thatboth parts of this invariant hold in s, and that previously proved invariants hold in both sand s0. Note, no action, except choose id(id ; m), can change lasts without also changingmodes to non-send. Also, from Invariant 8.1 Part 2 we get that all steps that change lastrto nil are not critical.1. a = choose id(id ; m)Although this step changes modes to send, it does not make the packet s0:lasts belongto s0:nack-buf r . We show why this is so. Invariant 8.2 Part 1 implies that s0:lasts =2s:useds. From Invariant 8.4 Part 5 and the fact that nack-buf r is not changed in thestep, we get that s:used s � s0:nack-buf r , which gives the result. So, Part 1 holds instate s0.a = receive pkt(m; id)We consider two cases.{ Consider the step when id = lasts. Then lasts can be added to nack-buf r but thiscan only happen if lasts 6= lastr, so Part 1 is not violated.{ Consider the step when s:moder 6= rec, id = lasts, and lasts 2 s:goodr . Thens0:lasts = s0:lastr . We show that then s:lasts =2 s:nack-buf r (which is the same asshowing s0:lasts =2 s0:nack-buf r). First assume s:lasts 2 s:nack-buf r. Then Invari-ant 8.10 Part 1 implies that s:lasts =2 s:good r, but this contradicts the assumptionthat lasts 2 s:good r. Thus, Part 1 holds in state s0.2. a = choose id(id ; m)Although this step changes modes to send, it does not make the packet (s0:lasts; false)belong to s0:rs. The argument that this is so is similar to the argument in the corre-sponding case in the proof of Invariant 8.8 Part 3. So, Part 2 holds in state s0.a = send pkt rs(id ; false)Consider this step when id = lasts, i.e., lasts is �rst on s:nack-buf r. Then Part 1implies that s:lasts 6= s:lastr, so, since neither lasts nor lastr change in the step,Part 2 holds in state s0.a = receive pkt sr(m; id)Assume s:moder 6= rec and lasts = id 2 s:good r. Then s0:lastr = s0:lasts. We showthat then (lasts; false) =2 rs. First assume (lasts; false) 2 rs. Then Invariant 8.10Part 2 implies that lasts =2 s:good-ids , but this contradicts the assumption that lasts 2s:goodr . Thus, Part 2 holds in state s0.



C.2. Proof of Invariants at the C Level 263Proof of Invariant 8.12� The invariant is explicitly required to hold in all start states.� We consider the critical steps (s; a; s), where we assume that the invariant holds in s0, andthat previously proved invariants hold in both s0 and s.1. a = recoverr or a = shrink goodr(ids)These steps explicitly require the invariant to hold in s.C.2 Proof of Invariants at the C LevelIn this section we prove the invariants of AhC0 presented in Section 10.5.2. As above we provethe invariants by induction, proving that they hold in the (unique) start state and that all stepspreserve the invariants. As above, in the inductive step of the inductive arguments we onlyconsider \critical steps" that might invalidate the invariant.In the proofs the steps have the form (s; a; s0).Proof of Invariant 10.1� Initially all the involved variables are 0, so all parts hold.� 1. a = ticks(t)This step changes both ctimes and times to t.2. a = tickr(t)This step changes both ctimer and timer to t.3. a = �The precondition on the time-passing steps of the clock subsystem (and thus on all ofC) ensures that js0:ctimes � s0:now j � �. Part 1 then gives the result.4. a = �The precondition on the time-passing steps of the clock subsystem (and thus on all ofC) ensures that js0:ctimer � s0:now j � �. Part 2 then gives the result.5. Parts 3 and 4 directly implies the result.Proof of Invariant 10.2� Initially upper r = � � 2� + l0r � 2�. Since initially now = times = timer = 0, all theinvariants hold.� 1. a = recoverrThis makes s0:moder 6= rec but at the same time s0:upper r = s0:timer+� � s0:timer+2�+ l0r � s0:now + �+ l0r, where the last inequality follows from Invariant 10.1 Part 4.a = increase-upperr(t)As for the previous case, s0:upper r � s0:now + �+ l0r.



