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1 Introduction

1.1 Code Generation Overview

When the IOA[2] code generator[6] converts an IOA program into runnable Java code, it first parses
the program, which has already been translated from IOA into the intermediate language (IL). The
result of this parse is an abstract syntax tree with nodes for each element of the IOA program (e.g.
transitions, state variables, and operators). The source syntax tree consists of objects from the
ioa.codegen.source.java package.

The next step is to translate the source syntax tree, node by node, into the target syntax tree.
The target tree consists of objects from the ioa.codegen.target.java package and has nodes
that correspond to Java language elements (e.g. classes, variables, and methods). In the final step,
the code generator walks the target syntax tree asking each node to emit itself as a string. The
result of emitting the whole target tree is a Java program that can be compiled and run, with the
help of classes in the ioa.runtime.adt and ioa.runtime.io packages. These runtime packages
are self-contained; no other part of the code generator is needed to run the generated code.

The relation between the different parts of the code generator is summarized by the package
diagram in Figure 1.

ioa

codegen registry runtime

source target adt iojava

javajava

impl

java

IOA
Nodes

Java
Nodes

Registration
Classes

Registry
Classes

Implementation
Classes

Figure 1: Code Generation Package Structure

The brunt of the code generator’s work is in translating the nodes of the source tree into nodes
of the target tree. In most cases, this translation proceeds in the same way for all IOA programs:
an automaton always translates to a class, a transition always translates to a method, and a state
variable always translates to a member variable. These translations can be hard-coded into the
nodes of the source syntax tree.

1.2 Data Types Overview

IOA data types are divided into two categories: sorts and sort constructors. Sorts are simple
data types such as integers (Int), real numbers (Real), and booleans (Bool). Sort constructors are
compound data types that are parameterized by other sorts or sort constructors. Examples include
sequences of integers (Seq[Int]) and mappings from strings to sequences of integers (Map[String,
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Seq[Int]]). Most of the discussion in this paper applies to both sorts and sort constructors; therefore,
for brevity, I will use “sort” to mean “sort or sort constructor” and clearly indicate sections that
apply only to one category of data types.

Data types cannot be translated in the manner of Section 1.1 because they are extensible. At
any time, the user can add new data types by specifying them in the Larch Shared Language (LSL)
[5] and implementing them in Java. Doing so should not require modifying the code generator
itself.

Each IOA sort is implemented by a Java class, and each operator is implemented by a method
on that class. At compile time, one of the code generator’s jobs is to map IOA sorts and operators
to their Java implementations, so that it can create the proper nodes in the target syntax tree.
Much of the work in adding support for new data types involves telling the code generator about
this correspondence.

The classes involved in generating code for abstract data types (ADTs) may be divided into
three categories:

• Implementation Classes, which implement sorts and their operators. These are written by
the user, one per data type, and live in ioa.runtime.ADT. Of the three kinds of classes, this
is the only one that is needed at runtime (i.e. when running the generated code).

• Registry Classes, which maintain a mapping between IOA sorts (and operators) and the Java
implementation classes (and methods) that implement them. These are built into the code
generator.

• Registration Classes, which interface between the implementation classes and the registry
classes so that each group is isolated from the other. These are written by the user, one
per implementation class. They implement the Registrable interface and by default live in
ioa.registry.java.

The relation between these categories and the package structure is shown in Figure 1. The
dependencies between them are shown in Figure 2; in particular, note that registration classes
decouple the implementation classes from the registry.

Registry ClassesImplementation Classes Registration Classes

User-Defined Part of the Code Generator

Figure 2: The three types of ADT classes and their dependencies.

1.3 Paper Overview

The remainder of this paper describes how the code generator’s ADT classes are designed and how
they may be extended to support additional sorts. Section 2 tells how IOA sorts are implemented in
Java, Section 3 explains how the code generator uses the registry to map sorts and operators to their
implementations, and Section 4 describes how to install new implementation classes into the registry.
Section 5 explains the testing architecture for verifying implementation classes, registration classes,
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and the correspondence between them. Section 6 gives a recipe for writing new ADTs. Section 7
explains how the work described here has been reused in the IOA simulator. Appendixes A and
B explain the data types that have already been implemented, and Appendix C contains complete
examples of the files needed to add support for a new data type and examples of the generated
Java code.

2 Implementation Classes

The code generator supports the standard sorts defined in the IOA manual[4]: Array, Bool, Char,
Int, Map, Mset, Nat, Real, Seq, Set, and String; as well as the shorthand sorts Enum, Tuple, and
Union. Each sort is implemented by a Java class called an implementation class that belongs to
the ioa.runtime.adt package. By convention, the name of the implementation class is the name
of the sort (e.g., “Seq”) followed by “Sort”. Thus, booleans are implemented by BoolSort and
multisets are implemented by MsetSort. For brevity, in this section I will sometimes refer to the
implementation class as “the ADT.”

Each IOA operator is associated with a single sort that introduces it and is implemented by a
static method in the implementation class of the introducing sort. For instance, the + : Int, Int
→Int addition operator on integers is introduced by Int and implemented by IntSort.add(). When
the code generator generates code for a program, it translates each operator application into a static
method invocation. Thus, the static methods form the interface between the implementation class
and the rest of the generated code.

2.1 ADTs Extend ioa.runtime.adt.ADT

Implementation classes extend the ioa.runtime.adt.ADT abstract class. They must override the
non-static equals() method inherited from java.lang.Object, so that it checks for value equality
instead of reference equality.

The ADT abstract class provides implementations for two operators that are common to all IOA
data types: equality ( = ) and inequality ( ˜= )1 These operators are implemented by static
methods in ADT. equals() and notEquals() take two ADTs (classes that extend ADT) as parameters
and return BoolSorts that indicate whether the ADTs are equal or unequal. The implementations
for these operators are automatically installed into the registry; there is no need to mention them
in the registration class (see Section 4).

2.2 ADTs are Immutable

ADTs are immutable2. Each ADT overrides equals() so that it returns true for objects that
represent the same value, even though they may not be the same object. Because they override
equals(), ADTs must also overrided hashCode() so that it satisfies the hashCode() contract[8]:

Whenever it is invoked on the same object more than once during an execution of
a Java application, the hashCode() method must consistently return the same integer.
This integer need not remain consistent from one execution of an application to another
execution of the same application.

1The conditional operator now shortcuts, so it is no longer implemented in ADT.
2Thus, all of the container ADTs are slow because insertion and deletion require an amount of copying that is

linear in the number of contained elements. Future work could optimize away the unnecessary copying.
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If two objects are equal according to the equals() method, then calling the hashCode()
method on each of the two objects must produce the same integer result.

Since immutable ADTs properly override hashCode(), container ADTs may be implemented
using hash tables. For instance, MapSort uses a hash table to maintain a mapping, and MsetSort
uses one to map elements to their multiplicities.

In addition, all ADTs should override toString() to “unparse” themselves; this is important
for readable output from the Simulator [9, 10, 11] and also when debugging the code generator.

2.3 Static Methods Implement Operators

The implementation class contains a public static method, also called a code generation method,
for each of the sort’s operators. Making the methods static simplifies code generation by making
the syntax of the generated code more regular. However, because static method calls are verbose
and unnatural for writing Java data types, all but the simplest implementation classes define two
sets of methods: instance methods implement the operators on the sort, and public static methods
are called by the generated code.

The public static methods are just wrappers for the instance methods, so it is simple to imple-
ment them. Maintaining these two sets of methods is a little extra work compared to implementing
everything using the public static methods; however, the instance methods are useful to have when
hand-coding programs elsewhere in the toolkit.

The parameters and return values (if any) of the static methods are instances of ADT. If the
exact type of a parameter is known, then it is specified in the method signature; otherwise, it is
labelled ADT3 to indicate that it is known to be an implementation class. The order of the method’s
parameters is the same as the order of the operands in the domain of the IOA operator. This means
that in most cases the first parameter happens to be an instance of the ADT that defines the method.
For example, the prototype of the method for the indexing operator on mappings [ ]: Map[D, R],
D →R is public static ADT get(MapSort map, ADT key). Its implementation simply calls the
MapSort instance method: public ADT get(ADT key).

2.4 Return Value Casting

Java is a statically typed language, and a Java program will only compile if the compiler can verify
that methods are called with parameters of the correct types. Container data types are usually
written to contain Objects, so after taking an Object out of a container, one must upcast it (cast
it to a more specific type) before using it. This is a general problem with Java containers such as
Vector and Hashtable, and it affects implementation classes in the same way.

To deal with this, whenever the code generator emits a method call, it also emits an upcast for
the return value. For instance, the generated code for an IOA term such as head(aSeqOfInt) might
be ((IntSort)SeqSort.head(aSeqOfInt v0)). The code generator handles this automatically
(see Section 3.7), so the implementation class writer need not worry about it. He can assume both
that parameters to his classes’ methods will be upcast so that they satisfy the method signatures
and that non-specific return types such as ADT will not pose problems for code using his methods.

3Or ComparableADT; see Section 2.7.
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2.5 Arbitrary Initialization and Parameterizations

The IOA language allows state variables to be initialized explicitly or arbitrarily. Explicitly initial-
ized variables are assigned values by the programmer. For instance, an automaton’s states section
might include the line a: Array[Int, Bool] := constant(true), which initializes a to an array where
the value at each integer index is the boolean constant true. Alternatively, the programmer may
write a: Array[Int, Bool]. This indicates that the variable is arbitrarily initialized, and IOA allows
the elements of a to take on any values so long as they are of the correct sort. In this case, the
code generator must initialize a before firing any of the automaton’s transitions.

When the code generator needs to create an initial value for a variable, it first finds the imple-
mentation class for the variable’s sort and calls its method

public static ADT construct(Parameterization p)

which is charged with creating and returning “some” instance of the implementation class.
The Parameterization parameter provides the implementation class with information about the
subsorts of the sort that it is implementing.

In the base case, construct is being called on the implementation class of a simple sort. In
this case, the Parameterization carries no useful information and is ignored. construct returns
a suitable default value.

In the recursive case, construct is being called on the implementation class of a compound
sort. Typically, constructing the compound sort will require recursively constructing instances of
the subsorts. For instance, because each index of an array must have a value, an array must
construct at least one instance of its element type subsort. It can then use this to initialize itself.
The Parameterization contains all the information about the subsorts, so the array can call its
ADT constructSubsort(int) method to create an instance of one of the subsorts.

In the case of arrays, construct() looks like:

public static ADT construct(Parameterization p)
{

ADT elementValue = p.constructSubsort(p.nSubsorts() - 1);
return constant(elementValue);

}

It simply creates an instance of the element subsort4 and creates an array where all the slots
have the same value.

Since the generated code contains Parameterization objects, Parameterization must be part
of the code generator’s self-contained runtime package. (See Figure 1.) The registry classes are not
part of the runtime, so Parameterization may not use them when it recursively constructs sub-
sorts. Therefore, code generator looks up all the needed implementation classes at compile time and
stores the results in the Parameterization. Each Parameterization stores the implementation
class and Parameterization for each of its subsorts.

When the code generator translates an uninitialized state variable, it creates a Variable ini-
tialized with an InitialValue in the target syntax tree. An InitialValue is simply a Term that
stores a Parameterization representing its type.

4The nSubsorts() - 1 is necessary because arrays can have two or three subsorts, depending on whether they
are one- or two-dimensional; the element subsort is always the last one.



10 2 IMPLEMENTATION CLASSES

Emitting an InitialValue creates a call to the construct(Parameterization) method of the
implementation class for the value’s type, e.g. ArraySort.construct() for the above example. The
parameter of the method is generated by emitting the InitialValue’s stored Parameterization
object. The return value of construct() is cast (from ADT) to the appropriate type.

The result of emitting a Parameterization is a Java fragment that reconstitutes the Parameterization.
Again using the above example, the generated code for a: Array[Int, Bool] is:

ArraySort a_v0 = (ArraySort)ArraySort.construct(new Parameterization(
new Class[]
{ioa.runtime.adt.IntSort.class,
ioa.runtime.adt.BoolSort.class},

new Parameterization[]
{new Parameterization(),
new Parameterization()}));

The parameters to the outermost Parameterization constructor are an array of implemen-
tation classes for the subsorts and an array of Parameterizations for them. The innermost
Parameterization constructors take no arguments because Int and Bool have no subsorts.

