
Protoswarm: A Language for Programming Multi-Robot
Systems Using the Amorphous Medium Abstraction

(Short Paper)
Jonathan Bachrach

MIT CSAIL
Cambridge, MA 02139 USA

jrb@csail.mit.edu

James McLurkin
MIT CSAIL

Cambridge, MA 02139 USA
jamesm@csail.mit.edu

Anthony Grue
Microsoft

Redmond, WA 98052 USA
tonyg@alum.mit.edu

ABSTRACT
Multi-robot systems are becoming increasingly prevalent, but
programmability is a major barrier to their deployment. Present
systems force programmers to think in terms of individual
agents. Application code becomes entangled with details
of coordination and robustness and often does not compose
well or translate to other domains. We offer an alternate
approach whereby the programmer controls a single virtual
spatial computer which fills the environment space. The com-
putations on this spatial computer are actually performed by
a large number of locally-interacting individual agents. This
abstracts the actual computational hardware behind the spa-
tial computer interface, and allows the programmer to focus
on a single model of global computation. We achieve this
abstraction with two components: a language that embod-
ies continuous space and time semantics and a runtime li-
brary that implements these semantics approximately. We
demonstrate the efficacy of our approach with multi-agent
algorithms in both simulation and on a group of 40 robots.

Categories and Subject Descriptors
D.1.3 [Software]: Programming Techniques—Concurrent Pro-
gramming; D.3 [Software]: Programming Languages—Data-
flow languages, concurrent programming structures, Compilers,
Optimization, Run-time environments; I.2.9 [Computing Method-
ologies]: Artificial Intelligence—Robotics, Autonomous vehi-
cles

General Terms
Algorithms, Design, Languages

Keywords
Programming Languages, Spatial Computing, and Swarm
Robotics

1. INTRODUCTION
Multi-robot applications involve coordinating the move-

ment of robots in space over time. However, programming

Cite as: Protoswarm: A Language for Programming Multi-Robot Sys-
tems Using the Amorphous Medium Abstraction (Short Paper), Jonathan
Bachrach, James McLurkin and Anthony Grue, Proc. of 7th Int. Conf.
on Autonomous Agents and Multiagent Systems (AAMAS 2008),
Padgham, Parkes, Müller and Parsons (eds.), May, 12-16., 2008, Estoril,

Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

multi-robot applications requires the user to write software
for individual robots and then imagine how these robots will
interact to produce the final application. The mapping from
robot actions to group actions is often complex and difficult
to invert, making programming these systems challenging.

The dream is that by using a high level language to pro-
gram a multi-robot application, we would empower a pro-
grammer to succinctly implement low-level repair and group
functionalities and to quickly compose new programs out
of these components. Programs would be developed with a
more intentional macro perspective, and modularity would
be strongly promoted.

In this paper, we present a new language, called Proto-
swarm, that is inspired by the continuous space-time model
of Proto and extends this type of model to program swarms
of robots. In particular, we present a virtual spatial computer,
built out of a continuous Amorphous Medium, which fills the
environment space. Programmers develop code for this medium
without considering the details of the individual agents. The
computations on this spatial computer are actually performed
by a population of locally-interacting agents. The agents ap-
proximate the virtual computer presented to the user. We
achieve this Amorphous Medium Abstraction [1] using two
mechanisms: a language, called Protoswarm, which provides
continuous space and time semantics, and a runtime library
which approximates the semantics on the given hardware.

2. RELATED WORK
There are many domain-specific programming models for

spatial computers, Swarm [9], TinyOS [4], and Paintable Com-
puting [3], but they all involve programming the behavior of
the devices, rather than the behavior of the aggregate. A no-
table exception is CMost, the operating system for the CM-
5 [11], which allows operations on fields of devices, but as-
sumes a fixed population of devices arranged in a grid.

In related swarm languages, programmers are similarly
forced to program and manage individual robots. Mataric [7]
introduced the notion of basis behaviors and group computng,
but the basis behaviors are more challenging to combine than
in Protoswarm. More recently, works by Klavins [5] and
Kloetzer [6] have promoted the idea of high-level descriptors
for swarm flocking, and the ability to compile out rules. The
high-level is more akin to what we will show. However these
systems mainly produce motion control laws on more capa-
ble robots – with GPS, and global clocks – where interactions
are less critical in determining robot behavior. Furthermore,
the languages are focussed on motion, and do not provide

1175

Portugal,pp. 1175-1178.



very expressive means of distributed sensing and distributed
state, that one might like to do wth a robot swarm applica-
tion.

In contast, sensor networks have focussed almost exclu-
sively on data collection. They have focussed on using well-
known complete languages such as SQL or functional lan-
guages, which come with strong guarantees about what can
be computed and many algorithmic tools to support the lan-
guage implementation. For example, the Regiment [10] pro-
gramming language operates on geometric regions of space,
but is targeted towards sensor-network data-gathering and
only distributes some operations across space.

