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Abstract
In this paper, we present a method for the discovery of word-like
units and their approximate translations from visually grounded
speech across multiple languages. We first train a neural net-
work model to map images and their spoken audio captions
in both English and Hindi to a shared, multimodal embedding
space. Next, we use this model to segment and cluster regions of
the spoken captions which approximately correspond to words.
Finally, we exploit between-cluster similarities in the embed-
ding space to associate English pseudo-word clusters with Hindi
pseudo-word clusters, and show that many of these cluster pair-
ings capture semantic translations between English and Hindi
words. We present quantitative cross-lingual clustering results,
as well as qualitative results in the form of a bilingual picture
dictionary.
Index Terms: Low-resource speech processing, multimodal
speech processing, cross-lingual speech processing

1. Introduction
With the many languages in the world, people often need to
cross language barriers to communicate. Researchers have
made huge strides towards making automated machine transla-
tion more and more reliable. Current speech-to-speech trans-
lation systems rely on a cascade of models that perform au-
tomatic speech recognition, machine translation, and text-to-
speech synthesis [1]. These models each require large quantities
of manually-annotated training data, but transcribing parallel
corpora of speech audio in both the source and target languages
can be prohibitively costly. The text bottleneck also makes it
difficult to automatically translate to and from languages with-
out a written orthography. In this work, we attempt to align
semantically equivalent words across languages directly at the
speech signal level, without the need for text transcripts. We
build on the work presented by [2, 3, 4, 5], which showed that
multimodal neural network models could be trained to directly
associate speech waveforms with images, resulting in the ability
to recognize spoken words in continuous speech signals without
the need for conventional ASR. This type of model was gener-
alized to handle speech inputs from two different languages in
[5], and was shown to be capable of cross-lingual matching of
semantically similar captions. We take the work in [5] a step
further by explicitly locating and clustering the words learned
by the model in both languages. We then semantically link the
discovered English clusters with the Hindi clusters (Figure 1),
as well as image regions that they are most similar to. This
forms the basis of a picture dictionary, which shows segments of
speech from both languages coupled with semantically relevant
regions of images.
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Figure 1: Speech CNN embeddings (left) are compared to each
other using dot product to find and extract regions of high simi-
larity from utterances containing similar concepts (middle). The
embeddings at these regions are clustered separately for each
language and linked using cross-lingual cluster centroid simi-
larity (right).

2. Prior work
The high cost of current supervised methods of speech recogni-
tion and machine translation has led to several proposed meth-
ods for increasingly unsupervised speech recognition. Segmen-
tal Dynamic Time Warping proposed by [6] and extended in
[7, 8, 9] operates on raw audio to find patterns within speech ut-
terances to automatically discover word categories. Other works
such as [10, 11, 12] used Bayesian generative approaches to
cluster acoustic segments. Deep learning has been used to learn
robust feature representation for speech over varying speaker
and background characteristics such as in [13, 14, 15, 16].
[2, 3, 4, 17, 18, 19, 20] explored unsupervised learning of speech
features using visual context. Cross-lingual translation research
has focused on text-to-text translation [21, 22] as well as speech-
to-text from one language to another [23, 24, 25]. [5] recently
showed that joint image and speech training performs well on
cross lingual caption retrieval using English and Hindi, serving
as a basis for speech to speech pseudo translation and [26] con-
firmed this result using an English-Japanese dataset. A similar
line of work was presented in [27], which explored cross-lingual
keyword spotting using a visual tagging system.

3. Dataset and visual speech model
3.1. Dataset

We use the same English-Hindi Places Audio dataset in [5]. This
dataset is comprised of natural images sampled from the Places
205 image dataset [28], paired with spoken audio captions de-
scribing the content of the images. The English speech captions
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were collected via Amazon Mechanical Turk, and the collec-
tion process is described in [2]. The collection process for the
Hindi speech captions, also collected via Mechanical Turk, is
described in [5]. The training dataset consists of 84,480 data
triplets, and 1000 validation triplets, with each triplet consisting
of an image, and English and Hindi spoken captions.

3.2. Model

The model consists of three neural networks - one pretrained
VGG16 network [29] for learning image representation and two
instances of DAVEnet (audio CNN in [3]) for the audio cap-
tions. In this paper, we used an ImageNet-pretrained VGG net-
work finetuned on 400K places images as in [4] and all net-
works used 1024 final embedding dimension. Training im-
ages are augmented using random resized crops to 224x224 and
then mean and variance normalized per channel using off-the-
shelf Imagenet RGB statistics. The speech waveform is rep-
resented by a set of 40 log Mel filterbank energies per 25 ms
frame of the speech caption at 10 ms shifts. We train the net-
work for 90 epochs with the 6-way triplet loss H↔E↔I↔H
from [5]. We use SGD with batch size 128, and initial learn-
ing rate of 0.001 decayed by a factor of 10 every 30 epochs.
The model achieved the following recall at 10 scores for im-
age(I), English(E) and Hindi(H) retrieval tasks: E→I (0.571),
I→E (0.545), H→I (0.404), I→H (0.393), E→H (0.192), H→E
(0.211) .

