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Abstract

This paper describes a fast speaker search system to retrieve
segments of the same voice identity in the large-scale data. A
recent study shows that Locality Sensitive Hashing (LSH) en-
ables quick retrieval of a relevant voice in the large-scale data
in conjunction with i-vector while maintaining accuracy. In
this paper, we proposed Random Speaker-variability Subspace
(RSS) projection to map a data into LSH based hash tables. We
hypothesized that rather than projecting on completely random
subspace without considering data, projecting on randomly gen-
erated speaker variability space would give more chance to put
the same speaker representation into the same hash bins, so we
can use less number of hash tables. Multiple RSS can be gen-
erated by randomly selecting a subset of speakers from a large
speaker cohort. From the experimental result, the proposed ap-
proach shows 100 times and 7 times faster than the linear search
and LSH, respectively.
Index Terms: speaker retrieval, speaker search, hashing,
speaker variability subspace

1. Introduction
Today, so to speak, we are living in the flood of online videos
and social media. It is known that hundreds of hours of video
are uploaded every minute on Youtube. Since most of the on-
line videos include speech segments, collecting and abusing
someones voice becomes much easier than ever before. More-
over, recent significant advances in speech synthesis technology
made it easier to clone voice identity and it becomes harder to
distinguish between original speech and synthesized one [1, 2].
In the area of multimedia retrieval, music and video search tech-
nology have been developed to protect the copyright of the con-
tents. However, it is yet difficult to search someone’s voice
identity from a large amount of multimedia data. Voice identity
search would play an important role to prevent illegal cloning
and abusing. One might apply conventional speaker identifica-
tion or verification algorithms for such purpose. It could be
done by training the speaker model and inferring the model
score for every speech segment available online. But, it is prac-
tically not doable because of the large search space. Thus, it
is inevitable to develop faster algorithms without performance
degradation to prompt to a user as quickly as possible [3].

After audio segment can be represented in a single low-
dimensional latent vector such as i-vector [4], hashing approach
was proposed on the speaker search problem to maximize the
speed of retrieval while minimizing the performance degrada-
tion [5, 6, 7, 8]. Locality Sensitive Hashing (LSH) [9] is a pow-
erful tool to approximate the nearest neighbor search in high
dimension and successfully adopted on top of the i-vector for a
large-scale fast speaker identification.

For a large scale application, long hash bits are needed to
reduce the size of each hash bin and to speed up a retrieval
time. However, since the LSH is data-independent unsuper-
vised hashing method rely on the random projection, it suffers
from the redundancy of the hash bits. Also, long hash bits de-
crease the collision probability between similar samples. Con-
sequently, we are encouraged to use a lot of multiple hash tables
and this increases the query time and storage consumption. To
reduce this redundancy, a supervised hashing method can be
considered. A spectral hashing [10] is a representative method
in a supervised hashing method. It produces a very efficient
hash code by learning a hash function from the training data.
Ideally, all the true neighbor of an arbitrary query can be found
in the specific hash bucket. However, this is not feasible using
only a single hash table for a practical situation such as large-
scale data lies on the high-dimensional space.

In this study, we propose a Random Speaker-variability
Subspace (RSS) projection approach based on the Linear Dis-
criminant Analysis (LDA) to give maximum efficiency on the
hash table of LSH. Providing weak supervision by selecting
random subset speakers in the training dataset when we gen-
erate random projection matrix for LSH, we observed it could
dramatically save the hash bits (hyperplanes) and hash tables
by removing the redundancy. We also re-define the speaker
search task into more detail sub-task as speaker identification
task and speaker retrieval task considering the query and search
space. Experiments were conducted using both i-vector and
neural network based speaker embedding, x-vector [11]. We
used Voxceleb 1 and 2 dataset [12, 13] and prepared a various
combination of dataset categories to measure the performance
of speaker search sub-tasks.

2. Speaker search in the wild
Speaker search can be divided into two sub-categories as
speaker identification and speaker retrieval. The main differ-
ence between two sub-tasks is whether the query is from arbi-
trary speech segment or target speaker segment.

