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a reasonable way. This approach brings together the work that some of us havedone using I/O automata to reason about distributed algorithms [8] and thework that others of us have done to provide tools for formalizing speci�cations[5] and for automating deductions [3].Our approach uses forward and backward simulation methods, described in[1, 9], to isolate sets of proof obligations that guarantee that the traces of oneautomaton are included in the traces of another. We formalize the automatausing the Larch Shared Language (LSL) [5] and then use LP, the Larch ProofAssistant [3], to construct simulation proofs.We use simulation proofs because we believe that this method captures for-mally the natural structure of many informal correctness proofs for both �niteand in�nite state systems. In particular, it catches the structure of proofs basedon successive re�nements. Proofs using simulations are generally based on key in-tuitions about the execution of algorithms. Simulation relations, like invariants,tend to capture central ideas; hence they provide important documentation foralgorithms. Simulations also tend to be readily modi�able when implementationsare modi�ed or when related algorithms are considered.Using LSL, we are able to describe automata in a way that correspondsclosely to the way they are usually described. LSL's syntactic amenities andfacilities for modularizing speci�cations are particularly useful. Using LP, we areable to construct proofs whose structure is identical to that of the usual carefulhand proofs. We supply the same invariants, simulation relations, and lemmasthat appear in hand proofs; LP saves us from supplying the tedious details. Theprocess of inventing invariants, simulation relations, and lemmas can involveconsiderable intellectual e�ort, but we believe that this e�ort is worthwhile: ityields considerable insight into why algorithms work. Once an LP proof has beencompleted, the proof script is easily read by a person, and it contains enoughinformation for the reader to reproduce the elided steps, given access to LP oranother su�ciently powerful theorem prover [2, 4].The remainder of this paper describes our approach in more detail andprovides an illustrative example. Section 2 provides background about I/O au-tomata and simulation proofs. Section 3 contains part of a careful hand proofthat two example automata simulate each other. Section 4 shows how we for-malize the de�nitions of these automata in LSL, and Section 5 presents the LPproof scripts. Finally, Section 6 draws some conclusions about this approach.2 AutomataIn this paper we consider simpli�ed versions of I/O automata [8]. The majorsimpli�cation is that we do not deal with fairness or other types of liveness; henceour automata lack a component that de�nes what it means for an execution tobe fair. We also do not distinguish between input and output actions, whichwe group together into a single set of external actions. In fact, our notion ofautomata is the same as that of untimed automata in [9], except that we allowmultiple internal actions.



De�nition1 (Automaton). An automaton A consists of four components:{ states(A) is a (�nite or in�nite) set of states.{ start(A) is a nonempty set of start states (start(A) � states(A)).{ sig(A) is and action signature (ext(A); int(A)), where ext(A) and int(A) aredisjoint sets of external and internal actions. The set acts(A) of actions ofA is int(A) [ ext(A).{ steps(A) is a transition relation (steps(A) � states(A)�acts(A)�states(A)).An execution fragment � = s0; �1; s1; �2; s2; : : : of an automaton A is a (�niteor in�nite) sequence of alternating states and actions starting with a state s0,ending in a state sn if the sequence is �nite, and such that (si; �i+1; si+1) 2steps(A) for all i (less than n if � is �nite).The function �rst gives the �rst state of an execution fragment, i.e., �rst(�) =s0. For �nite execution fragments, the function last gives the �nal state. Anexecution of A is an execution fragment that begins with a start state, i.e., an� for which �rst(�) 2 start(A).The trace (sometimes also known as the behavior) of an execution fragment�, written trace(�), is the sequence of external actions occurring in �. Likewise,the trace of a sequence ! of actions, written trace(!), is the restriction of !to ext(A). A sequence � of actions is a trace of an automaton A if there isan execution � of A with trace(�) = �. The set of traces of A is denoted bytraces(A); the set of �nite traces is denoted by �nite-traces(A).Correctness and Trace Inclusion. In this paper, we concentrate on tech-niques for showing that the traces of one automaton (the implementation) areincluded among the traces of another (the speci�cation). By itself, trace inclu-sion is not su�cient to express a notion of correct implementation, because itdoes not rule out trivial implementations that do nothing.The de�nition of I/O automata [8] rules out automata with trivial trace setsby partitioning the external actions into input actions and output actions andby requiring that some step with every input action be enabled in every state.The de�nition also imposes additional fairness requirements on executions. AnI/O automaton A is said to be an implementation of another I/O automatonB if the set of fair traces of A is a subset of the set of fair traces of B, wherefair traces are traces of fair executions, i.e., of executions that satisfy the extrafairness requirements.This correctness for I/O automata is usually proved in two steps. First, asimulation proof technique is used to prove trace inclusion. Second, other prooftechniques, e.g., based on a temporal logic, use the simulation result and fairnessrequirements to prove fair trace inclusion. Examples like that in [6] show that thesimulation step can be complex. Hence the techniques described in this paperfor proving trace inclusion can provide signi�cant help in this �rst step of acorrectness proof.Techniques for Proving Trace Inclusion. Several simulation proof tech-niques can be used to show trace inclusion. We de�ne two: forward and backwardsimulations. Other simulation proof techniques are de�ned in [9].



