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Abstract

In this paper, we investigate different approaches for dialect
identification in Arabic broadcast speech. These methods are
based on phonetic and lexical features obtained from a speech
recognition system, and bottleneck features using the i-vector
framework. We studied both generative and discriminative clas-
sifiers, and we combined these features using a multi-class Sup-
port Vector Machine (SVM). We validated our results on an
Arabic/English language identification task, with an accuracy
of 100%. We also evaluated these features in a binary classi-
fier to discriminate between Modern Standard Arabic (MSA)
and Dialectal Arabic, with an accuracy of 100%. We further
reported results using the proposed methods to discriminate be-
tween the five most widely used dialects of Arabic: namely
Egyptian, Gulf, Levantine, North African, and MSA, with an
accuracy of 59.2%. We discuss dialect identification errors in
the context of dialect code-switching between Dialectal Arabic
and MSA, and compare the error pattern between manually la-
beled data, and the output from our classifier. All the data used
on our experiments have been released to the public as a lan-
guage identification corpus.

Index Terms: Dialect Identification, Vector Space Modelling

1. Introduction

The task of Dialect Identification (DID) is a special case of the
more general problem of Language Identification (LID). LID
refers to the process of automatically identifying the language
class for given speech segment or text document. DID is ar-
guably a more challenging problem than LID, since it consists
of identifying the different dialects within the same language
class. The importance of addressing DID can be gauged from its
growing interest in the Automatic Speech Recognition (ASR)
community [1]. A good DID system can facilitate the identifica-
tion of dialectal segments from an untranscribed mixed-speech
dataset. This process can help reduce the ASR word error rate
(WER) for dialectal data by training ASR systems for each di-
alect, or by adapting the ASR models to a particular dialect.
The natural language processing (NLP) community has ag-
gregated dialectal Arabic into five regional language groups:
Egyptian (EGY), North African or Maghrebi (NOR), Gulf or
Arabian Peninsula (GLF), Levantine (LAV), and Modern Stan-
dard Arabic (MSA). An objective comparison of the varieties
of Arabic dialects could potentially lead to the conclusion
that Arabic dialects are historically related, but not synchron-
ically, and are mutually unintelligible languages like English
and Dutch. Normal vernacular can be difficult to understand
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across different Arabic dialects [2]. Arabic dialects are thus suf-
ficiently distinctive, and it is reasonable to regard the DID task
in Arabic as similar to the LID task in other languages. Table 1
shows two phrases across the different dialects, it is clear from
this example that there are lexical variations across the different
dialects which motivates us to consider it.

Two broad LID approaches have been investigated in the
literature: low-level acoustic features, and high-level phonetic
and lexical features. In the lexical area, words, roots, morphol-
ogy, and grammars [3, 4] have been studied. Acoustic features
such as shifted delta cepstral coefficients [5] and prosodic fea-
tures [6] using Gaussian mixture models (GMMs), i-vector rep-
resentations and support vector machine (SVM) classifiers [5]
have been shown to be effective for LID. More recent work ex-
plored the use of frame-by-frame phone posteriors (PLLRs) [7]
as new features for LID. New subspace approaches based on
non-negative factor analysis (NFA) for GMM weight decom-
position and adaptation [8] were also applied to both LID and
DID tasks. GMM weight adaptation subspaces seem to provide
complementary information to the classical i-vector framework.
Finally, phoneme sequence modeling and its n-gram subspace
have been studied for both Arabic DID [9] and LID [10].

EGY GLF LAV MSA NOR Translation
ablsl dislal | das / diglal _sm_b <S5 | AL s | g e you?

AzAYk | A$lwnk | kyfk/ASlwnk | kyf HAlk | wAS$rAk

Ny <! ks ek <! \."i\ A‘J 5| Where are you?

Ant fyn | wynk wynk Ayn Ant wyn rAk

Table 1: Lexical examples in Arabic and Buckwalter format.

