
A Distributed Building Evacuation System

by

Dany M. Qumsiyeh

S.B., Massachusetts Institute of Technology (2007)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2008

c© Massachusetts Institute of Technology 2008. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

June 25, 2008

Certified by. .
Jacob S. Beal

Postdoctoral Associate
Thesis Supervisor

Certified by. .
Gerald J. Sussman

Panasonic Professor of Electrical Engineering
Thesis Co-Supervisor

Accepted by .
Arthur C. Smith

Chairman, Department Committee on Graduate Theses

2

A Distributed Building Evacuation System

by

Dany M. Qumsiyeh

Submitted to the Department of Electrical Engineering and Computer Science
on June 25, 2008, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

This thesis investigates the feasibility of a smart building evacuation system, capable
of guiding occupants along safe paths to exits and responding to changing threats.
Inspired by developments in amorphous computing, the design presented is scalable to
large networks, robust to hardware and communication failure, and based on simple
low-cost components. A simulation and hardware prototype demonstrate that this
distributed building evacuation system is both feasible and cost effective.

Thesis Supervisor: Jacob S. Beal
Title: Postdoctoral Associate

Thesis Co-Supervisor: Gerald J. Sussman
Title: Panasonic Professor of Electrical Engineering

3

4

Acknowledgments

I would like to thank:

My advisor, Jake Beal, for forcing me to settle on a topic, work on the topic that

I chose, and write about what actually I did, even when I vehemently opposed the

idea. His feedback was indispensable.

Gerry Sussman, for making everything seem okay. Jonathan Bachrach and Bill

Butera, for their inspiring work and guidance at the beginning of the project. Piotr

Mitros, for reminding me how control systems work. Mark Tobenkin, for always

tempting me with interesting problems.

My parents, for supporting me in everything that I do. My close friends, who

have cared about me and kept me going. And all the rest at TEP and East Campus,

for distracting me from my thesis in the best ways possible.

5

6

Contents

1 Introduction 13

1.1 Previous Work . 14

1.2 Proposal . 15

1.3 Outline . 17

2 Self-Healing Gradient 19

2.1 Review of Gradient Algorithms . 19

2.2 The Gradient Spanning Tree . 22

3 Phase Tracking 25

3.1 Relationship to Time Synchronization 26

3.2 Analysis and Simulation Methods . 29

3.3 Phase Correction . 30

3.3.1 Undamped Phase Correction 31

3.3.2 Damped Phase Correction . 33

3.4 Frequency Correction . 38

3.4.1 Proportional Control . 38

3.4.2 Proportional-Integral Control 45

3.5 Multipath Networks . 46

3.6 Summary . 48

7

4 Prototype & Simulation 51

4.1 Prototype Implementation . 51

4.1.1 Hardware . 52

4.1.2 Serial Multiplexing . 53

4.1.3 Communication Abstraction 55

4.1.4 Network Update . 56

4.1.5 Data Formats . 57

4.1.6 Results . 57

4.2 System Simulation . 62

5 Contributions 65

A Prototype Source Code 67

A.1 comsys.h . 67

A.2 comsys.c . 68

A.3 evacuation.app.c . 78

8

List of Figures

2-1 A gradient algorithm evaluated synchronously on a small network . . 20

2-2 A gradient algorithm responding to a change in the network 21

2-3 Spanning trees produced by gradient 23

3-1 A row of nodes producing moving pulses of light 26

3-2 Moving patterns of light can also be described by a striped function of

time and distance . 27

3-3 Three nodes in a chain using undamped phase correction 31

3-4 Light output using undamped phase correction 32

3-5 Phase error using undamped phase correction 32

3-6 Variance of phase error using undamped phase correction 34

3-7 Mean phase error using undamped phase correction 34

3-8 Light output and phase error using damped phase correction 35

3-9 Mean and variance of phase error using damped phase correction . . . 36

3-10 Light output using over-damped phase correction 37

3-11 Discrete-time control system for frequency correction 39

3-12 Light output and phase error using proportional control 40

3-13 Light output and phase error using proportional control with phase noise 40

3-14 Variance of phase error using proportional control with phase noise . 41

3-15 Light output using proportional control with an unstable gain 42

3-16 Closed-loop frequency response of a proportional controller 42

3-17 Group delay for a closed-loop proportional controller 44

9

3-18 Light output using proportional-integral control 45

3-19 Closed-loop frequency response of a proportional-integral controller . 46

3-20 Simulation snapshot of nodes in a grid using proportional control . . 47

3-21 Simulation snapshot of nodes in a grid using proportional control with

multiple neighbor contributions . 47

4-1 A prototype network on two breadboards 52

4-2 Three neighbor connection topologies 53

4-3 Three neighbor communication with software multiplexing 54

4-4 An example output of the virtual multiplexer 54

4-5 ATMega48 memory allocation . 57

4-6 Prototype output using undamped phase correction 59

4-7 Prototype output using proportional control 60

4-8 Simulation of a network installed in a building 63

10

List of Tables

4.1 Packet formats for serial communication 58

4.2 Price estimates for a possible implementation 61

11

12

Chapter 1

Introduction

Imagine an emergency system capable of guiding building occupants not just to the

nearest exit, but along the safest route, avoiding fire and damaged areas. Such systems

have been proposed before, but have daunting reliability issues: how likely is it for a

system failure to leave occupants with no directions out of a building, or—worse yet—

lead them in the wrong direction? Many patents describe smart evacuation systems

involving a central controller, where damage to a single point in the building could

undermine the entire system. Research in sensor networks promises much better

distributed solutions, where many smart nodes are connected across a building, so

that even when large areas are damaged, any remaining nodes continue to function.

I investigated an extreme in this design space: a network of very cheap and small

nodes, densely covering all areas of a building. This thesis focuses on algorithms for

smart guidance in such a system. I demonstrate the feasibility of a dense, distributed

evacuation system by showing that algorithms for dynamic guidance can be simple,

require very little hardware, and scale to very large networks.

If it is feasible to embed nodes in every ceiling or floor tile, then one might also

imagine computing elements small enough and cheap enough to be embedded into

paints and everyday materials, as suggested in paintable computing[6]. These pro-

grammable elements could create smart materials that sense or affect their envi-

13

ronment, like a paintable display or a bridge that monitors its own condition. By

exploring the idea of an evacuation system built into every floor tile, this research

also hopes to contribute to the compelling vision of paintable computing.

1.1 Previous Work

This section briefly describes standard fire evacuation systems and previously pro-

posed improvements. The next section then describes the system that I propose and

analyze in the remainder of the thesis.

Standard fire alarm systems[14] consist of smoke detectors and pull stations con-

nected to a central panel that triggers the alarm and provides status information.

Strobe lights and sirens alert building occupants, and lighted exit signs over doorways

and in hallways guide occupants to the nearest exit. The alarm system, emergency

lights, and exit signs may each have backup batteries to allow operation during a

power failure. Alert devices and smoke detectors are often connected in chains of mul-

tiple devices, or loops that can tolerate a single broken connection, but still present

the possibility that local damage to wiring—and especially the control panel—can

render many devices ineffective.

Many patents describe more intelligent egress systems, replacing exit signs with

indicators that can be controlled to redirect occupants. An early patent[15] suggests

sequential activation of lights and buzzers to direct people in the presence of smoke

or noise. Many other patents suggest central control systems that can receive sensor

input and redirect occupants using sequences of lights[4], light strips[21], tape with

embedded LEDs[20], exit and no-exit signs[12], or arrows[5].

These and many other patents (e.g. [16], [17]) all suggest systems of devices

connected to a central computer or control circuit, much like modern alarm panels.

This central device and the connections to it are a weak point where local damage

might render all occupants without guidance to an exit.

14

In the field of sensor networks, many systems have been developed that can oper-

ate effectively despite the loss of a few devices. This robustness is especially useful in

situations with harsh conditions, such as military or emergency applications. Building

evacuation is frequently mentioned in sensor network literature as a possible appli-

cation. For example, [11] outlines emergency situations that can benefit from sensor

networks and cites the Smart Signs system[9], which uses a wireless network of display

devices and personal tags to guide users to various destinations, including exits in

case of an emergency.

The Berkeley Fire Information and Rescue Equipment (FIRE) project[19] proto-

typed a distributed system for providing information to firefighters and enhancing

their communication. It includes a subsystem called SmokeNet, a wireless sensor

network that could be used for building evacuation. One description describes a

“stoplight” beacon that would be placed on both sides of every doorway to indicate

safe pathways. Such systems could be designed to operate effectively despite the loss

of a few nodes, providing a significant advantage over centralized systems.

Both the Smart Signs system and SmokeNet describe networks where devices are

installed at particular locations, like doorways, and have a large display or beacon

for indicating routes. These devices carry out complex tasks like message routing,

and in the Smart Signs system, computing individual paths for each user. This thesis

explores a different design choice: having much simpler devices in greater numbers

covering every space in a building.

1.2 Proposal

I explored the feasibility of a distributed and dense network of devices for providing

active guidance in a building fire. If the devices were cheap enough and small enough

to be embedded in every ceiling tile or floor tile, or woven into carpet, such a sys-

tem would provide unprecedented building coverage, redundancy, signal visibility, and

sensor information. The proposed system has thousands of these small computational

15

devices distributed and networked across a building. Each one has feedback, sens-

ing and communication capabilities, and a control device such as a microcontroller,

configurable logic, or a custom digital circuit.

To facilitate low cost and high volume production, nodes are identical, have few

components, and allow for wide performance variability. The system must be very

forgiving of node failures and manufacturing variations.

The nodes communicate locally to a small number of neighbors, simplifying com-

munication overhead and interconnect complexity. As often the case in sensor net-

works, nodes could communicate wirelessly, but in my analysis I assume wired con-

nections. The floor, ceiling, or carpet tiles of such a system might be designed to

allow conductivity between neighboring tiles, so that connections need not be wired

manually.

Nodes are connected only along building pathways and through open areas, so

that the building topology need not be programmed in. The system assumes that a

communication path from one node to another is also a feasible path for occupants.

Exits are indicated explicitly—via specially chosen nodes or a tag such as an electrical

jumper.

Each node has an indicator, such as one or more LEDs, and a small sensor, such

as a thermistor. The sensor will be used to both trigger the alarm, and measure the

threat when determining exit pathways. As these devices might be made much smaller

than a single exit sign or directional indicator, I explored the idea that the devices

instead cooperate to produce large-scale visual signals. Large, sweeping patterns of

light may be a promising alternative to exit signs, providing high visibility and little

ambiguity. Much of this thesis focuses on algorithms for producing coherent sequences

of light among many devices.

The design does not preclude input from pull-boxes for manual alarm triggering,

or smoke detectors and other traditional fire alarm equipment. Many other consider-

ations such as packaging, mounting, physical robustness and power distribution are

16

also important to the design of evacuation systems, but will not be covered. This the-

sis simply demonstrates the feasibility of such a system by showing that algorithms

for dynamic guidance can be simple, require very little hardware, and scale to very

large networks.

1.3 Outline

Chapter 2 shows how the self-healing gradient, a common building block in sensor

networks and amorphous computing, can determine safe paths towards exits and

adapt to changing network conditions. Chapter 3 then investigates how to produce

moving patterns of light along these paths, by having each node track the state of

the next node in the path. I show how damping is important for reducing errors in

the system, and how a strategy similar to phase-locked loops reduces the effects of

intermittent communication. Chapter 4 finally describes the prototype and system

simulation used to verify the algorithms and show that they are effective at building

evacuation.

17

18

Chapter 2

Self-Healing Gradient

The self-healing gradient is a common building block in sensor networks and amor-

phous computing[1] that approximates distances in a network. This chapter first

describes the algorithm and some useful variants, then explains how the spanning

tree produced by the gradient can be used to direct occupants towards exits.

