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ABSTRACT

Humans are surrounded by audio signals that include both

speech and non-speech sounds. The recognition and under-

standing of speech and non-speech audio events, along with a

profound comprehension of the relationship between them,

constitute fundamental cognitive capabilities. For the first

time, we build a machine learning model, called LTU-AS,

that has a conceptually similar universal audio perception and

advanced reasoning ability. Specifically, by integrating Whis-

per [1] as a perception module and LLaMA [2] as a rea-

soning module, LTU-AS can simultaneously recognize and

jointly understand spoken text, speech paralinguistics, and

non-speech audio events - almost everything perceivable from

audio signals.

1. INTRODUCTION

Humans live in a multifarious environment of audio signals,

encompassing both speech and a wide variety of non-speech

sounds. The ability to accurately discern, interpret, and in-

tegrate these speech and non-speech audio elements, in con-

junction with a profound understanding of the interrelation-

ships they entail, represents a fundamental cognitive capabil-

ity of humans. When we hear ªwatch out!º and a car horn si-

multaneously, we can infer the danger. If we hear birds chirp-

ing and someone says ªthat’s a rare one,º we know there is an

unusual bird nearby. Understanding music usually requires

paying attention to both the lyrics and the melody.

However, most existing machine learning models can

only recognize either speech or audio events. Further, while

being strong in audio or speech perception, these models pos-

sess limited reasoning and understanding capabilities. This

motivates us to build a joint audio and speech understanding

model that is able to simultaneously recognize and jointly

understand speech and audio events. Particularly, as shown

in Figure 1, our model integrates pretrained Whisper [1]

automatic speech recognizer (ASR) and a time and layer-

wise Transformer (TLTR) [3] as the perception module and

LLaMA [2] large language model (LLM) as the reasoning

module. In addition, we formulate the training data as (audio,

question, answer) (AQA) tuples, which allows us to combine

13 audio and speech datasets of various tasks with different

label sets into a single 9.6M Open-ASQA dataset, among

which 6.9 million data are open-ended AQA tuples gener-

ated by GPT [4] with audio instruction generation [5]. We

This research is supported by the MIT-IBM Watson AI Lab. Code and

pretrained models are at github.com/yuangongnd/ltu.
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(Example 1: Recording of a basketball training session) 

Q: What is the job of the speaker? LTU-AS: The speaker is coaching or 
instructing someone on how to play basketball based on their speech 

content and the background sounds of basketball bounce heard.
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TLTR
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"This train's 

destination is 
Union Station..."

(Example 2: Recording of a piece of rock music) 

Q: Why the music is rock? LTU-AS: The music has a strong beat, distorted 
guitar riffs, and aggressive vocals that are typical characteristics of rock 

music. The lyrics also contain themes of rebellion and defiance which 

align with the genre's cultural significance.

(Example 3: Recording of an interview)
Q: What is the emotion of the speaker? LTU-AS: Based on the speech 
content, the speaker seems to express anxiety or nervousness about 

public speaking. The high pitch and fast speed suggest excitement or 
tension as well. Therefore, the emotion of the speaker can be inferred as 

nervousness or anxiety.

Fig. 1. Illustration of the LTU-AS model and real samples

showing its joint audio and speech understanding ability.

call our model LTU-AS (listen to, think of, and understand

audio and speech). Performance-wise, we show LTU-AS is

strong on all audio/speech tasks. But more importantly, as

shown in Fig. 1 and Table 6, LTU-AS can answer free-form

open-ended questions about the audio and speech with an in-

struction following rate over 95% (evaluated by GPT-4), and

exhibits emerging joint audio and speech reasoning ability.

Related Work: LTU-AS substantially improves the recent

audio large language model LTU [5] that only understands

non-speech audio. Particularly, LTU-AS adopts Whisper [1]

and TLTR [3] as the audio encoder instead of the AST [6]

audio encoder in LTU. This change enables LTU-AS to

recognize both speech and audio events. We also augment

the LTU OpenAQA-5M dataset with 4 million speech and

audio/speech understanding AQAs in creating the 9.6M

Open-ASQA dataset. There are a few recent efforts on

joint audio and speech recogntion [7, 8, 9, 10] but none of

them exhibit advanced joint reasoning ability. Other recent

audio LLMs [11, 12, 13, 14] primarily focus on only speech.