Our goal is to combine these two points of view – both
sensing and motion control are fundamental parts of pro-
gramming robot swarms. We would like to take advantage of
these types of languages in robot swarms, since many times
mobile sensor networks are essentially robot swarms and vice
versa. The Proto language is described in [2] and the amor-
phous medium abstraction was first proposed in [1].

3. MULTI-AGENT PROGRAMMING
In this section, we introduce the Protoswarm language,

and build up facilities that support high-level modular multi-
agent programming. In Protoswarm, the computational model
is based on manifolds of space that execute code, called the
Amorphous Medium. The medium has computational state
and physical extent, both of which evolve over time. We as-
sume that the medium is populated by an infinite number
of agents, and each agent can only communicate with neigh-
bors within a fixed distance. Programs for continuous re-
gions are then run approximately on a discrete set of agents.
Each agent runs identical code but their execution diverges
due to differing local state and environment and interactions
with neighbors.

Protoswarm programs are written as expressions over fields,
where fields are mappings from manifolds to values. Expres-
sions are executed repeatedly, producing streams of fields.
Behaviors are produced from vector fields by points in space
moving in the direction of the vectors.

Protoswarm is inspired by the programming model of Proto [2].
We treat the world as fields/streams and the computing con-
structs compute on these streams. Also we treat the system
as a spatial computer, so all computing constructs work on
neighborhoods without reference to exact neighbors. Un-
like Proto however agents can move in space, and this is de-
scribed by adding movement actuation. Consult [2] for more
information on the Proto programming language on which
the Protoswarm language is based. Now we describe some
constructs one can build in this language to program at the
group level.

In order to build basic behaviors, we assume we have a
number of basic spatial and temporal functions that are use-
ful in programming the Amorphous Medium developed in
[1]. In particular, we assume functions to measure distance
between any point and a given source region (distance-to),
to elect a leader (elect-leader), to designate subregions
(dilate), and to provide a global clock (time).

3.1 Building Basic Behaviors
In this section, we build upon our basic spatial and tempo-

ral functions to produce simple motion primitives for wan-
dering, clustering, and dispersion. We move regions by defin-
ing a vector field over a region and using this vector field to

Figure 1: Cluster-to and contour-field vector field examples
run on 500 simulated robots.

move the points in the region. For example, a random vector
field is produced by:

(def brownian (s)
(tup (rnd (- s) s) (rnd (- s) s)))

This produces a tuple at each point in the region that repre-
sents a random change in that point’s current goal position.
Note that this is simply a field; we have not produced any
motion yet. We can move each point to its goal position with
(mov (brownian)), which produces the desired behavior.

Regions can be clustered into a set of smaller regions by
moving each point towards the average of the positions of
all neighboring points:

(def cluster () (int-hood (nbr-vec)))

As this code executes, points near the boundary of the region
move towards the center of the region. No attempt is made to
keep the region coherent as it clusters. Eventually, the region
will contract to a set of points.

Conversely, regions can be dispersed by creating virtual
springs between points with a resting length of d. The fol-
lowing fragment:

(def disperse (d)
(int-hood

(* (- 1 (/ d (nbr-range))) (nbr-vec)))))

moves points to minimize the spring energy between neigh-
bors. This eventually results a uniform dispersion [12].

In order to perform clustering and dispersion directed to-
wards (or away from) a region, we need a way to determine
the direction to a region. We can interpret a field of scalars
in a region as the z-values of a topographic terrain. We can
then compute the gradient at any point in the region by find-
ing directions of maximal increase in height:

(def grad (field)
(int-hood

(* (/ (- (nbr field) field) (nbr-range))
(nbr-vec))))

The third line computes a vector towards each neighbor, with
magnitude equal to the gradient of the field towards each
neighbor. The int-hood operator integrates all the gradi-
ent vectors within a local region around each point, called
a neighborhood. The neighborhood of a point is the circle of
radius comm-range centered at that point. Essentially, this
function computes the average gradient vector towards the
source from all the points in the neighborhood.

Distance-based dispersion and clustering can be defined
by moving towards or away from this gradient vector:

1176



(def disperse-from (src)
(grad (distance-to src)))

(def cluster-to (src)
(* -1 (grad (distance-to src))))

The left picture of Figure 1 shows the vector field produced
by (cluster-to (is-light)), where the vectors points
towards lit regions.