2.1 Review of Gradient Algorithms

Gradient is an iterative algorithm that is evaluated on every node and computes

the distance1 in the network from each node to the nearest designated source node.

The “distance” computed might be a hop count, shortest path distance, or other

metric, but is often used as an approximation for geometric distance (for example, to

establish coordinate systems in a sensor network[2]). If nodes in an evacuation system

are installed at evenly spaced intervals, a simple hop count may suffice to determine

which exit is closer.

Figure 2-1 illustrates the evaluation of a gradient algorithm on nodes arranged in

a narrow space, like a hallway. The leftmost and rightmost nodes have been marked

1Note that the value computed is a scalar, rather than the vector field implied by a mathematical
gradient. The name actually refers to chemical gradients, which are smooth changes in concentration
over distance.

19

0
∞

∞

∞

0

∞
∞

∞
∞

∞
∞

∞

0
∞

1

1

0

∞
1

1
∞

∞
∞

∞

0
2

1

1

0

2
1

1
2

∞
∞

2

0
2

1

1

0

2
1

1
2

3
3

2

Figure 2-1: A gradient algorithm evaluated synchronously on a small network. Dark
nodes are marked as sources. Changed nodes at each stage are light gray. Source
nodes have value zero. At each iteration, every other node takes the minimum value
among its neighbors and increments it, computing a hop-count to the nearest source.

as source nodes, representing exits. Every node carries a gradient value, and the

algorithm iteratively updates this value based on the values of neighboring nodes.

These updates may happen asynchronously in a real system, but in this illustration,

all nodes are updated together. The source nodes always have a value of zero, and

every other node is initialized with a large value, shown as infinity in the figure,

indicating that no path to a source is known yet. At each iteration, a node updates

its value to the minimum value among its neighbors, incremented by one. When the

network is static, the gradient values converge to the distance in hop-counts of the

nearest source.

20

0
2

2

2

0

2
1

1
2

3
3

2

0
3

3

3

0

2
1

1
2

3
3

3

0
4

4

4

0

2
1

1
2

3
3

4

0
4

5

5

0

2
1

1
2

3
3

4

0
2

1

1

0

2
1

1
2

3
3

2

Figure 2-2: A gradient algorithm responding to a change in the network. The con-
nections to the rightmost node are removed at the first time step. At each step, every
node updates its value synchronously based on the previous values of its neighbors.
The gradient repairs in O(diameter) time.

21

The gradient algorithm described above is self-healing, in that it also adapts to

changes in the network. Figure 2-2 shows what happens if the rightmost node is

disconnected. In an amount of time proportional to the diameter of the network, the

nodes update to represent the new distances to the source.

Many variations on this basic algorithm are applicable to building evacuation.

If nodes are irregularly spaced, distance estimates at each hop can be incorporated

to better approximate euclidean distance. In a wireless system, for example, signal

strength could be used to estimate distances. Rather than incrementing the minimum

value among its neighbors, each node would add the approximate distance to that

neighbor to get a new gradient value.2

Threat avoidance algorithms[7] are another variation of gradient that incorporates

a threat model to compute the safest path to a source. Rather than propagating a

value representing distance, nodes can propagate a probability of survival that is

multiplied along the path. Given a probability of survival at every node (based

on sensor readings and a threat model), this algorithm can compute a maximum

probability of survival path. Eames[7] even suggests that such an algorithm could

find escape routes in a burning building.

2.2 The Gradient Spanning Tree

In the proposed evacuation system, each exit is marked with a single source node,

and a threat avoidance-based gradient is used with temperature sensors to determine

a probability of survival.

The phase tracking algorithms described in Chapter 3 do not use the gradient value

directly, but rather the information about which neighbor had the minimum distance

value (or maximum likelihood of survival). This indicates which neighbor is next

along the safest path to the exit, and overall describes a spanning tree representing

2This form of gradient may converge very slowly in a self-healing context, due to a problem
with closely spaced nodes. Beal et al. described this rising-value problem and presented the CRF-
Gradient, a variation that provably reconfigures in O(diameter) time[3].

22

0
2

1

1

0

2
1

1
2

3
3

2

0
2

1

1

0

2
1

1
2

3
3

2

Figure 2-3: Spanning trees produced by gradient propagation. From each node, an
arrow is drawn towards the neighbor with minimum gradient value. Ties are broken
arbitrarily, so in this network there are many possible spanning trees, two of which
are shown.

the propagation of the gradient, as shown in Figure 2-3. If there is a tie between two

neighbors, either may be chosen; the prototype implementation chooses the neighbor

most recently updated.

Each node tracks the neighbor ahead of it to determine when to blink its light,

such that the patterns of light flow towards the exits. Chapter 3 investigates the

properties of the tracking algorithm that are necessary to ensure coherent patterns

of light across very large networks.

23

24

Chapter 3

Phase Tracking

Given spanning tree information from the gradient, the evacuation system uses a

strategy of phase tracking to produce coherent patterns of light. This chapter ana-

lyzes a number of possible phase tracking techniques, and shows how damping and

frequency correction are important properties for producing patterns across very large

networks.

Figure 3-1 shows a single row of nodes producing moving pulses of light. Each

node blinks its light at a regular rate, and the blinking is offset by a constant amount

at each node, producing moving pulses of light. The blinking is tracked at each node

by a phase value, θ, which cycles from 0 to 2π. When θ is below some threshold, the

light is turned on.

Each node tracks the phase of the node ahead of it—the neighbor closest to the

exit or next along the safest path—and attempts to keep a fixed phase offset from

its neighbor. Some seemingly straightforward algorithms for phase tracking do not

perform well with unreliable communication and variations in clock rate, and create

less coherent patterns of light in larger networks. I found that damping is important

for reducing the effect of these phase errors; particularly, the tracking algorithm

should provide damping on all frequencies. The strategy used in phase-locked loops

satisfies this condition, and works well in producing stable patterns of light.

25

0 2 4 6 8 10 12 14
node / distance to source

time

0

1

2

3

4

5

6

7

θ=0

2π/5

4π/5

6π/5

8π/5

θ=2π

Figure 3-1: A row of nodes shown at many instants in time, producing moving pulses
of light. The leftmost node is marked as a source, so the pulses move to the left. Each
node pulses at a regular rate with a phase offset from its neighbor. Phase values are
shown for the rightmost node.

The phase tracking problem is related to the problem of time synchronization.

Section 3.1 first motivates the phase tracking strategy by comparing it to time syn-

chronization techniques that might also solve the problem. Section 3.2 then explains

the simulation methods and assumptions. Section 3.3 analyzes basic techniques for

correcting phase directly, and demonstrates the need for damping. Section 3.4 ana-

lyzes feedback-based techniques for adjusting the frequency of the phase cycle instead,

and shows why damping is necessary across all frequencies. These phase tracking

techniques are analyzed using large-scale simulations, and in some cases verified on a

small prototype system, described in Chapter 4.

3.1 Relationship to Time Synchronization

The strategy of phase tracking can be considered a form of time synchronization

performed along the gradient spanning tree. Indeed, any solution to the problem of

26

tim
e

distance to exit

Figure 3-2: Moving patterns of light can also be described by a striped function of
time and distance to the exit. A row of nodes is shown at one instant in time, and
nodes that fall on a shaded stripe have their light on. An approach related to phase
tracking could use time synchronization to determine the current time, a gradient
to approximate the distance to the exit, and this striped function to determine light
output.

time synchronization can be used to create the same patterns of light. If the current

time is known, and the gradient approximates the distance to the exit, then the

moving pulses of light can be defined by the striped function shown in Figure 3-2.

This section compares the phase tracking solution to previous techniques for time

synchronization.

Traditional approaches to time synchronization, such as the Network Time Pro-

tocol (NTP) and Global Positioning System (GPS), favor accuracy over simplicity

and low cost. Sivrikaya and Yener[18] point out that the complexity and cost of these

approaches makes them unsuitable for sensor networks. GPS requires expensive hard-

ware, and would not work well indoors. NTP requires complex agreement algorithms

and the infrastructure to route messages to a small number of time servers.

Mirollo and Strogatz[13] present a compelling decentralized algorithm for synchro-

nization, inspired by the way fireflies synchronize their flashes. They prove that a

27

simple behavior, where an oscillator is more likely to fire after observing pulses from

other oscillators, will always converge to synchronized firing in a fully connected net-

work. Lucarelli and Wang[10] showed that it also converges in multi-hop networks.

Given the synchronized phase information from this algorithm, a phase offset could

easily be computed from the gradient value to produce the desired pattern of lights.

This strategy is promising, but its convergence time is potentially unbounded, and

it may not converge quickly in a building evacuation scenario. Lucarelli and Wang

show an upper bound on the rate of convergence that is proportional to the algebraic

connectivity of the graph—a parameter that is large for dense graphs, but small for

sparse graphs. A network of nodes arranged along hallways in a building, where many

nodes are connected in long chains, would have a very small algebraic connectivity

and may take a long time to converge. This algorithm may provide a good way to

keep nodes synchronized, though, and should be explored further.

Greunen and Rabaey[22] propose lightweight tree-based synchronization (LTS)

methods, where a spanning tree is constructed from a node with an accurate mea-

sure of time, and pairwise synchronizations are performed along the branches. This

approach compromises between the expensive and centralized systems and the po-

tentially slow distributed solution, and specifically targets large multi-hop networks

like this evacuation system. However, the pairwise synchronization method that they

propose is very similar to the undamped phase correction analyzed in Section 3.3.1,

and may have consistency problems in large networks.

The proposed evacuation system uses a strategy similar in form to LTS, performing

synchronization along a spanning tree, but has some differences. The gradients from

the exits in this system imply separate spanning trees for each exit, but this is okay;

coherent signals towards each exit are more important than global synchronization

across the building. Also, this system performs synchronization continuously, whereas

the LTS methods suggest separate stages for forming a spanning tree and performing

synchronization. Synchronization is performed with every transmission, because the

28

gradient may change constantly with sensor readings or broken connections.

The phase tracking algorithms studied could easily be converted to time synchro-

nization algorithms by performing operations with an unwrapped phase1, but the

phase-based approach offers some advantages over using time synchronization:

• The cyclic phase value can be restricted to a small number, more easily handled

and communicated by a small microcontroller. The prototype in Chapter 4, for

example, uses a 16-bit phase value on an 8-bit microcontroller.

• The gradient value need not represent the distance to the exit. For example,

threat avoidance algorithms use a value representing probability of survival,

where the neighbor with the highest value represents the next node in the chain.

Because a phase offset is introduced at every node, the phase tracking algorithm

doesn’t require a hop-count calculation.

3.2 Analysis and Simulation Methods

The algorithms below are tested by simulating a long chain of nodes synchronously,

while modeling different sources of error. A simple chain of nodes provides a good

characterization of the behavior of these algorithms because of the directional flow

of information in a network: phase information always propagates outward from the

source nodes. In a static gradient, then, each branch of the gradient spanning tree

can be analyzed separately, and behaves the same way as an isolated chain of nodes.

The simulation models problems caused by clock error, but evaluates nodes in a

globally synchronous manner. In a real system, nodes repeatedly process received

information from neighbors and update their own values at a regular rate, but do

so asynchronously between nodes. Because of clock rate differences, some nodes

1Unwrapped phase is a term used in signal processing, where the phase of a complex signal is
plotted with values beyond 2π instead of cycling back to zero. For the algorithms in this chapter,
phase is not part of a complex signal, and calculations with an unwrapped phase may behave
differently than with a cyclic phase. The simulations use an unwrapped phase, but I assume that
their behavior in the relevant regime is still indicative of the behavior of the cyclic version.