De�nition2 (Forward Simulation). Let A and B be automata with thesame external actions. A forward simulation from A to B is a relation f overstates(A)� states(B) such that:1. If s 2 start(A), then there is a u 2 start(B) such that (s; u) 2 f .2. If (s0; �; s) 2 steps(A), u0 2 states(B), and (s0; u0) 2 f , then there is a �niteexecution fragment � of B such that �rst(�) = u0, (s; last(�)) 2 f , andtrace(�) = trace(�).De�nition3 (Backward Simulation). Let A and B be automata with thesame external actions. A backward simulation from A to B is a relation b overstates(A)� states(B) such that:1. If s 2 states(A), then there is a u 2 states(B) such that (s; u) 2 b.2. If s 2 start(A) and (s; u) 2 b, then u 2 start(B).3. If (s0; �; s) 2 steps(A), u 2 states(B), and (s; u) 2 b, then there is a �niteexecution fragment � of B such that last(�) = u, (s0; �rst(�)) 2 b, andtrace(�) = trace(�).To state a soundness result for these simulations, we need the following de�-nition: A relation r over S1 � S2 is image-�nite if for all elements s1 of S1 thereare only �nitely many elements s2 of S2 such that (s1; s2) 2 r.Theorem4 (Soundness of Simulations [9]). Let A and B be automata withthe same external actions.1. If there is a forward simulation from A to B, then traces(A) � traces(B).2. If there is a backward simulation from A to B, then �nite-traces(A) ��nite-traces(B). If there is an image-�nite backward simulation from A toB, then traces(A) � traces(B). utEven though both forward and backward simulation techniques are sound withrespect to trace inclusion, they are not complete since there exist examples, wherethe traces of one automaton are included among those of another automaton,but where no forward or backward simulation can be found. Combinations offorward and backward simulations can be shown to be complete. We refer to [9]for details. We note that the forward and backward simulation techniques aremore general than re�nement mappings of [1]. The example in the next sectionshows how forward and backward simulations each apply to di�erent situations.3 An Example: The Lossy Message QueueThis section describes two speci�c automata and presents part of a careful man-ual proof of the existence of a forward simulation from one automaton to theother, and the existence an image-�nite backward simulation in the oppositedirection. The soundness result of Theorem 4 allows us to conclude that the twoautomata have the same traces.These automata are slight simpli�cations of the top two levels of the correct-ness proofs in [6]. The �rst protocol, S, is the speci�cation of the at-most-once



message delivery problem. It describes a \lossy message queue"|a queue forwhich special crash events can cause the loss of any of the messages in thequeue. All proofs in [6] can be done directly via simulations of S; however, doingthis requires very complicated combinations of forward and backward simula-tions. The reason that backward simulations are required is that, while a crashcan \cause" loss of messages, the decision as to which messages actually get lostmight not be made until long after the time of the crash (depending on certainrace conditions in the algorithms).The method used in [6] to reduce the complexity of the simulations is to splitup the mapping into two parts. A new version D of the speci�cation is de�ned;this is similar to S, except that it delays the decision about which messages arelost because of a crash. Thus, in D, a crash event merely marks the messagesin the queue, and an internal lose event is permitted to remove any markedmessages from the queue at any time. A backward simulation is shown from Dto S, and then simpler forward simulations su�ce between the actual algorithmsand D.Both S and D have a queue as their only state variable. An external actioninsert(m) inserts a message m at the end of the queue, and an external actionremove(m) removes the message at the head of the queue, provided this mes-sage is m. Both automata also have an external crash action. In S this actioncan remove any number of messages from the queue; in D, it merely marks allmessages in the queue. An internal lose action in D is allowed, at any time, toremove any number of marked messages from the queue.Automaton S: A Simple Speci�cation for the Lossy Queue. The onlystate variable in S is queue , which ranges over �nite sequences3 of elements fromsome arbitrary set Msg . Initially, queue is empty. We refer to the queue in states by s:queue .We specify the allowable