Finally, we can follow a contour line in the topography of
the field. Our approach is to create another field that has a
stable limit cycle along the contour at a given level. We can
generate this field by summing vectors pointed both towards
and tangential to the desired topographic line:

(def contour-field (field level)
(let* ((vec (grad field)))

(+ (* c (- level field) vec)
(rotate pi/2 vec))))

where c is a feedback constant less than one. The following
example, produces a vector field causing points to orbit at 0.5
meter around the lit region:

(contour-field (distance-to (is-light)) 0.5)

as shown in the right picture of Figure 1.

3.2 Behavioral Combinators
In order to construct more complicated behaviors, we need

a method for behavioral composition. The first mechanism
spatially composes behaviors. For example, we can create a
behavior that makes agents disperse and remain somewhat
stationary over certain areas, while wandering everywhere
else. The code (mov (cover-light)) creates a dispersal
field in lit areas, and a brownian field in other regions:

(def cover-light ()
(where (is-light) (disperse) (brownian)))

The second mechanism composes behaviors over time, se-
quencing behaviors according to events. For example, we
can sequence dispersion for 2 seconds followed by wander-
ing for 3 seconds:

(loop (while (wait 2) (disperse))
(while (wait 3) (brownian)))

or wander until coming in contact with an object, then push-
ing it for 5 seconds:

(loop (while (not (is-near-object)) (brownian))
(while (wait 5) (push-object)))

In general, we can sequence arbitrary behaviors by introduc-
ing the notion of finite streams, which are truncated by some
event. The while function creates a stream of fields while
the predicate is true. Finite streams are represented as a tu-
ple of value fields and a boolean active field that is true when
the stream is active. The loop function transitions from fi-
nite stream to stream based on the active field.

4. IMPLEMENTATION
The Protoswarm implementation addresses three separate

challenges: (a) how to implement the primitives in a fault-
tolerant manner in the face of agent movement, (b) how to
translate swarm programs onto actual robots in an efficient

Network Path Distance vs. Euclidean 
Distance

0

1

2

3

0 1 2 3

euclidean distance (m)

ne
tw

or
k 

pa
th

 d
is

ta
nc

e 
(m

)

Figure 2: Distance-to data plotting actual versus computed
distances on 28 robots.

and portable manner, and (c) how to support program de-
velopment.

Neighborhood communications and localization are sup-
ported by a best-effort communication scheme. The most re-
cent information on neighbor’s relative positions and shared
variables are stored in a table [3]. Neighborhood operations
then access the table, combining the most recent values into
an approximate summary value. The virtual machine main-
tains the table by gathering shared values during each round
of execution. These are then transmitted each round while
receipt of packets proceeds in the background.

The simulator permits the running of much larger networks
(over 10,000 agents), larger applications, flexible visualiza-
tion, and friendlier code development and debugging. As
in the robot port, only a small amount of platform specific
code is necessary. The bulk of the simulator code facilitates
visualization, code development, and debugging.

We implemented Protoswarm on a group of 40 autonomous
mobile robots designed by iRobot. Each “SwarmBot” is au-
tonomous and is equipped with bump sensors, light sensors,
and an infra-red inter-robot communication and localization
system [8]. The inter-robot localization system enables each
robot to determine the positions of its neighbors relative to its
own local coordinate system. The infra-red communication
system is used to maintain the neighborhood table.

5. EXPERIMENTS
We tested elect-leader, distance-to, cluster-to,

and dilate on the robots. Data was collected from the robots
using a ceiling-mounted vision tracking system that recorded
the positions of each robot over time. Telemetry from each
robot was recorded to monitor each robot’s internal state.

The distance-to function measures the distance between
any point in the medium space and a source region. We
ran the following code: (distance-to (elect-leader
(id))), which elects a robot to be the source region, and
then measures the distance to that robot from all other robots.
Figure 2 compares the estimated distance to the source re-
gion to the actual distance. The distance estimate is accu-
rate over the entire workspace. Because the paths for mes-
sages are constrained to only travel over the communication
graph, the distance estimate will be an overestimate of the
actual path. The longest path through the network was four
communications hops.

The dilate function uses the distance-to function to
defined a region around a source. We tested:

(dilate (elect-leader (id)) 0.8)

to produce a region of 0.8 meters around the leader. The pic-
ture in Figure 3 shows a snapshot of dilate running on
robots. The graph shows the extent of the dilation region

1177



Region Dilation Around Moving Source

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5

Distance from source robot (m)

D
ila

ti
on

 (
P
ro

b
ab

ili
ty

)

dilate(ideal) dilate(measured)

Figure 3: Dilate results on robots. The lefthand picture
shows a swarm of 40 robots running dilate. The righthand
graph shows the actual dilated region versus the ideal re-
gion.