29

may update faster than others. In the simulation, all nodes are updated at once,

and these asynchronous effects are approximated by scaling the values at each node

appropriately. For example, phase values at each node would be incremented by

different amounts based on the node’s clock error.

There are many possible sources of error in an actual system. Except where noted,

the simulations only model clock error and intermittent communication, suspected to

be the primary challenges to algorithm scalability. In a physical system, problems may

also be caused by integer rounding errors in calculation, effects from asynchronous

updates, variation in clock rates over time, or variation in communication delays.

However, the noise introduced by clock error and intermittent communication seems

to be enough to characterize the phase tracking algorithms studied and their behavior

in the face of uncertainty.

Clock error is modeled by choosing random clock rates for each node, uniformly

distributed over ±10%. This 10% bound reflects the specification for the internal

RC oscillators used in the prototype (Chapter 4). Intermittent communication is

modeled by allowing each node to receive data in a time step with only 1/3 reliabil-

ity. This figure reflects the idea that each node multiplexes communication between

three neighbors, as described in Section 4.1.2. However, these error rates are not

intended to closely match the behavior of the prototype. Rather, they are used to

determine whether the phase tracking algorithms degrade in performance over large

networks, given any amount of error. This study is concerned with the scalability of

the algorithms, independent of specific parameters or constants.

3.3 Phase Correction

One obvious phase tracking strategy is for each node to correct its own phase directly.

Because clock rates differ between nodes, they will have to repeatedly perform this

correction to avoid drifting out of sync. Below, I analyze a simple correction method,

then show the advantage of damping on error propagation.

30

A B C
source

time

ph
as

e
(u

nw
ra

pp
ed

)

A

B

time

ph
as

e
(u

nw
ra

pp
ed

) B
C

Figure 3-3: Three nodes in a chain using undamped phase correction to synchronize,
where node B has a much slower clock than the others. Arrows mark times when
messages are received. Irregular communication combined with clock variation causes
phase jitter, which may grow worse farther away from the source.

3.3.1 Undamped Phase Correction

First, consider the simplest method of correcting a node’s phase: each time a new

value is received from the target neighbor, simply reset the phase to the new value,

adjusted by the desired offset. Figure 3-3 shows an example plot of this undamped

phase correction running on a few nodes with an exaggerated difference in clock rates.

The plot shows how the combination of irregular communication and clock variations

can cause phase jitter, which might disrupt the pattern of lights.

A real system wouldn’t have such extreme variation in clock rates, but might have

nodes that are hundreds of hops away from an exit. What happens when this effect is

compounded many times over? Figure 3-4 shows the light output from a simulation

of 300 nodes in a chain, revealing discontinuities in the pattern of lights.

Why do these discontinuities appear? Figure 3-5 shows the phase error from the

same simulation, revealing the pattern of error propagation. One can almost follow

31

node

tim
e

st
ep

Light output using undamped phase correction

50 100 150 200 250 300

50

100

150

200

250

300

Figure 3-4: Light output from a simulation of undamped phase correction on a chain
of 300 nodes, with the leftmost node (zero) marked as a source. Note that stripes
move to the left, but frequent discontinuities appear farther from the source due to
accumulated clock error.

node

tim
e

st
ep

Phase error using undamped phase correction

50 100 150 200 250 300

50

100

150

200

250

300

−3

−2

−1

0

1

2

3

4

Figure 3-5: Unwrapped phase error for the simulation run in Figure 3-4. Note that
errors tend to propagate outward without diminishing, causing steep discontinuities.

32

the path of a single phase value as it propagates; when values linger on nodes with

slow clock rates, they create deepening valleys that continue down the chain, while

other values drift in the opposite direction.

The variance of phase error provides a useful measure of the quality of the light

pattern.2 Figure 3-6 shows that this variance grows linearly with the distance to the

source, indicating larger discontinuities.

The mean phase error indicates consistent offsets between one node and another.

Figure 3-7 shows that the mean varies with trends in the clock deviations; many slow

clocks along a path will cause the phase to lag behind.

The phase error plot in Figure 3-5 also reveals the rate at which phase updates

propagate, indicating how quickly the system would respond to a change in the net-

work. As expected from the 1/3 probability of communication each time step, changes

propagate at about one node every three time steps.

3.3.2 Damped Phase Correction

Consider instead a system with some damping, where phase values gradually mix

from one node to another. Conceptually, a node would take only a proportion K of

its phase from the neighbor’s phase, and the rest from its previous phase. Here, θ[n]

is the node’s phase at time n, φ[n] is the phase received from the neighbor, θoff is the

target phase offset from the neighbor, and ∆θ is the default rate of progression (the

rate if this node’s clock were accurate):

θ[n+ 1] = K(φ[n] + θoff) + (1−K)θ[n] + ∆θ (3.1)

Thus, K = 1 represents an undamped system, and smaller values of K indicate

greater damping. This equation doesn’t work properly when the phase is cyclic,

though. To ensure that correction is applied in the right direction for a cyclic phase,

2A low variance suggests a stable pattern, but note that a high variance does not always imply
a noisy pattern; a slowly drifting phase may have high variance but still be acceptable.

33

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

distance to source

va
ria

nc
e

of
 p

ha
se

 e
rr

or

Variance of phase error with undamped phase correction

Figure 3-6: Variance of phase error using undamped phase correction, over 5,000 time
steps. The variance grows linearly with the distance to the source, indicating that
light patterns will become less coherent farther from the exit.

0 50 100 150 200 250 300
−2

−1

0

1

2

distance to source

m
ea

n
ph

as
e

er
ro

r

Mean phase error with undamped phase correction

0 50 100 150 200 250 300
−1

−0.5

0

0.5

1

in
te

gr
al

 o
f c

lo
ck

 e
rr

or

Figure 3-7: Mean phase error using undamped phase correction, averaged over 5,000
time steps. The mean closely follows the integral of the clock errors, which plots for
each node n the sum of the clock deviations for nodes 1 through n.

34

node

tim
e

st
ep

Light output using damped phase correction with K=0.9

50 100 150 200 250 300

50

100

150

200

250

300

node

tim
e

st
ep

Light output using damped phase correction with K=0.5

50 100 150 200 250 300

50

100

150

200

250

300

node

tim
e

st
ep

Phase error using damped phase correction with K=0.9

50 100 150 200 250 300

50

100

150

200

250

300

−2

−1

0

1

2

3

node

tim
e

st
ep

Phase error using damped phase correction with K=0.5

50 100 150 200 250 300

50

100

150

200

250

300

−2

−1

0

1

2

3

4

Figure 3-8: Light output and phase error using damped phase correction with K = 0.9
(left) and K = 0.5 (right). The damping causes phase values to blend together,
reducing discontinuities.

we can factor out the phase error θerr[n] = φ[n] + θoff− θ[n] and shift it by a multiple

of 2π such that −π ≤ θerr[n] < π. The update equation becomes:

θ[n+ 1] = θ[n] + ∆θ +Kθerr[n] (3.2)

Running two simulations of damped phase correction with K = 0.9 and K = 0.5

shows that even a little damping greatly reduces the appearance of discontinuities

(Figure 3-8).

Figure 3-9 shows that the variance of phase error drops significantly, even for

K = 0.9. The variance also seems to grow at a sub-linear rate. However, damping

35

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

distance to source

va
ria

nc
e

of
 p

ha
se

 e
rr

or

Variance of phase error with damped phase correction

K=1.0
K=0.9
K=0.5

0 50 100 150 200 250 300
−3

−2

−1

0

1

2

3

4

distance to source

m
ea

n
ph

as
e

er
ro

r

Mean phase error with damped phase correction

K=1.0
K=0.9
K=0.5

Figure 3-9: Mean and variance of phase error using damped phase correction, over
5,000 time steps. The variance decreases dramatically with damping, but the mean
drifts farther at each node.

slows the propagation of phase values, allowing the mean phase error to drift farther.

The large differences in mean phase error indicate that nodes are not achieving the

desired phase offset from their neighbor.

The phase error plots in Figure 3-8 show that the propagation rate approximates

Kp, where p is the communication probability: for K = 0.5, changes travel about

one node every six time steps.

Over-damping

The variation in mean phase error suggests a lower bound on K: for a very small K,

a slow node might lag so far behind it’s neighbor that it blinks after the node closer

to the source. This means the pulse might appear to be going in the wrong direction!

Figure 3-10 shows an example of an over-damped system.

To find this lower bound, consider a slow node tracking a target phase φ[n],

progressing at constant rate ∆φ. With a communication probability p, assume the

average case where updates occur regularly with interval 1/p. The phase lag developed

36

node

tim
e

st
ep

Light output using damped phase correction with K=0.1

50 100 150 200 250 300

50

100

150

200

250

300

Figure 3-10: Light output using over-damped phase correction, where K = 0.1.
Because phase values propagate so slowly, clock variations have enough influence to
make the patterns go in the wrong direction.

during one update interval is:

∆φ

p
− ∆θ

p
= ∆θ

r − 1

p
r =

∆φ

∆θ
= clock ratio

fsrc

f
(3.3)

Assuming that the phase of every node is progressing steadily, the rate at ev-

ery node should match the rate at the source, so the ratio r can be computed by

dividing the source’s clock frequency by that of the node in question. In steady

state, the phase lag per update interval matches the correction applied by the update

(θ[n+ 1]− θ[n]−∆θ):

∆θ
r − 1

p
= θ[n+ 1]− θ[n]−∆θ (3.4)

Using the update equation (3.2):

∆θ
r − 1

p
= Kθerr[n] (3.5)

37

We would like to ensure that θerr[n] < θoff so that this node blinks before its neighbor:

∆θ
r − 1

Kp
= θerr[n]

∆θ
r − 1

Kp
< θoff

∆θ

θoff

r − 1

p
< K (3.6)

This provides a lower bound on K. In the simulation, for example, we have

p = 1/3, ∆θ = π/5, θoff = π/5, and in the worst case r = 1.1/0.9. Thus, we should

prefer K > 2/3. Also, note that the quantity ∆θ/θoff represents the target speed of

the pulses in nodes per time step: the number of nodes between pulses is 2π/θoff,

and the target number of time steps per cycle is 2π/∆θ. Thus, the equation also

represents an upper bound on the pulse speed: even with K = 1, nodes producing

fast-moving pulses might lag far enough in an update interval to blink at the wrong

time.

3.4 Frequency Correction

The phase jitter seen in Section 3.3 seems to be caused by the frequent updates

required to correct the drift between different clocks. What if each node corrects

its frequency instead? This creates a control system where phase error determines a

frequency correction, and the integral of the frequency produces a new phase. Figure

3-11 shows a discrete-time diagram of this system.

3.4.1 Proportional Control

A proportional control strategy modifies the rate at which θ[n] progresses in propor-

tion to the phase error:

θ[n+ 1]− θ[n] = ∆θ +Kθerr[n] (3.7)

38

θ[n]delay+
–

ϕ[n]

θoff

θerr[n] controller +
+

Δθ

θ[n+1]

Figure 3-11: Discrete-time control system for frequency correction. The phase error
is fed through the controller’s transfer function and modifies the natural rate ∆θ at
which θ[n] progresses. A running sum of the rate produces a new phase value.

This same principle is used in the phase-locked loop, a common electronic circuit

used to control clock signals. Note also that this update equation is equivalent to that

of damped phase correction in Equation 3.2. The only difference between these two

strategies is that when no new phase value is received, damped phase correction incre-

ments the phase at the node’s default rate (∆θ), while proportional control continues

to increment the phase at the rate determined by the last error measurement.

The light output from a simulation, shown in Figure 3-12, demonstrates that

the proportional control strategy produces steady patterns of light. The phase error

reveals that the pattern is perfectly steady over time, but phase offsets between nodes

still vary.

