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Abstract

We address the problem of information accessibility for patients concerned about
pharmaceutical drug side effects and experiences. We create a new corpus of online
patient-provided drug reviews and present our initial experiments on that corpus.
We detect biases in term distributions that show a statistically significant associa-
tion between a class of cholesterol-lowering drugs called statins, and a wide range
of alarming disorders, including depression, memory loss, and heart failure. We also
develop an initial language model for speech recognition in the medical domain, with
transcribed data on sample patient comments collected with Amazon Mechanical
Turk. Our findings show that patient-reported drug experiences have great potential
to empower consumers to make more informed decisions about medical drugs, and
our methods will be used to increase information accessibility for consumers.
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Chapter 1

Introduction

The last few decades have witnessed a steady increase in drug prescriptions for the

treatment of biometric markers rather than overt physiological symptoms. Today,

people regularly take multiple drugs in order to normalize serum levels of biomarkers

such as cholesterol or glucose. Indeed, almost half of all Americans take prescription

drugs each month, which cost over $200 billion in the US in 2008 alone [30]. However,

these drugs can often have debilitating and even life-threatening side effects. When

a person taking multiple drugs experiences a new symptom, it is not always clear

which, if any, of the drugs or drug combinations are responsible.

Before medical drugs and treatments can be approved in the US, clinical trials are

conducted to assess their safety and effectiveness. However, these costly trials have

been criticized because they are often designed and conducted by the pharmaceutical

company that has a large financial stake in the success of the drug. These trials are

often too short, and involve too few people to give conclusive results. A large study

recently conducted on the heart failure drug, nesiritude, invalidated the findings of

the smaller study that had led to the drug’s approval [44]. Marcia Angell, who served

as editor-in-chief of the New England Journal of Medicine, also criticized the clinical

trials process, noting the conflicts of interest, the ease with which trials can be biased

to nearly ensure positive results, and prevalence of the suppression of negative trial

results [3].

Beyond clinical trials, regulatory agencies also monitor drug adverse reactions
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through spontaneous reporting after the drug has come to market. In the United

States, the Food and Drug Administration (FDA) maintains a post-marketing surveil-

lance program called MedWatch, which allows healthcare professionals to report ad-

verse reactions of drugs. However, the difficulty of using these reporting systems and

their voluntary nature may contribute to an under-estimation of adverse drug reac-

tions [5,83]. It is difficult to accurately quantify the number of adverse reactions that

go unreported, but previous studies have found that voluntary reporting detects less

than 1% of adverse drug reactions [38]. In addition, patients and even clinicians may

not recognize that certain symptoms are caused by the drug.

Increasingly, consumers are turning to online health websites to seek medical ad-

vice. Recently, a number of online communities have developed around sharing med-

ical experiences and expertise. These informal forums are rich and invaluable sources

of information on the effectiveness and side effects of drugs because they make it

possible to reach a wider audience, and supplement information available from drug

manufacturers and health professionals. For psychological reasons, patients are often

more comfortable sharing personal experiences in support groups, with other partic-

ipants who are going through similar issues [15].

These health websites have the added benefit of closing the language gap between

clinical language and patient vocabulary, which can cause confusion and misunder-

standing. Studies have also shown that misspellings, misuse of words, and ambiguous

abbreviations can lead to poor information retrieval results [43,52,92].

Online health websites are addressing the issue of terminology mismatch, making

it possible to reach a wider audience. However they are subject to a different problem

of information overload. The trade-off of their accessibility is difficulty finding relevant

information for specific queries. The sheer volume of data and presence of noise masks

its true value.

Data mining and content summarization are well studied topics in research, es-

pecially in the restaurant and movie domains, where the opinion features of online

reviews are often overwhelmed by irrelevant commentary. By using a combination

of rule-based parsing and statistical analysis of the distribution and concurrence of
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certain words and phrases, consumer comments can be consolidated to provide useful

summarizations of individual restaurants with promising results [49].

