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Abstract

The Multi-target Challenge' aims to assess how well cur-
rent speech technology is able to determine whether or not a
recorded utterance was spoken by one of a large number of
blacklisted speakers. It is a form of multi-target speaker detec-
tion based on real-world telephone conversations. Data record-
ings are generated from call center customer-agent conversa-
tions. The task is to measure how accurately one can detect 1)
whether a test recording is spoken by a blacklisted speaker, and
2) which specific blacklisted speaker was talking. This paper
outlines the challenge and provides its baselines, results, and
discussions.

Index Terms: Multi-target detection, speaker verification

1. Introduction

Recent advancements in speaker verification methods and their
successful applications in the industry have given rise to the in-
creasing need for robust multitarget speaker detection systems.
The multitarget speaker detection problem is similar to the regu-
lar speaker verification task except that in multitarget detection,
we treat a set of speakers as our target, and try to determine
if an unknown speaker belongs to the group of specified target
speakers [1]. For example, maintaining a blacklist of telephone
fraudsters and raising an alarm whenever a voice is classified as
a blacklist speaker can effectively prevent phone scams.

Despite the compelling uses, multitarget speaker detection
systems have not been widely deployed and implemented. Mul-
titarget detection such as blacklist or watchlist was often de-
scribed as open-set speaker identification. There are a few rel-
evant studies [2, 3, 4, 5, 6, 7], but it is not actively being ex-
plored because it is regarded as a special case of speaker verifi-
cation. Most research on this topic pre-date the i-vector [8], so
it is difficult to compare the performance of older blacklist de-
tection systems with state-of-the-art technology. Furthermore,
most prior studies used a relatively small blacklist cohort size,
such as under 100 speakers. As the size of the target set NV be-
comes large, say, over 3,000, identification performance drops
significantly. Further, noisy data and unpredictable speaker be-
haviors in the real world introduce even more variability. In con-
trast to other group classification problems in machine learning,
where at least one or more common features that are shared
by all cases in the same class can be learned, in the multi-
target speaker detection problem, speakers in the target set do
not share any common trait in their voices that are unique from
those who are not in the target set.

The 1st Multi-target speaker detection and Identification
Challenge Evaluation (MCE 2018) aims to assess how well cur-
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rent speech verification technology is able to detect and identify
multi-target speakers and to explore novel approaches on the
shared task with fixed experimental conditions. In this paper,
we describe the details of the evaluation task, dataset collection
from a real-world call-center, the baseline system, the challenge
evaluation results and subsequent discussion.

2. Task Description : Multi-target detection
and identification

2.1. Task definition

The task of MCE2018 is multi-target (speaker) detection and
identification. Given an input speech utterance, the task is to
determine if the utterance speaker is a member of a list of previ-
ously enrolled speakers (i.e., the blacklist) and, if so, to identify
which one.

Singer and Reynolds [1] define the problem of multitarget
speaker detection as being comprised of two tasks: an open-set
detection and a closed-set identification. In open-set detection,
the system tries to determine whether or not the speaker of an
input utterance is a member of a known target set. In closed-
set identification, the test utterance is assumed to be associated
with one of the known classes, i.e., one of the target speakers,
and the system must identify which one. In this paper, we will
follow the glossary and measurements outlined in [1].

The evaluation will examine performance of two types of
stacked detectors: Top-S and Top-1 stack detectors. When S
is the total number of blacklist speakers, a top-S stack detec-
tor only detects whether or not the input speech is spoken by a
member of the blacklist cohort. A top-1 stack detector not only
detects membership in the blacklist cohort but further identifies
the specific speaker within the blacklist.

2.2. Dataset Description

All speech data in this evaluation were recordings from
customer-agent conversations to an operational call center.
Since the contents of the conversations contain private infor-
mation, we were unable to provide the original audio for the
evaluation. Instead we provided an i-vector representation for
each audio recording similar to what was done for the NIST
speaker and language recognition i-vector challenges?.

The MCE18 dataset is composed of 26,017 speakers, which
is one of the largest speaker sets for a public evaluation and sig-
nificantly larger than those used in other multi-target detection
studies. The dataset is divided into three parts: Train, Develop-
ment, and Test. Each set consists of both blacklist speakers and

Zhttps://www.nist.gov/itl/iad/mig/i-vector-machine-learning-
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background (non-blacklist) speakers. The blacklist speakers are
callers who had attempted some fraudulent behavior when call-
ing the call-center. The 3,631 blacklist speakers appear three
times in the train set and once in the development and test sets.
The 22,386 background speakers have a total of 48,338 utter-
ances and are separated into unique groups for the three sets
(i.e., background speakers never appeared in a different set to
mimic the real-world scenario). The composition of the three
data partitions are shown in Table 1. To further reflect real-world
conditions, no information was provided about the distribution
of speakers during the challenge. The dataset is available on the
MCE 2018 challenge website’.