The phase error may not be perfectly stable in a real system, though. Consider

variations in communication delay; the asynchronous timing between neighboring

node updates may introduce unknown delays. We can approximate these effects by

introducing variations in the phase values received from neighbors, as if the values

were transmitted at slightly different times. Figure 3-13 shows the phase variations

introduced by a ±5% phase noise. These variations are small compared to the average

phase error at each node, so the plot shows only deviations from the average at each

node. The figure shows patterns of error propagation similar to those seen with

damped phase correction in Figure 3-8.

39

node

tim
e

st
ep

Light output using proportional control with K=0.1

50 100 150 200 250 300

50

100

150

200

250

300

node

tim
e

st
ep

Phase error using proportional control with K=0.1

50 100 150 200 250 300

50

100

150

200

250

300

−8

−6

−4

−2

0

2

4

Figure 3-12: Light output and phase error using proportional control with K=0.1.
The light pattern is perfectly steady over time, but shows varying offsets between
nodes.

node

tim
e

st
ep

Light output using proportional control with K=0.1 and +/− 5% phase noise

50 100 150 200 250 300

50

100

150

200

250

300

node

tim
e

st
ep

Phase variation per node using proportional control with +/− 5% phase noise

50 100 150 200 250 300

50

100

150

200

250

300

−1

−0.5

0

0.5

1

1.5

Figure 3-13: Light output (left) and difference between the phase error and mean
phase error per node (right), for proportional control with K = 0.1 and ±5% phase
noise added to every received value. With the much larger mean phase error removed,
a pattern of error propagation is visible on the right, but the errors do not significantly
affect the light output.

40

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

distance to source

va
ria

nc
e

of
 p

ha
se

 e
rr

or

Variance of phase error using proportional control with +/− 5% phase noise

K=0.15
K=0.10
K=0.05

Figure 3-14: Variance of phase error using proportional control with ±5% phase
noise, over 5,000 time steps. The variance increases with distance, but is smaller with
greater damping.

Figure 3-14 shows that the variance of phase error increases with distance, but is

small and drops quickly with a smaller gain. The simulations show that proportional

control eliminates the variance caused by irregular communication, but communica-

tion delays do cause errors that propagate down the chain. These errors should not

be significant if communication delays are small compared to the period of the light

cycle.

Stability

With high enough gain, phase-locked loops such as this one are unstable, and can

even show chaotic behavior[8]. Even in the regime where a single controller is stable,

though, this system of many controllers in a chain can misbehave. Figure 3-15 shows

a simulation of an unstable3 system with K = 0.3.

3I’m using the term “unstable” loosely. If a single controller is stable, a finite chain of them will
also be stable. However, a long chain may amplify noise so much that the pattern breaks down
completely. The system is unstable in the sense that the response cannot be bounded as the length
of the chain increases.

41

node

tim
e

st
ep

Light output using proportional control with K=0.3 and +/− 0.001 phase noise

50 100 150 200 250 300

50

100

150

200

250

300

Figure 3-15: Light output using proportional control with an unstable gain of K = 0.3
and ±0.001 phase noise. Gain values approaching the probability of communication
(1/3) are unstable after many nodes.

M
ag

ni
tu

de
 (

dB
)

10
−4

10
−3

10
−2

10
−1

10
0

10
1

−30

−25

−20

−15

−10

−5

0

5

10

15

Closed−loop frequency response of proportional controller

Frequency (rad/sec)

K=0.1
K=0.9
K=1.1

Figure 3-16: Bode magnitude plot of the closed-loop proportional controller, showing
the frequency response between the received phase and the phase of the node itself,
assuming perfect communication. A gain of K > 1 creates amplification of high
frequencies near the Nyquist rate (vertical line). When many nodes are chained
together, even a small amount of amplification causes instability.

42

To understand this instability, consider the frequency response of a node’s phase

to its input, shown in Figure 3-16. With perfect communication, gains of K > 1

create amplification of some frequencies. When many of these controllers are chained

together, any noise on those frequencies gets amplified many times and causes the

pattern to break down. With unreliable communication, consider a system sampled

at the average update interval 1/p. This scaled system is equivalent to a propor-

tional controller with gain K/p, suggesting that stability requires K/p < 1. Thus,

the system with unreliable communication should be unstable when K approaches p.

Over-damping

Like with damped phase correction, the proportional controller can be over-damped

such that the lights blink out of order. Consider the steady-state condition where the

controller matches the target rate ∆φ:

∆φ = ∆θ +Kθerr[n] (3.8)

To make sure the nodes blink in the correct order, we need θerr[n] < θoff, so:

∆φ−∆θ = Kθerr[n]

r∆θ −∆θ = Kθerr[n]

∆θ
r − 1

K
= θerr[n]

∆θ
r − 1

K
< θoff

∆θ

θoff

(r − 1) < K (3.9)

This lower bound on K is just like that of damped phase correction, but without de-

pendence on the communication probability p. For the parameters of the simulation,

the bound shows that we should prefer K > 0.22.

43

Propagation Rate

The patterns of error in Figure 3-13 suggest that a proportional controller with K =

0.1 would propagate changes at a rate of one node every 10 time steps. We can define

the propagation rate by looking at the group delay of the controller, shown in Figure

3-17. A measure used in signal processing, group delay uses phase information to

compute the time delay imposed on each frequency passed through a linear system.

The plot shows that a single node will delay low frequencies by up to 1/K samples. So,

we can expect changes in the system to propagate at K nodes per time step. This is

again similar to damped phase correction, without depending on the communication

probability.

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

7

8

9

10

Frequency (rad/sample)

G
ro

up
 d

el
ay

 (
sa

m
pl

es
)

Group delay for closed−loop proportional controller

K=0.1
K=0.2
K=0.3

Figure 3-17: The group delay for the closed-loop proportional controller shows the
amount of time that each frequency is delayed by a single node. The values for very
low frequencies indicate the rate at which changes will propagate in the evacuation
system.

44

node

tim
e

st
ep

Light output using proportional−integral control with Kp=0.1, Ki=0.001

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

node

tim
e

st
ep

Light output using proportional−integral control with +/− 0.0001 phase noise

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

Figure 3-18: Light output using proportional-integral control with Kp = 0.1 and
Ki = 0.001. On the left, the pattern devolves after 400 nodes due to the build-up of
small rounding errors in the calculations. On the right, even a small amount of phase
noise greatly reduces the stable region. Though the proportional-integral controller
itself is stable, a long chain of them is unstable in the presence of noise.

3.4.2 Proportional-Integral Control

Proportional control produces stable patterns of light, but with varying offsets at each

node. In control systems, a common strategy for removing this steady-state error is to

add an integral term to the controller. In a discrete time system, this means keeping

a running sum of the phase error:

θ[n+ 1]− θ[n] = ∆θ +Kpθerr[n] +Ki

n∑
t=0

θerr[t] (3.10)

Figure 3-18 shows a simulation with a small integral constant of Ki = 0.001. The

pattern is nearly perfect for more than 300 nodes, but suddenly devolves into chaos.

The frequency response of the controller, shown in Figure 3-19, explains this effect.

With the introduction of any integral term, the frequency response shows resonance,

where some frequencies are slightly amplified. When many of these controllers are

chained together, any noise on those frequencies gets amplified and causes the light

pattern to break down.

45

10
−4

10
−3

10
−2

10
−1

10
0

10
1

−30

−25

−20

−15

−10

−5

0

5

M
ag

ni
tu

de
 (

dB
)

Closed−loop frequency response of P−I controller with Kp=0.1

Frequency (rad/sec)

Ki=0
Ki=0.001
Ki=0.01

Figure 3-19: Bode magnitude plot of the closed-loop proportional-integral controller.
Any integral term introduces resonance at some frequencies, where the output mag-
nitude is larger than the input. When many of these controllers are chained together,
any noise on those frequencies gets amplified and causes the light pattern to break
down.

3.5 Multipath Networks

The simulations show that a proportional control strategy for phase tracking can pro-

duce a steady pattern of lights in a chain of nodes along the path to an exit. Multiple

paths are not necessarily synchronized with each other, though. In an extremely

dense network, such as one with nodes in every floor tile, this may be confusing.

Figure 3-20 shows a simulation of many nodes in a grid, where each row has

established a stable pattern, but the rows are not synchronized with each other. One

possible solution is to incorporate the phase error of neighbors on other paths. For

example, neighbors with the same hop-count (according to gradient) are likely on

adjacent exit paths, and should be synchronized. Consider a modified proportional

control algorithm, where N is the set of neighbors with the same hop-count as the

node in question:

46

node x

no
de

 y

Simulation snapshot of nodes in a grid with proportional control

0 10 20 30 40 50 60 70
0

10

20

30

40

50

Figure 3-20: Simulation snapshot of nodes connected in a 60x80 grid, with the leftmost
column of nodes as a synchronized source. Using proportional control with K = 0.1,
each row produces a regular pattern, but the rows are not synchronized with each
other.

node x

no
de

 y

Simulation snapshot of nodes in a grid with neighbor contribution

0 10 20 30 40 50 60 70
0

10

20

30

40

50

Figure 3-21: Simulation snapshot of nodes in a grid using proportional control with
multiple neighbor contributions. The leftmost column is a synchronized source. Each
node is affected by its error with respect to upper and lower nodes with gain KN =
0.02, causing adjacent paths to synchronize.

47

θ[n+ 1]− θ[n] = ∆θ +Kθerr[n] +KN

∑
i∈N

(φi[n]− θ[n]) (3.11)

Figure 3-21 shows a simulation of this algorithm, with K = 0.1 and KN = 0.02.

Adding this small error contribution from adjacent paths causes the rows to synchro-

nize. The nodes produce coherent waves of light sweeping towards the source.

More analysis of these complex networks is needed, but these initial simulations

suggest that simple modifications to the phase tracking techniques can produce co-

herent patterns in a network as dense as the floor tiles of a building. The waves of

light shown in Figure 3-21 would be a compelling and unambiguous evacuation guide.

3.6 Summary

This chapter presents many strategies for phase tracking, where each node along a

path tracks the phase of the node ahead of it. I show that damping and frequency

correction are important properties for producing steady patterns of light in large

networks, despite clock variations and unreliable communication. Damping reduces

the variance of phase error and smooths out discontinuities in the patterns of light,

and frequency correction removes the variance caused by irregular communication

intervals.

A proportional control strategy similar to a phase-locked loop has these two prop-

erties, and produces steady patterns of light in simulations of hundreds of nodes. I

show that the gain should be chosen in the range ∆θ
θoff

(r− 1) < K < p for a stable and

correct pattern, and that changes in the network will propagate at approximately K

nodes per time step.

I analyze the stability of these systems by considering an analogous linear control

system operating on an unwrapped phase. If the closed-loop frequency response of a

node shows amplification of any frequencies, then the system will be unstable with a

sufficiently large network, as any noise on those frequencies will get amplified many

48

times. For example, a proportional-integral controller amplifies some frequencies,

causing the pattern to break down after many nodes.

Other strategies for the evacuation system should still be explored. For example,

the firefly algorithm[13] may be a good way to keep the network synchronized. To

combat long convergence times, the algorithm could perhaps be bootstrapped at

start-up by a tree-based synchronization. This chapter shows, though, that phase

tracking is a reasonable strategy for an evacuation system. Proportional control in

particular seems effective on very large networks, and can be modified to produce

synchronized patterns in dense networks with many adjacent paths.

49

50

Chapter 4

Prototype & Simulation

I verified the feasibility of the proposed evacuation system with a simple prototype and

a system-level simulation. The prototype platform shows both that the proportional

control algorithm works with real-world errors and variability, and that the overall

system is feasible with extremely limited hardware. The system-level simulation

shows that the technique of sequentially pulsing lights makes sense in the context

of a building, and that the overall system achieves the goal of guiding occupants to

safety, even in the face of changing threats.