The astute reader will have noticed that Parameterization is seemingly a runtime class that
knows how to emit itself. This is impossible because knowledge about emitting is confined to the
code generator’s internals and is not part of the runtime. There are, in fact, two Parameterization
classes: ioa.runtime.adt.Parameterization and ioa.codegen.target.java.Parameterization.
The former contains the functionality needed at runtime, and the latter (which is a subclass)
handles the emitting. Creation of Parameterizations is handled by the registry classes’ factory
(ImplFactory), which in the case of the code generator always creations emittable Parameterizations.

2.6 Inheritance

ADTs can inherit method implementations from their superclass. For instance, equals() and
notEquals() are implemented in ADT, and the other ADTs inherit these implementations. When
BoolSort.equals() is called, ADT.equals() is invoked. Inheriting observer methods in this man-
ner will also work for user-defined methods.

In contrast to observer methods, producer methods return new instances of the data type. For
instance, SeqSort.append() returns a new SeqSort based on the original and the parameter. If a
subclass of SeqSort does not override append(), then append() will continue to return SeqSorts;
it will not return instances of the subclass. This is clearly not acceptable because then calling
append() demotes the subclass to a SeqSort, and it cannot be promoted by casting because it
actually was created as a SeqSort and nothing more.

On the other hand, if the subclass is written to override append(), then it has gained little from
inheritance: just to add a method or modify an existing one, every one of the ADT’s producers
must be rewritten to return instances of the subclass. And if a producer is added to the base class,
then all the derived classes will break. In summary, inheritance does not work as well as we would
like, but the limitations lie with immutability rather than with our design of the ADT classes5.

5Josh suggests that factories may provide a solution to this problem, but even if they do it is not clear that the
extra complexities are justified by the benefits of supporting inheritence.
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2.7 Comparing ADTs

Container ADTs such as priority queues require that the elements they contain are totally ordered.
To support this, element ADTs that support comparison (such as Int, Real, and String) extend
ioa.runtime.adt.ComparableADT instead of ADT. To do this, they must provide implementations
of the following method:

public int compareTo(Object object)

The parameter is assumed to be a ComparableADT, but it is declared as an Object so that
ComparableADT can implement java.lang.Comparable. This lets the ADT implementation use
Java containers such as trees and utility functions such as sort(). The return value of compareTo()
should be zero if the two ADTs are equal, negative if this is less than object, and positive if this
is greater than object. In ADTs such as IntSort that define comparison operators, the comparison
operators are implemented in terms of compareTo().

Operators on ordered datatypes are implemented in the normal way, except that generic datatype
parameters are declared as ComparableADTs instead of ADTs. For example, the priority queue im-
plementation contains this method:

public static PQSort add(ComparableADT a, PQSort p)

Although the priority queue trait assumes that the element sort is totally ordered, the IOA
checker does not prevent the user from creating priority queues of uncomparable types. In the
case of the code generator, such errors will be caught at compile-time when the Java compiler
complains that an ADT is passed to a method that requires a ComparableADT. The same code when
run through the simulator results in a SimException that reports an illegal method argument.

2.8 Exceptions

The static code generation methods should signal errors and representation violations by throwing
RepExceptions or subclasses of RepException. These unchecked exceptions will be caught by the
runtime system. Examples of situations in which it is appropriate to throw a RepException are
when the code tries to:

• divide by zero

• find the predecessor of the natural number zero

• take the head or tail of an empty sequence

• pop an empty stack

• access a non-current value of a union

3 Registry Classes

When the code generator translates an IOA term into Java, it must match IOA sorts and operators
to Java classes and methods. To do this, it uses the registry classes, which maintain a mapping
between IOA objects and their Java implementations. The principal class that maintains this map-
ping is ioa.registry.ConstrImplRegistry, whose name stands for “Constructor Implementation
Registry.” I will refer to it simply as “the registry.”
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The registry is used in two phases. In the first phase, the registration classes install their
implementation classes into the registry. This process will be described in Section 4. In the second
phase, at compile time, the code generator uses the registry to look up the implementations of the
IOA objects that it needs to emit. This process is diagrammed in Figure 3 and will be described
below.

IOA NodesConstrImplRegistryRegistration Classes installation lookup

Figure 3: Information Flow and the Registry

To look up a sort or operator, the code generator calls getImpl() on the registry. This method
takes a single parameter, an intermediate language ioa.il.Sort or ioa.il.Operator, and returns
an instance of ioa.registry.SortImpl or ioa.registry.OpImpl, respectively. How the lookup
process works and what kinds of SortImpls and OpImpls (which are both subtypes of Impl, a
marker interface for implementations) are returned depend on whether the sorts are simple or
compound.

3.1 Looking up Simple Sorts and Operators

For simple sorts and operators, the registry maintains two tables. The sort table maps Sort keys
to SortImpls, and the operator table maps Operator keys to OpImpls. Keys are simply structured
String representations that include the name of the sort or operator and (recursively) all of its
subsorts. The syntax of keys is an implementation detail that is subject to change; they are created
using the makeOpKey() and makeSortKey() methods of ConstrImplRegistry.

The registry’s installSortImpl() and installOpImpl() methods let one add mappings to the
tables, and the getImpl(Sort) and getImpl(Operator) methods use them to look up SortImpl
and OpImpl objects for simple sorts and operators.

When looking up a simple sort, the registry returns a SortImpl that is an instance of ioa.-
codegen.target.java.Class. The Class object knows the name of the class that implements
the sort (e.g., ioa.runtime.adt.SeqSort) and the name of the variable that it represents in the
generated code (e.g., v4). The code generator calls upon it to emit these pieces of information
when the time is right.

Looking up simple operators works in the same way. The registry returns an OpImpl that is
an instance of ioa.codegen.target.java.Operator. The Operator is a node in the Java syntax
tree, and it knows which method (e.g., ioa.runtime.adt.SeqSort.head()) implements the IOA
operator that it represents. It also remembers which ioa.il.Operator object it is supposed to be
implementing. When the code generator asks the Operator to emit itself, it passes the Operator
a list of actual parameters. The Operator emits the name of the method (e.g., SeqSort.head())
followed by the list of parameter (delimited by commas and enclosed by parentheses). It casts the
return value of the method to the implementation class of the sort that the IOA operator returns.
This lets one, for instance, take a StringSort out of a SeqSort and assign it to a variable of type
StringSort, even though SeqSort.head() returns a vanilla ADT.

3.2 Looking up Compound Sorts and Operators

For compound sorts and operators, the registry maintains two more tables. The sort constructor
table maps Strings to chains of SortConstructors, and the operator constructor table maps
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Strings to chains of OpConstructors. Unlike their Impl counterparts, SortConstructor and
OpConstructor are not nodes of the Java syntax tree of the generated code. Instead, they are
intermediary objects that know how to construct Classes and Operators. The represent IOA sort
and operator constructors and extend ioa.registry.Constructor.

The keys of the sort constructor table and operator constructor tables are shallow IOA names
(omitting subsorts) for sorts and operators (e.g., Map and ` ). The values are chains of construc-
tor objects that share the same shallow name. When looking up a compound Sort or Operator,
the registry uses the corresponding table to find the appropriate chain of constructors. If the code
generator has an implementation for the Sort or Operator, then one of the Constructors in the
chain must claim to be able to implement it. The registry searches down the chain, asking each
Constructor whether it match()es (can implement the given Sort or Operator; see Section 3.5).
When it finds the right Constructor, it asks it to construct the appropriate SortImpl or OpImpl.
The registry returns the Impl, and from then on everything proceeds as in Section 3.1. Figure 4
shows the proces of generating code for an operator on a compound sort.

3.3 Curried Parameters

In most cases, there is a one-to-one mapping between IOA operators and the Java methods that
implement them. Sometimes, however, it is impractical to write a method for each operator. In this
case, it is useful to implement a family of IOA operators with the same Java method. For instance,
Char has nullary operators for each character: ’a’, ’b’, etc. There are many such operators, and
they differ only in the character value that they return. It is therefore convenient to implement
all such operators with a single method, CharSort.lit(char). The parameter to this method is a
char that differs depending on which IOA operator is being applied at a given time. For instance,
when the IOA program references ’a’, the code generator outputs CharSort.lit(’a’).

Here, the ’a’ is a curried parameter; it is not present in the IOA operator application, but it
is added to the Java method invocation. The operator is nullary, but the implementation method
is unary. The ’a’ is built into the subclass of Operator object that implements ’a’. This class is
called ExtOperator6, and it supports an arbitrary number of curried parameters, which it prepends
to the argument list during emission. Operators with curried parameters may be registered using
Installer.installExOpImpl() instead of installOpImpl().

3.4 Looking up Dynamic Sorts and Operators

In addition to simple sorts and parameterized sorts, there is a third class of sorts called shorthand
sorts, which includes tuples, unions, and enums. Shorthand sorts are dynamic in the sense that their
operators are not known until compile time, when the code generator examines the user-defined
data types that are introduced in the program text. Since new shorthand data types may be
introduced in each IOA program, the implementation classes for these sorts must have methods
that can each implement a family of operators.

For example, a tuple Tup may be defined to have two fields, a and b:

type Tupe = tuple of a : Nat, b : Nat

The runtime class for tuples keeps a mapping of field names to field values. One method
implements field lookup for all tuples, and another implements field setting for all tuples. These
operators are implemented using curried parameters, as described in Section 3.3.

6The implementation is due to Toh Ne Win.
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__|-__: Seq[E], E --> Seq[E] ioa.registry.OpConstructor

ioa.registry.Operator __|-__: Seq[Nat], Nat -->Seq[Nat]

ioa.codegen.java.source.JOperator __|-__: Seq[Nat], Nat -->Seq[Nat]

SeqSort.append(SeqSort, ADT)Implementation Method

Look Up

seq |- nIOA

(SeqSort)SeqSort.append(seq_v0, n_v1)Java

Construct

Emit

Translate

(apply op319 v0 v1)

Checker

ILParser

Intermediate Langauge

Figure 4: Translating an Operator. First, the IOA program is parsed by the checker. The checker
outputs an intermediate language version of the program. The ILParser parses this into nodes
of the source syntax tree. The code generator begins the translation. When it encounters an
operator on Seq[Nat], it looks it up in the registry and finds an OpConstructor that can handle
Seq[E]. The OpConstructor constructs an Operator for Seq[Nat]. The code generator translates
the IOA operator invocation into a Java method call, and emits the text of that call with the actual
parameters.
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In the Char example from Section 3.3, all the possible characters are known when the code
generator is compiled; for shorthand sorts, the operators are not known until the IOA program is
compiled. In the case of tuples, the code generator cannot know a priori what the field names are,
or even how many fields there are.

The implementations of non-dynamic sorts are installed when the code generator starts up.
For sorts implemented dynamically, the implementation classes are installed on demand by the
DynamicImplRegistry7. Author’s note: What’s the technical term for this? It’s something like “fault.”
In fact, the actual registry is a DynamicImplRegistry. When looking up an implementation, it
first tries delegating to its superclass, ConstrImplRegistry. If the normal registry cannot find the
implementation, the dynamic registry tries to find one itself.

When the code generator starts up, all the registration classes for dynamic sorts, dynamic regis-
tration classes, notify the DynamicImplRegistry of their existence. Then, when the DynamicImplRegistry
encounters a Sort for which the normal registry could not find an implementation, it asks each
dynamic registration classes if it can install mappings for that sort and its operators. The dynamic
registration class, given the Sort, then has all the information it requires to do so.

When the DynamicImplRegistry encounters an Operator that the normal registry could not
find, it first tries to look up the sorts in the Operator’s domain. The design assumes that one
of them must be the sort that introduced the operator. Therefore, looking up the domain sorts
will cause the mapping for the operator to be added to the registry; it can then be looked up and
returned.

A Sort or Operator is only looked for in the DynamicImplRegistry once. After that, it will have
been added to the normal registry so there will be no need to consult the DynamicImplRegistry.