Table 1: MCE2018 dataset description

Set Subset # of speakers # of utts. Total utts.
per speaker
Train Blacklist 3,631 3 10,893
Background 5,000 >4 30,952
Dev Blacklist 3,631 1 3,631
* | Background 5,000 5,000
Test Blacklist 3631 1 3631
Background 12386 1 12386

Train Set : In this partition, blacklist speakers each have 3 utter-
ances and background speakers each have at least 4 utterances.
Speaker labels are provided for the blacklist and background
speakers in this partition but Train Set background speakers do
not appear in the Development and Test Sets.

Development Set : In this partition, speaker labels were pro-
vided for the blacklist speakers and the background speakers
were unlabeled and different than those in the Train and Test
Sets. Participants were free to use the development set for any
purpose such as validation or training.

Test Set : This partition was used for all evaluation performance
measurements and participants were not allowed to use the set
for training or tuning of any kind. The speaker labels were made
available at the conclusion of the evaluation to allow further
research and development with the data set.

I-vector extraction The i-vector extractor [8] is trained with
13,000 hours of unlabeled speech*. This unlabeled speech cor-
pus was comprised of call-center customer-agent conversations.
The audio is sampled at 8kHz and 60 dimensional MFCC fea-
ture vectors (i.e., 20 MFCCs + 20 delta + 20 delta-delta) are ex-
tracted from 20 ms frames with a 10 ms shift. A simple energy-
based voice activity detector was used to extract speech frames.
A 4,096 component Gaussian mixture model (GMM) is created
from the training data and used as the universal background
model (UBM) [9] from which the 600-dimensional i-vector ex-
tractor is trained.

2.3. Performance Measures

The performance was reported using the equal error rate (EER)
metric which is calculated in a similar fashion as conventional
1-1 speaker verification tasks. For a single target detector for a
conventional speaker verification task, the miss and false alarm
(FA) probability is given by

Phriss(8) = P(y < 0|C, = C) 6]

3http://mce.csail.mit.edu/

4We also tried a discriminatively trained x-vector embedding using
the train set with 5,000 background speakers, but the i-vector system
performed better on the MCE task
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Pra(0) = P(y > 0|C, # C) 2)

where 6 is an accept/reject decision threshold, y is the similar-
ity score for hypothesis h that input test utterance = of class
C, belongs to class C'. Acceptance is made if the score y is
above threshold 6, and rejection occurs when the score is below
the threshold. For a given decision threshold 0, Pasiss(6) mea-
sures the fraction of incorrect rejections that are made when the
hypothesized class C' corresponds to the true class Cy, while
Pr4(0) measures the fraction of accepts that are incorrectly
made when hypothesized class C' does not correspond to the
true class.

The basic Pariss and Pr 4 are modified to create two met-
rics that will be used for this task: the Top-S detector, and the
Top-1 detector [1]. The Top-S detector must decide if a test vec-
tor belongs to any of the blacklist speakers or not. The Top-1
detector must decide if a test vector corresponds to a particular
blacklist speaker or not.

2.3.1. Top-S stack detector (Multi-target cohort detection)

Given the total number of blacklist speakers, .S, the Top-S stack
detector determines if the test input belongs to any of the black-
list speakers. The detector produces a set of scores, y1, ..., Ys
corresponding to the set of class hypotheses hi, ..., hs. The
blacklist score y* corresponds to the maximum of all blacklist
speaker scores {y1, ..., ys }. A miss occurs when is below the
threshold (y* < 0) if the input is spoken by a blacklist speaker.
Similarly, a false alarm occurs when the y™ is above the accept
threshold (y > 6) when in fact the input is not from a blacklist
speaker.

P]Wiss(g) = P(y* < elcz S {Cl ..... S}) (3)

Pra(0) = P(y" > 0|Cy € {Ch,...s}) 4)

Note that although y* is defined as a maximum of all black-
list speaker hypothesis scores, y* could be computed via some
other function of the hypothesis scores. For evaluation, all that
is required is that each test input have a generated score, y*.