In this paper we investigate three Vector Subspace Models
(VSMs) for Arabic DID based on 1) lexical, 2) phonetic, and
3) i-vectors. We conduct a thorough feature selection study of
these models to better understand their interaction. A further
contribution of this work is the release of an Arabic DID sys-
tem slo others can extend and improve DID performance on this
task.

2. Vector Space Models

2.1. Senone based Utterance VSM

Senone refers to an n-gram phone sequence. In our case n < 4.
VSM construction takes place in two steps: first, a phoneme rec-
ognizer is used to extract the senone [11] sequence for a given

Uhttps://github.com/Qatar-Computing-Research-Institute/dialectID
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speech utterance. The phoneme sequence is obtained by auto-
matic vowelization of the training text, followed by voweliza-
tion to phonetization (V2P). The 36 chosen phonemes cover all
the dialectal Arabic sounds. Further details about the speech
recognition pipeline, training data, and phoneme set is given
in [12]. For the phoneme sequence, we process the phoneme
lattice, and obtain the one-best transcription, ignoring silences
as well as noisy silences. Each speech utterance (u) is then rep-
resented as a high dimensional sparse vector (%0):

= (A(f(u7 51))7 A(f(“’? 82))7 B A(f(uv sd))) )

where f(u, s;) is the number of times a senone s; occurs in the
speech utterance u, and A is the scaling function. We experi-
ment with both an identity scaling function and ¢ f.idf scaling
function, commonly used in the field of Natural Language Pro-
cessing [13] to downweight the contribution of the words (in
our case senones) that occur in almost all documents (in our
case utterances), as these words (senones) do not provide any
discriminative information about the documents (utterances).
The vector space is then represented by the matrix, Us €
RN (see Fig 1). This approach and the notation used to define
a VSM is directly inspired by the seminal works in the area of
VSM of Natural Language in [14, 15, 16] and in LID [17].

—
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o [ AfGstu) A(f(sws) o A(f(s1un)

s2 | A(f(s2,u1)  A(f(s2,us) A(f(s2,un)
Us = . : : :

o | AU(sasm)  A(f(sa,us) A(f (54, un)

Figure 1: Senone-based utterance VSM. Column vectors of the
matrix correspond to the speech utterance vector representation
formed using equation 1. d is the size of the senone dictionary,
and N is the total number of speech utterances in the dialectal
speech database.

2.2. Word based Utterance VSM

The word-based utterance VSM (Uy,) is constructed in two
steps in a manner similar to the senone features: An ASR sys-
tem is used to extract the word sequence for each utterance
in the speech database. Details about the ASR system can be
found in [12]. Each speech utterance (u) is then represented as
a high-dimensional sparse vector ():

= (A(f(uv wl))vA(f(uva))v .- '7A(f(u7 wd’)))a

where f(u,w;) is the number of times a word w; occurs in
the speech utterance u and A is the scaling function which has
the same interpretation as for U (above). Vocabulary size was
55k. The tri-gram dictionary size was 580k which we used to
construct the word based VSM

—
u

(@)

2.3. i-vector-based Utterance VSM
2.3.1. Bottleneck Features (BN)

Recently, bottleneck features extracted from an ASR DNN-
based model were applied successfully to language identifica-
tion [18, 19, 20]. In this paper, we used a similar bottleneck
features configurations as in our previous ASR-DNN system
for MSA speech recognition [21]. This system is based on two
successive DNN models. Both DNNs use the same setup of
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5 hidden sigmoid layers and 1 linear BN layer, and they were
both based on tied-states as target outputs. The senone labels
of dimension 3040 are generated by a forced alignment from
an HMM-GMM baseline trained on 60 hours of manually tran-
scribed Al-Jazeera MSA news recordings [12]. The input to the
first DNN consists of 23 critical-band energies that are obtained
from Mel filter-bank. Pitch and voicing probability are then
added. 11 consecutive frames are then stacked together. The
second DNN is used for correcting the posterior outputs of the
first DNN. In this architecture, the input features of the second
DNN are the outputs of the BN layer from the first DNN. Con-
text expansion is achieved by concatenating frames with time
offsets of -10, -5, 0, 5, and 10. Thus, the overall time context
seen by the second DNN is 31 frames.

