
Choosing Useful Word Alternates for Automatic Speech Recognition
Correction Interfaces

David Harwath1, Alexander Gruenstein2, and Ian McGraw2

1Massachusetts Institute of Technology
2Google, Inc.

Abstract
Speech recognition is an increasingly important input modal-
ity, especially for mobile computing. Because errors are un-
avoidable in real applications, efficient correction methods can
greatly enhance the user experience. In this paper we study a
reranking and classification strategy for choosing word alter-
nates to display to the user in the framework of a tap-to-correct
interface. By employing a logistic regression model to estimate
the probability that an alternate will offer a useful correction
to the user, we can significantly reduce the average length of
the alternates lists generated with no reduction in the number of
words they are able to correct.

1. Introduction
In the last several years, automatic speech recognition has seen
an unprecedented level of adoption, especially by users of mo-
bile devices. A likely contributor to the attractiveness of speech
input is the cumbersome nature of virtual keyboards. A typical
person’s typing speed averages between 50 and 100 words per
minute on a full keyboard, but only 10 words per minute on a
virtual keyboard [1]. Conversely, humans are able to dictate at
approximately 102 words per minute, but after taking into ac-
count the time required for correcting speech recognition errors,
this rate can drop to less than 10 words per minute [2]. Speech
input has the potential to be vastly more efficient than virtual
keyboard input, but thus far has faced a significant scourge in
recognition errors. While better recognition accuracy has gone
a long way, errors are unavoidable in any practical system which
makes efficient error correction absolutely necessary.

Many error correction strategies for speech recognition
have been studied in the past, and fall into several categories.
Re-entry methods require the user to repeat some or all of
the misrecognized utterance, or to fall back to keyboard entry.
Other approaches take advantage of competing recognition hy-
potheses in the form of an N-best list, word lattice, or word
confusion network (WCN). Because WCNs offer a highly com-
pressed and often more interpretable view of a word lattice, they
are a popular representation for spoken language understand-
ing [3, 4] as well as speech recognition correction [5, 6, 2]. In
particular, [5] demonstrated that touch-screen devices are well-
suited for WCNs since the user need only tap the correct words
on the screen to correct a spoken input. A more lightweight
representation similar to a WCN is the alternates list, in which
a user can first indicate the misrecognized words in a hypothe-
ses and then be prompted to select from a list of candidates to
replace the misrecognized text. In [2], the authors performed
a user study investigating speech correction approaches on a

This work was performed while the first author was an intern at
Google.

tablet PC. Their results indicated very high user satisfaction for
both alternates lists as well as re-dictation. They also found that
users would typically opt to use the alternates lists first, falling
back on re-dictation when the correct word was not in the alter-
nates list.

Because they are well suited for mobile touch-screen de-
vices and generally satisfying to users, alternates lists are a
promising method of speech correction. It is important, how-
ever, to show the correct word or phrase in the list, while mini-
mizing the number of incorrect corrections displayed to the user.
In this paper, we investigate a strategy for automatic re-ranking
and selection of hypotheses with which to populate an alternates
list. In [7], the author explores the corrective potential of WCN
lists as a function of their maximum allowable size. The WCNs
were originally derived from word lattices, although users were
given the option to replace words in the WCN with morpholog-
ically similar variants. What differentiates our approach from
[7] is the use of a discriminative classifier applied directly to
the alternates lists generated for individual words and phrases.

2. Correction Using Alternates
We illustrate the word alternates correction interface in Figure
1. When a user taps on an incorrect word on the screen, a list
of alternates appears below the word and the user can select a
replacement by tapping on the desired alternate in the list. What
differentiates an alternates list from a word confusion network
is the fact that alternates allow a user to replace words at the
short phrase level as well as the word level. In our experi-
ments, we find these candidate alternates using an N-best list
of recognition hypotheses with timing information. Let w be a
word in the recognition hypothesis aligned to the audio interval
[tw0 , t

w
1 ]. To find alternates for w, we scan the N-best list entries

for words approximately aligned to the same audio interval. To
quantify the amount of overlap between w and some other word
v aligned to the audio interval [tv0 , tv1 ], we compute

min(tv1 , t
w
1 )−max(tv0 , t

w
0 )

tw1 − tw0
(1)