264 C. Invariance Proofsa = �Assume s:moder 6= rec. From the upper time bound on the class CtC;r2 consist-ing of all increase-upper r(t) actions we have s0:now � s:last(CtC;r2). The variablelast(CtC;r2) is set to now + l0r whenever a recoverr step occurs (since then CtC;r2 be-comes enabled) or a increase-upperr(t) step occurs (since then increase-upperr(t) be-comes reenabled). Now, since we assume s:moder 6= rec, let now0 and upper r;0 denotereal time and upper r right after the last recoverr or increase-upperr(t) step. Thens0:now � s:last(CtC;r2) = now0 + l0r, so, now0 � s0:now � l0r. Now, from the recoverrand increase-upper r(t) cases above we �nally get s0:upper r = upper r;0 � now0+�+l0r �(s0:now � l0r) + �+ l0r = s0:now + �.Note: We are here actually departing from our normal way of proving invariantssince we use more information, like now0, than is available in s. What we could havedone was to introduce a history variables now0 that is set to now in recoverr andincrease-upperr(t) steps. We could then easily have proved the invariantsIf moder 6= rec then last(CtC;r2) = now0 + l0r and now � now0 + l0rs0:upper r � now0 + � + l0rfrom which the result would follow.We go through the same arguments but have chosen, for brevity, to avoid explicitlyintroducing the extra history variable.2. This part follows directly from Part 1 and Invariant 10.1 Part 3.3. This part follows directly from Part 1 and Invariant 10.1 Part 4.Proof of Invariant 10.3� Initially lasts = times = 0 and modes = idle, so both parts hold.� 1. a 2 fchoose id(t); recovers; ticks(t)gAll such steps clearly preserve this part.2. a = choose id(t)Changes modes to send but also explicitly sets s0:lasts = t > s:lasts � 0.Proof of Invariant 10.4Straightforward.Proof of Invariant 10.5Straightforward.Proof of Invariant 10.6Straightforward.



C.2. Proof of Invariants at the C Level 265Proof of Invariant 10.7� Initially lower r = times = lasts = 0, so both parts of the invariant hold.� 1. No steps can make times smaller, so we need only check the steps that make lower rbigger.a = recoverrThen s0:lowerr = s:upper r and s:upper r + 2� < s:timer. Therefore, s0:lower r <s:timer � 2� � s:times = s0:times, where we have used Invariant 10.1 Part 5.a = increase-lowerr(t)Then s0:lowerr < s:timer � � � s:timer � (kls + d + 2�) � s:timer � 2� � s:times =s0:times, where we again have used Invariant 10.1 Part 5.a = receive pktsr(m; t)The only way for lower r to increase is for s0:lower r = t but then, since ((m; t); ) 2 s:sr ,Invariants 10.6 Part 1 and 10.3 Part 1 imply that s0:lower r � s:lasts � s:times =s0:times.2. a 2 frecoverr ; increase-lowerr(t)gSame argument as for the previous part.a = receive pktsr(m; t)Assume s0:lasts < s0:times. Since s:lasts = s0:lasts and s:times = s0:times, we alsohave s:lasts < s:times. The only way for lower r to increase is for s0:lowerr = t butthen, since ((m; t); ) 2 s:sr , Invariants 10.6 Part 1 implies that s0:lower r � s:lasts <s:times = s0:times.a = ticks(t)Assume s0:lasts < s0:times. From Invariant 10.3 Part 1 we have s:lasts � s:times. Weconsider cases:{ s:lasts < s:timesThen s:lower r < s:times by the inductive hypothesis, so we have s0:lower r =s:lower r < s:times � s0:times, as needed, where the last inequality follows fromthe de�nition of tick s(t).{ s:lasts = s:timesThen since s:lasts = s0:last < s0:times we have s:time < s0:time. Since s0:lower r =s:lower r, and s:lower r � s:times by Part 1, we have s0:lower < s0:times, as needed.Proof of Invariant 10.8Straightforward.Proof of Invariant 10.9Straightforward.