4.1 Prototype Implementation

The prototype was designed to challenge the robustness of the light synchronization

algorithms. It has only the necessary components to produce sequences of lights,

and is missing many features that a complete system would need, but still provides

a useful example to help estimate the costs and requirements of a real system.

The design of the prototype does not take into account many reliability concerns,

such as power supply issues and shorts. The prototype demonstrates unreliable com-

munication, but the only failures considered are symmetric communication failures

and the complete failure of a node, as if it were removed from the system.

51

Figure 4-1: A prototype network on two breadboards. The only components for each
node are an ATmega48 microcontroller and a red and green LED with resistors. Here,
the six nodes are connected in a simple chain, displaying a test pattern.

4.1.1 Hardware

Figure 4-1 shows a prototype network of six nodes. Each node carries an ATmega48—

a simple 8-bit microcontroller with 4KB of program memory. The self-programmable

flash allows a boot-loader to be implemented, making program updates easy and

simplifying algorithm development.

The prototype uses the internal RC oscillator of the ATmega48 for its clock.

This choice saves the cost and component space of an external oscillator or crystal,

and provides a harsh test of the algorithm’s robustness. The internal oscillator is

calibrated at the factory to 8 MHz ±10%.1

The nodes each have a red and a green LED. One LED is intended to be the

primary indicator for exit paths, while the second is used for debugging.

Each node may have wired connections to at most three neighbors, limiting com-

munication complexity and hardware costs. While fewer than three neighbors would

obviously restrict the network topology, Figure 4-2 shows that three neighbor topolo-

gies might suitably occupy hallway intersections, ceiling or floor tiles, and open spaces.

To further simplify the communication system, we assume that all messages are

broadcast so that any neighbor can hear them. In the prototype, a single serial output

1The nodes must be further calibrated within ±5% for serial communication. There is an oscil-
lator calibration register that allows the clock rate to be calibrated to any frequency in the range
7.3-8.1 MHz within ±2% accuracy.

52

Figure 4-2: Three neighbor connection topologies. While restrictive, nodes limited
to three neighbor connections can still be wired through hallway intersections (left),
ceiling or floor tiles (center), and open space (right).

line is connected directly to all three neighbors. This assumption would also fit well

with wireless systems, which are inherently broadcast-based, removing the need for

additional communication layers.

The microcontroller code is organized into two sections: a communication system

that abstracts information sharing between neighbors and manages program updates,

and application code that evaluates the particular evacuation algorithm. The func-

tions of the communication system are described below.

4.1.2 Serial Multiplexing

Like many microcontrollers, the ATmega48 includes a hardware USART (Universal

Synchronous Asynchronous Receiver Transmitter) that handles the timing and bit op-

erations necessary for RS232 serial communication, relieving the CPU of the task. For

the prototype, this single serial communication line is multiplexed between the three

neighbors. This allows the prototype to take advantage of the built-in hardware, but

implies that only one neighbor can be heard at once, and that many communication

packets may be lost.

Figure 4-3 illustrates a conceptual arrangement for multiplexing this hardware.

The single output pin is wired to all three neighbors directly. The multiplexer (mux)

depicted in the figure is not a hardware mux, but represents the behavior of some

53

MCU

USART

Neighbor A

Neighbor B

Neighbor C

Figure 4-3: Three neighbor communication with software multiplexing. The mux
represents the behavior of interrupt routines in firmware. The USART is a hardware
module connected to two external pins. Input is received from the neighbors on three
separate pins, and routed through an external connection to the input of the USART.
The output pin of the USART (dotted line) is connected to all three neighbors.

Output A0 C0 B1

Neighbor A

Neighbor B

Neighbor C

A0 A1

B1B0

C0 C1

A2

C2

C2

Figure 4-4: An example output of the virtual multiplexer plotted over time, given
simultaneous inputs from three neighbors. During shaded regions, a message is be-
ing transmitted. The system switches to the first available transmission, but never
interrupts a message or joins the middle of a one.

54

small interrupt routines triggered on three input pins. When the value on any of

the three incoming wires changes, an interrupt is triggered that copies the change to

an output pin depending on which neighbor has been selected. The output pin is

externally connected back into the input pin of the USART.

Figure 4-4 shows how the firmware chooses which neighbor to listen to. It can

determine whether a line is idle by checking if the time since the last change is longer

than the transmission time of a byte, as the serial protocol guarantees a transition

at the beginning of each byte. When no lines are busy, the first neighbor to begin

a transmission gets selected. The signals are routed to the output until that line

becomes idle again. Then, the next line to begin a transmission gets selected.

The interrupt routines ensure that the virtual mux does not switch away from

a neighbor in the middle of a transmission, and does not switch into the middle of

an ongoing transmission. As implied in the figure, some messages may be lost when

neighbors transmit simultaneously, but when no messages overlap, every one can be

received.

This switching scheme introduces a small problem: if two neighbors of a node are

synchronized well enough that one always begins a message right before the other,

then one neighbor may be consistently ignored. To prevent these repetitive collisions,

each node randomly varies its broadcast interval by up to 25%.

4.1.3 Communication Abstraction

Application code is spared the details of the serial communication system. Communi-

cation is abstracted by allowing the application to share information with neighbors

through special buffers in RAM: packet_buf and packet_out. Data is managed in

packets of a fixed size. packet_out is a buffer of one packet that is regularly broadcast

to neighboring nodes. packet_buf is a buffer of recently received packets. Applica-

tion code need only read from packet_buf and write to packet_out to communicate

with neighbors.

55

For simplicity, packet_buf retains a fixed number of the most recently received

packets, regardless of which neighbor they came from. This enforces the idea that

the algorithm not distinguish between neighbors, and approximates the idea that a

neighbor is considered dead after some period of silence; traffic from other neighbors

will fill the buffer until the old packets are no longer available.

4.1.4 Network Update

The communication system manages the propagation of application updates through-

out the network. Each node maintains a version number, used to determine whether

to broadcast or install an update. The version number is a cyclic value from 0 to 9,

such that larger version numbers replace smaller ones, with the exception that version

0 may replace version 9.

Version numbers are transmitted regularly along with data packets. If a node

receives an “old” version number from a neighbor, the node broadcasts a program

update. If it receives an update with a “newer” version number, it installs the update

and resets itself.

The high nibble of the version number also indicates whether a program should

actually be executed. For example, version numbers such as 0x04 indicate incomplete

programs, causing nodes to remain in boot-loader mode, whereas an update with

version 0x14 will be executed immediately. Thus, large application programs can be

transmitted in multiple updates, where only the last update causes the code to be

executed.

Figure 4-5 shows how each type of memory in the ATmega48 is used. The applica-

tion update, which encodes only changed sections of memory, is stored in non-volatile

EEPROM so that it may be verified and retransmitted easily. Thus, the size of an

update is limited by the EEPROM to 256 bytes. While large application programs

can be sent in pieces, this architecture does not allow significant changes to the com-

munication code.

56

send packet

receive
ring buffer

version

application
update

RAM (512 B) EEPROM (256 B)

stack

communi-
cation

application

Flash (4 KB)

35%

5%

25%

update /
bootloader 35%

Figure 4-5: ATMega48 memory allocation (not to scale). Grey areas are unused, ex-
cept for some small variables that are not shown. Note that executable code occupies
most of flash. Communication code and application code share the send and receive
buffers in RAM, and the boot-loader stores updates in EEPROM.

4.1.5 Data Formats

Packets are transmitted as printable ASCII characters to simplify debugging, as shown

in Table 4.1. For example, each byte of a packet is encoded into two bytes representing

the two digits of the value in hex. Check-sums are computed such that each data

byte and the check-sum byte sum to zero (mod 256). Because of the encoding into

hex characters, the check-sums provide detection of burst errors up to 16 bits, but

not necessarily two separate bit errors.

4.1.6 Results

Figure 4-6 shows the light output of the prototype using undamped phase correction.

Small glitches can be seen, produced by the discontinuities predicted in Section 3.3.1.

Figure 4-7 shows that proportional control has very stable behavior on the prototype,

57

Table 4.1: Packet formats for serial communication. Data is encoded in hex charac-
ters, introducing a 2x overhead, but making the messages easily printable.

d001122334456

d type (data packet)
00 program version

11223344 . data (4 bytes)
56 check-sum of version and data

p0903F4:00000001FF

p type (program update)
09 program version

03 update length in bytes
F4 check-sum of version and length

:00000001FF program update in Intel Hex File format

and handles transitions smoothly. When no exit is present, nodes tend to blink

together, which is more desirable than the random output produced by undamped

phase correction.

The proportional gain of 0.0625 was chosen as a power of two (2−4) so that it can

be implemented as a simple bit-shift, and is well above the lower bound suggested

by the over-damping analysis in Section 3.4.1: In the prototype, node clocks were

calibrated to within 5% (required for serial communication), so in the worse case the

clock ratio r = 1.05/0.95. The phase is incremented by 2000 up to a maximum of

216 − 1, so ∆θ ≈ 0.06π. θoff = π/2, so by Equation 3.9 the gain should be greater

than 0.0128.

The analysis in Section 3.4.1 predicts that proportional control should propagate

changes at K = 0.0625 nodes per time step. The prototype updates its phase about

26 times a second, so changes should propagate across 5 nodes in about 3 seconds.

This seems to match observations in Figure 4-7 (C and D), but might be too slow

for a real evacuation system. The prototype was not designed to optimize this, so

there are many simple ways to improve its reaction time. The gain can be increased;

higher gains still seem to be stable, but didn’t seem to synchronize as well when

58

node

A

2 4 6
0

5

10

15

node

B

2 4 6
0

5

10

15

node

C

2 4 6
0

5

10

15

node

D

2 4 6
0

5

10

15

Figure 4-6: Recorded light output from prototype using undamped phase correction,
with six nodes connected in a chain. (A) Steady-state behavior with node 1 marked
as an exit. Note the glitch caused by a phase update near t = 4. (B) Nodes 1 and
6 marked as exits. Note that the two paths are not synchronized. (C) Exit marking
moved from node 1 to node 6 at t = 5. (D) Exit mark on node 1 removed at t = 5.
Occasional glitches can be seen again at t = 1, 3. Note that when the gradient is
changing or no exits are present, undamped phase correction behaves unpredictably.

59

node

A

2 4 6
0

5

10

15

node

B

2 4 6
0

5

10

15

node

C

2 4 6
0

5

10

15

node

D

2 4 6
0

5

10

15

Figure 4-7: Recorded light output from prototype using proportional control with
0.0625 gain. (A) Steady-state behavior with node 1 marked as an exit. (B) Nodes
1 and 6 marked as exits. (C) Exit marking moved from node 1 to node 6 at t = 5.
(D) Exit mark on node 1 removed at t = 5. Proportional control makes smooth
transitions when the gradient changes, and nodes tend to blink together when no exit
is present.

60

there are no exits. Communication delay can be improved by triggering an update as

soon as a new phase is received, instead of polling a receive buffer. Communication

reliability can be improved by replacing the multiplexing scheme to allow simultaneous

reception. Communication baud rate can be increased and shorter messages and

encodings can be used, allowing updates to be transmitted more frequently. With

these improvements, the same prototype hardware should be capable of responding

to changes orders of magnitude faster.

The prototype demonstrates that the major functionality of this system requires

only a few inexpensive parts per node. For example, consider a system of nodes

mounted on the ceiling, composed of circuit boards 1–2 inches square with surface-

mount components and connected by RJ-9 cables. Figure 4.2 shows price estimates

for the basic electronic components of the system. While a complete system would

need circuitry for power management and protection, cables and casing, producing

such small devices at commercial scales may still cost on the order of $5 per node.