When this overlap exceeds a threshold (0.1 in all of our exper-
iments), v is considered a candidate alternate for w, assuming
that v does not already appear in the alternates list for w (i.e. du-
plicates are not allowed.) Note that multiple consecutive words
in a single N-best entry may overlap w, in which case the phrase
formed by those words is considered a single candidate alternate
for w. Additionally, this technique can be easily generalized to
handle consecutive words in the recognition hypothesis by con-
catenating their alignment intervals. We do this for every se-
quence of words in the hypothesis whose total length does not
exceed 10 characters in order to generate alternates for short
phrases.

Copyright © 2014 ISCA 14-18 September 2014, Singapore

INTERSPEECH 2014

949



Figure 1: An example of an alternates-based correction inter-
face on a Nexus 4 smartphone running Android version 4.3

When offering word or phrase alternates to a user, our goals
are twofold. First, the alternates should enable the user to cor-
rect as many word errors as possible. Second, the alternates
lists should be concise. Not only is screen space limited on mo-
bile devices, but forcing a user to read through long alternates
lists is a burden which should be avoided. In practice, there is
a tradeoff between these goals since increasing the size of the
alternates lists tends to increase the odds that the proper correc-
tion is contained within the list.

Given an erroneous speech recognition hypothesis and a set
of alternates, the problem of predicting which of those alter-
nates will be useful to the user and which will not can be viewed
as a binary classification problem. We define an alternate to be
useful if it has the potential to correct word errors in a recogni-
tion hypothesis. Consider a contrived example in which a user
spoke “mary had a little lamb”, but the utterance was misrecog-
nized as “mary had a little yam”. Assume the two words “ham”
and “lamb” appear as alternates for the word “yam”. An or-
acle with knowledge of the reference transcription attempting
to minimize the number of word errors using the available alter-
nates would choose to replace “yam” with “lamb”. We therefore
consider “lamb” to be a useful alternate, as opposed to “ham”,
which is not useful. We employ this oracle technique to our
training and evaluation sets, assigning useful alternates a “1”
label and useless alternates a “0” label. At runtime the oracle is
clearly not available, so we resort to estimating the probability
that each alternate would be used by the oracle to correct one or
more word errors. Because of its simplicity and ease of training,
we choose to use logistic regression to predict this probability.
Logistic regression also supports highly flexible feature spaces,
and can easily handle combinations of binary and continuous
features.

3. Features
For each candidate alternate generated for a recognition hypoth-
esis, we extract a set of features to be used for regression. We
explore:

0.0

0.5 0.75 1.0 1.5

0.4 0.7 1.0 1.5

0.4 0.7 1.0 1.5

0.5 0.75 1.0 1.5

2.0

2.0

2.0

2.0

Mary

had a little

Gary

had a little

Gary had a little
Mary

had a little

yam:1

lamb : 2

yam : 3

ham : 4

Figure 2: An N-best lattice with timing information displaying
the 4 best paths for a contrived utterance. The utterance is 2
seconds long and contains the words “Mary had a little lamb”
misrecognized as “Mary had a little yam”. Timing information
is tracked by the state labels, and the N-best position is reflected
as the cost attached to the final word in each path. The 1-best
path (which would be displayed to the user as the recognition
hypothesis) is shown in bold.

N-best list position features. The first feature we consider
reflects how far down in the N-best list the alternate appears.
This feature takes on as its value the index of the N-best entry
in which the alternate is first found. The deeper we must delve
in the N-best list to find the alternate, the larger this feature
becomes. We also include multiple binary features to reflect
when an alternate appears in specific N-best entries. For exam-
ple, when an alternate appears in the 2nd best hypothesis, the
corresponding binary feature takes on a “1” value; if this same
alternate does not appear in the 3rd best hypothesis, then the
feature corresponding to the 3rd best path takes on a “0” value.
We include these binary features for the 2nd, 3rd, 4th, and 5th
best paths, as well as an extra feature representing all paths be-
yond the 5th best. Because an alternate may appear in multiple
N-best paths, several of these binary features may be active at
the same time. The last N-best position-based feature we em-
ploy is the N-best rank. The N-best rank of an alternate reflects
the number of other unique alternates appearing before it in the
N-best list.