To the best of our knowledge, LTU-AS is the first joint audio

and speech understanding model.
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2. LTU-AS MODEL ARCHITECTURE

2.1. Design Overview
The architecture of LTU-AS is depicted in Fig. 1. The sys-
tem input is a pair of audio and question in natural language
form. The audio is first input to the Whisper audio encoder.
Then, the output of the Whisper encoder is fed to the Whis-
per decoder to transcribe it to discrete spoken text (if there
is no speech, then the output of the decoder will be empty,
which is as expected). Meanwhile, we feed the output of
all 32 Whisper encoder intermediate layers to an AudioSet-
pretrained Time and Layer-Wise Transformer (TLTR) [3] to
encode “soft” audio events and speech paralinguistic informa-
tion, and then project to a series of continuous audio tokens
{A} with a linear layer.

During training, the entire Whisper model is frozen. Only
the TLTR model and projection layer are trainable. This de-
sign is due to a few reasons: First, training a large language
model as an automatic speech recognizer (ASR) can be very
expensive but the benefit is unclear [14], we thus choose to
freeze the entire Whisper model to inherit its strong and ro-
bust ASR ability. Second, although the Whisper encoder en-
codes rich audio events and speech paralinguistic informa-
tion [3, 15, 16], it encodes information in the representations
of different layers. Since we anticipate LTU-AS being a uni-
versal perception model, we use the TLTR model to apply
attention mechanisms over both time and layers.

The key advantage of this setting is that the audio is en-
coded to both text and continuous tokens, so both linguistic
and non-linguistic information are kept. We then tokenize
and embed the spoken text and input question to a sequence
of text tokens {S} and {Q}, respectively. Finally, we con-
catenate and input {A}, {S}, and {Q} to the LLaMA LLM.
Due to the computational limit, we trim the length of the au-
dio token {A} to 25 (corresponding to 10 seconds of audio),
but allow {S} and {Q} to be of variable length.

2.2. Audio Encoder

Whisper [1] is a recently proposed robust ASR model that
features a standard Transformer [17]-based encoder-decoder
architecture trained with a massive 680k hour labeled speech
corpus recorded in diverse conditions. Notably, it was found
that the Whisper encoder features not only encode linguistic
information, but also encode rich general background sound
information [3] and paralinguistic and other information (e.g.,
emotion [15] and language development [16]). In this paper,
we use the Whisper-large model whose encoder and decoder
are both 32-layer, 1280-dimensional Transformer networks.
Time and Layer-Wise Transformer (TLTR): We use the
AudioSet pretrained TLTR for Whisper proposed in [3], orig-
inally for audio event detection. We empirically find there is
no need to pretrain it further on speech classification tasks be-
fore training together with LTU-AS. Whisper and TLTR pool
the audio with a factor of 40, i.e., for each 10-second audio

(1000 frames), the length of the TLTR output is 25 (2.5Hz).
Projection Layer: We use a single linear layer to project the
TLTR output from 1280-dimensional to 4096-dimensional to
match the embedding dimension of the LLaMA LLM.