Analogously, we can perform similar retrieval and summarization techniques in

the medical domain on patient anecdotes posted online, to address the dual problems

of insufficient clinical studies and mismatched terminology. Natural language analysis

of drug effectiveness and side effects could prove invaluable to patients who want to

learn more about the experience of taking certain drugs. However, the difficulty of

performing natural language analysis is increased in the medical domain because of

the highly domain-specific vocabulary, which also makes it interesting for natural

language research.

1.1 Vision

We propose an interactive online system that will answer questions about medical

drugs by consolidating patient-reported drug experiences and will automatically iden-

tify important and relevant information pertaining to drug effectiveness and side ef-

fects. The use of natural language understanding will allow more specific queries and

accessibility to individuals without medical training. Furthermore, in the absence of

relevant patient trials or consolidated and structured physician reports, the informa-

tion gathered by automatically processing patient reported symptoms may provide

invaluable insight on drug adverse reactions and effectiveness.

We envision an integrated system that encompasses a living database of patient-

reported anecdotes and supports both text and speech interaction modalities. The

system will be a valuable resource for patients who want to learn about and share

experiences on the effectiveness and side effects of medical drugs. Users will not

only be able to ask questions about drugs or symptoms, but also submit their own

comments by typing or speaking about their experiences taking certain drugs. The

database will also incorporate information mined from online patient discussions of

drugs and publicly available medical data sets, such as the FDA’s Adverse Events

Report System, which contains reports from MedWatch. As more people use the
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system, the database will be augmented with these new entries and thus deliver more

relevant results to new queries.

In response to user queries, relevant comments from the database will be returned

that may provide the answers the user seeks. To avoid overloading users with too

many comments, we will use automatic summarization techniques to highlight the

key points relevant to the user query. Statistical analysis may also be performed to

answer questions about population statistics, such as the correlation between observed

symptoms and certain drugs.

1.2 Contributions

This thesis describes our preliminary experiments in building an interactive medical

drug resource for patients. As a preliminary study in this area, we tackle a number

of common tasks including spelling correction, tokenization, and term identification.

We also explore the degree to which statistical methods such as co-occurrence mea-

sures, linear classifiers, and topic models can be used to extract summary information

derived from biases in word distributions, and to subsequently detect associations be-

tween particular drugs or drug classes and specific symptoms.

The key contributions of this research are:

1. We create a large corpus of over 100,000 patient-provided medical drug reviews

and comments.

2. We apply statistical techniques to identify side effects and other terms associated

with a specific drug class.

3. We apply topic modeling methods to discover drug side effects and side effect

classes.

4. We develop an initial speech recognition system to support spoken queries in

the medical domain.
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1.3 Thesis Overview

The thesis is organized as follows. First, we provide an overview of related work in

natural language processing in the medical domain. We then describe the data col-

lected on medical drug reviews and comments. In chapter 4, we discuss the findings

from automatic side effect discovery experiments with a focus on cholesterol-lowering

drugs, especially statins. We present results from speech recognition experiments

conducted on spoken question data collected from Amazon Mechanical Turk in chap-

ter 5. We discuss additional experiments in review classification and topic modeling,

followed by our conclusions in chapter 7.
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Chapter 2

Related Work

This thesis builds on a number of areas of previous work, from general tasks such

as word sense disambiguation, syntactic parsing, and topic detection, to the domain

specific applications of clinical decision making, medical dialogue systems, and diag-

nosis. With the adoption of electronic health records and increased availability of

clinical data in textual form [55], it is becoming increasingly feasible to apply NLP

techniques to the medical domain. Natural language processing methods have already

been used to supplement health provider education, provide more personalized med-

ical care, and assist in a patient’s behavioral compliance, which can greatly reduce

the billions of dollars spent each year on health care by encouraging healthier life

styles [23]. In this chapter, we will give an overview of term identification methods,

which are crucial to many NLP tasks. We also present a survey of applications in the

medical domain.