Suppose we have the N-best list shown in Figure 2. Now
suppose we wish to generate alternates for the word “yam” in
the 1-best hypothesis. The N-best depth feature of the alternate
“lamb” would be 2, and the N-best rank feature of the alternate
would be 1 since no other alternates appear before it in the N-
best list. The N-best depth feature of the alternate “ham” would
be 4 since it first appears in the 4th best hypothesis, but the
N-best rank feature of “ham” would be 2 since the alternate
“lamb” appears before it. We do not count “yam” from the 3rd
best hypothesis as an alternate, since it is the very string in the
1-best hypothesis we are attempting to replace.

Posterior features. Many speech recognition word confi-
dence classifiers rely on posterior probabilities, so we consider
those features here. Given a word or phrase v in the 1-best hy-
pothesis and a candidate alternate, w, we estimate the posterior
probabilities for v and w using the likelihoods of the N-best
list entries. Assuming that the likelihoods of the entries in the
N-best list have been normalized to sum to 1, we accumulate
the likelihoods of all the N-best paths which contain v at the
same time-aligned position as v in the 1-best hypothesis. We
repeat this computation for all paths containing w at the same

950



time aligned position to estimate a posterior probability of the
alternate w. Both the posterior for w as well as the posterior for
v are included as features for the alternate w.

Text distance-based features. We also compute features re-
lating to the text of the alternate w and the text of the 1-best
word or phrase v. The absolute string lengths of w and v are
included as features for the alternate w, but we also compute
several features representing the string distance between w and
v. The first of these is the simple Levinshtein distance with
equal insertion, substitution, and deletion costs. The last fea-
tures capture the relative lengths of w and v. When an alternate
w is longer than the string v it replaces, the relative overshoot
is given by

overshoot =
len(w)− len(v)

len(v)
, (2)

where len(·) represents string length, and the overshoot is taken
to be 0 when len(w) < len(v). We also use the relative under-
shoot,

undershoot =
len(v)− len(w)

len(v)
(3)

when len(w) < len(v). In the case that len(w) > len(v), the
undershoot is taken to be 0.

4. Experimental Conditions
In our experiments, we aim to investigate the tradeoff between
the fraction of word errors correctable using alternates, and the
average length of each list of alternates. We can trade between
these quantities by adjusting the accept threshold imposed upon
the estimate of the posterior probability that an alternate can
correct an error. As this threshold is raised we would expect
fewer alternates to be selected, reducing the expected alternate
list length but also the chance that a useful alternate appears in
said list. We make several experimental assumptions which we
describe in detail here. First, we assume that when an utterance
is correctly recognized, a user will not tap on any words to see
an alternates list. Conversely, when an utterance is completely
misrecognized, the user is more likely to re-speak the query than
attempt to correct every single word using alternates. Therefore,
we limit our training and evaluation to utterances which possess
a small number of errors. In our experimental setup, approxi-
mately 70% of the utterances in our training and testing sets
were correctly recognized, approximately 25% had between 1
and 3 word errors, and approximately 5% had more than 3 word
errors. We filtered these sets and only selected utterances with
1 to 3 errors for training and evaluation. Furthermore, we only
wish to evaluate alternates generated for the erroneous portions
of each utterance. Even though alternates will almost certainly
appear in the N-best list for words in the hypothesis that were
correctly recognized, they will not be displayed to the user un-
less those words are selected for replacement, which is unlikely.
Therefore, our training and testing data is entirely comprised of
alternates lists generated for misrecognized words in utterances
with less than 3 total word errors. Our training set consists of
English voice search queries sampled from anonymized logs of
voice input on Android smartphones. For testing purposes, we
also use anonymized voice search logs, but spread across En-
glish, French, Italian, German, and Spanish. Table 1 describes
each of these datasets in more detail.