2.3. LLaMA Large Language Model

We use the LLaMA-7B LLM [2] with Vicuna [18] instruction
following for fine-tuning. To mitigate catastrophic forget-
ting [19] and save computation, we freeze the entire LLaMA
model and adopt Low-rank Adaptation [20] (LoRA), which
introduces a small set of auxiliary learnable weights on top of
the pre-trained LLaMA model. Specifically, we inject LoRA
adapters (rank=8 and α=16) to the projection layers for all
keys and queries in all LLaMA self-attention layers [17].
Training Objective: As an audio LLM, LTU-AS is trained
on the next token prediction task conditioning on the past
tokens and the reference audio, i.e., maximizing P (Ot |
O1:t−1, A, S,Q), through cross-entropy for all 1 < t ≤ T
given the tokenized ground truth text sequence (i.e., output)
O1:T and the reference audio token A, spoken text S, and
question Q. This training objective allows us to unify nearly
all audio and speech tasks except audio/speech generation
into a single training framework.
Generation Setting: We use a plain generation setting of
Temperature=0.1, Top K=500, and Top P=0.95 with a repe-
tition penalty of 1.1 [21, 22] for all tasks.
Model Parameters: As a LLM, LTU-AS has about 8.5 bil-
lion parameters. However, only 49 million parameters are
actually trainable (40M for TLTR, 4.2M for LoRA adapters,
and 5M for the projection layer), which is only about 0.6%
of the total number of parameters. This significantly lowers
the computation requirement to train LTU-AS. Practically,
LTU-AS is trained on 4× A6000 GPUs for about 80 hours.

3. THE OPEN-ASQA DATASET

We aim to build LTU-AS to address a wide range of open-
ended audio and speech tasks, and understand the audio and
speech jointly. To achieve this objective, we need a training
dataset to provide such joint audio and speech supervision.
Unfortunately, there is no existing dataset that meets our
needs. The closest one is the OpenAQA dataset used to
train LTU [5], which is an audio question-answering dataset
consisting of 1.9 million closed-ended and 3.7 million open-
ended AQAs. However, OpenAQA lacks speech related,
and joint audio-speech questions. Therefore, on the basis
of OpenAQA-5M, we add an additional 2.7 million speech-
related AQAs (0.9 million closed-ended and 1.8 million open-
ended) and 1.2 million joint audio and speech AQAs (almost
all open-ended), and build a new 9.6M Open-ASQA dataset.
Note that we do not collect new audio and speech data, but
instead relabel 13 existing public datasets summarized in Ta-
ble 2. For all these datasets, we only include data marked as
training and validation samples and exclude any data marked
as test or evaluation.

Authorized licensed use limited to: MIT Libraries. Downloaded on March 29,2024 at 19:54:09 UTC from IEEE Xplore.  Restrictions apply. 



As with OpenAQA, all Open-ASQA samples are format-
ted as (audio, question, answer) tuples, where “audio” and
“question” are the model inputs, and “answer” is the ground
truth label. By unifying all training samples in this format,
we not only map all labels to a semantic space, but are also
able to train LTU-AS with a variety of different tasks easily.

3.1. Closed-Ended AQA Generation

For each task and dataset, we paraphrase the question (e.g.,
“What is the audio event”) with GPT-3.5-Turbo assistance to
generate a diverse question set, so LTU-AS won’t overfit to
a specific question for a task. However, the answers are gen-
erated with a rule-based algorithm based on the original la-
bel of the dataset, and thus have a fixed format. We thus call
such AQAs closed-ended AQAs. The upper section of Table 1
shows samples of closed-ended AQA pairs.

Closed-Ended Audio AQA: Closed-ended audio ques-
tions are from the original OpenAQA dataset, which consists
of 1.9 million AQAs about the audio event labels, acoustic
features, audio captioning, and audio temporal analysis. The
audio tracks are from 8 audio datasets. Please refer to Table 2
and [5] for more details.

Closed-Ended Speech AQA: We created 941k closed-
ended speech AQAs based on 4 commonly used speech
datasets. The first category of questions asks the origi-
nal labels of the datasets, e.g., speaker emotion/gender for
IEMOCAP [23], speaker emotion and sentiment score for
MOSEI [24], speaker gender for LibriTTS [25], and speaker
age and gender for VoxCeleb2 [26, 27]. In addition to these
original labels, we further annotate the speaker style of speech
speed (computed with Whisper time stamps), pitch, and en-
ergy (computed with librosa [28]), and generate AQAs asking
the speaker style. Finally, we also mix in about 150k ASR
AQAs that have questions asking about the spoken text, and
the answers are the transcriptions. Note that since LTU-AS
has an internal Whisper model feeding the transcribed text
to LLaMA, the ASR task is no more than an identity map-
ping for LTU-AS, which is fundamentally different from
SpeechGPT [14]. We include ASR AQAs just to guide the
model following ASR instructions.