266 C. Invariance ProofsProof of Invariant 10.10� Initially deadline = 1 and now = 0, and since modes = idle we have bound = 1, so allparts hold.� 1. a = choose id(t)Then s0:lasts = t. Let m = s0:current-msgs.If s:moder = s0:moder = rec then s0:deadline = s:deadline and the induction hypoth-esis Part 7 implies that s:deadline =1, so we are done.So, assume s:moder 6= rec. From the precondition of choose id(t) we have t >s:lasts. Now Invariants 10.5 Part 1 and 10.6 Part 1 imply, since s0:countsr(m; t) =s:countsr(m; t) and s0:rs = s:rs , that s0:countsr(m; t) = 0 and (m; t) =2 packets(s0:sr).Now, since CtC;s becomes reenabled in s0 we have s0:last(CtC;s = s0:now + ls. Thus,s0:bound = s0:last(CtC;s) + (k � 1� s0:countsr(m; t))ls+ d= s0:now + ls + (k � 1)ls + d= s0:deadlineThat su�ces.a = send pkt sr(m; t)We consider cases{ (m; t) 2 packets(s:sr)Then s0:bound = s:bound since the mintime of the (p; t) packets does not change.Since also s0:deadline = s:deadline, the result follows.{ (m; t) =2 packets(s:sr)� (m; t) =2 packets(s0:sr)Then s0:countsr(m; t) = s:countsr(m; t) + 1. We now haves0:bound = s0:last(CtC;s) + (k � 1� s0:countsr(m; t))ls+ d= s0:now + ls + (k � 1� s0:countsr(m; t))ls+ d= s0:now + (k � 1� s:countsr(m; t))ls+ d� s:last(CtC;s) + (k� 1� s:countsr(m; t))ls+ d= s:boundThe induction hypothesis Part 1 now impliess0:deadline = s:deadline � s:bound � s0:bound� (m; t) 2 packets(s0:sr)Then s0:bound = d+ s0:now ands:bound = s:last(CtC;s) + (k � 1� s:count sr(m; t))ls+ d� s:last(CtC;s) + d� s0:now + d= s0:boundwhere the �rst inequality follows from Invariant 10.5 Part 2 and the secondinequality follows from facts that time cannot pass beyond any last(C) variableand s0:now = s:now .The induction hypothesis Part 1 now impliess0:deadline = s:deadline � s:bound � s0:bound



C.2. Proof of Invariants at the C Level 267a = receive pktsr(m; t)For such a step to change either bound or deadline, i.e., for such a step to be able toinvalidate the invariant part under consideration, we must have s:modes = send (=s0:modes) and t = s:lasts (= s0:lasts). Invariant 10.6 Part 2 then implies that m =s:current-msgs (= s0:current-msgs).If s:deadline =1, then also s0:deadline =1 and the result follows.So, assume s:deadline 6=1. The induction hypothesis Part 7 then implies s:moder 6=rec.We now show that s:lower r < t � s:upper r.The lower bound follows from the induction hypothesis Part 6 and the fact thatt = s:lasts.For the upper bound we have from Invariants 10.2 Part 2 and 10.3 Part 1 thats:upper r � s:times � s:lasts = t.Then from the de�nition of receive pktsr(m; t) we see that s0:deadline = 1, and theresult follows.a = receive pktrs(t; b)For such a step to be able to invalidate the invariant part under consideration, wemust have s:modes = send and s:lasts = t.Then Invariant 10.6 Part 6 implies that s:lasts = t � s:lower r , but then the inductionhypothesis Part 6 implies that s0:deadline = s:deadline =1. That su�ces.2. a = choose id(t)Then Invariant 10.5 Part 1 and the de�nitions of bound and last(CtC;s) imply thats0:bound = s0:now + ls + (k � 1)ls + d � s0:nowa = send pkt sr(m; t)We consider cases{ (m; t) 2 packets(s0:sr)� (m; t) 2 packets(s:sr) Then s0:bound = s:bound (uses the fact that Invari-ant 10.9 Part 1 implies that mintime((m; t); s0:sr) = mintime((m; t); s:sr)), sothe result follows from the induction hypothesis.� (m; t) =2 packets(s:sr) Then s0:bound = s0:now + d � s0:now .{ (m; t) =2 packets(s0:sr) Then s0:last(CtC;s) = s0:now + ls, so Invariant 10.5 Part 2impliess0:bound = s0:now + ls + (k � 1� s0:countsr(m; t))ls+ d � s0:nowreceive pktsr(m; t)For such a step to change bound we must have s:modes = send, s:lasts = t, ands:current-msgs = m. In all other cases the induction hypothesis immediately gives theresult.The step removes ((m; t); t0), for some t0, from sr . If t0 6= mintime((m; t); s:sr) thens0:bound = s:bound , and again the induction hypothesis gives the result. So, assumet0 = mintime((m; t); s:sr).We consider cases