2.3.2. Modeling

An effective and well-studied method in language and dialect
recognition is the i-vector approach [8, 22, 5]. The i-vector
involves modeling speech using a universal background model
(UBM) — typically a large GMM - trained on a large amount
of data to represent general feature characteristics, which plays
arole of a prior on how all dialects look like. The i-vector ap-
proach is a powerful technique that summarizes all the updates
happening during the adaptation of the UBM mean components
to a given utterance. All this information is modeled in a low
dimensional subspace referred to as the total variability space.
In the i-vector framework, each speech utterance can be repre-
sented by a GMM supervector, which is assumed to be gener-
ated as follows:

M=u+Tv

Where u is the channel and dialect independent supervector
(which can be taken to be the UBM supervector), 7" spans a
low-dimensional subspace and v are the factors that best de-
scribe the utterance-dependent mean offset. The vector v is
treated as a latent variable with the i-vector being its maximum-
a-posteriori (MAP) point estimate. The subspace matrix 71" is
estimated using maximum likelihood on large training dataset.
An efficient procedure for training and for MAP adaptation of i-
vector can be found in [23]. In this approach, the i-vector is the
low-dimensional representation of an audio recording that can
be used for classification and estimation purposes. In our ex-
periments, the UBM was a GMM with 2048 components, BN
features were used, and the i-vectors were 400-dimensional.

In order to maximize the discrimination between the dif-
ferent dialect classes in the i-vector space, we combine Lin-
ear Discriminant Analysis (LDA) and Within Class Co-variance
Normalization [5]. This intersession compensation method has
been used with both SVM [5] and cosine scoring [8].

3. Dataset
3.1. Train Data

The training corpus was collected from the Broadcast News do-
main in four Arabic dialects (EGY, LAV, GLF, and NOR) as
well as MSA. Data recordings were carried out at 16Khz. The
recordings were segmented to avoid speaker overlap, remov-
ing any non-speech parts such as music and background noise.
More details about the training data can be found in [8]. Al-
though the test database came from the same broadcast domain,
the recording setup is different. The test data was downloaded
directly from the high quality video server for Aljazeera (bright-



cove) over the period of July 2104 until January 2015, as part Model ACC PRC RCL
of QCRI Advanced Transcription Service (QATS) [24].
n-gram Language Model 40.4% 402% 41.3%
Data EGY GLF LAV NOR MSA ENG Naive Bayes 3719% 37.5% 502%
) Max Ent 40% 40% 40.6%
Train 13 9.5 11 9 10 10
Tt 2 2 2 2 2 SVM 452% 44.8%  45.4%

Table 4: Performance of different classifiers using lexical fea-
tures, with lexicon size of 55K. ACC, PRC and RCL correspond
to accuracy, precision and recall on the test set.

Table 2: Number of hours of speech available for each dialect.

3.2. Test Data

The test set was labeled using the crowdsource platform Crowd-
Flower, with the criteria to have a minimum of three judges
per file and up to nine judges, or 75% inter-annotator agree-
ment (whichever comes first). More details about the test set
and crowdsourcing experiment can be found in [25]. The test
set used in this paper differs from that used in [8] for two rea-
sons: First, the crowdsourced data is available to reproduce the
results, and thus can be used as a standard test set for Arabic
DID; second, the new test set has been collected using different
channels, and recording setup compared to the training data,
which makes our experiments less sensitive to channel/speaker
characteristics.

The train and test data can be found on the QCRI web por-
tal>. Table 2 and Table 3 present some statistics about the train
and the test data.

Data EGY GLF LAV NOR MSA ENG

Train 1720 1907 1059 1934 1820 1649
Test 315 348 238 355 265 452

Table 3: Number of speech utterances for each dialect.