Closed-Ended Joint Audio and Speech AQA: Most
joint audio and speech AQAs in this project are open-ended.
The only 93k closed-ended joint audio and speech AQAs are
of the music genre prediction task on the FMA [29] dataset,
which requires LTU-AS to consider both lyrics (text) and
acoustic information to make the prediction.

3.2. Open-Ended AQA Generation

Generating diverse open-ended AQA pairs at a large scale
poses challenges with human-based efforts being impractical,
and rule-based methods limiting output diversity. We thus
use Audio Instruction Generation (AIG) proposed in [5] to
generate open-ended AQAs with GPT-3.5-Turbo assistance.
Specifically, since GPT does not take audio or speech as input,

Table 1. Sample closed- and open-ended training QA pairs.
Open-ended QA pairs are generated by Audio Instruction
Generation (AIG) with the shown GPT prompt and input.
*GPT prompt is shortened due to space limitation.

Closed-Ended QA Samples

Q: Identify the sound from the clip? A: Dog, Animal.
Q: Write an audio caption describing the sound?
A: An engine revving and then tires squealing.
Q: What emotion does the speaker convey?
A: Happy, with a sentiment score of 2 (positive).
Q: Can you determine the music genre? A: Folk, Pop.

Open-Ended QA Samples

GPT Prompt*: Based on the following audio/speech, generate 10 dif-
ferent types of complex open-ended questions that require step-by-step
thinking, and corresponding answers. Questions can be e.g., How are
speech content and background sounds related? ... etc. Format each QA
pair in a single line as a JSON dictionary. (varies for each task/dataset)

GPT-Input: In the recording, background sound of domestic animals,
dog and speech of “Get him going, get him going with it.” is heard.
GPT-Output: Q: What can be inferred from the audio? A: It can be
inferred that the speech is addressing the dog in the background.

GPT-Input: In the recording, background sound of explosion and
speech of “Flames engulfed the tank and began to heat the propane in-
side. Twenty volunteer firefighters...” is heard.
GPT-Output: Q: Why do the speech content and explosion sound cre-
ate a tense atmosphere? A: The speech content describes a tragic event
and the explosion sound adds intensity and suspense to the narrative.

GPT-Input: Speech: “Hi, my name is Jamie and I’m a Master Sales
Consultant here at Northline Volkswagen...”; Speaker gender: Male;
Pitch: low; Volume: very high; Speed: very slow; Emotion: happy.
GPT-Output: Q: What can we infer from the speech content and emo-
tion? A: The speaker seems happy to introduce himself and his com-
pany, and he is delivering his words in a slow and clear manner to make
sure everyone understands what he is saying.

GPT-Input: Music genre: Folk; Music Lyrics: “The man of his dreams
is all that he seems Flowers in sunshine...”
GPT-Output: Q: What mood does this music convey?
A: The music conveys a cheerful and relaxed mood because of the lively
melody and lyrics about flowers and sunshine.

we input the meta information of the audio (e.g., audio events,
speech style, emotion, and spoken text) to the GPT-3.5-Turbo
model in the form of pure text as a surrogate, and then use
the prompt shown in Table 1 to let the GPT model generate
AQA pairs. As shown in Table 1, the generated open-ended
QA pairs are diverse and of high quality. Notably, 65.1% of
open-ended questions appear only once in the dataset.

Note that AIG is only used for data generation; during
model training, only the raw audio and generated QA pairs
are input to the LTU-AS model. Thus, the model is forced
to learn directly from the raw audio that contains richer and
more fine-grained information compared to the extracted
meta-information. Similarly, during inference, LTU-AS
solely uses raw audio to answer the question.

Open-Ended Audio AQA: We use the approximately 3.7
million AQAs about non-speech audio events from the origi-
nal OpenAQA dataset [5].

Authorized licensed use limited to: MIT Libraries. Downloaded on March 29,2024 at 19:54:09 UTC from IEEE Xplore.  Restrictions apply. 



Table 2. The statistics of the 9.6-million Open-ASQA dataset. “x” denotes the corresponding label is used.