3.5 Matching Compound Sorts and Operators

With compound sorts and operators, the table key is a shallow name such as Map or `
(as opposed to Map[E] or ` : Seq[E], E →Seq[E] that tells the registry which chain of con-
structors to search through. Each constructor has a template, which indicates the pattern of
sorts or operators that it can implement. From the Javadocs for ioa.registry.OpTemplate and
ioa.registry.SortTemplate, the syntax for templates is defined by the following grammar:

<sort> ::= name || (<name> <subsorts>) || <sort variable>
<name> ::= <id>
<subsorts> ::= <sort>+
<id> ::= <TERMINALS>
<sort variable> ::= <INTEGER>

<op> ::= (<name> domains range)
<domains> ::= (<sugared-sort>+)
<range> ::= <sugared-sort>
<sugared-sort> ::= <sort> | %me

Each SortConstructor has a template of the form (<name> <subsorts>). For instance, the
SortConstructor for MapSort is (Map 0 1). Since the sort variables 0 and 1 can each match
any sort, this template says that MapSort can implement any kind of Map that has two, possibly
different, subsorts. This template would match Map[Int, Real], and it would also match Map[Int,

7The implementation is due to Toh Ne Win.
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Seq[Real]]. If the template had been (Map 0 0), then the two subsorts would have to be the same;
the SortConstructor could then match Map[Int, Int] or Map[Seq[Int], Seq[Int]], but not Map[Int,
Real].

OpConstructors have templates of the form <op>, and matching operators to templates works
much the same as matching sorts to templates. The one difference is that operator templates may
include a %me token. %me is shorthand that stands for the sort template of the sort that is currently
being installed. This makes templates easier to read and write. For instance, the template for the
prepend operator on sequences may be written ( |- (%me 0) %me) instead of ( |- ((Seq
0) 0) (Seq 0)).

In general, matching is a recursive process: a sort template matches a sort if it has the same
shallow name and its <subsorts> can match the sort’s subsorts. An operator template matches an
operator if it has the same name and if the sorts in its domain and range match the pattern in the
template. The recursion must bottom out because the template is of finite length and therefore
has finitely many nestings. Mutual recursion is not possible because templates do not contain
references, only values.

Presently, the Java code generator uses only a fraction of the flexibility provided by constructors
and templates. For instance, all sequences are implemented using SeqSort, but the registry classes
could support different implementation classes for different operators.

3.6 Installer

The registry provides four methods for adding mappings to it (one for each table):

• add(String key, boolean isLiteral, SortImpl impl)

• add(String key, OpImpl impl)

• add(String name, boolean isLiteral, SortConstructor sortCon)

• add(String name, OpConstructor opCon)

Unfortunately, it is cumbersome to use these methods. One must call ConstrImplRegistry
methods to make operator and sort keys using the registry’s static makeOpKey() and makeSortKey()
methods. One must write classes that extend SortImpl, OpImpl, SortConstructor, and Op-
Constructor (which are all abstract) and create instances of them. This can certainly be done,
but it needlessly complicates the interface to the registry. Therefore, a facade[1] class called
ioa.registry.Installer mediates between the ADT writer and the registry, providing a clean
interface that does not expose to the ADT writer any of the classes that make up the code generator.

One creates an instance of Installer using the ImplFactory and passing it a reference to the
registry, the name of the sort being installed, and the name of the implementation class of that
sort. The factory will then return an Installer specialized for code generation or simulation.
Once an Installer has been created, its methods may be used to add mappings to the registry.
The commonly used methods are:

Author’s note: These method names are inconsistent because the API is in flux.

• installSortImpl(String implClassPackage, boolean isLiteral)

• installOpImpl(String name, String range, String[] domain, String methodName)

• installSortConstructor(boolean isLiteral, String template)
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• addOp(String template, String methodName)

And there are also some less commonly used methods to handle special cases:

• addAssignOp(String template, String methodName, String assignMethodName) (See Ap-
pendix A.3.)

• installExtOpImpl(String name, String range, String[] domain, String methodName,
Vector builtIns, boolean arrayMode) (See Section 3.3.)

• installShortcutOpImpl(String opName, String range, String[] domain, String method-
Name, String style) (See Section 3.8.)

• addShortcutOp(String template, String methodName, String shortcutStyle) (See Sec-
tion 3.8.)

The parameters for these methods are all built-in Java types for which the Java compiler can
recognize literals. Thus, calls to Installer’s methods are concise and the programmer using
Installer is isolated from the inner workings of the code generator.

Note: in most cases the LSL name of the operator should be passed to Installer; however,
there are some exceptions due to the way the front end and intermediate language work:

• When registering an operator with LSL form .foo, @<sel>foo should be passed.

• The conditional operator (which is built-into LSL) should be registered as @<if>.

• Multiple argument slots between the two parts of a mixfix operator should be collapsed to
one. For instance, the LSL operator [ , , ] should be registered as [ ]. Though there is
only one argument slot in the name, the registry will get the correct number of arguments
from the template.

Installer has a simple implementation: it creates the keys and Impl objects needed to call the
registry methods listed at the top of this section. A new instance of Installer is created for each
data type that will be added to the registry. The instance remembers the registry in which to install,
the sort being installed, and the implementation class for it. Installer’s methods use this informa-
tion, in addition to their parameters, to create instances of ioa.codegen.target.Class (for simple
sorts), ioa.codegen.target.Operator (for operators on simple sorts), ioa.codegen.impl.java.-
JavaSortConstructor (for sort constructors), and ioa.codegen.impl.java.JavaOpConstructor
(for operators on sort constructors). It then installs these instances into the registry. Class,
Operator, JavaSortConstructor, and JavaOpConstructor are the canonical Java implementa-
tions of the Impl and Constructor objects described in Sections 3.1 and 3.2. Aside from being
specialized for emitting Java code, they are augmented with functionality for testing (see Section
5.3).

Installer is designed to be subclassed. At present, there is one subclass for the code generator
and one for the simulator. Each Installer is customed to install particular types of implementa-
tions. The public methods of Installer are template methods [1] and in most cases should not be
overridden in subclasses. Instead, for each public method there is a corresponding “hook” method
that encapsulates the functionality that is likely to differ between Installers. These should be
overridden to return the proper types of SortImpls and OpImpls.
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3.7 Looking up Return Types

As described in Section 3.1, when an Operator emits itself as a method call on an implementation
class, it also casts the return value to the proper implementation class. Some implementation class
methods always return the same type; for instance, the cardinality of a set is always represented by
an IntSort. Others, however, return different types in different circumstances; for instance, when
indexing into an array, the type of the return value depends on how the array is parameterized.

The needed information is available in the source (IOA/IL) syntax tree: each ioa.il.Operator
stores an ioa.il.Sort object that represents its range. Therefore, the registry classes must find
this Sort, look it up in the registry to find its implementation class, and give the implementation
class to the ioa.codegen.target.java.Operator, so that it can emit the proper casts.

Ideally, perhaps, the constructor for Operator could include a parameter for the implementation
class of its return type; that way, every Operator would always know how to cast its return value.
However, this is not always possible: the registry is populated first by sort A and its operators,
then by sort B and its operators, etc. Thus, each operator on A is constructed before sort B is even
in the registry—so clearly there is no way to look up the implementation class for B while creating
an operator on A. In fact, there can even be cyclic dependencies. For instance, Int and Nat define
conversion operators that each depend on the other sort: nat() operates on Ints and returns a Nat,
and int() operates on Nats and returns an Int.

Therefore, Operator’s constructor does not take an implementation class as a parameter. In-
stead, it must find it after the registry has been fully populated. The code generator has no
mechanism at this time for notifying objects that the registry has been fully populated and emis-
sion has begun. Therefore, for simplicity, we use the first emission of the Operator as a proxy for
this notification.

For modularity reasons, Operator does not know about the objects in the source syntax tree
or about the registry. Therefore, to look up the implementation class of its return type, it uses
a helper object called a ReturnClassThunk. As its name implies, ReturnClassThunk is a thunk
that knows how to find the implementation class of the return type of an operator. Each time
an Operator is created, it is passed a ReturnClassThunk, which encapsulates access to the source
syntax tree and the registry. When the Operator needs to find the return class, it calls the thunk’s
lookupReturnClass() method, which does the actual work.

3.8 Shortcutting

The implementations of the /\ , \/ , and if then else operators shortcut. That is, if the
first clause of a conjunction is false, the second is not evaluated; if the first clause of a disjunct
is true, the second is not evaluated; and only the then or else clause of a conditional is evaluated,
depending on the value of the predicate. These behaviors are useful in code generation because
they allow the user to guard against runtime exceptions (see Section 2.8).

The above operators cannot be implemented in the previously described way because Java
always evaluates all method parameters. Instead, they are implemented using ShortcutOperator8,
which emits special forms in the target language. For instance, the if then else operator is
implemented using Java’s ternary operator:

IOA: a := if (x > y) then a else b

Java: a_v2 = (((BoolSort)IntSort.gt(x_v0, y_v1))).booleanValue() ? a_v2 : b_v3;
8The implementation is due to Toh Ne Win.
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and the /\ operator is implemented using Java’s shortcutting && operator:

IOA: c := b /\ a

Java: c_v2 = BoolSort.lit(b_v1.booleanValue() && a_v0.booleanValue());

Some glue code is needed to convert between implementation classes and Java’s primitive types:
BoolSort.lit() makes a BoolSort from a boolean, and BoolSort.booleanValue() makes a
boolean from a BoolSort.

3.9 Locating ADTs at Compile-Time

When the code generator starts up, it calls upon the ADTLoader to find registration classes that
should be installed in the registry. The ADTLoader searches directories and jar files for classes that
implement the Registrable interface. Search path and exclusions are specified in the .ioarc file
and may be overridden on the command line. This lets one, for example, choose from alternate
implementations of a data type at compile-time. Author’s note: When Atish writes his summer report
I’ll cite it here.

4 Registration Classes

Each implementation class in ioa.runtime.adt (see Section 2) has a corresponding registration
class in ioa.registry.java. By custom, the implementation class and the registration class have
the same name (although this is not depended upon). The job of the registration class is to populate
the registry with mappings for the sort and its operators. As such, the registration class depends on
the registry and is strongly coupled with its implementation class. Any changes to the specification
of an implementation class must be propagated to the corresponding registration class.

Each registration class implements the ioa.registry.Registrable interface:

public interface Registrable
{

public void install(ConstrImplRegistry reg) throws RegistryException;
}

The code generator calls the install() method to populate the registry with mappings from
the registration class. In addition, by convention, each registration class includes two constants:

public final static String sortName = "Foo"; // name of the IOA sort

public final static String className = "FooSort"; // name of the implementation class

Registration classes use these when they need to refer to other sorts. For instance, the String-
Sort registration class uses IntSort.sortName to reference the name of the sort that its len (length)
operator returns (Appendix C.1.3).

4.1 Standard Registration Classes

The body of the install() method first creates an instance of Installer (see Section 3.6) by
passing it reg (which was a parameter of install()) and the two constants defined in Section 4.
It then uses the Installer to add mappings for the sort and all its operators. When installing
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an operator, the registration class passes to the Installer method the name of the operator, its
template (see Section 3.5), the name of the implementation class method that implements it, and
the number of parameters that the method expects. See Appendixes C.1.3 and C.2.3 for example
install() methods.

Note that the registration class need not install the equality, inequality, and conditional op-
erators; these are the same for all ADTs and so they are registered automatically by the call to
installSortImpl() or installSortConstructor().

In addition to normal operators, for sorts with literals like Int and Real the registration class
installs a special literal operator. The syntax for registering it looks like this:

installer.installOpImpl("@<const>lit", "Int", "lit", 1);

This tells the code generator that it can use IntSort.lit(), which takes an ordinary Java
int, to create IntSorts from integer literals in the source program. In order for this to work, the
isLiteral should be set to true when installing the sort itself.

4.2 Dynamic Registration Classes

When information about a dynamic sort (see Section 3.4) is known, the main registry asks the
dynamic registry to actually install the dynamic sort. At this point, the dynamic registry calls upon
the dynamic registration class (which extends DynamicRegistrable) to run its installDynamic()
method.

installDynamic() uses Installer’s installExtOpImpl() method to add the dynamic sort’s
operators the registry. installExtOpImpl()’s signature is like that of installOpImpl(), but it
has two additional arguments.

First, there is a Vector of extra information, builtIns, that contains curried parameters that
will be passed to the code generation method when it is called. For example, in the lookupField()
method of TupleSort, the built-in argument is a Vector with one argument, the field name. Hence,
the .a operator on a tuple would map to TupleSort.lookupField("a", <tuple>) and .b would
map to TupleSort.lookupField("b", <tuple>).