steps of S by giving preconditions and e�ects forthe three di�erent kinds of actions. A triple (s0; �; s) is in steps(S) provided s0satis�es the precondition for � and s can be obtained from s0 by the changesgiven in the corresponding e�ect clause. We omit the precondition if it is \true."insert(m)E�: queue := queue ^mcrashE�: Delete any number ofelements from queue remove(m)Pre: :empty(queue) ^hdqueue = mE�: queue := tl queueAutomaton D: A Delayed Implementation of the Lossy Queue. As inS, the only state variable is queue . However, in D, queue ranges over �nite3 We use the following basic operators on sequences: s^e and e^s denote appending theelement e to the end and beginning of the sequence s. For any nonempty sequence s,we let hds and last s denote the �rst and last element of s, and we let tl s and initsdenote the sequences of all but the �rst and all but the last element of s. Finally,empty(s) is true i� s is the empty sequence.



sequences of pairs of Msg and Mark , where Mark = Bool . Initially, queue isempty. To get the components of a pair, we use the normal record notation.Thus, if e = (m; b), then e:msg = m and e:mark = b. We say that e is marked ifb is true and unmarked otherwise.insert(m)E�: queue := queue ^(m; false)remove(m)Pre: :empty(queue) ^(hdqueue):msg = mE�: queue := tl queue crashE�: queue := mark(queue)loseE�: Delete any number of markedelements from queueIn the speci�cation of the crash action, the function mark is intended tochange the mark of all the elements of its argument to true. In the followingproofs, we use subseq and subseqMarked to denote the relations between queuesbefore and after the crash and lose actions of S and D, respectively.Simulation Relations between D and S.De�nition5 (Forward Simulation from S to D). Let s be a state of S andu be a state of D. De�ne (s; u) 2 f i� messages(u:queue) = s:queue .In this de�nition the function messages is intended to take a queue of the au-tomatonD and throw away all the marks, i.e., to return the sequence of messagecomponents of the queue.De�nition6 (Backward Simulation from D to S). Let s be a state of Dand u be a state of S. De�ne (s; u) 2 b i� u:queue consists of the message compo-nents of a subsequence of s:queue that contains at least all unmarked messages,i.e., i� there is a q such that u:queue = messages(q)^ subseqMarked(q; s:queue).Hand Proofs That Simulations Are Correct. Here we present part of ourhand proofs of the forward and backward simulations between S and D. We willnot|and cannot|be strictly formal because we have not presented formal de�-nitions for the functions we used to describe the automata and the simulations.Instead, we will rely on our intuitions concerning these functions. For example,we will use facts such as messages(q ^ (m; b)) = messages(q) ^m. Despite this,we have carefully written down all interesting steps in the proofs, and we be-lieve that the level of detail in these proofs is typical of careful hand-writtensimulation proofs.Theorem7. f is a forward simulation from S to D.Proof. We check the two conditions from De�nition 2.1. Initially both queues are empty, and empty queues correspond.2. Let (s0; �; s) be any step of S. Let u0 be an arbitrary state of D suchthat (s0; u0) 2 f . We must show that there is a �nite execution fragment � ofD starting in u0 such that (s; last(�)) 2 f and trace(�) = trace(�). We divide



the proof into cases, one for each action. Here we show the proof for the crashaction only. The proofs for the insert and remove actions are similar in style andlength.De�ne � = (u0; crash; u00; lose; u), where u00 is de�ned to be the state withu00:queue = mark(u0:queue), and u is de�ned to be the state with u:queue =addMarks(s:queue), where addMarks adds a mark of true to each message ina sequence of unmarked messages. Obviously, trace(�) = trace(�) = crash. Wemust show that � is indeed an execution fragment of D and that (s; u) 2 f .It is easy to see that (u0; crash; u00) is a step of D. We show that (u00; lose; u)is also a step of D. By the de�nition of crash in S, subseq(s:queue ; s0:queue).Because (s0; u0) is in f , subseq(s:queue ;messages(u0:queue)). Because changingmarks does not a�ectmessages , subseq(s:queue ;messages(mark(u0:queue))); andsubseqMarked (addMarks(s:queue);mark(u0:queue)) holds because everything inmark(u0:queue) is marked. Hence, by the de�nitions of u and u00, we have thatsubseqMarked (u:queue; u00:queue) so that (u00; lose; u) is a step of D and � is anexecution fragment of