4. Bilingual word discovery
In [5], the authors showed that a visually-grounded model of
speech trained to associate both English and Hindi spoken cap-
tions with semantically-related images was capable of perform-
ing semantic speech retrieval between captions in both lan-
guages. Preliminary experiments in that paper suggested that
the output feature maps of the English and Hindi speech mod-
els could be used to approximately align the segments of both
speech signals which referred to the same image region. Our
goal in this paper is to automatically extract and cluster these
segments into word-like units, and establish pairwise linkages
between English and Hindi clusters that capture similar seman-
tics. This section describes the steps we took to discover the
word clusters and establish linkages.

4.1. Selecting regions of interest

Given an input log Mel spectrogram spanning 40 filterbanks
across T temporal frames, the output of the DAVEnet audio
model will be a feature map with d channels spanning T

8
frames.

During training, mean pooling is used to compress this fea-
ture map into a single d dimensional vector, but when using
an already-trained model for word discovery we do not apply
this pooling so as to preserve temporal information for the pur-
pose of word localization. Although the output of the DAV-
Enet model captures semantics, it does so by producing a dense
embedded representation; it does not explicitly segment or to-
kenize the speech signal. In order to identify regions of inter-
est with a high likelihood of containing a meaningful word, we
use an approach inspired by the “interval piling” step of the
Segmental Dynamic Time Warping (S-DTW) pattern discovery
algorithm [6], which identifies regions of an utterance which
exhibit high similarity with regions in many other utterances.
While the S-DTW algorithm computes similarities in the acous-
tic observation space, our method instead compares pairs of ut-
terances in the d-dimensional multimodal semantic embedding
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Figure 2: Embeddings at the speech network output for the top
utterance are compared with those from its nearest neighbors.
Taking the frame-level maximum over all neighbors results in
the similarity profile.

space learned by the DAVEnet model. For some reference ut-
terance containing a given word, other utterances containing the
same underlying word can help inform the location of the word.
We rely on a set of nearest neighbors of the reference utterance
in order to perform word localization. This is done by obtaining
the 1024-dimensional mean-pooled DAVEnet output for each
utterance in the training set, and finding its K nearest nearest
neighbors according to the dot product similarity. For our ex-
periments, we used K = 100.

After selecting the nearest neighbors for each utterance, we
compute a set of similarity maps {M1, . . . ,MK} between the
reference and each of its neighbors. To encode temporal local-
ization information in each Mn, we extract the outputs of the
last convolutional layer of the DAVEnet model before the global
average pooling layer. Then, we compute Mn

i,j = Ri · N
n
j

where Ri represents the ith frame of the DAVEnet output for
the reference utterance, and Nn

j represents the jth frame of the
DAVEnet output of its nth nearest neighbor. We then compute a
similarity profile p where pi = maxn,j M

n
i,j . This gives a pro-

file with peaks at locations of the reference utterance that exhibit
high similarity to some region of at least one of its neighbors, in-
dicating the presence of a shared word. This can be seen in Fig-
ure 2. To facilitate peak picking, we apply a Gaussian smoothing
filter to p with σ = 1. We use comparison among neighboring
values to find local maxima and select peaks with prominence
of at least max(200, 0.15× r) where r is the range of values in
p.
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4.2. Clustering regions of interest

The embedding vectors in the locations of the selected peaks
represent regions that may contain words whose semantics have
been learned by the cross-modal model. All the utterances in the
dataset are processed to get these peak locations and their asso-
ciated embeddings. Next, we cluster the peaks using a Dirichlet
Process Gaussian Mixture Model (DPGMM) [30]. Both English
and Hindi peak embeddings were normalized together to have
zero mean and unit variance and then projected from R

1024 to
R

300 using PCA. The clustering algorithm used kmeans initial-
ization with 200 components, diagonal covariance matrices for
each component, mean precision prior of 30, weight concentra-
tion prior (γ) of 1000 and allowed to run for a maximum of 1500
iterations.

4.3. Linking English and Hindi clusters

To control for repeated clusters, we put the cluster centroids
into matrices E and H for English and Hindi respectively, each
with rows representing all centroids in the language. We con-
structed an undirected graph whose edges connect rows of E
with rows of H and edge weights represented by EiH

T
j . Edges

with weight less than a threshold τ = 300 were set to zero. Fi-
nally, we ran the Louvain graph community clustering algorithm
[31] to group the DPGMM English and Hindi cluster centroids
into meta-clusters that capture bilingual concepts.