268 C. Invariance Proofs{ (m; t) 2 packets(s0:srThen mintime((m; t); s0:sr) � mintime((m; t); s:sr) which implies that s0:bound �s:bound and the result follows.{ (m; t) =2 packets(s0:srThen, since s0:last(CtC;s) � s0:now we have (with a little help from Invariant 10.5Part 2)s0:bound = s0:last(CtC;s) + (k � 1� s0:countsr(m; t))ls+ d � s0:nowa = �If s:modes = s0:modes 6= send, then s0:bound = 1 and the result follows. So, assumes:modes = s0:modes = sendLet m = s:current-msgs = s0:currnet-msgs and t = s:lasts = s0:lasts. We considercases{ (m; t) 2 packets(s:sr)Then ((m; t);mintime((m; t); s:sr)) 2 s:sr and from the precondition of the timepassing steps of the channel sr we have s0:now � mintime((m; t); s:sr). Thus,since s0:sr = s:sr ,s0:now � mintime((m; t); s:sr) � mintime((m; t); s0:sr) + d = s0:bound{ (m; t) =2 packets(s:sr)Then, since s0:last(CtC;s) � s0:now we have (with a little help from Invariant 10.5Part 2)s0:bound = s0:last(CtC;s) + (k � 1� s0:countsr(m; t))ls+ d � s0:now3. This part follows directly from Parts 1 and 2.4. a = choose id(t)If s:moder = rec then s0:deadline = s:deadline = 1, by the induction hypothesisPart 7, so the result follows.So, assume s:moder � rec. Then s0:deadline = s0:now+kls+d and s0:lasts = s0:times.Invariant 10.1 Part 3 then implies that s0:deadline � s0:lasts + � + kls + d.a = recoversThen the induction hypothesis Part 7 implies that s:deadline =1, and since we haves0:deadline = s:deadline, the result follows.5. This part follows directly from Parts 3 and 4.6. a 2 frecovers; recoverrgThen by the induction hypothesis Part 7 we have s0:deadline = s:deadline =1. Thatsu�ces.a = choose id(t)Then s0:lasts = s0:times = s:times > s:lasts, by de�nition of choose id . By Invari-ant 10.7 Part 2, s:lower r < s:times. But since s0:lower r = s:lower r and s:times =s0:lasts, we have s0:lower r < s0:lasts, as needed.



C.2. Proof of Invariants at the C Level 269a = increase-lowerr(t)We only need to check such steps when s0:deadline = s:deadline 6=1.By de�nition of increase-lowerr(t), we have s0:lower r < s0:timer � � � s0:timer �(kls + d + 2�). It su�ces to show that this is less than or equal to s0:lasts. Sinces0:deadline 6=1, Part 5 implies that s0:now � s0:lasts+ �+ kls+ d. By Invariant 10.1Part 4, we know that s0:timer � s0:now+�. Therefore, s0:timer � s0:lasts+kls+d+2�.This su�ces.a = receive pktsr(m; t)This increases lower r if s:moder 6= rec and s:lower r < t � s:upper r .If s:deadline =1 then also s0:deadline =1 and the result follows.So assume s:deadline 6=1. Then induction hypothesis Part 7 implies that s:modes =send. Now, if t = s:lasts then s0:deadline = 1 and the result follows. If t 6= s:lasts,then Invariant 10.6 Part 1 implies that t < s:lasts. Then, since s0:lower r = t ands0:lasts = s:lasts, we get s0:lowerr < s0:lasts, as needed.7. Straightforward except for the case a = receive pktrs(t; b).a = receive pktrs(t; b)This may invalidate the invariant by changing modes to idle if we have t = s:lastsand s:modes = send.Invariant 10.6 Part 6 implies that s:lasts � s:lower r. From the induction hypothesisPart 6 we then get s:deadline = 1, and since s0:deadline = s:deadline the resultfollows.Proof of Invariant 10.12Straightforward.Proof of Invariant 10.13Straightforward.