D.Also, messages(u:queue) = messages(addMarks (s:queue)) = s:queue , so wehave (s; u) 2 f . utTheorem8. b is an image-�nite backward simulation from D to S.Proof. We �rst observe that b is image-�nite. For any state s of D there are onlya �nite number of queues q such that subseqMarked (q; s:queue). Hence there areonly �nitely many states u of S such that u:queue = messages(q). This su�ces.To show that b is a backward simulation, we check the three conditions fromDe�nition 3. We do not include that proof here, but note that it is similar instyle to, and about twice as long as, the forward simulation proof. ut4 Formalizing Automata in the Larch Shared LanguageIn order to formalize our simulation proofs, we must �rst formalize the de�nitionsand abstractions used in the informal proofs. Here we use the Larch Shared Lan-guage (LSL), which provides suitable notational and parametrization facilities,and which is supported by a tool that produces input for LP.The basic unit of speci�cation in LSL is a trait. We begin by de�ning ageneric trait Automaton that introduces notations and de�nitions common to allautomata, e.g., an encoding of an automaton's start states as a unary predicateand a de�nition of what it means to be an execution fragment. Later we useLSL's facilities for combining traits to provide two specializations AutomatonDand AutomatonS of this trait.A trait introduces two kinds of symbols, sorts and operators, and de�nes theirproperties. Sort symbols denote disjoint nonempty sets of values. An operatorsymbol denotes a total mapping from tuples of values (of the same or di�erentsorts) to a value.The trait ExternalActions in Figure 1 de�nes a sort consisting of the ex-ternal actions for the lossy queue. This trait is similar to speci�cations in many\algebraic" speci�cation languages. The part following the keyword introduces



ExternalActions: trait CommonActions (A): traitintroduces includes ExternalActionsinsert : Msg ! ExternalActions introducesremove : Msg ! ExternalActions insert : Msg ! A$Actionscrash : ! ExternalActions remove : Msg ! A$Actionsasserts crash : ! A$ActionsExternalActions generated by external : A$Actions !insert, remove, crash ExternalActionsisExternal : A$Actions ! Boolasserts 8 m: Msgexternal(insert(m)) == insert(m);external(remove(m)) == remove(m);external(crash) == crash;isExternal(insert(m));isExternal(remove(m));isExternal(crash)Fig. 1. LSL traits de�ning external actions for lossy queuedeclares a set of operators and provides each with its signature (the sorts ofits domain and range). Sorts are declared implicitly by their appearance in sig-natures, and their names need have no relation to the name of the trait. Thepart of the trait following the keyword asserts constrains the operators, in thiscase by an assertion that all values of sort ExternalActions can be obtained asvalues of one of the three listed functions. In general, a generated by assertion(such as Nat generated by 0, succ) corresponds to a principle of induction.Two technical problems arise when we try to extend the ExternalActionstrait to a general LSL de�nition for an automaton. Because LSL requires sorts torepresent disjoint nonempty sets, we cannot represent (possibly empty) sets ofinternal actions as sorts, and we cannot have the sorts D$Actions and S$Actionsfor two automataD and S overlap in a common set of external actions. Instead,we encode the sets of all actions of D and S as sorts D$Actions and S$Actions,we encode a copy of their external actions as another sort ExternalActions,and we de�ne predicates to recognize their external actions and to map themonto this third sort.The trait CommonActions in Figure 1 shows how we do this for the lossyqueue by de�ning a single trait. This trait extends the trait ExternalActions(which it includes) by introducing additional sorts and operators, and also byconstraining the values of these operators. The new constraints are expressedby equations4 and by Boolean-valued predicates. The parameter A in the traitde�nition can be specialized whenever the trait is used, for example, by includingCommonActions(S) to de�ne the common actions for the automaton S and byincluding CommonActions(D) to de�ne the common actions for the automatonD. Note that each of the operators insert, remove, and crash has two over-4 An equation consists of two terms of the same sort, separated by = or ==. Theoperators = and == are semantically equivalent, but have a di�erent precedence: ==is the main connective in an equation.