2.1. Speaker Identification

For speaker identification, the query x is a latent vector from
an arbitrary speech segment and its class (speaker index) is Cx.
Search space is D = {ω1, ω2, ...ωS} where S is total num-
ber of Speaker and ωs is a latent vector from a speaker speech
segment, s. ys is the score between x and ωs. For closed-
set speaker identification which query speech is assumed to be
spoken by one of the speakers in the search space, the system
forced the input query to match the best matching speaker in
the search space as Cx = Cy∗ where y∗ = max

s=1...S
ys. Previous

study on large-scale speaker identification mostly supposed this
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closed-set identification to measure the performance [5, 6].
However, in practical situation, the system needs to con-

sider that the speech query may not be spoken by the speaker in
the search space. This can be represented as open-set speaker
identification. Open-set speaker identification is also known as
multi-target detection [14], so we can borrow the top-1 stack
detector performance measurement term in [15] about miss and
false alarm probability.

2.2. Speaker Retrieval

For speaker retrieval, the query ω is a latent variable from a
speech segment of the target speaker we are interest in and its
class is Cω . The search space is D = {x1, x2, ...xN} where
N is the total number of segments to search and xn is a la-
tent vector from an arbitrary speech segment from an unknown
speaker. Compared to the speaker identification task, the query
and search space are changed each other. The aim of this task is
to retrieve all relevant documents. Thus, speaker retrieval is 1 to
N verification task. The performance measurement is the same
as the 1 to 1 verification task which is a general speaker veri-
fication task. However, the trials to measure the performance
need to be prepared by full combination between the query and
search space. For instance, if we have 10 target speakers for an
input query, the number of trials is 10×N .

3. Speaker Dataset
To make up speaker search environment, we used Voxceleb
1 and 2 dataset [12, 13]. The Voxceleb dataset is composed
of automatically collected audio and video data for large scale
speaker identification. The collecting pipeline includes face de-
tection and active speaker verification to verify all video clips
have detected faces with synchronized speaking voice by the
conservative threshold to maximize the precision. These pro-
cesses are reasonable pre-processing to our speaker search sce-
nario, so we used the audio part of the Voxceleb dataset without
modification. Voxceleb 1 and 2 have more than 1,281,352 ut-
terances from 7,365 speakers. Utterances were extracted from
a video clip and each clip has roughly 10 to 50 utterances.
We used Voxceleb 1 development set (147,935 utterances from
1,211 speakers) for training on both identification and retrieval
task. For the test, we combined the utterances in a different way
for each task.
Speaker identification task: For search space in the speaker
identification task, we used the utterances from first 3 video
clips in Voxceleb 1 test set, plus entire utterances from Vox-
celeb 2 development set. We will use all utterances from the
same speaker at once for speaker representation, so each en-
tity of search space represent a unique speaker and include total
6,034 speakers. For the query, we used the rest of the utter-
ances in the Voxceleb1 test set. Since we already picked the
utterances from first 3 clips for search space, all the query must
have the same identity in search space and this means closed-set
identification task as previous studies [5, 6].
Speaker retrieval task: For search space, we used 100,000 ut-
terances from Voxceleb 2 development set and 3,776 utterances
from the first 3 clips in Voxceleb 1 test set. We randomly se-
lected 100,000 utterances in the Voxceleb 2 development set
from 1,092,009 utterances, so total 103,776 utterances became
the search space. For the query, we used utterances from first
3 clips in Voxceleb 1 test set (total 40 speakers, a target class
which has relevant utterance in search space) and Voxceleb 2
test set (total 120 speakers, a non-target class which does not

Table 1: Speaker verification performance by speaker represen-
tation method on Voxceleb1 test set

Speaker EERrepresentation
i-vector (cosine) 8.1
i-vector (PLDA) 5.4
x-vector (cosine) 9.9
x-vector (PLDA) 6.0

have relevant utterances in search space). Thus, 160 speaker
representations were used as query.

We mainly focused on the speaker retrieval task, but we
also conducted an experiment on speaker identification task as
the previous study reported [6].

4. Fast large-scale speaker retrieval
4.1. Speaker recognition system

For performance comparison, we considered two speaker rep-
resentation, i-vector [4] and x-vector [11]. To train i-vector
and x-vector, we used the voxceleb 1 development set as de-
picted in the section 3. We followed other training detail same
as [16]. Table 1 shows the speaker verification performance of
i-vector and x-vector using Equal Error Rate (EER) measure-
ment. We used the same system as reported in [16]. Note that
since the Voxceleb 1 contains only 1,211 speakers which is a
small number to training DNN, x-vector shows slightly worse
performance than i-vector.

4.2. LSH

The goal of our study is that to retrieve similar speakers ef-
ficiently with minimum performance loss. In the previous
study [6], LSH was adopted for this task and showed very
promising performance on the large-scale speaker identification
task combining with i-vector.