2.3.2. Top-1 stack detector (Multi-target identification)

The Top-1 stack detector also detects blacklist speakers but de-
termines if the test input is spoken by one particular blacklist
speaker. Thus, there is new type of error for this task which is
a form of confusion error. The confusion error means that an
actual blacklist input is correctly detected as a blacklist speaker,
but fails to correctly identify the speaker. The confusion error
occurs if score y* is above threshold 6, but C, does not corre-
spond to the class hypothesis of h*.

Pariss(0) =P(y" < 0)|Cs € {Ch,....5}})

5
P> 0,0, £ 1| Ca e (Cr s} O

Pra(0) = P(y" > 0|Cy & {Ch1,..,s})

Note that Pr 4 is the same for both metrics.

6

2.4. Evaluation rules

The participants are free to use the training and development
set as they want. The test set should not be used for any training
or development purposes. Each register can submit up to three
results per condition and at least a single file on fixed condition
is required for all participants

Fixed condition : The fixed condition limits the system training
to data provided from the MCE 2018 organizer.



Open condition : The open condition does not have any limita-
tion to use any dataset to training the system. Since we did not
receive any open condition submission, only fixed condition re-
sults are described in this paper.

3. Baseline System

i-vector
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Input
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of unknown
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Accept top-S
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Figure 1: Multi-target Detector baseline for MCE 2018

The baseline system” is based on the multi-target detector
in [1]. For each input, we rank the multi-target detector scores
and accept the top-k hypotheses if the rank-1 score is above
a detection threshold. If & is the size of our blacklist (.5), the
system only cares if the input is from anyone in the blacklist
or not (top-S detector). If k is 1, the system further needs to
determine who on the blacklist is speaking (top-1 detector).

Additionally, multi-target score normalization (M-Norm) is
applied to reduce the variability of decision score on multi-
target. The purpose of M-Norm is shift and scale of score distri-
bution between multi-target speakers and multi-target utterance
to standard normal distribution.

Suppose z is an input utterance of unknown class C, and
the multi-target (blacklist) speaker class set is {C1, Ca, ..., Cs }
where S is number of multi-target speakers. y; is score of in-
put x of detector class C; and can be represented as y; =
score(Cy, x). The M-Norm score of y; is

score(Cy,x) — par (2)

yi = scoren (Cy, ) = - @)
O M (Z)
The parameters of M-Norm are as follows:
. 1
un (i) = T Z score(Cs, x) (8)

ze{C1,...Cg}

om (i) = 1 Z (score(Cs, z) — par(2))? (9)
||[|| ze{C1,..,Cs}

where ||I|| is the total number of utterances spoken by multi-
target speakers. From the empirical experimental result, only
shifting with pas or only scaling with o shows slightly bet-
ter performance, but we provide baseline code with regular M-
Norm equation 7.

4. Impact of Blacklist Size

In prior studies, relatively small blacklist cohort sizes, such as
under 100 speakers, were used to measure performance. How-
ever, as the number of speakers in the target set increases, the
performance gradually degrades as shown in Figure 2. We used
the same test set by varying the number of blacklist speakers. As
expected, the Top-1 stack detector performs worse than the top-
S stack detector as the number of blacklist speakers increases.

5 Available in https://github.com/swshon/multi-speakerID
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This severe performance degradation could be a major issue
when handling large-scale multi-target detection. Thus, in this
challenge, we included a large blacklist set to assess how well
current speech technology is able to detect and identify black-
lists, and to explore algorithms incorporating a speaker repre-
sentation such as an i-vector.

AA EER of Top-S stack detector
10 || % EER of Top-1 stack detector

1000

0 L L H
10 50 100 500
Number of blacklist

2000 3000

Figure 2: Top-S and top-1 stack detector EER by blacklist size.

5. Challenge Results

A total of 65 teams from 20 countries requested the dataset.
We received a total of 20 submissions from 12 teams by the
challenge deadline. System descriptions of each team is avail-
able on the website. The evaluation was done anonymously us-
ing unique team number, thus the participants can only identify
their own performance from the result.

All participants reported performance on the development
set in their system description and they outperformed the base-
line in both top-1 and top-S measurements. However, only 40%
of the submissions showed better performance than the base-
line on the test set. This result indicates that most systems were
over-fitted on the training and development sets and potential
background speakers who never appeared during training could
lead to performance degradation.

Participants used various approaches: Siamese NN [10],
triplet NN, Locality Sensitive Discriminant Analysis [11], K-
nearest-neighbor, Support Vector Machine and Denoising Au-
toencoder (DAE) including general speaker verification ap-
proach such as PLDA and S-norm[12]. However, only a
few teams demonstrated significant performance improvements
over the baseline. Here we summarize the top two teams’ ap-
proaches briefly®.