loadings in the trait CommonActions, one with range sort ExternalActions andone with range sort A$Actions. The ability to use overloaded operators in LSL,together with LSL's ability to disambiguate them in most contexts, contributessubstantially to the readability of speci�cations.The trait Automaton in Figure 2 provides a generic LSL de�nition for anautomaton A. The states of A are encoded as a sort A$States. When we encodea speci�c automaton in LSL, we will de�ne an appropriate structure for thestate space A$States, usually as a tuple of �nitely many state components.The transition relation of A is encoded, quite naturally, as a ternary predicateisStep. Again, the actual de�nition of this predicate is given when a speci�cautomaton is encoded.Automaton (A): traitincludes CommonActions(A)introducesstart : A$States ! BoolisStep : A$States, A$Actions, A$States ! Boolnull : A$States ! A$StepSeq__<<__,__>> : A$StepSeq, A$Actions, A$States ! A$StepSeqexecFrag : A$StepSeq ! Boolfirst, last : A$StepSeq ! A$Statesempty : ! Trace__ ^ __ : Trace, ExternalActions ! Tracetrace : A$Actions ! Tracetrace : A$StepSeq ! Traceasserts 8 s, s': A$States, a, a': A$Actions, ss: A$StepSeqexecFrag(null(s));execFrag(null(s')<<a,s>>) == isStep(s', a, s);execFrag((ss<<a',s'>>)<<a,s>>) ==execFrag(ss<<a',s'>>) ^ isStep(s', a, s);first(null(s)) == s;last(null(s)) == s;first(ss<<a,s>>) == first(ss);last(ss<<a,s>>) == s;trace(a) == if isExternal(a) then empty ^ external(a) else empty;trace(null(s)) == empty;trace(ss<<a,s>>) ==if isExternal(a) then trace(ss) ^ external(a) else trace(ss)Fig. 2. LSL trait de�ning the notion of an automatonThe execution fragments of A are de�ned by its transition relation. TheAutomaton trait introduces a sort A$StepSeq (for Step Sequences of A) thatcontains �nite sequences of alternating states and actions ofA. The null functionproduces a step sequence consisting of a single state and no actions; the ternaryoperator << , >> extends a step sequence by appending an action and a state.Double underscores ( ) in an operator declaration indicate that the operator willbe used inmix�x terms. In�x, pre�x, post�x, and mix�x operators (such as + ,



- , !, { }, and [ ]) are integral parts of many familiar notations, and theiravailability in LSL enables us to write readable speci�cations.The Automaton trait also de�nes a unary predicate execFrag that identi�eswhich elements of the sort A$StepSeq are legal execution fragments of A, aswell as functions first and last that extract the �rst and the last states fromexecution fragments.LSL De�nitions for the Lossy Queue Automata. We now encode the twolossy queue automata in LSL by writing two specializations of the Automatontrait. The trait AutomatonS in Figure 3 de�nes the simple automaton S for thelossy queue. This automaton has no internal actions, and its state consists of aqueue of messages.AutomatonS: traitincludes Sequence(Msg), Automaton(S)S$States tuple of queue: Msg$SeqassertsS$Actions generated by insert, remove, crash8 s, s': S$States, m: Msgstart(s) == isEmpty(s.queue);isStep(s', insert(m), s) == s.queue = s'.queue ^ m;isStep(s', remove(m), s) ==: isEmpty(s'.queue) ^ hd(s'.queue) = m ^s.queue = tl(s'.queue);isStep(s', crash, s) == subseq(s.queue, s'.queue)Fig. 3. LSL trait de�ning automaton SThe trait de�nes the properties of queues of messages by including a librarytrait Sequence (not shown here), which de�nes the properties of operators (suchas ^, isEmpty, hd, tl, and subseq) on �nite sequences (of sort E$Seq) of elementsof some sort E. By instantiating E, we can talk about messages of sort Msg andsequences of messages (of sort Msg$Seq) in the speci�cation of AutomatonS.Elements of sort S$State are one-tuples whose only component is a