To generate the N-best recognition hypotheses used in our
experiments, we use a state-of-the-art, deep neural network-
based speech recognition system. The details of the speech rec-
ognizer recipe are described in [8]. After decoding the training

Language # Utterances # Words # Word Errors
English (Train) 18308 94621 29093
English (Test) 6615 30810 10476

French 2062 6087 3223
Italian 1094 3189 1701

German 1549 3676 2422
Spanish 1097 3342 1671

Table 1: Statistics of the various datasets used in our experi-
ments. These statistics reflect the utterances actually used for
training and testing in our experiments (i.e. after filtering out
correctly recognized utterances and utterances with more than
3 word errors)

and evaluation data, alternates are generated for each utterance
using an N-best list. The 0/1 regression target labels are derived
using the oracle word error scorer described in Section 2, and
features are computed for each alternate. To train the logistic
regression models, we selected a balanced training set of 6,706
positive and 6,706 negative examples of alternates from the En-
glish voice search training set. We trained one model with all
of the N-best position, posterior probability, and text distance
features, as well as a model which did not utilize the poste-
rior probability features or the Levinshtein distance feature. We
compare these models to a baseline classifier which utilizes only
the N-best depth feature. This baseline, parameterized by a sin-
gle integer n, accepts only the alternates which appear in the
top n best hypotheses in the N-best list. In our experiments, we
cap N to 30, and also restrict the maximum alternates list length
to 5.

For evaluation, we sweep an accept threshold from 0 to 1
over the regression estimate of the probability that a given al-
ternate will be useful for correction. Likewise, for the N-best
depth baseline, we sweep the depth parameter n, retaining only
the alternates that appear in the top n N-best paths for a given
utterance. For each threshold setting, we examine the alter-
nates list generated for each erroneous word or phrase in the
evaluation data. We compute the fraction of those word errors
correctable using the available alternates, and also compute the
average number of alternates appearing in each list.

5. Results
The tradeoff between these quantities on our English voice
search testing set is shown in Figure 3. The blue asterisks mark
the discrete operating points available to the N-best depth-based
classifier, while the red and black curves respectively trace the
operating points of the full and simplified logistic regression
models. Since the N-best depth is just one of the features uti-
lized by the models, we would expect both models to outper-
form the simple N-best depth-based classifier, which is indeed
the case. For a given average alternates list size, the alternates
selected using the logistic regression models are always able to
correct a larger number of word errors. As the accept threshold
is lowered, the average alternates list length grows larger, yet
the number of word errors correctable with alternates saturates
around 30%. A reasonable operating point might be to set the
accept threshold high enough to make 29% of the word errors
correctable. The motivation behind this choice is that it makes
the majority of the good alternates available to the user, and in-
creasing the average list length further tends to add alternates
with no corrective potential. At this operating point, the lists
produced by the regression models are on average 2.6 alternates

951



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

25

30

35

Average Alternate List Length

%
 o

f E
rro

rs
 C

or
re

ct
ab

le

 

 

N−best Depth
MaxEnt with 11 features
MaxEnt with 14 features

Figure 3: Correctability / List Length Tradeoff for English
Voice Search. The 14-feature and 11-feature maximum entropy
models perform very similarly, and their curves significantly
overlap.

long, while the lists produced by the N-best thresholding clas-
sifier are on average 3.6 alternates long. This is a significant
reduction in average list length which comes at no cost. As can
be seen in Figure 3, the posterior probability and Levinshtein
distance features do not aid in classification. This is somewhat
surprising given the fact that lattice posteriors are often used
as features in ASR confidence modules, although it is possible
that the N-best position and rank features make the posterior
probability features redundant. This result is good news from
an implementation standpoint, however, since it means that in
practice these features need not be computed. Our experiments
also show that the N-best lists saturate rather quickly and con-
tain enough alternates to correct approximately 30% of all er-
rors.