Second, installExtOpImpl() supports an “array mode” where all the arguments to the code
generation method are passed as one array. This allows operators with a variable number of
arguments. For example, TupleSort.make() implements the mixfix [ ,..., ] operator for creating
tuples. TupleSort.make() has to take an array of arguments because different tuples have different
numbers of fields.

4.3 Non-Standard Registration Classes

A few non-standard operators do not fit the patterns that Installer knows about. The non-
standard parts must be registered “manually” (as described in the first part of Section 3.6). They
must use the ConstrImplRegistry instance passed to the registration class to add mappings di-
rectly, and they must define their own code emitters (that handle casting if applicable). An example
in which a non-standard registration classe is required is LSeq (Appendix B.1).
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5 Test Classes

5.1 Testing Implementation Classes

Each implementation class has a corresponding test class, implemented using the JUnit testing
framework[7]. See Appendix C.2.4 for an example. By convention, the test class for FooSort is
called FooSortTest. Test classes live in ioa.test.junit.runtime.adt and must extend TestCase,
which is provided by JUnit. They follow the standard JUnit pattern, containing:

• A main() that calls junit.textui.TestRunner.run(suite()). This lets one test a partic-
ular class by invoking java on its test class.

• A setUp() method that creates variables (typically instances of ADTs) that will be shared
by the test methods. In JUnit terminology, the setUp() method creates the fixture.

• A suite() method whose body is return new TestSuite(FooSortTest.class); (where
FooSort is the name of the ADT being tested). This tells JUnit to create a suite of all the
tests for the ADT.

• Test methods for hashCode(), equals(), and each implementation method. The name of a
test method must begin with test. The rest of the test method name should be the name of
the method being tested. (For instance, BoolSortTest contains a testLte() method that
tests BoolSort’s lte() method.) Test methods consist of a series of calls to assert() and
assertEquals(), which are provided by JUnit. Together, the assertions perform black box
and glass box tests.

In addition, each test class must be listed in the AllADTsTest class. This can be accomplished
by adding a new line to the suite() method that says

result.addTest(FooSortTest.suite());

Once this has been done, one can test the new ADT along with all the old ones by running java
ioa.test.junit.runtime.adt.AllADTsTest, or by running make in the Test/codegen/java di-
rectory. To test a single ADT, run java ioa.test.junit.runtime.adt.FooSortTest.

If an equality assertion fails, JUnit will print out the value it expected and the value it received.
The values may then be compared to track down the bug. To take advantage of this feature, ADTs
should override Object.toString() to “unparse” themselves.

5.2 Testing Registration Classes

It is also important to test the registration class to make sure that the signatures of the operators
that it registers match the signatures of the operators that the front end outputs. This is accom-
plished by creating an IOA program that uses all of the sort’s operators (see Appendix C.2.5) and
running it through the code generator. These test programs are stored in IOA Toolkit/Test/.
Instructions for creating and running the tests are displayed by the make help and make add-help
commands in the directory.
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5.3 Catching Bugs in the Implementation/Registration Interface

The tests in Section 5.2 do not ensure that the registration class maps operators to the correct
methods, or even to methods that exist. Manual checking must be used to determine the correctness
of the mapping, but the ioa.test.junit.codegen.impl.java.CorrespondenceTest class can
increase confidence in the registration class by checking that the methods it registers actually exist
in the implementation class.

CorrespondenceTest uses the list of Registrables found by the ADTLocator to decide which
classes to test. It works by posing as a registry to each registration class. When the registra-
tion class installs an operator, CorrespondenceTest checks that the implementation class in-
cludes a suitable function to implement it. In order to do this, it uses the getMethodName()
and getNumParameters() methods of Operator or JavaOpConstructor to get information about
the method being registered. These two method are included in the JavaMethod interface, so
CorrespondenceTest will work with any registered object that implements JavaMethod.

One problem with this design is that since Operator implements JavaMethod, so will any class
that extends it (to provide non-standard functionality, for instance); and therefore Correspondence-
Test will think that it can test the subclass. In fact, the subclass may be so non-standard that the
information provided by the JavaMethod accessors no longer makes sense. To handle this situation,
JavaMethod includes another method, isTestable(), that lets test classes determine whether the
registered object claims it can be tested as described above. Subclasses of Operator that do non-
standard things should override isTestable() to return false, thus preventing spurious errors
when CorrespondenceTest is run.

6 Recipe for Writing ADTs

To add a new ADT to the code generator, you must:

• Create an implementation class in the ioa.runtime.adt package. Make sure that it extends
ioa.runtime.adt.ADT. Include a public static method for each operator. Be sure to override
the non-static equals(), hashCode(), and toString() methods from java.lang.Object.
Also, create a static construct(Parameterization) method.

• Create a registration class in the ioa.registry.java package. Use Installer to install the
sort and its operators.

• Write a JUnit-based test class for the implementation class and add it to AllADTsTest. Be
sure to test equals() and hashCode().

• Write an IOA test for the registration class and hook it up to the Makefile-based tester.

To add a new dynamic sort, there are only a few differences:

• Some operators are likely use curried parameters and are registered using installExtOpImpl().

• The install() method should simply add a stub instance to DynamicImplRegistry:

DynamicImplRegistry.addDynReg(new TupleSort());
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Code Generator Simulator

ioa.codegen.target.java.Class ioa.simulator.impl.BasicSortImpl

ioa.codegen.impl.java.JavaSortConstructor ioa.simulator.impl.SimSortConstructor

ioa.codegen.target.java.Operator ioa.simulator.impl.BasicOpImpl

ioa.codegen.target.java.ShortcutOperator ioa.simulator.impl.ShortcutOpImpl

ioa.codegen.target.java.ExtOperator ioa.simulator.impl.ExtOpImpl

ioa.codegen.impl.java.JavaOpConstructor ioa.simulator.impl.SimOpConstructor

ioa.codegen.impl.java.JavaShortcutOpConstructor ioa.simulator.impl.SimShortcutOpConstructor

Table 1: Class Correspondence Between the Code Generator and Simulator

• The registration class should have a boolean isDynamic(Sort sort) method that returns
true if the given sort can be implemented dynamically by the registration class. DynamicImplRegistry
will query this method whenever a dynamic sort is in need of installation.

• The registration class should have an installDynamic(Sort sort) method that does the
actual installing. Install the necessary operators by calling installExtOpImpl() and/or
installOpImpl() here. DynamicImplRegistry will call this method once isDynamic() re-
turns true. Remember to call installSortImpl() to install the regular comparison and
conditional operators.

7 Sharing ADTs with the Simulator

The abstract data types and infrastructure described in this paper were originally developed for the
IOA code generator. Concurrent with the code generator work, [9, 10, 11] developed a simulator
that interprets IOA. The two projects faced similar issues in matching IOA sorts and operators
with Java implementations. In fact, the simulator had a registry and its own Java implementations
of some basic IOA data types9.

For obvious reasons, we determined that the code generator and simulator should use the
same ADT implementations at runtime. They now use the same implementation classes, the same
registration classes, and the same registry. The difference is in the mappings they install into
the registry. In each case, the registration class gets an Installer from a factory and uses it to
populate the registry. For the code generator, the factory returns a CGInstaller; for the simulator
it returns a SimInstaller.

Table 1 shows the correspondence between the classes in the code generator and those in the
simulator. Mappings to the classes on the left are installed by CGInstaller and mappings to the
ones on the right are installed by SimInstaller.

Where code generator classes emit(), simulator classes apply(). Where Operator emits code
that calls a static implementation class method, BasicOpImpl uses Java’s reflection API to lookup
that method and run it. Curried parameters are handled in the same way as in the code generator,
and shortcutting operators are similarly special-cased.

A Standard IOA ADTs

The following ADTs are built into the IOA language.
9The registry worked in a similar manner. In fact, the code generator’s (and later the shared) registry was

based on earlier Simulator work [10] by Antonio Ramirez. The main difference is that in the old design the ADT
implementations were interwoven with the code that registered them, which made adding new ADTs difficult.
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A.1 BoolSort

Bool is a predefined sort in LSL and IOA, so every other sort depends on its implementation,
BoolSort, written by Joshua A. Tauber. BoolSorts are interned: there is only one object for true
and one for false. Other ADT implementations may wish to access these values; for instance, the
set membership operator always returns an instance of BoolSort. Three public class methods10

are provided for doing this: True(); False(); and lit(), which converts a Java boolean into a
BoolSort.

A.2 IntSort

IntSort is a straightforward implementation of integers written by Joshua A. Tauber. Other ADTs
that return integers depend on IntSort. For instance, the count operator implemented by MsetSort
returns IntSorts that indicate the multiplicities of elements in the set. To support uses such as
this, IntSort provides a public class method lit(), which converts Java Integers into IntSorts.
The nat() conversion operator is implemented, but the front end currently does not know how to
parse it.

At present, IntSort is implemented using int. In the future we will have an alternate im-
plementation that uses java.math.BigInteger to handle larger integers11 (for instance, those
generated by Fibonacci). A design that I call “internal factories” will allow the user to switch
between different Int implementations at runtime.

A.3 ArraySort

ArraySort maps indices to values. The space of possible indices is very large—in theory, it
is unbounded. Therefore, ArraySort uses a sparse representation based on Hashtable. Two-
dimensional Arrays are implemented in the same class, as Hashtables mapping pairs of indices to
values. When an ArraySort is created, it can optionally have a constant value, which acts as a
default for indices that are not explicitly mapped in that Hashtable.

In IOA, each element of an array is considered a separate, immutable state variable, and the
array notation array[i] := j is merely a shorthand for modifying them (not the array itself). During
code generation, statement of that form are desugared to array = assign(array, i, j). The desugaring
mechanism is general; any operator application appearing on the left hand side of an assignment
will be desugared so that the new left hand side is the first operand and the new right hand side
is an operator application with the original operands plus the original right hand side. Operators
that can appear on the left hand side of an assignment are registered with Installer as assignment
operators. This involves providing an additional paramter assignMethodName, which is the name
of the method that implements the operator when it is used as an lvalue.

A.4 CharSort

CharSort is a simple wrapper for Java chars. It implements lexicographic comparison by comparing
Unicode values, which means that ’A’ is less than ’a’. CharSorts are not interned at present,
although this would be a simple space and time optimization.

Unlike for integers and reals, the front end does not (yet) specially handle character literals.
Instead, each character literal is a zero-ary operator whose range is a Char. These operators are all

10True() and False() are capitalized (contrary to our naming convention) to avoid conflicts with the Java keywords
true and false.

11BigInteger supports integers of up to 232 decimal digits.
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implemented by the CharSort.lit() method and registered with curried parameters, as described
in Section 3.3.

A.5 MapSort

MapSort is much like ArraySort. It differs in that it does not support constant values (because
IOA Maps do not), it is immutable, and it is implemented with a HashMap from the Java Collections
framework. (This is the new way of doing things, and it should be faster than a Hashtable because
the methods are not synchronized.) Objects in the domain and range must be immutable, and
objects in the domain must properly override equals() and hashCode().

A.6 MsetSort

MsetSort implements IOA multisets using a HashMap to map elements (Objects) to their mul-
tiplicities (Integers). Objects stored in the set must be immutable and must properly override
equals() and hashCode().

A.7 NatSort

NatSort is implemented similarly to IntSort. It throws an exception if asked to contain a negative
number. The int() conversion operator is implemented but the front end currently does not know
how to parse it. At present, NatSort is implemented using int; in the future, it may be desirable
to instead implement it with java.math.BigInteger and internal factories.

A.8 RealSort

RealSort implements real numbers using Java doubles. At present, it ignores floating point preci-
sion issues. As a result, values that should be equal may be reported as unequal (and vice-versa).
In the future we should decide whether there should be any sort of conversion between reals and
integers. At present, RealSort is implemented using double; in the future, it may be desirable to
instead implement it with java.math.BigDecimal and internal factories.

A.9 SeqSort

SeqSort is a Vector-based implementation of Seq by Joshua A. Tauber.

A.10 SetSort

SetSort implements IOA sets using a HashSet for speed. Because it was written before MsetSort,
it is not based on MsetSort. Also, it is probably faster this way.

A.11 StringSort

StringSort implements String using Java Strings.

A.12 EnumSort, TupleSort, and UnionSort

These shorthand sorts were implemented by Toh Ne Win and Laura G. Dean. Because information
about user-defined types is not known until after the program has been parsed, these sorts have
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dynamic registartion classes to create their operator implementations on-demand. See Sections 3.4
and 3.4.