4.4. Deriving cluster labels for evaluation

Given N peaks in a cluster, each peak has a receptive field of
size f . Since the neural network is symmetric for convolution
and pooling operations, we simply find the location in the speech
caption directly below the peak as p × c/n, where p and n are

the location of the peak and the number of frames respectively in
the last convolution layer and c is the caption length in seconds.
We then snip f/2 seconds on both sides of the the selected peak
location within the caption. After performing this operation for
each peak in the cluster, we select the ASR text transcripts of
these portions to present in this paper. To get a single class la-
bel, we calculate the purity of each word selected for the cluster.
Purity is the proportion of the selected f -second windows con-
taining a given word. We also compute coverage, the fraction of
the total number of instances of a word in the dataset captured
by a cluster. To control for stop words that occur next to salient
words, we weight the purity scores by the average duration of
the word. We then rank the words by the weighted purity and
select the top word as the cluster name. In our experiments, f
was approximately 2.5 seconds.

5. Experiments
5.1. Bilingual word clustering

Details of the top 35 meta-clusters (rank ordered by similarity)
out of 101 discovered meta-clusters in the training dataset are
presented in Table 1. Each row of the table shows statistics for
English and Hindi clusters grouped together in the same meta-
cluster. All texts refer to the ASR transcription of the underlying
speech, and Hindi texts are paired with their Google Translate
API’s translation to English. The numbers are reported by merg-
ing all English clusters whose centroids exist in a meta-cluster
and the same is done for Hindi clusters.

5.2. Creating a picture dictionary

To investigate the visual semantics of the bilingual meta-
clusters, we find the image regions from the training images

people (0.84); लोग:the people (0.56) trees (0.83); पेड़:the trees (0.75) water (0.78); ɭकान:water (0.51)

horses (0.75); घोड़े:the horses (0.66) guitar (0.79); Ƞगटार:guitars (0.55) kitchen (0.82); रसोईघर:kitchen (0.62)

Figure 3: Picture dictionary representing three-way agreement between English speech caption, Hindi speech caption and Image pixels.
We present the text transcriptions of the clustered speech segments with their corresponding cluster purities.
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Table 1: Bilingual word clusters. E1 and E2 correspond to the top two labels for combined English clusters within a meta-cluster and
H1 and H2 are the Hindi equivalents. PE and PH are purity scores while CE and CH are coverage fractions using the top 1 label.
S represents the similarity score between linked English-Hindi clusters. NE and NH are the number of peaks in English and Hindi
respectively in the meta-cluster. Average purity and coverage of the top label across all English clusters are 0.53 and 0.45, while for
Hindi they are 0.44 and 0.31. The number of clusters with purity greater than 0.5 is 59 for English and 34 for Hindi.