Dataset
Audio
Event

Audio
Caption

Spoken
Text*

Speaker
Gender

Speaker
Age

Speech
Style

Speaker
Emotion

Music
Genre

# Audio
Clips

# Closed-
Ended QAs

# Open-
Ended QAs

Audio Datasets (OpenAQA) [5]

AS-Strong [30] x x x x - - - - 102k 683k 901k
AudioSet [31] x - x x - - - x 500k 538k 184k
VGGSound [32] x - x x - - - x 184k 367k 907k
FSD50K [33] x - x x - - - x 41k 82k 403k
AudioCaps [34] x x x x - - - x 46k 97k 478k
FreeSound [35] - x x - - - - - 91k 91k 791k
Clotho [36] - x x - - - - - 5k 48k 89k
Sound Bible [37] - x x - - - - - 1.2k 12k 10k
Sum 845k 1,918k 3,763k

Speech Datasets

IEMOCAP [23] - - x x - x x - 4.3k 26k 83k
LibriTTS [25] - - x x - x - - 22k 167k 418k
VoxCeleb2 [26] - - x x x x - - 107k 194k 926k
MOSEI [24] - - x - - x x - 18k 554k 355k
Sum 151k 941k 1,784k

Joint Audio and Speech Datasets

AudioSet [31] x - x x - - - x 82k - 747k
FMA [29] - - x - - - - x 93k 93k 396k
Sum 175k 93k 1,143k

Total (9,641k Question Answer Pairs) 1,089k 2,951k 6,690k

Open-Ended Speech AQA: We generate open-ended
AQAs about speech using the four commonly used datasets
IEMOCAP [23], MOSEI [24], LibriTTS [25], and Vox-
Celeb2 [26, 27]. We input all speech meta information in-
cluding the original dataset labels (e.g., speaker emotion,
gender, and age), extracted speech style features (e.g., pitch,
speed, and volume), and Whisper transcribed spoken text,
all in text form, to GPT-3.5-Turbo with the prompt shown in
Table 1. For age, pitch, speed, and volume, we also quantize
each of them into 5 categories (e.g., very low - very high) to
help GPT understand the value. The input meta information
to GPT of each dataset is marked as “x” in Table 2. Our
intent was to input as much information as possible to GPT
to generate high-quality AQAs.

Open-Ended Joint Audio and Speech AQA

We use two datasets containing both speech and non-
speech audio to generate joint audio and speech AQAs. The
first dataset we use is AudioSet [31]. Although AudioSet-
2M has about 1M samples containing speech, and it has
already been used in the original OpenAQA dataset, the spo-
ken text was ignored. Specifically, a single label “speech”
rather than the actual spoken text is input to GPT-3.5-Turbo
for OpenAQA generation. In this work, we first sample a
500k subset from AudioSet-2M using the sound class bal-
ancing algorithm proposed in [38] to guarantee the diversity
of non-speech audio events. We then use Whisper to tran-
scribe the 500k AudioSet subset and select samples having
no speech prob<0.2 and spoken text length over 5. This
heuristic made it quite likely that the spoken text was tran-
scribed correctly and had sufficient length to encompass

substantive content. This resulted in 82k samples meeting
the requirement. They were used to generate joint audio and
speech AQAs with GPT assistance. As shown in Table 1,
GPT can generate AQAs for joint audio and speech under-
standing, e.g., in the first sample, GPT outputs an answer
explaining the speech is addressing the dog by understanding
the speech content and the dog sound.

The second dataset we use is the FMA [29] music dataset.
We input the list of music genres, title (if provided), and
Whisper transcribed lyrics of each music clip to GPT and let
it generate AQAs about music understanding with joint lyrics
and melody analysis. In total, we generated about 1.1 million
open-ended joint audio and speech AQAs.