B Other ADTs

User-defined ADTs are defined in external LSL files, which are passed to the -path switch of
ioaCheck.

B.1 LSeqSort

At runtime there are three threads12: an input thread run by ioa.runtime.io.Stdin appends
integers to a shared sequence, stdin; an output thread run by Stdout removes integers from a
shared sequence, stdout; and the main automaton thread removes integers from stdin and appends
(different) integers to stdout.

From an IOA perspective, these sequences are simply Seq[Int] state variables inside a composite
automaton with atomic transitions. From a Java perspective, however, the sequence objects are
shared between threads. Steps must be taken to ensure that each thread has an up-to-date reference
to the shared sequence object and that sections of code that modify these sequences run atomically.
Both of these requirements are addressed using locking. The shared sequences are represented
using LSeqSorts, which are just like SeqSorts except that they also have support for locking and
unlocking.

The Automaton class has two LSeqSort variables, stdin and stdout. These are the offi-
cial references to stdin and stdout. Threads can obtain references to these LSeqSorts by calling
Automaton.getStdin() and Automaton.getStdout(). However, because LSeqSort is immutable,
they cannot mutate the objects that Stdin and Stdout reference. Therefore, Automaton also pro-
vides setStdin() and setStdout() methods that change the references in Stdin and Stdout to
point to different objects. As an example, a when the automaton thread removes a value from stdin
it follows this sequence of steps (also see Figure 5):

1. The automaton thread obtains a lock on the Stdin class13

2. The automaton’s variable is updated to point to the global LSeqSort object that represents
stdin.

3. The automaton’s variable is updated to point to a new LSeqSort object.

4. Automaton’s variable is updated to point to the new LSeqSort object.

5. The automaton thread releases the lock on the Stdin class.

The generated Java code to accomplish this is:

stdin_v0 = stdin_v0; // artifact of translation
synchronized ( ioa.runtime.io.Stdin.class ) // step 1
{

stdin_v0 = ioa.runtime.Automaton.getStdin(); // step 2
12Multiple threads are necessary because the Java platform does not support non-blocking I/O.
13It does no good to obtain a lock on an LSeqSort object because it is immutable; each time stdin is changed,

Stdin’s variable points to a new object. Therefore, we lock on Stdin which, because it is a class, is globally accessible.



B.1 LSeqSort 27

Old LSeqSort Object

New LSeqSort Object

ioa.runtime.io.Stdin

2

stdin Static Variable

Lock on Stdin Class

Automaton Subclass

1, 5

stdin_v0 Variable

3

4ioa.runtime.Automaton stdin static Variable

Figure 5: Updating Stdin from the Automaton Thread

stdin_v0 = (LSeqSort)LSeqSort.tail(stdin_v0); // step 3
stdin_v0 = stdin_v0; // artifact of translation
ioa.runtime.Automaton.setStdin(stdin_v0); // step 4

} // step 5

This process works analogously for the case of modifying stdout. Modification from the Stdin
and Stdout threads follows the same general pattern, but that code is built into the runtime, not
generated. It will not be discussed here.

The input to the code generator must be a series of IOA statements that translate to the above
code. We must add special operators that translate to the synchronized block and the code for
fetching and updating the shared stdin object. These operators are added as part of the special LSeq
sort, which (not surprisingly) is implemented by the above-mentioned LSeqSort. LSeq (a lockable
sequence) is a special data type that is just like Seq with the addition of four new operators:
lockStdin, unlockStdin, lockStdout, and unlockStdout.

The IOA code that translates to the above is:

stdin := lockStdin(stdin);
stdin := tail(stdin);

stdin := unlockStdin(stdin)

The IOA code to obtain a lock on Stdin is stdin := lockStdin(stdin). The assignment looks
a bit awkward, but it is necessary because IOA does not consider values to be statements. The
corresponding Java code for obtaining a lock on stdin is:

stdin_v0 = stdin_v0;
synchronized ( ioa.runtime.io.Stdin.class )
{

stdin_v0 = ioa.runtime.Automaton.getStdin();

The first line is a nop that’s necessary because of the form of the original IOA statement. The
synchronized statement establishes a lock on Stdin, the input thread class. The input thread
cannot append any integers to the sequence while the automaton thread holds the lock on Stdin.
The third line makes the stdin v0 member variable a reference to the shared stdin LSeqSort object.

The IOA code to release a lock on Stdin is stdin := unlockStdin(stdin). The corresponding Java
code is:
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stdin_v0 = stdin_v0;
ioa.runtime.Automaton.setStdin(stdin_v0);

}

The first line is a nop. It is there because, as before, the IOA code for releasing a lock must
have an lvalue. The call to setStdin() updates the shared copy of stdin. Finally, the closing brace
ends the synchronized block, thus releasing the lock.

Since the locking operators do not translate into Java method calls on LSeqSort, they need
special emitters and a non-standard registration class to install them. The LSeq sort and its
standard sequence operators (head, a, etc.) are registered using Installer as in Section 4.1. The
locking operators are registered as follows. The LSeqSort registration class declares static inner
classes that extend LockOp (a helper class that extends ioa.codegen.target.java.Operator),
one for each new kind of operator. Each new kind of operator overrides emitApplication() to
emit itself in a particular way. For example, LockStdinOp emits code that establishes a lock on
Stdin and grabs the shared LSeqSort value that represents stdin.

public static class LockStdinOp extends LockOp

{

public LockStdinOp() throws CGException

{

super();

}

/**

* Emit code that will lock Stdin. <TT>opands</TT>

* must contain a single parameter, the LSeqSort to lock.

*

* i.e. if the LSeqSort is v0, then emit:

*

* v0;

* synchronized ( ioa.runtime.io.Stdin.class )

* {

* v0 = ioa.runtime.Automaton.getStdin();

*/

public Emitter emitApplication(Emitter e, EVector/*[Emittable]*/opands, String op, int numOpands)

throws CGException

{

Emittable stdin = unpackOperand(opands, numOpands);

e.emit(stdin).put(";\n");

e.put("synchronized ( ioa.runtime.io.Stdin.class )\n");

e.put("{\n");

e.emit(stdin).put(" = ioa.runtime.Automaton.getStdin();\n");

return e;

}

}

unpackOperand() is simply a utility function of LockOp that checks the size of the opands
EVector and returns its first element, cast to an Emittable. Note that the custom operators do
not emit casts for their return values because there are none.

B.2 PQSort

PQSort implements priority queues using a binary heap and was written by Atish Dev Nigam. Its
elements must be ComparableADTs. PQSort supports both queues where the largest element is at
the head and queues where the smallest element is. These correspond to the IOA types PQ[E] and
PMQ[E], respectively. The registration classes for both of these sorts reference the same PQSort
implementation class. The registration classes install the same operator implementations, except
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that add is implemented by addMax or addMin depending on the type of queue. Initially, an empty
PQSort does not know which style of queue it is implementing. However, by the first add it is able
to set that information based on which implementation method was called.

B.3 StackSort

StackSort implements stacks using a Vector and was written by Atish Dev Nigam.

B.4 TimedInvocationSort

TimedInvocationSort implements TimedInvocation, which is a tuple of an invocation, a time, and
a node. Ordinarily, this could be implemented as a tuple without the need for adding a new ADT.
However, TimedInvocations differ from other tuples in that they are totally ordered and support an
ordering operator. Thus, TimedInvocationSort is a ComparableADT. TimedInvocationSort does
not obey the standard contract that compareTo() must return 0 exactly when equals() returns
true. This is because the ordering of TimedInvocations is specified only in terms of their nodes
and times. There should never be two TimedInvocations with equal nodes and times, but different
invocations because the order would be undefined. If this case ever arises, compareTo() will throw
a RepException.

B.5 TreeSort

TreeSort implements binary trees and was written by Toh Ne Win.

C Examples

These sections show complete examples of the files one needs to create to add support for a new
sort or sort constructor.

C.1 String: A Simple Sort

C.1.1 LSL Trait

This trait simply lists the operators on String; the real LSL trait also states properties of these
operators.

String: trait
includes
Sequence(Char for E, String for Seq[E])

introduces
__<__, __≤__, __>__, __≥__: String, String → Bool

Sequence(E): trait
includes
Integer

introduces
{ }: → Seq[E]
__` __: Seq[E], E → Seq[E]
__a __: E, Seq[E] → Seq[E]
__ ‖ __: Seq[E], Seq[E] → Seq[E]
__∈__: E, Seq[E] → Bool
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head, last: Seq[E] → E
tail, init: Seq[E] → Seq[E]
len: Seq[E] → Int
__[__]: Seq[E], Int → E

C.1.2 Implementation Class: ioa.runtime.adt.StringSort

/*

* Copyright (c) 2001 Massachusetts Institute of Technology.

* All Rights Reserved.

*

* MIT grants permission to use, copy, modify, and distribute this software and

* its documentation for NON-COMMERCIAL purposes and without fee, provided that

* this copyright notice appears in all copies.

*

* MIT provides this software "as is," without representations or warranties of

* any kind, either expressed or implied, including but not limited to the

* implied warranties of merchantability, fitness for a particular purpose, and

* noninfringement. MIT shall not be liable for any damages arising from any

* use of this software.

*/

package ioa.runtime.adt;

/**

* <tt>StringSort</tt> implements Strings using <tt>java.lang.String</tt>.

*

* @author Michael Tsai (00/05/??) -- Wrapper for SeqSort[CharSort]

* @author Michael Tsai (00/06/27) -- Rewrote to use String

* @see ioa.registry.java.StringSort

* @see ioa.runtime.adt.BoolSort

* @see ioa.runtime.adt.CharSort

* @see ioa.runtime.adt.IntSort

*/

public class StringSort extends ComparableADT

{

// Code Generation Methods

// -----------------------

/** {}: -> String */

public static StringSort empty() {

return new StringSort();

}

/** __|-__: String, Char -> String */

public static StringSort append(StringSort s, CharSort c) {

return s.append(c);

}

/** __-|__: Char, String -> String */

public static StringSort prepend(CharSort c, StringSort s) {

return s.prepend(c);

}

/** __||__: String, String -> String */

public static StringSort catenate(StringSort s1, StringSort s2) {

return s1.catenate(s2);

}

/** __\\in__: Char, String -> Bool */

public static BoolSort in(CharSort c, StringSort s) {

return s.in(c);

}

/** head: String -> Char */
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public static CharSort head(StringSort s) {

return s.head();

}

/** last: String -> Char */

public static CharSort last(StringSort s) {

return s.last();

}

/** tail: String -> String */

public static StringSort tail(StringSort s) {

return s.tail();

}

/** init: String -> String */

public static StringSort init(StringSort s) {

return s.init();

}

/** len: String -> Int */

public static IntSort len(StringSort s) {

return s.len();

}

/** __[__]: String, Int -> Char */

public static CharSort index(StringSort s, IntSort i) {

return s.index(i);

}

/** __<__: String, String -> Bool */

public static BoolSort lt(StringSort s1, StringSort s2) {

return s1.lt(s2);

}

/** __<=__: String, String -> Bool */

public static BoolSort lte(StringSort s1, StringSort s2) {

return s1.lte(s2);

}

/** __>__: String, String -> Bool */

public static BoolSort gt(StringSort s1, StringSort s2) {

return s1.gt(s2);

}

/** __>=__: String, String -> Bool */

public static BoolSort gte(StringSort s1, StringSort s2) {

return s1.gte(s2);

}

// Member Variables

// ----------------

protected String string;

// Creators

// --------

public StringSort() {

this.string = "";

}

public StringSort(String string) {

this.string = string;

}

/** @return an instance of StringSort. */

public static ioa.simulator.Entity construct(){

return empty();

}
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public static ADT construct(Parameterization p)

{

return empty();

}

// Observers

// ---------

public String toString() {

return this.string;

}

public BoolSort in(CharSort c) {

return BoolSort.lit(this.string.indexOf(c.toString()) != -1);

}

public IntSort len() {

return new IntSort(this.string.length());

}

public CharSort index(IntSort i) {

if ( i.value() < 0 )

throw new RepException("Index given to StringSort was less than 0");

else if ( i.value() <= this.string.length() - 1)

return new CharSort(new Character(this.string.charAt(i.value())));

else

throw new RepException("Can’t take index "+i+

" because the String isn’t that long.");

}

public int compareTo(Object o)