queue ofmessages.The trait also de�nes the start and isStep predicates. In the de�nitionof the insert action, which we characterized earlier in less formal and moreoperational terms as queue := queue ^ m, we now make explicit the fact thatthe �rst occurrence of queue refers to the prestate s' and the second to thepoststate s.Figure 4 de�nes the delayed-action automaton D for the lossy queue. Thisautomaton has a single internal action lose, and its state consists of a queueof marked messages. The trait AutomatonD de�nes the properties of queues ofmarked messages by including a trait MarkedMessages (also not shown here).This trait de�nes the sort Mmsg of marked messages, introduces the notation [m,b] to construct an element of this sort from a value m of sort Msg and a valueb of sort Bool, de�nes the sort Mmsg$Seq of sequences of marked messages (by



AutomatonD: traitincludes Automaton(D), MarkedMessagesD$States tuple of queue: Mmsg$Seqintroduces lose: ! D$ActionsassertsD$Actions generated by insert, remove, crash, lose8 s, s': D$States, m: Msg: isExternal(lose);start(s) == isEmpty(s.queue);isStep(s', insert(m), s) == s.queue = s'.queue ^ [m, false];isStep(s', remove(m), s) ==: isEmpty(s'.queue) ^ hd(s'.queue).msg = m ^s.queue = tl(s'.queue);isStep(s', crash, s) == s.queue = mark(s'.queue);isStep(s', lose, s) == subseqMarked(s.queue, s'.queue)Fig. 4. LSL trait de�ning automaton Dreusing the Sequence trait), and provides precise de�nitions for the operatorsmark and subseqMarked used in our informal proofs.5 Automating Simulation Proofs Using LPLP is a theorem prover for �rst-order logic. It di�ers from many other proversin that its design is based on the assumption that initial attempts to state con-jectures correctly, and then prove them, usually fail. As a result, LP is designedto carry out routine (and possibly lengthy) steps in a proof automatically andto provide useful information about why proofs fail, if and when they do. LPis not designed to �nd di�cult proofs automatically. Instead, it is designed toassist users who employ standard techniques such as proofs by cases, induction,and contradiction.In this section we use LP to prove both Theorem 7, which shows that thereis a forward simulation from S to D, and Theorem 8, which shows that thereis a backward simulation from D to S. From Theorem 4 and the fact that thebackward simulation is image-�nite, it follows thatD and S have the same traces.We do not use LP to prove Theorem 4 or the fact that the backward simulationis image-�nite. Proofs of these theorems do not involve the kind of detail thatdemands machine assistance or that bene�ts from it. In particular, Theorem 4only needs to be proved once (not once for each simulation).Lemmas for Simulation Proofs. In order to prove the simulation theorems,we need two lemmas that relate queues of marked messages to queues of un-marked messages. These lemmas are supplied by the trait Mark in Figure 5.This trait de�nes the operators messages and addMarks by using the librarytrait SequenceMap (not shown here) to extend the operations .msg and addMarkon messages to operations on sequences of messages. It lists the two lemmasfollowing the keyword implies.We illustrate LP by showing how it is used to prove the �rst lemma in thetrait Mark. If the user types