Table 3. The LTU-AS training curriculum.
Stage Tr. Params Tr. Task Tr. Samples LR # Epochs

1 Proj. Cla. 2.1M 1e-3 2
2 Proj. + TLTR + LoRA Cla. 2.1M 2e-4 2
3 Proj. + TLTR + LoRA All 9.6M 2e-4 1

4. TRAINING LTU-AS

As for the LTU model [5], we use a three-stage training cur-
riculum shown in Table 3 to train LTU-AS. In the first stage,
only the randomly initialized projection layer is trainable.
The TLTR and LoRA adapters are unfrozen in the second and
third stages to stabilize training. In addition, in the first and
second stages, we only train LTU-AS with AQAs of classi-
fication tasks where the model gets a high penalty for wrong
predictions. The model is thus forced to attend to the audio
input rather than using its language ability to hallucinate.

Authorized licensed use limited to: MIT Libraries. Downloaded on March 29,2024 at 19:54:09 UTC from IEEE Xplore.  Restrictions apply. 



Table 4. Closed-ended task performance. ZS: Zero-shot evaluation; ZS-: The dataset is not used in training, but it is sourced
from the same project as part of the training data. * Model does not follow instructions on part of or entire of the dataset.

Audio
Classif.

Audio
Caption

Speech
Recognition

Emotion
Recognition

Gender
Classif.

Age
Pred.

Music Genre
Classif.

Model ESC-50 [39]
(ACC ↑)

AudioCaps
(SPICE ↑)

Librispeech [40]
(test-clean WER ↓)

IEMOCAP
(ACC ↑)

Voxceleb2
(macro-F1 ↑)

Voxceleb2
(MAE ↓)

GTZAN [41]
(ACC ↑)

Best specialized models trained supervisedly on each dataset. Not generalizable to unseen label sets and tasks.
Best Supervised & Specialized 97.0 [42] 17.7 [43] 1.4 [44] 70.6 [45] 98.3 [27] 9.4 [27] 93.9 [46]

CLIP-like audio-text model. Generalizable to unseen labels, but a pre-defined label set is required for inference
AudioClip [47] 69.4 - - - - - -
CLAP [48] 82.6 - - - - - 25.2

(Proposed) One single model for all tasks. Directly output label names, no pre-defined label set is needed at inference.
LTU-AS 80.8 zs- 15.0 4.9 65.2 90.8 7.3 50.3zs

Ablation Study 1 - Train with only speech or audio data
LTU (Audio Training Only) [5] 82.8 17.0 104.2 38.2 77.0 Fail* 29.8
LTU (Speech Training Only) 10.9 0.5 12.9 69.8 90.1 7.9 23.5

Ablation Study 2 - Inference with missing modality
LTU-AS (Audio Input Only) 81.9 14.9 97.2 58.6 95.6 8.2 48.2
LTU-AS (Spoken Text Input Only) 7.7 3.5 20.0 45.4 42.0 11.9* 21.5

5. EXPERIMENTS

5.1. Closed-Ended Tasks Evaluation
Although the main novelty of LTU-AS is open-ended audio
and speech understanding, we first rigorously evaluate its per-
formance on seven standard closed-ended audio and speech
tasks because these tasks serve as the foundation for advanced
reasoning. Specifically, for each task, we use a fixed prompt
(e.g., “write an audio caption describing the sound.” for au-
dio classification) and either apply a regular expression to
the LTU-AS to get the prediction (for ASR, audio caption-
ing, gender classification, and age prediction), or compute
the cosine similarity between the text embedding (gpt-text-
embedding-ada) of LTU-AS output and each label, and use
label that has the highest similarity score as the prediction
(for other classification tasks).

The results are summarized in Table 4. First, as a foun-
dational model, LTU-AS performs well on both audio and
speech tasks. It works particularly well on tasks requiring
both audio and speech understanding, which exactly meets
our expectations. E.g., the accuracy of LTU-AS is nearly
twice that of CLAP [48] on the zero-shot GTZAN music
genre classification task; the MAE of speaker age predic-
tion is even lower than the SOTA specialized model that
only works for the task. Compared with CLIP-like mod-
els [48, 47], LTU-AS does not require any pre-defined label
set and directly outputs predictions in natural language, which
makes it a more practical system for real-world applications.