We also investigated the application of our alternates classi-
fier to non-English languages, namely French, Italian, German,
and Spanish. Figure 4 displays the tradeoff between average al-
ternates list length and correctability for each of the non-English
test sets. The same classifier trained on the English data was
used on all four of these languages, and in every case gave im-
provements comparable to the English results. This is a pleas-
ing, since it means that a single classifier can be trained and
applied to multiple languages with good results, without requir-
ing training data in each target language.

6. Conclusion
In this paper, we have presented a method for selecting word
alternates from an N-best list for the purpose of speech recog-
nition error correction. The method employs a simple logistic
regression model to estimate the probability that an alternate
will offer a useful correction to the user. In practice, the aver-
age length of the alternates lists generated was reduced by 28%
at a reasonable operating point with no loss in the corrective
power of the alternates. Furthermore, we demonstrated that a
the logistic regression model trained on English data was able
to generalize to other languages with good results.

Although we demonstrated a respectable reduction in the
average alternates list length, future work should investigate

0 1 2 3 4 5
0

10

20

30

40
French

0 1 2 3 4 5
0

10

20

30

40
Italian

0 1 2 3 4 5
0

5

10

15

20

25

30
German

0 1 2 3 4 5
0

5

10

15

20

25

30
Spanish

Figure 4: Correctability / List Length Tradeoff for the non-
English languages investigated. Average alternate list length is
on the horizontal axis, while the fraction of errors correctable is
on the vertical axis. The red line traces the performance of the
simplified (11 feature) Maximum Entropy classifier, while the
blue asterisks represent the N-best thresholding baseline.

methods of populating the alternates lists from additional
sources of information. In our experiments, our word lattices
contained only enough words to correct 30% of all word er-
rors. Using a wider search beam during decoding would pro-
vide larger lattices from which to draw more N-best entries, at
the cost of increased decoding time. Another method would be
to employ dictionary access based on phonetic distance from
a hypothesis word in order to recover near-homophones which
may not appear in the decoding lattice. Regardless of the meth-
ods used to generate additional alternates, reducing the number
of unhelpful alternates drawn from the N-best list provides ex-
tra room for these additional alternates; a single classifier could
even be trained to select alternates from this pool of different
sources.

7. References
[1] A. Cockburn, A. and A. Siresena, “Evaluating mobile text entry

with the Fastap keypad,” in British Computer Society Conference
on Human Computer Interaction, England, 2003.

[2] K. Larson and D. Mowatt, “Speech error correction: the story of
the alternates list,” in International Journal of Speech Technology
vol. 6, no. 2, 2003.

[3] J. Feng and S. Bangalore, “Effects of word confusion networks on
voice search,” in Proceedings of the 12th Conference of the Eu-
ropean Chapter of the Association for Computation Linguistics,
2009, pp. 238-245.

[4] D. Hakkani-Tur, F. Bechet, G. Riccardi, and G. Tur, “Beyond ASR
1-best: using word confusion networks in spoken language under-
standing,” in Computer Speech and Language 20(4):495-514.

[5] K. Vertanen and P.O. Kristensson, “Parakeet: a continuous speech
recognition system for mobile touch-screen devices,” in IUI ’09:
Proceedings of the 14th International Conference on Intelligent
User Interfaces. ACM, 2009, pp. 237-426.

[6] J. Ogata and M. Goto, “Speech repair: quick error correction just

952



by using selection operation for speech input interfaces,” in Pro-
ceedings of Interspeech, Lisbon, Portugal, 2005.

[7] K. Vertanen, “Efficient correction interfaces for speech recogni-
tion,” PhD thesis, University of Cambridge, 2009.

[8] N. Jaitly, P. Nguyen, A. Senior, and V. Vanhoucke, “Application of
pretrained deep neural networks to large vocabulary speech recog-
nition,” in Proceedings of Interspeech, Portland, Oregon, 2012.

953


	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Multimedia File Index
	----------
	Abstract Book
	Abstract Card for this Manuscript
	----------
	Next Manuscript
	Preceding Manuscript
	----------
	Previous View
	----------
	Search
	----------
	Also by David Harwath
	----------