LSH projects the i-vector into random hyperplane. This
hash operation maps close vectors into the same bins(i.e. buck-
ets) with high probability [17]. Suppose r is d-dimension ran-
dom projection vector drawn from a standard normal distribu-
tion, d is dimension of original i-vector w. The hash function
maps i-vector w as :

wr = hr(w) = sgn(wT r) =

{
1 if wT r ≥ 0

0 if wT r < 0
(1)

We can concatenate several hash functions and use multiple, in-
dependent hash functions to boost performance, by using d× k
dimensional random projection matrix Rl where k is the num-
ber of hyperplane per hash table, d is dimension of original
speaker representation, l, 1 ≤ l ≤ L, is the hash tables in-
dex and L is the total number of hash tables. Thus, the param-
eter k and L need to be chosen carefully since the parameter
decides the trade-off between performance and computational
efficiency.

In this study, we basically follow the same i-vector retrieval
with LSH algorithm in [6] and also used cosine distance which
guarantees its performance in conjunction with LSH. We mea-
sured the baseline performance of closed-set speaker identifica-
tion and speaker retrieval tasks using i-vector and x-vector as
shown in table 2.

2964
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without considering data distribution

Spk1
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(a) Random projection

Always guarantee 
maximum inter-speaker variability 
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Spk1

Spk2

Spk3

(b) RSS projection (No. of
random speaker=2)

Figure 1: Example of projections for 3 speakers. Same color
represents different utterances for same speaker.

Table 2: Speaker search performance using i-vector and x-
vector

Speaker Speaker Speaker
Representation retrieval, EER(%) identification, Acc.(%)

i-vector 4.36 79.23
x-vector 5.60 76.74

4.3. Random Speaker-variability Subspace (RSS) Projec-
tion

Since LSH is an unsupervised hashing method that uses ran-
dom projection matrix drawn from a d-dimensional standard
normal distribution, it suffers from redundancy of the hyper-
planes (hash bits) as represented in figure 1. Thus, lots of hash
tables are needed to access enough points for the satisfactory
recall. In this situation, we can give a weak supervision to gen-
erate the random subspace projection matrix using speaker la-
bels to make the same speaker’s voice mapped into the same
bin more efficiently. We generate Linear Discriminant Anal-
ysis (LDA) transformation matrix directly by using utterances
from the random subset of the speakers and use this matrix for
projection matrix Rl.

Suppose Sl is a randomly selected speaker subset from
training dataset where the number of speaker is Ns. Using
the speaker representation in the subset Sl, we can obtain the
between-class scatter matrix and the within-class scatter matrix.
Then, we can calculate LDA matrix which maximizes the ratio
of the two scatter matrices. This LDA matrix projects speaker
representation into RSS and we can generate it L times ran-
domly to substitute the random projection matrix Rl in LSH.
For hyperparameterNs, if we choose too many speakers, it will
generate a similar LDA matrix which have many redundancy
between projection matrices. Also we have to choose Ns more
than the length of hash bits k to project into k dimension. To
balance the size of each hash bin, we modified the hash func-
tion as hr(w) = sgn(wT r+b) where b is the mean of projected
data, i.e, b = − 1

N

∑N
i=1 w

T
i r

Similar work was reported in the face recognition study [18]
that uses random sampling LDA. They generated multiple pro-
jection matrix by selecting eigenvectors randomly. Then LDA
was applied on each projected subspace. Since they have only d
eigenvectors to be selected randomly, the redundancy between
the projected subspaces would be increased if we increase the
number of hash tables. This approach is not actually designed
for hashing. However, projecting samples onto random sub-
space to enforce weak classifiers is similar scheme to our ap-
proach, so we also use this random sampling LDA to generate
projection matrix Rl and compare it with other approaches.

Figure 2: Average Hamming distance of same identities divided
by the distance of different identities. Lower is better.

In the projected subspace, hamming distance approximates
the cosine distance as the number of random hyperplanes k is
increases [19]:

cos (wi, wj) ≈ cos (
H(hr(wi), hr(wj))

k
π) (2)

where H(·) is a hamming distance. Thus, if the projection ma-
trix effectively approximates the original distance, the speaker
representation from the same identity has high possibility to be
in the same or near bucket and we can use less number of hash
functions to approximate the original distance. It means that
the hamming distance of speaker representation from the same
identity would be closer than others. Taking this into consid-
eration, the approximation capability of a new projection ma-
trix can be measured by the averaged hamming distance of the
same identities and different identities. We checked this av-
eraged hamming distance using LSH, random sampling LDA,
and the proposed method. As shown in figure 2, the proposed
method shows that the distance between the same speakers is
close, but the different speakers result in far distance. From
this observation we can expect the proposed method would give
significant efficiency than others.