{

StringSort s = (StringSort)o;

return this.string.compareTo(s.string);

}

public BoolSort lt(StringSort s)

{

return BoolSort.lit(this.compareTo(s) < 0);

}

public BoolSort lte(StringSort s)

{

return BoolSort.lit(this.compareTo(s) <= 0);

}

public BoolSort gt(StringSort s)

{

return BoolSort.lit(this.compareTo(s) > 0);

}

public BoolSort gte(StringSort s)

{

return BoolSort.lit(this.compareTo(s) >= 0);

}

public boolean equals(Object o) {

if ( ! (o instanceof StringSort) )

return false;

StringSort s = (StringSort)o;

return this.string.equals(s.string);

}

public int hashCode() {

return this.string.hashCode();

}
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public boolean isEmpty() {

return this.string.length() == 0;

}

// Producers

// ---------

public StringSort append(CharSort c) {

return new StringSort(this.string + c.toString());

}

public StringSort prepend(CharSort c) {

return new StringSort(c.toString() + this.string);

}

public StringSort catenate(StringSort s) {

return new StringSort(this.string + s.string);

}

public CharSort head() {

if ( ! isEmpty() )

return CharSort.lit(new Character(this.string.charAt(0)));

else

throw new RepException("Attempt to take head() of empty StringSort");

}

public CharSort last() {

if ( ! isEmpty() )

return CharSort.lit(new Character(this.string.charAt(this.string.length() - 1)));

else

throw new RepException("Attempt to take last() of empty StringSort");

}

public StringSort tail() {

if ( ! isEmpty() )

return new StringSort(this.string.substring(1, this.string.length()));

else

throw new RepException("Attempt to take tail() of empty StringSort");

}

public StringSort init() {

if ( ! isEmpty() )

return new StringSort(this.string.substring(0, this.string.length() - 1));

else

throw new RepException("Attempt to take init() of empty StringSort");

}

}

C.1.3 Registration Class: ioa.registry.java.StringSort

/*

* Copyright (c) 2001 Massachusetts Institute of Technology.

* All Rights Reserved.

*

* MIT grants permission to use, copy, modify, and distribute this software and

* its documentation for NON-COMMERCIAL purposes and without fee, provided that

* this copyright notice appears in all copies.

*

* MIT provides this software "as is," without representations or warranties of

* any kind, either expressed or implied, including but not limited to the

* implied warranties of merchantability, fitness for a particular purpose, and

* noninfringement. MIT shall not be liable for any damages arising from any

* use of this software.

*/

package ioa.registry.java;
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import ioa.registry.ConstrImplRegistry;

import ioa.registry.ImplFactory;

import ioa.registry.Installer;

import ioa.registry.Registrable;

import ioa.registry.RegistryException;

/**

* Registration class for Strings.

*

* @author Michael Tsai

* @see ioa.runtime.adt.BoolSort

* @see ioa.runtime.adt.CharSort

* @see ioa.runtime.adt.IntSort

* @see ioa.runtime.adt.StringSort

*/

public class StringSort implements Registrable

{

// Class Variables

/**

* Name of the Sort for which this registers implementations.

*/

public final static String sortName = "String";

/**

* Name of the Class that implements the Sort

*/

public final static String className = "StringSort";

/**

* Install mappings from the sort String and its operators to the

* ioa.runtime.adt.StringSort class and its methods in the given

* registry.

*/

public void install(ConstrImplRegistry reg) throws RegistryException

{

final String name_String = sortName;

final String name_Bool = BoolSort.sortName;

final String name_Int = IntSort.sortName;

final String name_Char = CharSort.sortName;

final String[] dom_Empty = new String[] { };

final String[] dom_String = new String[] { name_String };

final String[] dom_String_Char = new String[] { name_String, name_Char };

final String[] dom_Char_String = new String[] { name_Char, name_String };

final String[] dom_String_Int = new String[] { name_String, name_Int };

final String[] dom_String_String = new String[] { name_String, name_String };

Installer installer = ImplFactory.getInstance().newInstaller(className, sortName, reg);

// The sort itself (default constructor)

installer.installSortImpl("ioa.runtime.adt", false);

// Empty String operator: {}: -> String

installer.installOpImpl("{__}", name_String, dom_Empty, "empty");

// Append element operator: __|-__: String, Char -> String

installer.installOpImpl("__|-__", name_String, dom_String_Char, "append");

// Prepend operator: __-|__: Char, String -> String

installer.installOpImpl("__-|__", name_String, dom_Char_String, "prepend");

// Catentation operator: __||__: String, String -> String

installer.installOpImpl("__||__", name_String, dom_String_String, "catenate");

// Membership operator: __\in__: Char, String -> Bool

installer.installOpImpl("__\\in__", name_Bool, dom_Char_String, "in");
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// Head operator: head(__): String -> Char

installer.installOpImpl("head", name_Char, dom_String, "head");

// Last operator: last(__): String -> Char

installer.installOpImpl("last", name_Char, dom_String, "last");

// Tail operator: tail(__): String -> String

installer.installOpImpl("tail", name_String, dom_String, "tail");

// Initial operator: init(__): String -> String

installer.installOpImpl("init", name_String, dom_String, "init");

// Length operator: len(__): String -> Int

installer.installOpImpl("len", name_Int, dom_String, "len");

// Index operator: __[__]: String, Int -> Char

installer.installOpImpl("__[__]", name_Char, dom_String_Int, "index");

// Less than operator: __<__: String, String -> Bool

installer.installOpImpl("__<__", name_Bool, dom_String_String, "lt");

// Less than or equal operator: __<=__: String, String -> Bool

installer.installOpImpl("__<=__", name_Bool, dom_String_String, "lte");

// Greater than operator: __>__: String, String -> Bool

installer.installOpImpl("__>__", name_Bool, dom_String_String, "gt");

// Greater than or equal operator: __>=__: String, String -> Bool

installer.installOpImpl("__>=__", name_Bool, dom_String_String, "gte");

}

}

C.1.4 Test Class

/*

* Copyright (c) 2000 Massachusetts Institute of Technology.

* All Rights Reserved.

*

* MIT grants permission to use, copy, modify, and distribute this software and

* its documentation for NON-COMMERCIAL purposes and without fee, provided that

* this copyright notice appears in all copies.

*

* MIT provides this software "as is," without representations or warranties of

* any kind, either expressed or implied, including but not limited to the

* implied warranties of merchantability, fitness for a particular purpose, and

* noninfringement. MIT shall not be liable for any damages arising from any

* use of this software.

*/

package ioa.test.junit.runtime.adt;

import junit.framework.*;

import ioa.runtime.adt.BoolSort;

import ioa.runtime.adt.CharSort;

import ioa.runtime.adt.IntSort;

import ioa.runtime.adt.StringSort;

import ioa.runtime.adt.RepException;

/**

* JUnit-based black box and glass box tests for ioa.runtime.adt.StringSort.

* @author Michael J. Tsai (00/06/27)

*/

public class StringSortTest extends TestCase

{

// Member Variables

// ----------------
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protected StringSort empty;

protected StringSort aString;

protected StringSort bString;

protected StringSort ab;

protected StringSort abc;

protected StringSort abcd;

protected StringSort bc;

protected StringSort bcd;

protected StringSort cd;

protected IntSort zero;

protected IntSort one;

protected IntSort two;

protected IntSort three;

protected IntSort minusOne;

protected CharSort a;

protected CharSort b;

protected CharSort c;

protected CharSort d;

protected BoolSort bTrue;

protected BoolSort bFalse;

/**

* Runs all the tests in this class and outputs the results to stdout.

*/

public static void main(String[] args)

{

junit.textui.TestRunner.run(suite());

}

// Framework Stuff

// ---------------

public StringSortTest(String name)

{

super(name);

}

/**

* Set up the fixtures.

*/

protected void setUp()

{

this.empty = new StringSort("");

this.aString = new StringSort("a");

this.bString = new StringSort("b");

this.ab = new StringSort("ab");

this.abc = new StringSort("abc");

this.abcd = new StringSort("abcd");

this.bc = new StringSort("bc");

this.bcd = new StringSort("bcd");

this.cd = new StringSort("cd");

this.a = CharSort.lit(new Character(’a’));

this.b = CharSort.lit(new Character(’b’));

this.c = CharSort.lit(new Character(’c’));

this.d = CharSort.lit(new Character(’d’));

this.zero = new IntSort(0);

this.one = new IntSort(1);

this.two = new IntSort(2);

this.three = new IntSort(3);

this.minusOne = new IntSort(-1);

this.bFalse = BoolSort.False();

this.bTrue = BoolSort.True();
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}

/**

* @return a single Test that runs all the tests in this class

*/

public static Test suite()

{

return new TestSuite(StringSortTest.class);

}

// Test Methods

// ------------

public void testEmpty()

{

assertEquals("", empty.toString());

}

public void testAppend()

{

assertEquals(abc, ab.append(c));

assertEquals(abcd, abc.append(d));

assertEquals("a", empty.append(a).toString());

}

public void testPrepend()

{

assertEquals(abc, bc.prepend(a));

assertEquals(abcd, bcd.prepend(a));

assertEquals("a", empty.prepend(a).toString());

}

public void testCatenate()

{

assertEquals(empty, empty.catenate(empty));

assertEquals(ab, empty.catenate(ab));

assertEquals(ab, ab.catenate(empty));

assertEquals(abcd, ab.catenate(cd));

}

public void testIn()

{

assertEquals(bTrue, ab.in(a));

assertEquals(bTrue, abc.in(a));

assertEquals(bTrue, ab.in(b));

assertEquals(bTrue, abc.in(b));

assertEquals(bFalse, ab.in(c));

assertEquals(bTrue, abc.in(c));

assertEquals(bFalse, ab.in(c));

assertEquals(bFalse, empty.in(a));

}

public void testHead()

{

assertEquals(a, ab.head());

assertEquals(a, abc.head());

assertEquals(b, bc.head());

try { empty.head(); fail(); } catch ( RepException e ) {}

}

public void testLast()

{

assertEquals(b, ab.last());

assertEquals(c, abc.last());

assertEquals(c, bc.last());

try { empty.last(); fail(); } catch ( RepException e ) {}

}
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public void testTail()

{

try { empty.tail(); fail(); } catch ( RepException e ) {}

assertEquals(empty, aString.tail());

assertEquals(bString, ab.tail());

assertEquals(bc, abc.tail());

assertEquals(bcd, abcd.tail());

}

public void testInit()

{

try { empty.init(); fail(); } catch ( RepException e ) {}

assertEquals(empty, aString.init());

assertEquals(aString, ab.init());

assertEquals(ab, abc.init());

assertEquals(abc, abcd.init());

}

public void testLen()

{

assertEquals(zero, empty.len());

assertEquals(one, aString.len());

assertEquals(two, ab.len());

}

public void testIndex()

{

try { empty.index(zero); fail(); } catch ( RepException e ) {}

try { aString.index(one); fail(); } catch ( RepException e ) {}

try { aString.index(minusOne); fail(); } catch ( RepException e ) {}

assertEquals(a, aString.index(zero));

assertEquals(b, abc.index(one));

}

public void testLt()

{

assertEquals(bTrue, aString.lt(ab));

assertEquals(bFalse, ab.lt(aString));

assertEquals(bTrue, ab.lt(bc));

assertEquals(bFalse, bc.lt(ab));

assertEquals(bFalse, ab.lt(ab));

assertEquals(bTrue, empty.lt(ab));

}

public void testLte()

{

assertEquals(bTrue, aString.lte(ab));

assertEquals(bFalse, ab.lte(aString));

assertEquals(bTrue, ab.lte(bc));

assertEquals(bFalse, bc.lte(ab));

assertEquals(bTrue, ab.lte(ab));

assertEquals(bTrue, empty.lte(ab));

}

public void testGt()

{

assertEquals(bFalse, aString.gt(ab));

assertEquals(bTrue, ab.gt(aString));

assertEquals(bFalse, ab.gt(bc));

assertEquals(bTrue, bc.gt(ab));

assertEquals(bFalse, ab.gt(ab));

assertEquals(bFalse, empty.gt(ab));

}

public void testGte()

{

assertEquals(bFalse, aString.gte(ab));
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assertEquals(bTrue, ab.gte(aString));

assertEquals(bFalse, ab.gte(bc));

assertEquals(bTrue, bc.gte(ab));

assertEquals(bTrue, ab.gte(ab));