E1 PE1 E2 PE2 H1 PH1 H2 PH2 S NE NH CE CH

lighthouse 0.55 house 0.28 लाइट:light 0.36 हाउस:house 0.30 4898 485 578 0.73 0.30
bed 0.41 bedroom 0.29 Ƞबĥतर:bed 0.37 बेड:bed 0.11 2470 1620 1535 0.85 0.73
guitar 0.79 playing 0.39 Ƞगटार:guitars 0.55 बजाते:playing 0.09 1961 280 411 0.74 0.76
staircase 0.21 stairs 0.23 सीȟढ़या:ंstairs 0.25 ȡचȟड़या:bird 0.14 1925 1115 1305 0.60 0.81
windmill(s) 0.55 turbine(s) 0.14 पवन:air 0.47 चĆकɏ:mill 0.23 1882 569 627 0.69 0.74
kitchen 0.82 cabinets 0.02 रसोईघर:kitchen 0.36 रसोई:kitchen 0.26 1827 680 686 0.57 0.82
bridge 0.77 suspension 0.04 पुल:the bridge 0.27 ȠŢज:the bridge 0.23 1805 1681 895 0.64 0.21
boat(s) 0.64 sailboat 0.04 नाव:the boat 0.24 'जहाज':ship 0.04 1694 1317 1229 0.60 0.76
fish 0.64 aquarium 0.07 मछली:fish 0.49 मछȢलया:ंfish 0.22 1617 639 467 0.63 0.57
snow 0.49 snowy 0.13 बफă :ice 0.47 बफɕल:ेsnowy 0.11 1586 3464 3221 0.70 0.55
closet(s) 0.63 cabinet(s) 0.01 अलमारɍ:cupboard 0.51 अलमाȝरया:ंshelves 0.11 1537 406 752 0.63 0.49
horse(s) 0.75 riding 0.08 घोड़े:the horse 0.66 सवार:the rider 0.05 1431 674 442 0.62 0.59
track 0.37 running 0.37 दौड़:the race 0.31 ŠȠतयोȠगता:contest 0.13 1422 407 408 0.25 0.43
bus 0.55 inside 0.15 बस:bus 0.40 हवाई:airy 0.24 1319 851 930 0.61 0.31
station 0.52 subway 0.38 ĥटशेन:station 0.48 रेलवे:railway 0.45 1296 471 262 0.28 0.28
church 0.64 cathedral 0.12 Ƞगरजाघर:the cathedral 0.27 चचă:the church 0.20 1213 746 687 0.42 0.74
bird(s) 0.69 flying 0.07 पWी:the bird 0.35 ȡचȟड़या:bird 0.27 1171 261 378 0.42 0.54
blue 0.70 sky 0.06 नील:ेblue 0.56 रंग:colour 0.65 1167 2242 809 0.29 0.26
shower 0.55 bathroom 0.24 नहाने:bathing 0.30 बाथɴम:bathroom 0.14 1137 583 454 0.55 0.66
man 0.76 standing 0.01 आदमी:man 0.41 ǲȡǘ:person 0.11 1068 2803 3435 0.35 0.26
mountain(s) 0.74 range 0.03 पहाड़:the mountain 0.51 पहाȟड़यȋ:the hills 0.20 1053 888 1469 0.24 0.21
wooden 0.49 wood 0.17 लकड़ɍ:the wood 0.86 एक:one 0.24 1017 1858 1007 0.42 0.36
table(s) 0.76 wooden 0.05 टबेल:table 0.24 मेज:the table 0.16 994 2418 2191 0.42 0.22
children 0.57 kids 0.08 बċचे:children 0.60 बċचȋ:the children 0.16 982 723 1406 0.52 0.50
people 0.89 standing 0.09 लोग:the people 0.69 कुछ:some 0.73 943 2683 916 0.31 0.27
forest 0.51 trees 0.10 जंगल:forest 0.48 ह:ैis 0.30 868 821 1198 0.52 0.52
sitting 0.63 people 0.50 बैठे:sitting 0.64 हȈ:are there 0.53 862 1509 1183 0.26 0.33
child 0.31 boy 0.27 बċचा:child 0.34 एक:one 0.52 858 737 611 0.41 0.41
microphone 0.43 stage 0.14 मंच:forum 0.30 माइक:mike 0.27 841 445 327 0.62 0.30
clouds 0.52 sky 0.20 बादल:cloud 0.75 आसमान:sky 0.42 801 1002 928 0.47 0.42
water 0.78 body 0.45 पानी:water 0.51 नदी:river 0.23 779 1838 2828 0.22 0.27
trees 0.83 pine 0.04 पेड़:the trees 0.49 पेड़ȋ:the trees 0.26 770 1634 1396 0.24 0.13
grass 0.57 green 0.25 घास:grass 0.36 ह:ैis 0.32 728 1273 2306 0.32 0.40
wall(s) 0.73 on 0.40 दीवार:wall 0.64 पर:on 0.47 616 1431 873 0.33 0.23
yellow 0.72 and 0.20 पील:ेyellow 0.51 रंग:colour 0.52 586 1220 870 0.36 0.31

most similar to each meta-cluster. We use the mean pooled
DAVEnet output of the image branch to represent the images and
find the top K images that have the highest average (dot prod-
uct) similarity to all of the DPGMM cluster centroids captured
by the meta-cluster. We then compute a binary mask S for each
image by taking the inner product of each superpixel region of
the DAVEnet image model’s output feature map (before global
average pooling) with the average of the meta-cluster centroids.
We threshold S such that pixels with similarity greater than
.25 ∗max(S) are set to 1 and 0 otherwise. Finally, we upsam-
ple S to the same resolution as the original image using bilinear
interpolation, and apply the mask to the image. This results in
a audio-visual picture dictionary, from which we show several
examples in Figure 3.

6. Conclusion
We presented a method for discovering bilingual word clusters
using a visually grounded model of speech audio. We presented
numerical clustering results as well as an audio-visual picture
dictionary, demonstrating that our method is capable of discov-
ering clusters of word-like units in both English and Hindi that

exhibit a high degree of semantic agreement. In our future work,
we plan to develop improved methods for learning a larger num-
ber of concepts, especially actions and verbs. Our current ap-
proach required us to utilize spoken captions for a common set
of images for both languages, but we plan to investigate whether
similar results can be achieved when different sets of images are
used for each language’s captions. We would also like to extend
our method from the bilingual case to the multi-lingual case. Fu-
ture work should also investigate direct speech-to-speech trans-
lation using our discovered meta-clusters. Finally, we believe
that the representations learned by our acoustic models could
find use in traditional ASR systems, such as in low-resource or
code switching scenarios.
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