Cluster-To Paths

0

1000

2000

3000

4000

0 1000 2000 3000 4000

Cluster-To Path Efficiency

0.00

0.20

0.40

0.60

0.80

1.00

0.00 1.00 2.00 3.00 4.00

Euclidian Distance

E
ff

ic
ie

n
cy

Figure 4: Cluster-to results on robots. The lefthand plot
shows five paths towards the source the bottom left, and
the righthand plot shows the efficiency of these paths,
where the efficiency is the ration of shortest possible path
length to actual path length.

around the leader robot as it is driven around using radio
control. The black line shows the probability of a neighbor-
ing robot considering itself part of the dilation region. The
transition point is shifted to smaller radii because distance-to
is an overestimate of the actual distance. We suspect that the
slope of the transition is caused by the voids in the network
and the convergence speed of distance-to relative to the
speed of the robot.

The cluster-to produced a vector field which is used to
drive regions towards source regions. We tested the follow-
ing code:

(mov (mux (elect-leader (- (id)))
(cluster-to (elect-leader (id)))
(tup 0 0)))

which drives an “anti-leader” robot to a leader robot. The
left plot in Figure 4 shows five paths from various starting
positions. The right plot shows the path efficiency for each
of these paths, where path efficiency is the ratio of shortest
possible path length to actual path length. In twenty runs,
the robot always converged to the source.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we introduce a continuous spatial computer

abstraction to programming multi-agent behaviors. Our ap-
proach is built upon an Amorphous Medium Abstraction which
frees the programmer from needing to consider individual
robots. The Protoswarm language uses this abstraction to
provide the user with a high-level programming model. We
describe several core algorithms written in Protoswarm use-
ful for constructing larger applications. We tested program
fragments on 40 to 10000 in simulation and on a physical
swarm of 40 robots. In all cases, the programs behaved as
expected and the resulting behaviors were robust and scal-
able.

The power of our approach is that we can write scalable
applications once and deploy them approximately on a num-
ber of multi-robot platforms with each platform incurring a
certain approximation error. We think it is important to char-
acterize this error, but at this time we are unable to make for-
mal or statistical bounds on it or guarantees on correctness of
high level programs. We have been working steadily on this
challenge and hope to have results soon.

Although the demonstrated examples are limited, the pro-
gramming model is a promising tool for multi-robot systems.
In the future, we hope to expand the list of group level behav-
iors and applications and deploy the model on a wider range
of multi-robot systems.

7. ACKNOWLEDGMENTS
The authors would like to thank all our sponsors. In par-

ticular, this work was funded under NSF grant CCF-0621897.
We would like to acknowledge Jacob Beal’s large contribu-
tion to this work both in helping flush out the robotics ap-
proach and for his key role in the development of the Amor-
phous Medium Abstraction and the Proto language.

8. REFERENCES
[1] J. Beal. Programming an amorphous computational

medium. In Unconventional Programming Paradigms
International Workshop, September 2004.

[2] J. Beal and J. Bachrach. Infrastructure for engineered
emergence in sensor/actuator networks. IEEE
Intelligent Systems, pages 10–19, March/April 2006.

[3] W. Butera. Programming a Paintable Computer. PhD
thesis, MIT, 2002.

[4] J. Hill, R. Szewcyk, A. Woo, D. Culler, S. Hollar, and
K. Pister. System architecture directions for networked
sensors. In ASPLOS, November 2000.

[5] E. Klavins. A language for modeling and programming
cooperative control systems. In Proceedings of the
International Conference on Robotics and Automation, 2004.

[6] M. Kloetzer and C. Belta. Hierarchical abstractions for
robotic swarms. In IEEE International Conference on
Robotics and Automation, 2006.

[7] M. Mataric and M. Marjanovic. Synthesizing complex
behaviors by composing simple primitives. In
Proceedings, Self Organization and Life, From Simple Rules
to Global Complexity, European Conference on Artificial Life
(ECAL-93), pages 698–707, May 1993.

[8] J. McLurkin. Stupid robot tricks: A behavior-based
distributed algorithm library for programming swarms
of robots. Master’s thesis, MIT, 2004.

[9] N. Minar, R. Burkhart, C. Langton, and M. Askenazi.
The swarm simulation system, a toolkit for building
multi-agent simulations. Technical Report Working
Paper 96-06-042, Santa Fe Institute, 1996.

[10] R. Newton and M. Welsh. Region streams: Functional
macroprogramming for sensor networks. In First
International Workshop on Data Management for Sensor
Networks (DMSN), Aug. 2004.

[11] J. Palmer and J. G.L. Steele. Connection machine model
cm-5 system overview. In Fourth Symposium on the
Frontiers of Massively Parallel Computation, 1992.

[12] W. Spears, D. Spears, J. Hamann, and R. Heil.
Distributed, physics-based control of swarms of
vehicles. Autonomous Robots, 17(2-3), August 2004.

1178