}

public void testEquals()

{

assertEquals(bTrue, StringSort.equals(abc, new StringSort("abc")));

assertEquals(bFalse, StringSort.equals(abc, bc));

}

public void testNotEquals()

{

assertEquals(bFalse, StringSort.notEquals(abc, new StringSort("abc")));

assertEquals(bTrue, StringSort.notEquals(abc, bc));

}

public void testIfThenElse()

{

assertEquals(abc, StringSort.ifThenElse(bTrue, abc, bc));

assertEquals(bc, StringSort.ifThenElse(bFalse, abc, bc));

}

public void testHashCode()

{

assertEquals(ab.hashCode(), aString.catenate(bString).hashCode());

assert(ab.hashCode() != aString.hashCode());

}

public void testCompareTo()

{

assert( ab.compareTo(bc) < 0 );

assert( abc.compareTo(aString) > 0);

assert( abc.compareTo(abc) == 0);

}

}

C.1.5 IOA File

automaton String01
signature

internal a1
states
s: String := { },
i: Int,
c: Char := ’A’,
b: Bool

transitions
internal a1

pre
s = { }

eff
s := s ` c;
s := c a s;
s := s ‖ s;
b := c ∈ s;
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c := head(s);
c := last(s);
s := tail(s);
s := init(s);
i := len(s);
c := s[2];
b := s = s;
b := s[1] = s[2];
b := s < s;
b := s ≤ s;
b := s > s;
b := s ≥ s;
b := s = s;
b := s 6= s;
s := if b then s else s

C.1.6 Generated Java Code

package ioa.runtime;

import java.io.*; import ioa.runtime.adt.*;

public class String01 extends ioa.runtime.Automaton {

StringSort s_v1 = ((StringSort)StringSort.empty());

IntSort i_v2 = (IntSort)IntSort.construct(new Parameterization());

CharSort c_v3 = ((CharSort)CharSort.lit(’A’));

BoolSort b_v4 = (BoolSort)BoolSort.construct(new Parameterization());

public void a0()

{

s_v1 = ((StringSort)StringSort.append(s_v1, c_v3));

s_v1 = ((StringSort)StringSort.prepend(c_v3, s_v1));

s_v1 = ((StringSort)StringSort.catenate(s_v1, s_v1));

b_v4 = ((BoolSort)StringSort.in(c_v3, s_v1));

c_v3 = ((CharSort)StringSort.head(s_v1));

c_v3 = ((CharSort)StringSort.last(s_v1));

s_v1 = ((StringSort)StringSort.tail(s_v1));

s_v1 = ((StringSort)StringSort.init(s_v1));

i_v2 = ((IntSort)StringSort.len(s_v1));

c_v3 = ((CharSort)StringSort.index(s_v1, ((IntSort)IntSort.lit(2))));

b_v4 = ((BoolSort)StringSort.equals(s_v1, s_v1));

b_v4 =

((BoolSort)CharSort.equals(((CharSort)StringSort.index(s_v1,

((IntSort)IntSort.lit(1)))),

((CharSort)StringSort.index(s_v1,

((IntSort)IntSort.lit(2))))));

b_v4 = ((BoolSort)StringSort.lt(s_v1, s_v1));

b_v4 = ((BoolSort)StringSort.lte(s_v1, s_v1));

b_v4 = ((BoolSort)StringSort.gt(s_v1, s_v1));

b_v4 = ((BoolSort)StringSort.gte(s_v1, s_v1));

b_v4 = ((BoolSort)StringSort.equals(s_v1, s_v1));

b_v4 = ((BoolSort)StringSort.notEquals(s_v1, s_v1));

s_v1 = ((StringSort)((b_v4).booleanValue() ? s_v1 : s_v1));

}

public static void main(String[] args) {

ioa.runtime.Automaton.main(new String[] {"String01"});

}

}
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C.2 Set: A Compound Sort

C.2.1 LSL Trait

This trait simply lists the operators on Set; the real LSL trait14 also states properties of these
operators.

Set(E): trait
includes
Integer

introduces
{ }: → Set[E]
{__}: E → Set[E]
insert, delete: E, Set[E] → Set[E]
__∈__: E, Set[E] → Bool
__∪__, __∩__, __-__: Set[E], Set[E] → Set[E]
__⊂__, __⊃__, __⊆__, __⊇__: Set[E], Set[E] → Bool
size: Set[E] → Int

C.2.2 Implementation Class: ioa.runtime.adt.SetSort

/*

* Copyright (c) 2001 Massachusetts Institute of Technology.

* All Rights Reserved.

*

* MIT grants permission to use, copy, modify, and distribute this software and

* its documentation for NON-COMMERCIAL purposes and without fee, provided that

* this copyright notice appears in all copies.

*

* MIT provides this software "as is," without representations or warranties of

* any kind, either expressed or implied, including but not limited to the

* implied warranties of merchantability, fitness for a particular purpose, and

* noninfringement. MIT shall not be liable for any damages arising from any

* use of this software.

*/

package ioa.runtime.adt;

import ioa.util.logger.IOACategory;

import ioa.util.ToStringComparator;

import java.util.Collections;

import java.util.HashSet;

import java.util.Iterator;

import java.util.Set;

import java.util.TreeSet;

/**

* <p> <tt>SetSort</tt> implements IOA sets using a <tt>HashSet</tt> for

* speed. Because it was written before <tt>MsetSort</tt>, it is not

* based on <tt>MsetSort</tt>. Also, it is probably faster this way.</p>

*

* @author Michael Tsai (00/04/19)

* @see ioa.registry.java.SetSort

* @see ioa.runtime.adt.IntSort

* @see ioa.runtime.adt.BoolSort

*/

public class SetSort extends ADT implements Cloneable

{

14The real trait is not included here because it assumes other traits, which makes it harder to see what all the
operators are.
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// Class Variables

private static IOACategory cat = IOACategory.getInstance (SetSort.class.getName());

// Member Variables

// ----------------

protected Set set = new HashSet();

// Creators

// --------

/** Construct a new, empty set. */

public SetSort() {}

// Code Generation Methods

// -----------------------

/** {}: -> Set[E] */

public static SetSort empty() {

return new SetSort();

}

/** {__}: E -> Set[E] */

public static SetSort singleton(Object o) {

return new SetSort().insert(o);

}

/** insert: E, Set[E] -> Set[E] */

public static SetSort insert(Object o, SetSort s) {

return s.insert(o);

}

/** delete; E, Set[E] -> Set[E] */

public static SetSort delete(Object o, SetSort s) {

return s.delete(o);

}

/** __\in__: E, Set[E] -> Bool */

public static BoolSort isIn(Object o, SetSort s) {

return BoolSort.lit(s.contains(o));

}

/** __\U__: Set[E], Set[E] -> Set[E] */

public static SetSort union(SetSort s1, SetSort s2) {

return s1.union(s2);

}

/** __\I__: Set[E], Set[E] -> Set[E] */

public static SetSort intersection(SetSort s1, SetSort s2) {

return s1.intersection(s2);

}

/** __-__: Set[E], Set[E] -> Set[E] */

public static SetSort difference(SetSort s1, SetSort s2) {

return s1.difference(s2);

}

/** __\supset__: Set[E], Set[E] -> Bool */

public static BoolSort isSupset(SetSort s1, SetSort s2) {

return BoolSort.lit(s1.isSupset(s2));

}

/** __\subset__: Set[E], Set[E] -> Bool */

public static BoolSort isSubset(SetSort s1, SetSort s2) {

return BoolSort.lit(s1.isSubset(s2));

}
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/** __\subseteq__: Set[E], Set[E] -> Bool */

public static BoolSort isSubsetEq(SetSort s1, SetSort s2) {

return BoolSort.lit(s1.isSubsetEq(s2));

}

/** __\supseteq__: Set[E], Set[E] -> Bool */

public static BoolSort isSupsetEq(SetSort s1, SetSort s2) {

return BoolSort.lit(s1.isSupsetEq(s2));

}

/** size: Set[E] -> Int */

public static IntSort size(SetSort s) {

return new IntSort(s.size());

}

// Observers

// ---------

/** @return true if this contains o and false otherwise */

public boolean contains(Object o) {

return set.contains(o);

}

/** @return true if this \subset s and false otherwise */

public boolean isSubset(SetSort s) {

return s.set.containsAll(this.set) && ! this.set.equals(s.set);

}

/** @return true if this \supset s and false otherwise */

public boolean isSupset(SetSort s) {

return this.set.containsAll(s.set) && ! this.set.equals(s.set);

}

/** @return true if this \subseteq s and false otherwise */

public boolean isSubsetEq(SetSort s) {

return s.set.containsAll(this.set);

}

/** @return true if this \supseteq s and false otherwise */

public boolean isSupsetEq(SetSort s) {

return this.set.containsAll(s.set);

}

/** @return |this| */

public int size() {

return set.size();

}

/**

* Returns the underlying java.util.Set, but

* the elements are unmodifiable. The elements

* are also ordered alphabetically as they’d print out.

**/

public Set getSet() {

TreeSet ts = new TreeSet (new ToStringComparator());

ts.addAll (set);

return Collections.unmodifiableSet(ts);

}

public boolean equals(Object o) {

if ( o instanceof SetSort )

return this.set.equals(((SetSort) o).set);

else

return false;

}
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public int hashCode() {

int result = 0;

Iterator iter = this.set.iterator();

while ( iter.hasNext() )

{

result += iter.next().hashCode();

}

return result;

}

// Producers

// --------

/** @return shallow copy of this */

public Object clone() {

SetSort result = new SetSort();

result.set.addAll(this.set);

return result;

}

/** @return this \U {o} */

public SetSort insert(Object o) {

SetSort result = (SetSort)this.clone();

result.set.add(o);

return result;

}

/** @return this - {o} */

public SetSort delete(Object o) {

SetSort result = (SetSort)this.clone();

result.set.remove(o);

return result;

}

/** @return a new SetSort whose elements are this \U s */

public SetSort union(SetSort s) {

SetSort result = (SetSort)this.clone();

result.set.addAll(s.set);

return result;

}

/** @return a new SetSort whose elements are this \I s */

public SetSort intersection(SetSort s) {

SetSort result = (SetSort)this.clone();

result.set.retainAll(s.set);

return result;

}

/** @return a new SetSort whose elements are this - s */

public SetSort difference(SetSort s) {

SetSort result = (SetSort)this.clone();

result.set.removeAll(s.set);

return result;

}

/**

* Select a random element from a set.

* @return a random element of this set.

* @exception RepException if the set is empty

**/

public static Object chooseRandom (SetSort set) {

int i = set.size();

if (i == 0) throw new RepException ("Cannot take an element out of an empty set");

return set.getSet().toArray()[NonDet.rnd.nextInt (i)];

}
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/**

* Exclude a random element from a set and return the rest.

* @return a subset of the set such that there’s one element removed.

* @exception RepException if the set is empty

**/

public static SetSort rest (SetSort set) {

int i = set.size();

if (i == 0) throw new RepException ("Cannot take an element out of an empty set");

return SetSort.delete (set.getSet().toArray()[NonDet.rnd.nextInt (i)], set);

}

/**

* Predicate on whether a set is empty

* @return true of the set is empty.

**/

public static BoolSort isEmpty (SetSort set) {

int i = set.size();

return BoolSort.lit (i == 0);

}

/** @return an instance of SetSort. */

public static ioa.simulator.Entity construct() {

return empty();

}

/** @return an instance of SetSort */

public static ADT construct(Parameterization p)

{

return empty();

}

/**

* Returns a String representation of this, in alphabetical order

* @return a String representation of this.

**/

public String toString() {

TreeSet ts = new TreeSet();

Iterator iter = getSet().iterator();

String result = "(";

while ( iter.hasNext() ) {

result += iter.next().toString() + " ";

}

return result.trim() + ")";

}

}

C.2.3 Registration Class: ioa.registry.java.SetSort

/*

* Copyright (c) 2001 Massachusetts Institute of Technology.

* All Rights Reserved.

*

* MIT grants permission to use, copy, modify, and distribute this software and

* its documentation for NON-COMMERCIAL purposes and without fee, provided that

* this copyright notice appears in all copies.

*

* MIT provides this software "as is," without representations or warranties of

* any kind, either expressed or implied, including but not limited to the

* implied warranties of merchantability, fitness for a particular purpose, and

* noninfringement. MIT shall not be liable for any damages arising from any

* use of this software.