Mark: traitincludes MarkedMessages, Sequence(Msg)includes SequenceMap(Mmsg, Msg, .msg, messages)includes SequenceMap(Msg, Mmsg, addMark, addMarks)implies 8 m: Msg, ms: Msg$Seq, mms, mms': Mmsg$Seqmessages(addMarks(ms)) == ms;subseqMarked(mms, mark(mms')) == subseq(messages(mms), messages(mms'))Fig. 5. LSL trait relating marked messages to unmarked messagesprove messages(addMarks(ms)) == ms by inductionLP generates and automatically discharges the appropriate subgoals for a proofby induction based on the assertion that all sequences are generated by emptyand ^:Msg$Seq,Msg!Msg$Seq. First, it uses the axioms addMarks(empty) ==empty and messages(empty) == empty, which come from the trait SequenceMap,to establish the basis case messages(addMarks(empty)) == empty. Then it in-troduces a new constant msc, assumes messages(addMarks(msc)) == msc asan induction hypothesis, and uses the facts in the subsidiary traits of Mark toprove messages(addMarks(msc^m)) == msc^m. This completes the proof by in-duction.Forward Simulation from S to D. We use the LSL Checker to create an in-put �le for LP from the �les containing the LSL traits AutomatonD, AutomatonS,and Mark. This input �le contains LP commands that declare appropriate sorts,operators, and variables, and that assert facts known to be in the theories of thetraits (i.e., facts that are either asserted or implied in these traits).The following LP commands declare variables for use in the simulation proofand de�ne the forward simulation relation f. (The line containing .. terminatesa multiple-line command.)declare variabless, s' : S$Statesu, u' : D$Statespi : S$Actionsalpha : D$StepSeq..declare operator f: S$States, D$States ! Boolassert f(s, u) == messages(u.queue) = s.queueWe prove �rst that for every start state of S there is a corresponding startstate of D by typing the following LP commands:prove start(s) ) 9 u (start(u) ^ f(s, u))resume by specializing u to [empty]qedThe �rst line introduces the conjecture we wish to prove, the second guides LP ininstantiating the existential quanti�er in the conjecture, and the third requeststhat LP con�rm that the proof is indeed complete. The guidance in the second



line is the formal counterpart of the statement \initially both queues are empty"in the hand proof.We prove now that each action of S can be simulated by a sequence ofactions of D. Three forms of user guidance are required for the proof. The �rstconcerns general proof strategy. The set proof-methods command directs LPto attempt to prove conjectures by rewriting them to normal form after assumingthe hypotheses of any conjecture that is an implication (and after replacingvariables such as s and u' in the hypotheses by constants sc and u'c). Theprove command itself directs LP to proceed by dividing the proof into casesbased on the action pi of automaton S being simulated (expressed here as a proof\by induction" because the sort S$Actions is generated by insert, remove,and crash). The second form of guidance is to supply the simulating executionfragment alpha of D in each case in the proof; this guidance is the same as thatcontained in three sentences starting with \De�ne � = " in the hand proof. Thethird form is to suggest that LP perform additional forward inferences (by thecritical-pairs operation, which derives equational consequences from rewriterules) involving the hypotheses of the conjecture (named by *Hyp) and all otherknown facts (named by *).set proof-methods ), normalizationprove(isStep(s', pi, s) ^ f(s', u')) )9 alpha (execFrag(alpha) ^ first(alpha) = u' ^f(s, last(alpha)) ^ trace(pi) = trace(alpha))by induction on pi..% Simulate "insert" actionresume by specializing alpha tonull(u'c) << insert(mc), [u'c.queue ^ [mc, false]] >>..% Simulate "remove" actionresume by specializing alpha tonull(u'c) << remove(mc), [tl(u'c.queue)] >>..critical-pairs *Hyp with *% Simulate "crash" actionresume by specializing alpha to(null(u'c) << crash, [mark(u'c.queue)] >>)<< lose, [addMarks(sc.queue)] >>..qedWe emphasize that what appears above is the entire interaction between theuser and the prover. In particular, we note that the LP proof is considerablyshorter than the hand proof.