Second, training with both non-speech audio and speech
data is crucial for LTU-AS to become a unified sound percep-
tion model. In Ablation Study 1, we compare LTU-AS with
LTU models trained with only audio and only speech datasets.
Though audio- and speech-specialized LTUs perform slightly
better on tasks in their respective training domain, they almost
fail on tasks in the domain they are not trained on.

Third, to take a closer look at how LLaMA attends to con-
tinuous audio token input {A} and spoken text token input
{S} on different tasks, we manually remove one input modal-
ity for Ablation Study 2. For most tasks, a missing modality
leads to a performance drop, indicating that LLaMA takes
both {A} and {S} into its decision-making. Even on au-
dio classification and gender classification tasks where {S} is
not useful, including {S} leads to only a slight performance
drop, demonstrating that LTU-AS can correctly attend to {A}
and {S} based on the input audio and question. Finally, we
observe the ASR performance of LTU-AS (4.9% WER) is
worse than its internal Whisper model (3.5% WER) due to oc-
casionally not following instructions and changing spelling.

Table 5. LTU instruction following rate rated by GPT-4.
Model Audio Question Speech Question

LTU-Audio Training Only 96% 69%
LTU-Speech Training Only 65% 93%
LTU-AS 96% 94%

5.2. Open-Ended Audio Question Answering Evaluation

In addition to the good performance on closed-ended tasks,
LTU-AS also exhibits superior performance when it comes
to answering open-ended questions. We quantitatively mea-
sure the instruction following rate of LTU-AS on audio and
speech questions and compare it with LTU models trained
with only audio data and speech data. Specifically, we use
GPT-4 to generate 100 audio and speech questions based on
AudioSet and VoxCeleb evaluation sets, respectively, and in-
put the questions and corresponding audios to LTU models
and collect its answers. Finally, we use GPT-4 to evaluate
if the LTU model output answers the given questions by the
prompt “Below is a pair of question and response. Identify
if the response directly answers the question and give a clear
answer.” As shown in Table 5, LTU-AS has an instruction
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Table 6. Real samples of LTU-AS open-ended question an-
swering on evaluation samples. Acoustic and speech informa-
tion in the answers are marked in green and red, respectively,
to highlight how LTU-AS understand them jointly.

Sample 1 Basketball Coaching (AS-Eval)
Transcribed speech: To the left, the second time through they’ll do the
same move to the right. We’ll do a series of about five moves. Here
we’ve got a 6’9 kid, I expect him to make the same move.
Q: What can be inferred from the audio events and spoken text?
A: The audio event is a basketball bounce while the spoken text suggests
that someone is giving instructions.
Q: what is the job of the speaker?
A: The speaker is coaching or instructing someone on how to play bas-
ketball based on their speech content and the background sounds of
basketball bounce heard.
Q: Where could this audio be recorded?
A: This audio clip could have been recorded in a basketball court or
gymnasium where people are playing basketball and speaking.
Sample 2 Interview (VoxCeleb2-Eval)
Transcribed speech: ... I was so anxious about getting up and talking in
front of people that I thought I still sort of lose...
Q: What is the emotion of the speaker? Why?
A: Based on the speech content, the speaker seems to express anxiety
or nervousness about public speaking. The high pitch and fast speed
suggest excitement or tension as well. Therefore, the emotion of the
speaker can be inferred as nervousness or anxiety.
Q: Is the speaker a good public speaker?
A: No, the speaker feels anxious about speaking in front of people and
thinks they will still feel lose-lose about it.
Q: Provide the speaker 5 suggestions.
A: 1. Take a deep breath before speaking. 2. Practice public speaking
regularly. 3. Use humor or lightheartedness to ease nerves. 4. Focus
on the audience rather than yourself during speeches. 5. Seek feedback
from others to improve your delivery.
Sample 3 Rock Music (GTZAN)
Transcribed Lyrics: Gotta be tonight, my days are blue, babe Mama
says you don’t, daddy says you won’t. And I’m falling off her side No
way I’m gonna lose out this time. Tie your mother down...
Q: What did you hear? A: Music, punk rock.
Q: Why the music is rock? Consider both lyrics and sounds.
A: The music has a strong beat, distorted guitar riffs, and aggressive
vocals that are typical characteristics of rock music. The lyrics also
contain themes of rebellion and defiance which align with the genre’s
cultural significance.
Q: Can you suggest a title for this music?
A: Tie Your Mother Down - A Punk Rock Anthem.
Q: Is this music appropriate to play in a primary school?
A: No, the lyrics and overall tone are not suitable for children.
Q: What mood does this music convey?
A: The music conveys a rebellious and energetic mood with its fast-
paced tempo and aggressive guitar riffs. The lyrics also add to the sense
of rebellion.
Sample 4 Subway Station (FSD50K)
Transcribed speech: This is the transfer point for the Metro Purple Line
to Wilshire Western. Boarding platform is located downstairs...
Q: What did you hear? A: Subway, metro, underground.
Q: What spoken text is heard?
A: The spoken text is “This is the transfer point for the Metro Purple
Line to Wilshire Western. Boarding platform is located downstairs...”
Q: What can be inferred from the sound and announcement?
A: The subway sound suggests that it is a busy station with many people
coming and going, while the announcement provides information about
the train schedule.
Q: Where is the boarding platform located?
A: The boarding platform is located downstairs.
Q: Which line does this station transfer to?
A: The transfer point is to the Metro Purple Line.
Q: What should I do if I hear this?
A: You should board the next train and proceed to your destination.