*/
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package ioa.registry.java;

import ioa.registry.ConstrImplRegistry;

import ioa.registry.ImplFactory;

import ioa.registry.Installer;

import ioa.registry.Registrable;

import ioa.registry.RegistryException;

/**

* Registration class for Sets. The implementations of

* ioa.registry.java.SetSort and ioa.runtime.adt.SetSort are

* intertwined. Changes in one should be reflected in the other.

*

* @author Michael Tsai (00/04/20)

* @see ioa.runtime.adt.SetSort

*/

public class SetSort implements Registrable

{

// Class Variables

/** Name of the Sort for which this registers implementations. */

public final static String sortName = "Set";

/** Name of the Class that implements the Sort */

public final static String className = "SetSort";

/**

* Install mappings from the Sort constructor Set and its operators

* to the ioa.runtime.adt.SetSort class and its methods in the given

* registry.

*/

public void install(ConstrImplRegistry reg) throws RegistryException

{

Installer installer = ImplFactory.getInstance().newInstaller(className, sortName, reg);

installer.installSortConstructor(false, "(Set 0)");

installer.addOp("({__} () %me)", "empty");

installer.addOp("({__} (0) %me)", "singleton");

installer.addOp("(insert (0 %me) %me)", "insert");

installer.addOp("(delete (0 %me) %me)", "delete");

installer.addOp("(__\\in__ (0 %me) Bool)", "isIn");

installer.addOp("(__\\U__ (%me %me) %me)", "union");

installer.addOp("(__\\I__ (%me %me) %me)", "intersection");

installer.addOp("(__-__ (%me %me) %me)", "difference");

installer.addOp("(__\\subset__ (%me %me) Bool)", "isSubset");

installer.addOp("(__\\supset__ (%me %me) Bool)", "isSupset");

installer.addOp("(__\\subseteq__ (%me %me) Bool)", "isSubsetEq");

installer.addOp("(__\\supseteq__ (%me %me) Bool)", "isSupsetEq");

installer.addOp("(size (%me) Int)", "size");

installer.addOp("(chooseRandom (%me) 0)", "chooseRandom");

installer.addOp("(rest (%me) %me)", "rest");

installer.addOp("(isEmpty (%me) Bool)", "isEmpty");

}

}

C.2.4 Test Class

/*

* Copyright (c) 2000 Massachusetts Institute of Technology.

* All Rights Reserved.

*

* MIT grants permission to use, copy, modify, and distribute this software and
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* its documentation for NON-COMMERCIAL purposes and without fee, provided that

* this copyright notice appears in all copies.

*

* MIT provides this software "as is," without representations or warranties of

* any kind, either expressed or implied, including but not limited to the

* implied warranties of merchantability, fitness for a particular purpose, and

* noninfringement. MIT shall not be liable for any damages arising from any

* use of this software.

*/

package ioa.test.junit.runtime.adt;

import junit.framework.*;

import ioa.runtime.adt.SetSort;

import ioa.runtime.adt.BoolSort;

/**

* JUnit-based black box and glass box tests for ioa.runtime.adt.SetSort.

* @author Michael J. Tsai (00/06/22)

*/

public class SetSortTest extends TestCase

{

// Member Variables

// ----------------

protected SetSort empty;

protected SetSort one;

protected SetSort two;

protected SetSort three;

protected SetSort oneAndTwo;

protected SetSort oneAndThree;

protected SetSort twoAndThree;

protected SetSort oneAndTwoAndThree;

protected BoolSort bTrue;

protected BoolSort bFalse;

/**

* Runs all the tests in this class and outputs the results to stdout.

*/

public static void main(String[] args)

{

junit.textui.TestRunner.run(suite());

}

// Framework Stuff

// ---------------

public SetSortTest(String name)

{

super(name);

}

/**

* Set up the fixtures.

*/

protected void setUp()

{

empty = new SetSort();

one = empty.insert(new Integer(1));

two = empty.insert(new Integer(2));

three = empty.insert(new Integer(3));

oneAndTwo = one.insert(new Integer(2));

oneAndThree = one.insert(new Integer(3));

twoAndThree = two.insert(new Integer(3));

oneAndTwoAndThree = oneAndTwo.insert(new Integer(3));

bTrue = BoolSort.True();

bFalse = BoolSort.False();
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}

/**

* @return a single Test that runs all the tests in this class

*/

public static Test suite()

{

return new TestSuite(SetSortTest.class);

}

// Test Methods

// ------------

public void testContains()

{

assert(oneAndThree.contains(new Integer(1)));

assert(oneAndThree.contains(new Integer(3)));

assert(! oneAndThree.contains(new Integer(2)));

assert(! empty.contains(new Integer(1)));

}

public void testIsSubset()

{

assert(empty.isSubset(one));

assert(one.isSubset(oneAndTwo));

assert(oneAndTwo.isSubset(oneAndTwoAndThree));

assert(! one.isSubset(empty));

assert(! oneAndTwo.isSubset(one));

assert(! oneAndTwoAndThree.isSubset(oneAndTwo));

assert(! oneAndTwo.isSubset(oneAndTwo));

assert(! empty.isSubset(empty));

}

public void testIsSupset()

{

assert(one.isSupset(empty));

assert(oneAndTwo.isSupset(one));

assert(oneAndTwoAndThree.isSupset(oneAndTwo));

assert(! empty.isSupset(one));

assert(! one.isSupset(oneAndTwo));

assert(! oneAndTwo.isSupset(oneAndTwoAndThree));

assert(! oneAndTwo.isSupset(oneAndTwo));

assert(! empty.isSupset(empty));

}

public void testIsSubsetEq()

{

assert(empty.isSubsetEq(one));

assert(one.isSubsetEq(oneAndTwo));

assert(oneAndTwo.isSubsetEq(oneAndTwoAndThree));

assert(! one.isSubsetEq(empty));

assert(! oneAndTwo.isSubsetEq(one));

assert(! oneAndTwoAndThree.isSubsetEq(oneAndTwo));

assert(oneAndTwo.isSubsetEq(oneAndTwo));

assert(empty.isSubsetEq(empty));

}

public void testIsSupsetEq()

{

assert(one.isSupsetEq(empty));

assert(oneAndTwo.isSupsetEq(one));

assert(oneAndTwoAndThree.isSupsetEq(oneAndTwo));
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assert(! empty.isSupsetEq(one));

assert(! one.isSupsetEq(oneAndTwo));

assert(! oneAndTwo.isSupsetEq(oneAndTwoAndThree));

assert(oneAndTwo.isSupsetEq(oneAndTwo));

assert(empty.isSupsetEq(empty));

}

public void testSize()

{

assertEquals(0, empty.size());

assertEquals(1, one.size());

assertEquals(2, oneAndTwo.size());

}

public void testEquals()

{

assert(oneAndTwo.equals(oneAndTwo));

SetSort oneAndTwo2 = new SetSort();

oneAndTwo2 = oneAndTwo2.insert(new Integer(1));

oneAndTwo2 = oneAndTwo2.insert(new Integer(2));

assert(oneAndTwo.equals(oneAndTwo2));

assert(oneAndTwo.equals(oneAndTwoAndThree.delete(new Integer(3))));

assert(! one.equals(two));

assert(! oneAndTwo.equals(oneAndThree));

assert(! one.equals(new Integer(1)));

}

public void testNotEquals()

{

assertEquals(bTrue, SetSort.notEquals(oneAndTwo, oneAndThree));

assertEquals(bFalse, SetSort.notEquals(oneAndTwo, oneAndTwo));

}

public void testIfThenElse()

{

assertEquals(oneAndTwo, SetSort.ifThenElse(bTrue, oneAndTwo, oneAndThree));

assertEquals(oneAndThree, SetSort.ifThenElse(bFalse, oneAndTwo, oneAndThree));

}

public void testInsert()

{

assertEquals(oneAndTwo, one.insert(new Integer(2)));

assertEquals("Immutability", empty.insert(new Integer(1)), one);

assertEquals(oneAndTwoAndThree, oneAndTwo.insert(new Integer(3)));

assertEquals("Immutabiliity", one.insert(new Integer(2)), oneAndTwo);

}

public void testDelete()

{

assertEquals(one, oneAndTwo.delete(new Integer(2)));

assertEquals("Immutability", one.insert(new Integer(2)), oneAndTwo);

assertEquals(oneAndTwo, oneAndTwoAndThree.delete(new Integer(3)));

assertEquals("Immutability", oneAndTwoAndThree, oneAndTwo.insert(new Integer(3)));

assertEquals(empty, empty.delete(new Integer(2)));

}

public void testUnion()

{

assertEquals(empty, empty.union(empty));

assertEquals(one, empty.union(one));

assertEquals(one, one.union(empty));
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assertEquals(oneAndTwo, one.union(two));

assertEquals(oneAndTwo, two.union(one));

assertEquals(oneAndTwoAndThree, oneAndTwo.union(three));

assertEquals(oneAndTwoAndThree, three.union(oneAndTwo));

}

public void testIntersection()

{

assertEquals(one, oneAndTwo.intersection(oneAndThree));

assertEquals(one, oneAndThree.intersection(oneAndTwo));

assertEquals(two, oneAndTwo.intersection(twoAndThree));

assertEquals(two, twoAndThree.intersection(oneAndTwo));

assertEquals(empty, empty.intersection(one));

assertEquals(empty, one.intersection(empty));

}

public void testDifference()

{

assertEquals(one, oneAndTwo.difference(two));

assertEquals(one, oneAndTwoAndThree.difference(twoAndThree));

assertEquals(one, one.difference(empty));

assertEquals(one, one.difference(two));

assertEquals(empty, empty.difference(empty));

}

public void testHashCode()

{

assertEquals(oneAndTwo.hashCode(), one.insert(two).hashCode());

assert(one.hashCode() != oneAndTwo.hashCode());

}

}

C.2.5 IOA File

automaton Set01
signature

internal a1
states

s: Set[Int],
i: Int,
b: Bool

transitions
internal a1

eff
s := { };
s := {3};
s := insert(i, s);
s := delete(i, s);
b := i ∈ s;
s := s ∪ s;
s := s ∩ s;
s := s - s;
b := s ⊂ s;
b := s ⊆ s;
b := s ⊃ s;
b := s ⊇ s;
i := size(s);
b := s = s;
b := s 6= s;
s := if b then s else s
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C.2.6 Generated Java Code

package ioa.runtime;

import java.io.*; import ioa.runtime.adt.*;

public class Set01 extends ioa.runtime.Automaton {

SetSort s_v1 =

(SetSort)SetSort.construct(new

Parameterization(new Class[]

{ioa.runtime.adt.IntSort.class},

new Parameterization[]

{new

Parameterization()}));

IntSort i_v2 = (IntSort)IntSort.construct(new Parameterization());

BoolSort b_v3 = (BoolSort)BoolSort.construct(new Parameterization());

public void a0()

{

s_v1 = ((SetSort)SetSort.empty());

s_v1 = ((SetSort)SetSort.singleton(((IntSort)IntSort.lit(3))));

s_v1 = ((SetSort)SetSort.insert(i_v2, s_v1));

s_v1 = ((SetSort)SetSort.delete(i_v2, s_v1));

b_v3 = ((BoolSort)SetSort.isIn(i_v2, s_v1));

s_v1 = ((SetSort)SetSort.union(s_v1, s_v1));

s_v1 = ((SetSort)SetSort.intersection(s_v1, s_v1));

s_v1 = ((SetSort)SetSort.difference(s_v1, s_v1));

b_v3 = ((BoolSort)SetSort.isSubset(s_v1, s_v1));

b_v3 = ((BoolSort)SetSort.isSubsetEq(s_v1, s_v1));

b_v3 = ((BoolSort)SetSort.isSupset(s_v1, s_v1));

b_v3 = ((BoolSort)SetSort.isSupsetEq(s_v1, s_v1));

i_v2 = ((IntSort)SetSort.size(s_v1));

b_v3 = ((BoolSort)SetSort.equals(s_v1, s_v1));

b_v3 = ((BoolSort)SetSort.notEquals(s_v1, s_v1));

s_v1 = ((SetSort)((b_v3).booleanValue() ? s_v1 : s_v1));

}

public static void main(String[] args) {

ioa.runtime.Automaton.main(new String[] {"Set01"});

}

}
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