Spacing nodes a couple yards apart from each other, a building installation would cost

$1.25 per square yard, or 14 cents per square foot. For comparison, a basic carpet

from Home Depot costs between $3 and $9 per square yard (June 2008).

Table 4.2: USD. price estimates for a possible implementation at quantity 100+, from
Digikey in May 2008.

ATmega48 microcontroller $1.50
2 LEDs $0.50

thermistor $0.10
3 RJ-9 connectors $1.20

resistors/capacitors $0.70
total basic components per node $4.00

61

4.2 System Simulation

Chapter 3.1 primarily studied the behavior of a single chain of nodes. As information

only flows outward along the gradient from the exit nodes, this analysis applies to

every branch in the spanning tree of a static gradient. However, a real system may

have many interacting paths and a constantly changing gradient, especially when

sensors are involved. The analysis and prototype behavior show that the proportional

control algorithm for synchronization seems to behave smoothly with changing and

conflicting gradients, but this behavior should also be studied in the context of a

building.

The system simulation shown in Figure 4-8 demonstrates that the combination of

a threat avoidance calculation, proportional control for synchronization, and changing

threats behaves sensibly in a large building. For this example, only one floor of the

building has been considered, with stairwells marked as additional exits. Threats can

be added live with the mouse, and nodes or exits removed.

When threats are added, for example, the increasing gradient causes nearby nodes

to blink in unison until the pattern converges to an alternate path. When all paths

are unsafe, the network indicates a path through the smaller threat. The simulation

seems to produce a reasonable and clear message at every point in the building,

indicating that this combination of algorithms and architecture are indeed suitable

for building evacuation.

62

Figure 4-8: Simulation of a network of about 200 nodes installed on the third floor
of the MIT Stata Center, with proportional control for light synchronization and
threat avoidance based on sensor readings. Node color represents light output. While
in a real system the lights would be the only indicators, the nodes are drawn here
as triangles which point in the direction of the gradient. Nodes circled in green are
marked as exits. Red areas represent zones of increased threat, as might be determined
by temperature sensors.

63

64

Chapter 5

Contributions

In this thesis, I present and analyze a distributed system for building evacuation,

where hundreds of small devices densely cover all areas of a building. The system

uses simple, cheap components, and can be implemented for less than the cost of

carpeting. It produces sweeping patterns of light that guide occupants to safety, and

can respond to changing threats and damage to the network.

The distributed algorithm for this behavior combines a self-healing gradient with a

phase-locked loop to produce sequences of lights. The analysis showed that damping

and frequency correction reduce errors in large networks, and how frequency response

can be used to assess the stability of many controllers connected together.

For this system to be implemented, many other issues will have to be resolved.

Power should be distributed through many small back-up batteries in such a way

that electrical shorts and other damage in one part of the network does not interfere

with other parts. Extra functionality will be needed for triggering and controlling the

alarm, and interfacing with existing fire systems. The system also needs a physical

design that is unobtrusive, aesthetically pleasing, and easy to install and maintain.

The algorithms explored here could be implemented on a wide variety of platforms,

from wired or wireless devices mounted on walls to tiny circuits embedded in floor or

ceiling tiles.

65

The design of this evacuation system suggests many new problems and ideas to

explore. What if there are no more safe exits in a building? With a threat avoidance

algorithm, perhaps nodes next to windows can be assigned a small survival probability,

so that they become a target if no other exits are safe. Can the system be extended

to have many source nodes marking each exit, for better robustness? What happens

if an exit is blocked or jammed with people? If nodes had a way of sensing traffic, like

pressure sensors in the floor, the system might be able to actively control congestion.

Similar algorithms could even direct city evacuation for a natural disaster or other

large emergency.

My emphasis on scalability and simple low-cost hardware is meant to touch on

some larger issues as well. Sensor networks, paintable computing, amorphous comput-

ing and many related research areas explore the challenge of designing local behaviors

to achieve global goals in systems of many unreliable components. This evacuation

system provides a useful example of how a high-level goal can be divided into parts,

and achieved through the composition of local behaviors. The algorithm analysis in-

dicates that the behavior of such systems is difficult—but not impossible—to predict,

and provides hope for a set of tools and methods that make this kind of engineering

easy. This example helps to demonstrate what can be done with systems of hundreds

or even millions of tiny computers. It shows not only how useful such systems could

be, but how feasible and affordable they are today.

66

Appendix A

Prototype Source Code

A.1 comsys.h

// Ligh t pa t t e rn pro to type f o r b u i l d i n g evacuat ion system
// shared d e f i n i t i o n s f o r communication system and app l i c a t i on code

// Intended fo r ATMega48 or ATMega88 mic rocon t ro l l e r
// Uses AVR Libc 1 . 4 . 6 : h t t p ://www. nongnu . org/avr− l i b c /

#include <i n t t y p e s . h>

#define APP SECTION a t t r i b u t e ((s e c t i o n (” . appcode”)))

#define F CPU 8000000
#define BAUD 9600

#define PACKET BUF SIZE 32 // power o f two fo r easy modulo
#define PACKET BUF MODULO (PACKET BUF SIZE−1) // b i tw i s e AND with t h i s
#define PACKET SIZE 4

typedef volat i le u i n t 8 t semaphore ;

volat i le u i n t 8 t packe t bu f pos ;
volat i le u i n t 8 t packet buf [PACKET BUF SIZE] [PACKET SIZE] ;
volat i le u i n t 8 t packet out [PACKET SIZE] ;
//semaphore packe t bu f sem ;
//semaphore packet out sem ;

///////////// de f ined in comsys . c ////////////////

u i n t 8 t d b f a l l i n g e d g e 1 (u i n t 8 t s i g n a l) ;
// void wait (semaphore ∗ s) ;
// void s i g n a l (semaphore ∗ s) ;

////////// de f ined by <app l i ca t i on >.c ///////////

void APP SECTION r u n a p p l i c a t i o n () ;

67

A.2 comsys.c

/∗
Communication rou t ine s and boo t l oader

S e r i a l input i s r e ce i v ed from 3 ne ighbors v ia
a so f tware mux . A pin change i n t e r r up t on the
s e r i a l l i n e s cop i e s va lue s to an output pin
which shou ld be e x t e r n a l l y connected back in to
the USART.

PB6, PC0, PD4 are the s e r i a l inpu t s
PD1 i s the s e r i a l output
PD0 and PD2 shou ld be connected f o r loopback

A l l s e r i a l communication i s a s c i i−readab l e .
Communication i s broadcast−based , meaning t ha t
no input r e qu i r e s a response and no response
to any output i s expec ted .

data packe t s :

d001122334456
d type (data packet)
00 program vers ion

11223344 . data (4 by t e s)
56 check−sum of ver s ion and data

program updates :

p0903F4 :00000001FF
p type (program update)
09 program vers ion

03 update l eng t h in by t e s
F4 check−sum of ver s ion and l eng t h

:00000001FF program update in I n t e l Hex F i l e format

The update l eng t h only counts record lenth , address , and data by t e s .
The program update must be terminated with an end−of− f i l e record .

The program update i s s to red in abb r ev i a t ed form in EEPROM:
address 1 i s the program vers ion , f o l l owed by any number o f l i n e s .
a l i n e has one by te o f l eng th , two by t e s o f address , then data .
a l eng t h o f zero i n d i c a t e s the end o f the update .

The f i r s t by t e o f EEPROM i s used as the c l o c k c a l i b r a t i o n byte ,
un l e s s i t ’ s va lue i s 0xFF .

Timer 0 i s used to check whether pins are i d l e
Timer 1 i s used fo r r e gu l a r packet b roadcas t s
∗/

#include <i n t t y p e s . h>
#include <avr / i o . h>
#include <avr / i n t e r r u p t . h>
#include <avr / boot . h>
#include <avr /pgmspace . h>
#include <avr /wdt . h>

#include ”comsys . h”

68

#ifdef ATmega48
#define BOOT SECTION a t t r i b u t e ((s e c t i o n (” . t ex t ”)))
#else
#define BOOT SECTION a t t r i b u t e ((s e c t i o n (” . boot loader ”)))
#endif

#define EE OSCCAL ADDR 0
#define EE VER ADDR 1
#define EE LEN ADDR 2
#define EE PROG START 3
#define EEPROM SIZE 256

/// u t i l i t i e s

// debounce s i gna l , r e turns 1 on f a l l i n g edge
u i n t 8 t db1 lowcount ;
u i n t 8 t d b f a l l i n g e d g e 1 (u i n t 8 t s i g n a l) {

i f (s i g n a l)
db1 lowcount = 0 ;

else i f (db1 lowcount < 255)
db1 lowcount++;

return (db1 lowcount == 10 0) ;
}

void r e s e t () {
// use the watchdog timer to r e s e t the avr
// note : must d i s a b l e the watchdog timer at the beg inning o f main ()
wdt enable (WDTO 15MS) ;
while (1) ;

}

// semaphores
u i n t 8 t t rywa i t (semaphore ∗ s) {

u i n t 8 t cSREG = SREG;
// we don ’ t know whether i n t e r r u p t s are d i sab l ed , so s t o r e SREG
c l i () ;
i f (∗ s > 0) {
∗ s−−;
SREG = cSREG;
return 1 ;

} else {
SREG = cSREG;
return 0 ;

}
}
void wait (semaphore ∗ s) {

while (! t rywa i t (s)) ;
}
void s i g n a l (semaphore ∗ s) {
∗ s++;

}

/// s e r i a l /USART

void i n i t s e r i a l () {
// s e t baud ra te
u i n t 8 t ubrr = F CPU/16/BAUD−1;
UBRR0H = (u i n t 8 t) (ubrr >> 8) ;
UBRR0L = (u i n t 8 t) ubrr ;
UCSR0B = BV(RXCIE0) | BV(RXEN0) | BV(TXEN0) ; // enab le rx & tx

}

u i n t 8 t USART Receive (void) {
l o o p u n t i l b i t i s s e t (UCSR0A, RXC0) ;
return UDR0;

69

}

void USART Transmit (u i n t 8 t data) {
l o o p u n t i l b i t i s s e t (UCSR0A, UDRE0) ;
UDR0 = data ;

}

// t r an sm i t s t r (PSTR(” h e l l o world \n ”)) ;
void t r a n s m i t s t r (const char ∗ s t r) {

char c ;
while (c = pgm read byte (s t r ++))

USART Transmit (c) ;
}

u i n t 8 t hex2number (u i n t 8 t hex) {
i f (hex >= ’ 0 ’ && hex <= ’ 9 ’)

return hex − ’ 0 ’ ;
i f (hex >= ’A ’ && hex <= ’F ’)

return hex − ’A ’ + 10 ;
i f (hex >= ’ a ’ && hex <= ’ f ’)

return hex − ’ a ’ + 10 ;
return 0 ;

}

u i n t 8 t number2hex (u i n t 8 t num) {
i f (num < 10)

return num + ’ 0 ’ ;
i f (num < 16)

return num − 10 + ’A ’ ;
return 0 ;

}

u i n t 8 t r e c e i v e h e x () {
u i n t 8 t c1 = hex2number (USART Receive ()) ;
u i n t 8 t c2 = hex2number (USART Receive ()) ;
return (c1 << 4) + c2 ;

}

u i n t 8 t t ransmit hex (u i n t 8 t va l) {
USART Transmit (number2hex (va l >> 4)) ;
USART Transmit (number2hex (va l & 0xF)) ;

}

/// f l a s h

void BOOT SECTION w r i t e f l a s h p a g e (u i n t 1 6 t page , u i n t 8 t ∗buf) {
// wr i t e s a page to f l a s h
// page : byte−based page address (lower 6 b i t s ignored)
// buf : 64 by te array

// based on <avr/ boot . h> API example

u i n t 1 6 t i ;
u i n t 8 t s r eg ;

// Disab l e i n t e r r u p t s .
s r eg = SREG;
c l i () ;

eeprom busy wait () ;

boo t page e ra s e (page) ;
boot spm busy wait () ; // Wait u n t i l the memory i s erased .

for (i =0; i<SPM PAGESIZE; i +=2)

70

{
// Set up l i t t l e −endian word .

u i n t 1 6 t w = ∗buf++;
w += (∗ buf++) << 8 ;

b o o t p a g e f i l l (page + i , w) ;
}

boot page wr i t e (page) ; // Store b u f f e r in f l a s h page .
boot spm busy wait () ; // Wait u n t i l the memory i s wr i t t en .