following rate over 94% for both audio and speech questions,
while LTU trained with only audio/speech dataset does not
follow instruction well on questions out of its training do-
main. Please note that this automatic evaluation protocol may
overestimate the actual instruction following rate because 1)
the evaluation questions are generated by GPT-4, not humans;
and 2) GPT-4 may overrate LTU-AS answers as LTU-AS is
trained to generate answers similar to GPT outputs.

As shown in Table 6, LTU-AS understands the world
by combing audio and speech information: In example
1, LTU-AS correctly identifies the job of the speaker as a
basketball coach because the spoken text is about instruct-
ing while bouncing basketballs are heard in the background.
Without understanding the spoken text, the speaker could be
a basketball player, while without understanding the audio,
the speaker could be a football coach. Similarly, in example
2, LTU-AS knows the speaker is anxious because of spo-
ken content and expresses concern about public speaking
while the speaker speaks fast with a high pitch. LTU-AS
exhibits emerging reasoning ability and connects sounds
to actions: In Sample 2, LTU-AS can provide suggestions
to the speaker based on his situation; in Sample 3, LTU-AS
can suggest a title for the music, and does not recommend
to play it in a primary school because the lyrics and music
tone are not suitable for children; in Sample 4, LTU-AS not
only correctly extracts the information about the boarding
platform and transfer line, but also suggests boarding the next
train when we hear the announcement. All these demonstrate
LTU-AS can comprehend the input audio and speech.

6. CONCLUSIONS
In this paper, we present LTU-AS, a novel joint audio and
speech understanding model that can simultaneously rec-
ognize and jointly understand spoken text, speech paralin-
guistics, and non-speech audio events. We identify three
key components in successfully building LTU-AS. First,
LTU-AS uses a strong audio encoder (Whisper) and a strong
reasoning model (LLaMA). The former provides precise per-
ception ability while the latter provides advanced reasoning
ability. Second, LTU-AS is trained with the new large-scale
dataset Open-ASQA with a wide range of diverse audio and
speech tasks. In particular, the open-ended questions gener-
ated with GPT assistance are crucial to empower LTU-AS to
answer free-form questions. Third, LTU-AS is trained with
a multi-stage training curriculum to militate hallucination.
LTU-AS achieves good performance on all tested closed-
ended audio and speech benchmarks, particularly on tasks
requiring joint audio and speech understanding. More im-
portantly, when answering free-form, open-ended questions,
LTU-AS effectively combines information from audio and
speech, and exhibits emerging reasoning abilities.
Ethics Statement: To prevent the potential misuse of the pro-
posed audio LLM, we intentionally do not include speaker
identification in our task list. The music used in model train-
ing is Creative Commons-licensed [29].
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