4. Experiments
4.1. Choosing the Best Classifier

We first studied the best classification approach for the DID
task from a set of two generative models: n-gram language
model [26] and Naive Bayes [27], and two discriminative clas-
sifiers: linear SVM [28] and Maximum Entropy [29]. We mea-
sured the performance of each model on the DID task, in the
word or lexical-based utterance vector space, which is con-
structed using the approach mentioned in section 2, using iden-
tity scaling function A, and performing no dimensionality re-
duction. Hence, the dimensionality of an utterance vector, %, is
the same as the size of the lexicon, which in our case was 55k.
Results can be seen in table 4. As the linear SVM performs the
best, it is our choice of classifier for the rest of the experiments.

4.2. Feature Selection Study

Here we examine the dialect information captured by the three
utterance VSMs explained in section 2. We also explore the
concatenation of the utterance vector representations, and report
the results in Tables 5 and 6. Details about the terms in the
results table are given below:

o Ul : Refers to the utterance VSM in which each ut-
terance is represented by a vector given by equation 2,
where A is chosen to be the identity function. The bases

Zhttp://alt.qcri.org/resources/ArabicDialectIDCorpus/

2936

of the vectors are the words in the lexicon. SVD is
used to reduce the dimensionality of the utterance Vec-
tor Space from 55k originally, to 300, 600, 1200, 1600
at which point increase the gain in the classification per-
formance tends to saturate.

Udf: Same as the previous Utterance VSM, except
that A is chosen via ¢ f.¢df [13] instead of identity func-
tion, which gives us significant improvement in accuracy
over the previous vector space.

UL: Refers to the utterance VSM in which each ut-
terance is represented by a vector given by equation 1,
where A is chosen to be the identity function. Utterance
vector bases corresponds to senones. Just as with the
word-based utterance VSM, we use SVD on the vector
space and experiment with different dimensions. The ut-
terance Vector Space constructed using senone features
is more discriminative than word-based Vector space.

UtHdf: Refers to the same vector space as the previous
one, except that A is chosen to be the ¢f.idf function.
tf.idf, does not help in the case of senone features.

Feature Combination: Combining the best senone-
based utterance VSM, U, ;(GOOd), and the best lexical-
based utterance VSM, UL *¥ (1200d), to form a con-
catenated feature vector representation. SVD is per-
formed to reduce the dimensions of the feature space.
Feature combination does not help and hence we con-
clude that the two vector spaces are capturing similar in-
formation.

baf .« Refers to the utterance VSM, where each utter-

ance is represented by a compact 400d i-vector (sec-
tion 2.3). We use the bottleneck features to train the
UBM, which is then used to extract the i-vector. We
do not experiment with different i-vector dimensions and
take the best dimension reported in [5] for the LID task.
The i-vector feature space is significantly more discrim-
inative than previously defined feature spaces.

UR‘,‘:CJrLD A+wonNN: Reducing the dimensionality of
the i-vector space using LDA and performing WCNN
has been reported to do well in LID tasks [5] and we use
the same technique and see a significant improvement in
the DID results.

U Lpatwenn + UL(600d): Finally we con-
catenate the best senone-based VSM with the best i-
vector-based VSM, to form a concatenated vector repre-
sentation for each utterance and see slight improvements
in the results. As the lexical and senone-based represen-
tations encode the same information about the dialect,
we do not experiment with concatenated lexical and i-
vector representations.



d = 300 d = 600 d = 1200 d = 1600
ACC PRC RCL ACC PRC RCL ACC PRC RCL ACC PRC RCL
Ui, 38.3 41.9 39.4 41.7 44.1 42.8 42.9 45.6 44 429 45 43.8
ytadf 433 42.7 435 44.6 44 44.9 45.5 45.1 45.8 21.9 20.9 21.9
Ul 452 44.8 459 45.8 45.1 46.5 452 44.7 45.8
yads 44 43.9 44.7 44 442 44.6 43.9 44 443
Feature Combination 44.8 442 456 44.1 434 448 44.8 44.1 45.4