5. Experimental results
We conducted two tasks of experiments, speaker identification
and speaker retrieval, and the experimental environments were
fully described in the section 3. For speaker retrieval, EER
was used for performance measurement, for the speaker iden-
tification task (closed-set), accuracy was used for as described
in section 2. I-vector and x-vector were extracted in 600 and
512 dimensions respectively, then reduced into 150 dimensions
using LDA. We measured the retrieval time to return candidates
for a given query and excluded the time to extract i-vector and
x-vector. For the baseline, we generate L random projection
matrix which drawn from d-dimensional standard normal dis-
tribution. For RSS projection, the optimal operating Ns is var-
ied by the number of hyperplanes. Rather than optimizing, we
set to d, equals to i-vector or x-vector dimension, so the subset
has more than d samples at least to avoid within-class scatter
matrix become singular by small sample size problem [20]. We
repeated L times to generate RSS projection matrix by select-
ing random speakers for each matrix. For the random sampling
LDA [18], we used randomly 100 eigenvectors from PCA for
random subspace, then repeat L times to generate random sam-
pling LDA matrix. We used these three projection matrixRl for
LSH.
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(a) Varying number of hyperplane, k (b) Varying number of hash table, L

Figure 3: EER measurement on speaker retrieval task.

of hyperplanes and hash tables. The proposed RSS projec-
tion shows significant efficiency compared to others in the EER
measurement. Meanwhile, it is interesting that the x-vectors
mapped into hash bins more efficiently than i-vectors in all
methods. We surmise that this phenomenon is because the x-
vector extracting DNN was trained discriminatively with one
hot speaker label while the i-vector framework assumes that the
i-vector distributed in Gaussian distribution. Thus, the distance
between the same speaker x-vectors is more likely to become
close than the i-vector. We believed that any speaker embed-
dings extracted from DNN would take this advantage, not only
x-vector. Figure 4 (a) and (b) shows trade-off plot between
retrieval speed and performance. We conducted the experi-
ments by varying the parameter k and L and scattered in speed
and performance axis. On both speaker retrieval and identifi-
cation task, the proposed approach shows remarkable perfor-
mance improvement. For example, to speed up while maintain-
ing above 95% speaker identification performance relative to
linear search, the proposed approach has 100 times faster than
linear search and 7 times faster than LSH as shown in table 3.
Note that the EER in figure 3 and figure 4 (a) is absolute value,
not relative value to linear search. To give an intuition on the pa-
rameters, we specified pairs of parameters on the plot in [L, k]
format by varying a parameter while the other was fixed. As
shown in the figure, k is more sensitive to performance than
L. Thus, L can be used for fine-tune to satisfy required perfor-
mance.

Table 3: Performance summary of hashing methods on speaker
identification

Hashing LSH Random-sampling
LDA Proposed

Baseline Accuracy 76.74 %
Hashing Accuracy 74.10% 74.14% 74.65%

Relative speed 14× 7× 100×
No. of Hyperplanes 10 6 12
No. of Hash tables 300 150 150

6. Conclusion
We have proposed a RSS based hash algorithm to search and
retrieve someone’s voice identity, which is applicable to a large
scale speech dataset. Previous studies have focused on the
speaker identification, but we have redefined the search problem

both in the speaker identification and retrieval. The proposed
approach has shown significant efficiency to save retrieval time
and storage consumption compared to “vanilla” LSH that uses
random projection. We have also observed that the speaker em-
bedding is more advantageous to be mapped into a hash table
compared to traditional i-vector. To the best of our knowledge,
this is the first study to use the class supervision on hashing for
acoustic information retrieval. For future work, we would ex-
plore speaker retrieval methods further in many other domains
as well as real-world applications. It would be also interesting
to investigate how the system works in the presence of cloned
voice by recent speech synthesis algorithms.

(a) Speaker retrieval task. Y-axis represent EER(%)
value.

(b) Speaker identification task. Y-axis represent accu-
racy relative to linear search accuracy.

Figure 4: Speedup vs. performance trade-off. The number of k
varied from 2 to 20 in step of 2 and L from 100 to 300 in steps of
50. A pair of numbers on the plot represent [L, k] as examples.

Figure 3 (a) and (b) shows the result on various number
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