Backward Simulation from D to S. The soundness proof for the backwardsimulation is more complicated than that for the forward simulation becausethe simulation relation b is de�ned using an existential quanti�er. However, thegeneral style of user interaction with the prover is the same. Once again, theLP proof follows the hand proof, but is considerably shorter. Because of lack ofspace, we omit the proof from this abstract.6 ConclusionsIn this paper, we described, largely by way of an example, a semi-automatedapproach to constructing formal proofs of the equivalence of two protocols. Theproofs shown involve a forward simulation in one direction and a backward sim-ulation in the other direction. We used LSL to represent the protocols and thesimulations, and LP to show that the simulations work.In some places, the LP proofs involved more work than the hand proofs;in other places, it involved less. More work was required to de�ne the under-lying data types axiomatically rather than informally in set theory. Axiomati-zations for standard data types, such a �nite sequences, can be found in datatype libraries and need not be redone for each application. But axiomatizingcustomized data types in the stylized way required by the prover can take asigni�cant amount of extra time. We believe that the burden of this extra workwill decrease as the size of data type libraries increases. Additional work was alsorequired in producing formal de�nitions for basic concepts related to automata.However, this is a one-time cost, and the LSL de�nitions in this paper can bereused in other simulation proofs.Once the basic data types had been de�ned, the automated proof using LPrequired considerably less work on the part of the user than did the hand proof.LP was able to �ll in many of the details that had previously been done by hand.The little guidance LP required took the following forms:(1) a way of instantiating each existential quanti�er, and(2) a small amount of guidance during the proof procedure, to suggest whichfacts might be relevant to apply.The �rst type of guidance contains key insights about the proof, and we thinkthat it is both reasonable and desirable for the user to supply these. The secondtype of guidance generally takes a very stylized form (e.g., \use the hypotheses")that is easy to learn.Although the example presented here is fairly small, it is typical of the kindsof proofs that are usually done in the distributed algorithms and veri�cationcommunity. Our proofs involve many of the complexities of \practical" proofs,including multivalued relations, both forward and backward simulations, andextensive nondeterminism. Because of these complexities, we believe that ourmethods will scale to larger examples. Even though larger examples typicallyinvolve a larger number of state components and actions, so that a larger numberof cases must be considered, each case appears to be no more complicated thanthe cases of the proofs in this paper, and the number of cases appears to remainmanageable.



Larger examples also tend to utilize invariants, i.e., state predicates that aretrue for all reachable states, to restrict the states that need to be considered ina simulation proof. Proofs of such invariants involve, like proofs of simulations,checking of cases based on the actions of the automaton. Such proofs can easily beincorporated into our approach and add no further complexity. We are currentlyworking on incorporating also proofs of timing-based systems into our approach.This involves reasoning about reals but seems, at this point, to be feasible withminor extensions to the work presented in this paper.Other works in the area of automating simulation proofs exist. In [7] theequivalent of forward simulations for state based automata are considered, how-ever, using a higher-order logic approach (HOL). In [10] forward simulations areconsidered for I/O automata using the Isabelle theorem prover.References1. M. Abadi and L. Lamport. The existence of re�nement mappings. TheoreticalComputer Science, 2(82):253{284, 1992.2. R. S. Boyer and J S. Moore. A Computational Logic Handbook. Academic Press,1988.3. S. J. Garland and J. V. Guttag. A guide to LP, the Larch Prover. TechnicalReport 82, DEC Systems Research Center, December 1991.4. M. J. C. Gordon. HOL: A proof generating system for higher-order logic. InG. Birtwistle and P. A. Subrahmanyam, editors, VLSI Speci�cation, Veri�cationand Synthesis. Kluwer, 1988.5. J. V. Guttag and J. J. Horning. Larch: Languages and Tools for Formal Speci�ca-tion. Springer-Verlag, 1993.6. B. Lampson, N. Lynch, and J. F. S�gaard-Andersen. Reliable at-most-once mes-sage delivery protocols. Tech. report under preparation, Laboratory for ComputerScience, Massachusetts Institute Technology, 1993.7. P. Loewenstein and D. L. Dill. Veri�cation of a multiprocessor cache protocol usingsimulation relations and higher-order logic. In E. M. Clarke and R. P. Kurshan,editors, Computer-Aided Veri�cation '90, number 531 in LNCS, pages 302{311.Springer-Verlag, 1990.8. N. Lynch and M. Tuttle. An introduction to Input/Output automata. CWI-Quarterly, 2(3):219{246, September 1989.9. N. Lynch and F. Vaandrager. Forward and backward simulations for timing-basedsystems. In J. W. de Bakker, C. Huizing, and G. Rozenberg, editors, Proceedingsof REX Workshop \Real-Time: Theory in Practice", number 600 in LNCS, pages397{446. Springer-Verlag, 1992.10. T. Nipkow. Formal veri�cation of data type re�nement. In J. W. de Bakker, W.-P.de Roever, and G. Rozenberg, editors, Stepwise Re�nement of Distributed Systems,number 430 in LNCS, pages 561{589. Springer-Verlag, 1990.