Table 5: Accuracy, Precision and Recall for different senone and lexical feature based Vector Spaces. d is the dimensionality of
the Vector Space. Boldfaced numbers are the best accuracy for the corresponding vector space, for a corresponding vector space
dimensionality d. A detailed explanation of feature spaces is given in the feature selection study (section 4.2)

Feature Space d ACC PRC RCL
UR 400 553 61 559
URMciLpA+woNN 4 585 623 589
URVse+LDA+ WONN+ LNORM 4 587 619 593

U Lbaswenn + UL(600d) 604 592 627 595

Table 6: Accuracy, Precision and Recall for different i-vector
based feature spaces. d refers to the dimensionality of the Vec-
tor Space. A detailed explanation of feature spaces is given in
the feature selection study (section 4.2).

4.3. One Vs All classification (Sanity Check)

We constructed a senone-based utterance VSM (section 2.1)
based on 20 hours of speech; 10 hours English (which we got
from [30]) and 10 hours Arabic (randomly sampled from our
training data, section 3). Binary classification (English vs Ara-
bic) using an SVM classifier, was then performed and it yielded
100% accuracy on the 1.5 hour test set. The reason to choose
the senone-based feature space and not the i-vector-based fea-
ture space for classification is to avoid channel mismatch, as
the English data came from a different source domain. We did a
similar experiment to classify MSA versus all dialectal Arabic
and again obtained 100% classification accuracy.

4.4. System Output Combination

We fused the scores of the best senone system and the SVM-
based i-vector system. In the fusion steps, the original scores
of each system were normalized and combined using the same
fusion weights for both systems. This approach yielded a final
accuracy of 60.2%, which is the best performance we achieved.
One explanation for this gain is that the error patterns for the
two feature spaces are quite different, and we were able to con-
firm that by analyzing the confusion matrix for each system.

5. Discussion

We infer from the confusion matrix in Table 7 that GLF and
LAV are the most confusable dialect pair. We believe that this
is related to the greater lexical similarity between these two di-
alects (see Table 1). Note, the confusion matrix is from the best
DID system. We borrowed Table 8 from previous work [25] on
the test set, which shows the amount of time the same speak-
ers switch between dialect and another (mainly MSA, and their
own native dialect). For example, in the second row of Table 8,
there are 200 samples from potential Gulf speakers. After man-
ually labeling, there were 106(53%) segments labeled as MSA,

EGY GLF LAV MSA NOR Total Truth PRC

EGY 221 15 57 13 9 315 50.3%
GLF 45 121 82 12 5 265 55.8%
LAV 74 43 199 18 14 348 46.9%
MSA 19 17 20 218 5 279 77%
NOR 80 21 66 22 166 355 83.4%
#class 439 217 424 283 199

RCL 70.2% 45.7% 572% 78.1% 46.8%

Table 7: Confusion Matrix for DID.

82(41%) validated as GLF, 8(4%) as LAYV, and 4 segments were
not identified with enough confidence to be considered. This
means more than 50% of the random GLF speakers data is in-
fact MSA speech segments. This is strong evidence for the
amount of code-switching between one dialect and MSA from
the same speaker.

Expected Dialect EGY GLF LAV NOR MSA

EGY 65% 32%
GLF 4% 4% 53%
LAV 1% 1% 53% 39%
NOR 1% 69%  28%

Table 8: Expected dialect of each speech segment from particu-
lar dialectal speakers.

6. Conclusions

This paper presents our efforts on automatic dialect identifica-
tion for Arabic broadcast speech. We have demonstrated a di-
alect classifier with an accuracy of 60.2% using system combi-
nation. We also achieved 100% accuracy on two binary classi-
fication tasks; MSA vs Dialectal Arabic and English vs Arabic.
We studied the potential code-switching pattern in our classifier
and its correlation with the manual annotation. Further work
for this research is to study the code-switch between MSA and
dialectal Arabic without considering speaker diarization or si-
lence between speech segments in what can be called dialect di-
arization. We shall also study deep neural network approaches
of classification to learn a more complex non-linear decision
boundary.
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