#ifndef ATmega48
boot rww enable () ; // Reenable RWW−s e c t i on be f o re re turn ing to app l i c a t i on

#endif

// Re−enab le i n t e r r u p t s (i f they were ever enab led) .
SREG = sreg ;

}

void w r i t e f l a s h (u i n t 1 6 t addr , u i n t 8 t ∗buf , u i n t 8 t l en) {
// wr i t e s a b u f f e r to f l a s h by wr i t i n g the necessary pages

u i n t 8 t page buf [SPM PAGESIZE] ;
u i n t 1 6 t page addr = addr & ˜((u i n t 1 6 t)SPM PAGESIZE − 1) ; // beg inning o f f i r s t page
u i n t 1 6 t buf end = addr + len ; // l a s t b u f f e r address

u i n t 8 t page i = 0 ; // index in to page bu f
u i n t 1 6 t addr i = page addr ; // o v e r a l l index

// i f addr i s not at the beg inning o f a page ,
// copy o ld f l a s h contents in to page bu f
while (addr i < addr) {

page buf [page i] = pgm read byte (addr i) ;
page i++;
addr i++;

}

// now copy from buf , wr i t i n g pages to f l a s h when necessary
while (addr i < buf end) {

page buf [page i] = ∗buf++;

page i++;
addr i++;

i f (page i == SPM PAGESIZE) {
w r i t e f l a s h p a g e (page addr , page buf) ;
page addr = addr i ;
page i = 0 ;

}
}

// i f the page i sn ’ t f u l l , copy the o ld f l a s h content s in to the r e s t
while (page i != 0) {

page buf [page i] = pgm read byte (addr i) ;
page i++;
addr i++;

i f (page i == SPM PAGESIZE) {
w r i t e f l a s h p a g e (page addr , page buf) ;
break ;

}
}

}

71

// loopback mux

// output : PD2
// input :
// PB6 = PCINT6
// PC0 = PCINT8
// PD4 = PCINT20

void in i t mux () {
// s e t up timer 0 to check f o r i d l e ne ighbors
TCCR0A = BV(WGM01) ; // s e t auto re load
TCCR0B = BV(CS02) ; // s e l e c t c l k /256
OCR0A = 3 ∗ F CPU/256/(BAUD/ 10) ; // time 1 by t e s
TIMSK0 = BV(OCIE0A) ; // enab le compare i n t e r r up t

PCICR = BV(PCIE0) | BV(PCIE1) | BV(PCIE2) ;
PCMSK0 = BV(PCINT6) ;
PCMSK1 = BV(PCINT8) ;
PCMSK2 = BV(PCINT20) ;

}

u i n t 8 t l i s t e n i n g = 0 ;
u i n t 8 t i d l e = 0 ;
u i n t 8 t a v a i l a b l e = 0 ;

ISR (TIMER0 COMPA vect) {
// any i d l e l i n e shou ld not be l i s t e n i n g
l i s t e n i n g &= ˜ i d l e ;
// l i n e i s a v a i l a b l e when i d l e and not l i s t e n i n g to anyone
i f (l i s t e n i n g == 0)

a v a i l a b l e |= i d l e ;

i d l e = 0xFF ;
}

ISR (PCINT0 vect) {
i f (l i s t e n i n g & BV (0))

PORTD = PINB >> 4 ;
else i f (a v a i l a b l e & BV (0)) {

PORTD = PINB >> 4 ;
a v a i l a b l e = 0 ;
l i s t e n i n g = BV (0) ;

}
i d l e &= ˜ BV (0) ;

}

ISR (PCINT1 vect) {
i f (l i s t e n i n g & BV (1))

PORTD = PINC << 2 ;
else i f (a v a i l a b l e & BV (1)) {

PORTD = PINC << 2 ;
a v a i l a b l e = 0 ;
l i s t e n i n g = BV (1) ;

}
i d l e &= ˜ BV (1) ;

}

ISR (PCINT2 vect) {
i f (l i s t e n i n g & BV (2))

PORTD = PIND >> 2 ;
else i f (a v a i l a b l e & BV (2)) {

PORTD = PIND >> 2 ;
a v a i l a b l e = 0 ;

72

l i s t e n i n g = BV (2) ;
}
i d l e &= ˜ BV (2) ;

}

/// program update

u i n t 8 t r e p l a c e s (u i n t 8 t new v , u i n t 8 t o ld v) {
// re turns a boolean i nd i c a t i n g whether a program with ver s ion new v
// shou ld r ep l a ce a program with ver s ion o l d v

// only look at bottom 4 b i t s
new v &= 0xF ;
o ld v &= 0xF ;

return ((new v == 0 && old v >= 9)
| | (new v == 9 && old v != 9 && old v != 0)
| | (new v < 9 && new v > o ld v)) ;

}

enum RECORD TYPE {DATA=0, EOF=1};

void download program (u i n t 8 t ver s ion , u i n t 8 t l ength) {
// d i s a b l e a l l i n t e r r u p t s excep t loopback
UCSR0B = BV(RXEN0) | BV(TXEN0) ;
TIMSK0 = 0 ;
TIMSK1 = 0 ;
TIMSK2 = 0 ;

// only enab le the loopback i n t e r r up t f o r the pin we are l i s t e n i n g to
PCICR = l i s t e n i n g ;

PORTB = 0 ; // a l l l i g h t s on

i f (l ength > EEPROM SIZE − EE PROG START − 3)
r e s e t () ; // l eng t h r e s t r i c t e d f u r t h e r because we don ’ t always check f o r over f l ow

u i n t 8 t e e bu f [EEPROM SIZE] ;
u i n t 8 t e e b u f i = 0 ;

enum RECORD TYPE reco rd type = DATA;

USART Transmit (’> ’) ;

while (r e co rd type != EOF) { // l i n e loop

// colon
i f (USART Receive () != ’ : ’)

r e s e t () ;

// l eng t h
u i n t 8 t l en = r e c e i v e h e x () ;
u i n t 8 t cksum = len ;
e e bu f [e e b u f i ++] = len ;

// address
u i n t 8 t data = r e c e i v e h e x () ;
cksum += data ;
e e bu f [e e b u f i ++] = data ;
data = r e c e i v e h e x () ;
cksum += data ;
e e bu f [e e b u f i ++] = data ;

// record type

73

r e co rd type = r e c e i v e h e x () ;
cksum += reco rd type ;

// data
for (; l en > 0 ; len−−) {

data = r e c e i v e h e x () ;
cksum += data ;
e e bu f [e e b u f i ++] = data ;

i f (e e b u f i > l ength)
r e s e t () ;

}

// checksum
cksum += r e c e i v e h e x () ;
i f (cksum != 0)

r e s e t () ;

// end of l i n e
// consumes e i t h e r \ r\n or \n fo r c ompa t i b i l i t y
data = USART Receive () ;
i f (data == ’ \ r ’)

data = USART Receive () ;
i f (data != ’ \n ’)

r e s e t () ;
}

// check leng th , wr i t e to eeprom
i f (e e b u f i != length)

r e s e t () ;
eeprom wri te byte ((u i n t 8 t ∗)EE LEN ADDR, l ength) ;

// wr i t e the update to eeprom
u i n t 8 t ∗ ee addr = (u i n t 8 t ∗)EE PROG START;
u i n t 8 t b u f i ;
for (b u f i = 0 ; b u f i < e e b u f i ; b u f i++)

eeprom wri te byte (ee addr++, ee bu f [b u f i]) ;

// wr i t e the update to f l a s h
b u f i = 0 ;
while (1) {

u i n t 8 t l en = ee bu f [b u f i ++];
i f (l en == 0) break ;

u i n t 1 6 t addr = (u i n t 1 6 t) e e bu f [b u f i ++] << 8 ;
addr += ee bu f [b u f i ++];

w r i t e f l a s h (addr , &(ee bu f [b u f i]) , l en) ;
b u f i += len ;

}

// only update the ver s ion when you know the download i s complete
eeprom wri te byte ((u i n t 8 t ∗)EE VER ADDR, v e r s i on) ;

USART Transmit (’ ! ’) ;

r e s e t () ;
}

// preven t s program transmiss ion from in t e r r up t i n g packet t ransmiss ion
semaphore transmit = 1 ;

void send program () {

i f (! t rywa i t (&transmit))

74

return ;

// we don ’ t want to be in t e r rup t ed
// note : i n t e r r u p t s w i l l be re−enab led when the ISR re turns
c l i () ;
// t h i s i s going to take a whi le , so don ’ t
// resume l i s t e n i n g to someone a f t e rwards
// (might enter the middle o f a message)
l i s t e n i n g = 0 ;
i d l e = 0 ;
a v a i l a b l e = 0 ;

u i n t 8 t data ; // temp
u i n t 8 t cksum ;

USART Transmit (’p ’) ;
data = eeprom read byte ((u i n t 8 t ∗)EE VER ADDR) ;
cksum = data ;
t ransmit hex (data) ; // ver s ion
data = eeprom read byte ((u i n t 8 t ∗)EE LEN ADDR) ;
cksum += data ;
t ransmit hex (data) ; // l eng t h
t ransmit hex(−cksum) ; // header checksum

u i n t 8 t ∗ ee addr = (u i n t 8 t ∗)EE PROG START;

while (1) {
USART Transmit (’ : ’) ;

// l eng t h
u i n t 8 t l en = eeprom read byte (ee addr ++);
cksum = len ;
t ransmit hex (l en) ;

// address
data = eeprom read byte (ee addr ++);
cksum += data ;
t ransmit hex (data) ;
data = eeprom read byte (ee addr ++);
cksum += data ;
t ransmit hex (data) ;

// record type
i f (l en == 0) {

t ransmit hex (EOF) ;
cksum += EOF;

} else {
t ransmit hex (DATA) ;
cksum += DATA;

}

u i n t 8 t i ;
for (i = 0 ; i < l en ; i++) {

data = eeprom read byte (ee addr ++);
cksum += data ;
t ransmit hex (data) ;

}

// checksum
t ransmit hex(−cksum) ;

USART Transmit (’ \n ’) ;

i f (l en == 0) break ;
}

75

s i g n a l (&transmit) ;
}

// broadcas t

void i n i t b r o a d c a s t () {
// se tup timer 1 to reguar l y broadcas t the packet
TCCR1B = BV(WGM12) | BV(CS11) | BV(CS10) ; // s e l e c t c l k /64
OCR1A = . 1 ∗ F CPU / 64 ; // 10 times a second (l im i t .5 at c l k /64)
TIMSK1 = BV(OCIE1A) ; // enab le compare i n t e r r up t

}

u i n t 8 t random ; // used to randomly vary broadcas t i n t e r v a l ,
// to prevent constant c o l l i s i o n s . see s e r i a l ISR below .