The top scoring team [13] improved the top-S detector by
32%, and the top-1 detector by 46% compared to the baseline.
They applied two sub-systems for blacklist detection (top-S de-
tector) and identification (top-1 detector). To detect blacklist
speakers, they used a PLDA-based backend for i-vector with
Adaptive Symmetric Normalization (AS-Norm). The speaker
cohort for AS-norm was generated by random weighted sum
between background and blacklist i-vectors for more challeng-
ing negative samples. For closed-set identification, they fused
the PLDA system and a Neural-Network (NN) system. The
PLDA system is similar to the detection system above but used a
speaker cohort from only the blacklist speaker set. The NN sys-
tem consists of two shallow neural networks. The first network
has two hidden layers with a feed-forward network and was
trained using both background and blacklist speakers to learn a
speaker variability space. Then the second network, which has
one hidden layer, was trained using only blacklist speaker em-
beddings extracted from the first neural network. The softmax

They agreed to be publicly cited.
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Figure 3: MCE 2018 final evaluation result. Total 20 submission from 12 teams. Baseline used train and dev set, Baseline* used train
set only. (p) represent primary submission. (cl) and (c2) represent contrastive 1 and 2 submission, respectively.

output was used as scores which were fused with the PLDA
scores.

The runner-up team [14] used a single system without fu-
sion and applied it both on the detection and identification tasks.
They trained a Denoising Autoencoder (DAE) to minimize the
intra-speaker variability and then used the output of DAE for a
PLDA backend and S-norm. They also incorporated model av-
eraging on multiple DAE training session and also used a lim-
ited speaker cohort for S-norm.

6. Discussion

In this section, we discuss some limitations of the 1st multi-
target challenge and future plans. First, we were unable to use x-
vector [15] or speaker embeddings [16, 17, 18] that have shown
remarkable performance on the speaker verification tasks.The i-
vector system trained model from the 13,000 hours of unlabeled
speech showed better performance on the Multi-target task on
both development and test set than x-vector systems trained us-
ing 5,000 background speakers in the train set. Future evalua-
tion should consider free speech corpora [16, 17] to enable more
robust speaker representation using supervised training method
based on speaker labels.

Second, we did not provide secondary information about
the dataset such as a gender, channel, and dialect informa-
tion. The speech was generated from a conversation call-center,
so there could be a large channel difference between cellular
and landline calls. Also, blacklist speakers tend to use differ-
ent phone devices or numbers. This channel mismatch would
also cause significant performance degradation [19, 20, 21, 22].
Dialect also caused serious mismatches. We found that there
are several dialects in the dataset and that these dialects could
even be problematic to the human agent for communication.
Future evaluation should include comprehensive meta-data that
includes a speaker, gender, channel, dialect, etc.

Third, we were unable to provide an original waveform for
the data. It is very popular and common to use speech input as
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close to the original audio as possible to automatically discover
robust features using deep learning techniques. Using only i-
vector without the original waveform limited the participants
from exploring more comprehensive algorithms and approaches
and the novelty of the study was naturally limited to the post-
processing of i-vectors.

For future evaluations, original waveform should be consid-
ered carefully because the dataset was collected from call center
conversations between an agent and customer. Thus the speech
contains private information and without being able to excise
this from the audio we are unable to provide the original wave-
forms publicly. However, the deceiving speech from blacklist
speakers is not easy to collect and it is also worth investigat-
ing detection of deceptive speech [23] on both the acoustic and
linguistic side. We should consider a method to provide a se-
quence of features from which the original content cannot be
reconstructed rather than aggregating the sequence information
into fixed-length representation such as an i-vector. In that way,
it would allow analyzing linguistic information such as implicit
meaning or emotion state in the sequence.

7. Conclusion

This paper summarized the task, datasets, performance met-
rics, results, and discussion of the first Multi-target detection
and identification challenges. Although there is a great demand
on this area in industry, related studies on the relevant technol-
ogy were insufficient, making it difficult to examine the current
state-of-the-art. By attracting many participants and conducting
a successful evaluation, we were able to draw attention to this
problem. While the performance was limited by providing the
dataset in i-vector form, the top team achieved over 30% im-
provement compared to baseline. At the same time, most teams
suffered from newly added background speakers by over-fitting
on the training set. In the future, it would be interesting to pro-
vide original waveforms, so researchers could have more free-
dom to explore a broader range of acoustic and linguistic infor-
mation for this task.
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