ISR (TIMER1 COMPA vect) {
s e i () ; // a l l ow r e cu r s i v e i n t e r r u p t s

i f (t rywa i t (&transmit)) {

USART Transmit (’d ’) ;
u i n t 8 t cksum = eeprom read byte ((u i n t 8 t ∗)EE VER ADDR) ;
t ransmit hex (cksum) ; // ver s ion

u i n t 8 t i ;
for (i =0; i<PACKET SIZE ; i++) {

t ransmit hex (packet out [i]) ;
cksum += packet out [i] ;

}
t ransmit hex(−cksum) ;
USART Transmit (’ \n ’) ;

s i g n a l (&transmit) ;
}

random += random >> 4 ; // we only use low b i t s , so add in high n i b b l e
OCR1A ˆ= (random & 7) << 10 ; // vary the broadcas t i n t e r v a l

}

// main

int main (void) {
// turn o f f the watchdog timer
wdt re s e t () ;
MCUSR = 0 ;
wdt d i sab l e () ;

// read o s c i l l a t o r c a l i b r a t i o n by te from eeprom
u i n t 8 t o s c c a l = eeprom read byte ((u i n t 8 t ∗)EE OSCCAL ADDR) ;
i f (o s c c a l != 0xFF)

OSCCAL = o s c c a l ;

DDRB = 0x3F ;
DDRD = BV(1) | BV (2) ;
PORTB = 0xFF ;
PORTC = 0xFF ; // pu l l−ups
PORTD = 0xFF ;

packe t bu f pos = 0 ;

i n i t s e r i a l () ;
in i t mux () ;
i n i t b r o a d c a s t () ;

76

s e i () ;

// only run the app l i c a t i on i f the ver s ion i s f i n a l (0 x1 ∗)
i f (eeprom read byte ((u i n t 8 t ∗)EE VER ADDR) & 0x10)

r u n a p p l i c a t i o n () ;

PORTB &= ˜ BV (0) ; // otherwise , red l i g h t on
PORTB |= BV (1) ;
while (1) ;

return 0 ;
}

enum RX STATES {CMD, PACKET H, PACKET L, PROGRAM H, PROGRAM L} r x s t a t e ;
u i n t 8 t packet [PACKET SIZE+1] ; // inc l ude s ver s ion
u i n t 8 t packet pos = 0 ;
u i n t 8 t packet byte = 0 ;
u i n t 8 t packet cksum = 0 ;

ISR (USART RX vect) {
u i n t 8 t data = UDR0;

s e i () ; // a l l ow r e cu r s i v e i n t e r r u p t s

random = TCNT1L + data ; // take counter va lue and data as somewhat random b i t s

u i n t 8 t my vers ion ;

switch (r x s t a t e) {
case CMD:

switch (data) {
case ’ d ’ :

r x s t a t e = PACKET H;
packet pos = 0 ;
packet cksum = 0 ;
break ;

case ’ p ’ :
r x s t a t e = PROGRAM H;
packet pos = 0 ;
packet cksum = 0 ;
break ;

}
break ;

case PACKET H:
packet byte = hex2number (data) << 4 ;
r x s t a t e = PACKET L;
break ;

case PACKET L:
packet byte += hex2number (data) ;
packet cksum += packet byte ;

i f (packet pos == PACKET SIZE+1) {
i f (packet cksum == 0) {

// check ver s ion
my vers ion = eeprom read byte ((u i n t 8 t ∗)EE VER ADDR) ;
i f (r e p l a c e s (my version , packet [0]))

send program () ;

// wr i t e packet
packe t bu f pos = (packe t bu f pos + 1) & PACKET BUF MODULO;
for (packet pos = 0 ; packet pos < PACKET SIZE ; packet pos++)

packet buf [packe t bu f pos] [packet pos] = packet [packet pos +1] ;
}

77

r x s t a t e = CMD;
} else {

packet [packet pos] = packet byte ;
packet pos++;
r x s t a t e = PACKET H;

}
break ;

case PROGRAM H:
packet byte = hex2number (data) << 4 ;
r x s t a t e = PROGRAM L;
break ;

case PROGRAM L:
packet byte += hex2number (data) ;
packet cksum += packet byte ;

i f (packet pos == 2) { // have rece i v ed 2 by t e s + cksum
i f (packet cksum == 0) {

// check ver s ion
my vers ion = eeprom read byte ((u i n t 8 t ∗)EE VER ADDR) ;
i f (r e p l a c e s (packet [0] , my vers ion))

download program (packet [0] , packet [1]) ;
}
r x s t a t e = CMD;

} else {
packet [packet pos] = packet byte ;
packet pos++;
r x s t a t e = PROGRAM H;

}
break ;

}
}

A.3 evacuation.app.c

#include ”comsys . h”
#include <avr / i o . h>
#include <u t i l / de lay . h>

// undamped phase t rack ing and propor t i ona l con t ro l a l gor i thms

// f i r s t two by t e s o f packet are the grad i en t va lue
// second two by t e s are the phase

// red l i g h t (PB0) i n d i c a t e s whether t h i s i s an e x i t
// green l i g h t (PB1) i s the main output

#define PROPORTIONAL // remove d e f i n i t i o n fo r undamped phase t rack ing

#define PHASEVEL 2000 // de s i r ed amount to increment each loop
#define PHASEOFFSET 0.25 // de s i r ed d i f f e r e n c e b/ t me and my neighbor
#define ON FRACTION 0.25 // f r a c t i on o f c y c l e t ha t l i g h t i s on
#define P CONST SHIFT 4 // propor t i ona l gain exponent (2ˆ−4)

void APP SECTION r u n a p p l i c a t i o n () {
u i n t 1 6 t phase = 0 ;
u i n t 1 6 t increment = PHASEVEL; // ac tua l increment (ad jus t ed)
u i n t 1 6 t prev phase = 0 ; // to t e l l when we ge t a new phase

PORTB |= BV(0) | BV (1) ; // l i g h t s o f f

78

while (1) {
// f ind packet wi th minimum grad i en t
u i n t 1 6 t min = 65535;
u i n t 1 6 t min phase = 0 ;
u i n t 8 t b u f i = packe t bu f pos ;
u i n t 8 t buf end = (b u f i − 8) & PACKET BUF MODULO;
// check the l a s t 8 packe t s in b u f f e r
for (; b u f i != buf end ; b u f i = (b u f i − 1) & PACKET BUF MODULO) {

u i n t 1 6 t temp = packet buf [b u f i] [0] << 8 ;
temp += packet buf [b u f i] [1] ;
i f (temp < min) {

min = temp ;
min phase = (u i n t 1 6 t) packet buf [b u f i] [2] << 8 ;
min phase += packet buf [b u f i] [3] ;

}
}

i f (! (PINB & BV (7))) { // jumper says I am an e x i t
min = 0 ;
increment = PHASEVEL;
PORTB &= ˜ BV (0) ;

} else i f (min phase != prev phase) {

#ifdef PROPORTIONAL
i n t 1 6 t e r r o r = (min phase + (i n t 1 6 t) (PHASEOFFSET∗65536)) − phase ;
// note t ha t error must be s igned to wrap around c o r r e c t l y
increment = (e r r o r >> P CONST SHIFT) + PHASEVEL;

#else
phase = min phase + (i n t 1 6 t) (PHASEOFFSET∗65536) ;

#endif

prev phase = min phase ;
PORTB |= BV (0) ;

}

// popu la te the outgo ing packet
i f (min == 65535) {

packet out [0] = 255 ;
packet out [1] = 255 ;

} else {
min++;
packet out [0] = min >> 8 ;
packet out [1] = min & 0xFF ;

}
packet out [2] = phase >> 8 ;
packet out [3] = phase & 0xFF ;

// main output
i f (phase < (u i n t 1 6 t) (ON FRACTION∗65536))

PORTB &= ˜ BV (1) ;
else

PORTB |= BV (1) ;

phase += increment ;
d e l a y l o o p 2 (0) ;

}
}

79

80

Bibliography

[1] H. Abelson, D. Allen, D. Coore, C. Hanson, G. Homsy, T. Knight, R. Nagpal,
E. Rauch, G. Sussman, and R. Weiss. Amorphous computing. MIT Artificial
Intelligence Laboratory memo no. 1665, August 1999.

[2] Jonathan Bachrach, Radhika Nagpal, Michael Salib, and Howard Shrobe. Ex-
perimental results and theoretical analysis of a self-organizing global coordinate
system for ad hoc sensor networks. Telecommunications Systems Journal, Special
Issue on Wireless System Networks, 2003.

[3] Jacob Beal, Jonathan Bachrach, Dan Vickery, and Mark Tobenkin. Fast self-
healing gradients. In SAC ’08: Proceedings of the 2008 ACM symposium on
Applied computing, pages 1969–1975, New York, NY, USA, 2008. ACM.

[4] Thomas F. Burkman, Sr. and Gary Cummings. Emergency guidance system.
United States Patent 4,347,499, August 1982.

[5] Michael Buschmann, Thomas Goulet, Frank Herstix, and Waldemar Ollik.
Method and apparatus for marking an escape route. United States Patent
6,998,960, February 2006.

[6] William Joseph Butera. Programming a Paintable Computer. PhD thesis, MIT,
February 2002.

[7] Adam Eames. Enabling path planning and threat avoidance with wireless sensor
networks. Master’s thesis, MIT, June 2005.

[8] T. Endo and L.O. Chua. Chaos from phase-locked loops. Circuits and Systems,
IEEE Transactions on, 35(8):987–1003, August 1988.

[9] M. E. M. Lijding, H. P. Benz, N. Meratnia, and P. J. M. Havinga. Smart
signs: Showing the way in smart surroundings. Technical Report TR-CTIT-06-
20, University of Twente, Enschede, April 2006.

[10] Dennis Lucarelli and I-Jeng Wang. Decentralized synchronization protocols with
nearest neighbor communication. In SenSys ’04: Proceedings of the 2nd inter-
national conference on Embedded networked sensor systems, pages 62–68, New
York, NY, USA, 2004. ACM.

81

[11] Mihai Marin-Perianu, Nirvana Meratnia, Maria Lijding, and Paul Havinga. Being
aware in wireless sensor networks. In 15th IST Mobile & Wireless Communication
Summit, Myconos, Greece, June 2006.

[12] Clifford A. Megerle. Adaptive escape routing system. United States Patent
6,778,071, August 2004.

[13] Renato E. Mirollo and Steven H. Strogatz. Synchronization of pulse-coupled
biological oscillators. SIAM Journal on Applied Mathematics, 50(6):1645–1662,
1990.

[14] NFPA. NFPA 72 R©: National Fire Alarm Code R©. National Fire Protection
Agency, 2007.

[15] Shiro Nishino. Emergency alarm and evacuation system. United States Patent
3,969,720, July 1976.

[16] David L. Reed. Premise evacuation system. United States Patent 7,154,379,
December 2006.

[17] Robert Right and Hilario Costa. Fire alarm system with method of building
occupant evacuation. United States Patent 7,218,238, May 2007.

[18] Fikret Sivrikaya and Bulent Yener. Time synchronization in sensor networks: A
survey. In IEEE Network, volume 18, pages 45–50, 2004.

[19] D. Steingart, J. Wilson, A. Redfern, P.K. Wright, R. Romero, and L. Lim. Aug-
mented cognition for fire emergency response: An iterative user study. In 11th
Int. Conf. on Human-Computer Interaction (HCI), Las Vegas, NV, July 2005.

[20] Reed Tator. Emergency guidance system. United States Patent 6,472,994, Oc-
tober 2002.

[21] Jan Erik Vadseth. Guiding light system and lighting strip. United States Patent
5,815,068, June 1996.

[22] J. van Greunen and J. Rabaey. Lightweight time synchronization for sensor
networks. In 2nd ACM Intl. Workshop on Wireless Sensor Networks and Appli-
cations (WSNA), San Diego, CA, September 2003.

82