2.1 Term Identification

The development of natural language systems in specialized domains often begins

with term identification, an important subtask of information extraction with appli-

cations in automatic indexing, language generation, and machine translation. The

term identification task can be subdivided into three main steps, (1) term recognition,

(2) term classification, and (3) term mapping. As an example, consider the sentence
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“Lipitor caused muscle pain.” In the recognition step, we would detect two terms of

interest (Lipitor and muscle pain). We would then classify the terms as a drug name

and adverse reaction, respectively. Finally, we would map these terms to concepts in

a medical lexicon, such as the UMLS Metathesaurus, which is described in detail in

section 2.1.1.

Proper treatment of the term identification task may involve parsing techniques

that consider contextual information, statistical methods that use measures such as

frequency or term frequency inverse document frequency (tf-idf), and lexicon based

methods that compare terms against words in a given knowledge base. Term classi-

fication is often performed with classifiers using semantic, contextual, and syntactic

features, for example, Chowdhury et al.’s work on identifying medical terms, including

diseases [10], Settle’s study of gene and protein names [69] and Aramaki’s experiments

on extracting adverse effects from clinical records [4].

2.1.1 Medical Knowledge Resources

The US National Library of Medicine (NLM) has created a set of biomedical lex-

ica and tools known collectively as the Unified Medical Language System (UMLS).

First developed in 1986, it is updated quarterly and is used extensively in biomedical

NLP research. Resources within the UMLS include the Metathesaurus 1, composed

of over 1 million biomedical concepts, the Semantic Network (which provides seman-

tic links among categories such as organisms, anatomical structures, and chemical

compounds), and the SPECIALIST Lexicon of both common English and biomedical

terms, with syntactic information.

Within the Metathesaurus, we find many specialized vocabularies including RxNorm,

a “standardized nomenclature for clinical drugs and drug delivery devices” [50], the

World Health Organization (WHO) Adverse Drug Reaction Terminology, and Med-

linePlus Health Topics, among 50 others2. Concepts found in the Metathesaurus can

1http://www.nlm.nih.gov/pubs/factsheets/umlsmeta.html
2http://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus/release/

source_vocabularies.html
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be mapped to semantic types in the Semantic Network.

Applications

An important application of term extraction is the identification of adverse reaction

terms. Penz et al. [60] studied text records of surgical operations in the Veterans

Administration database to identify the effect of central venous catheter placements

on adverse reactions. Using phrase matching and parsing techniques, they were able

to identify adverse reactions with 0.80 specificity and 0.72 sensitivity. Melton and

Hripcsak [54] achieved much higher specificity (0.99) at the cost of sensitivity (0.28).

Despite the availability of manually annotated resources such as UMLS, it remains

difficult to map terms found in text to concepts in these medical lexica. Histori-

cally, dictionary look-up methods in the medical domain have exhibited poor match-

ing [26,35]. The NLM has developed a tool called MetaMap Transfer (MMTx), which

automatically maps biomedical documents to terms in the UMLS Metathesaurus us-

ing text parsing, linguistic filtering, variant generation, and finally matching to con-

cepts in the Metathesaurus [36]. However, Divita [18] found that MetaMap Transfer

had only a 53% success rate at matching terms in free text to concepts in UMLS.

Settles’s work also suggested that the use of semantic lexica may be of questionable

benefit compared to text-based features for entity recognition purposes [69]. The

term recognition problem is especially pronounced in the medical domain because of

the fast-evolving vocabulary and ambiguity or polysemy of terms.

2.1.2 Statistical Approaches

Statistical and machine learning techniques may prove more successful at term recog-

nition than approaches that rely on accurately mapping free text to controlled vo-

cabularies, especially with the availability of large datasets. For example, Kazama et

al. [41] used multi-class support vector machines (SVMs) to learn boundary features

of terms in the GENIA corpus3. Another study employed Hidden Markov Models

3http://www-tsujii.is.s.u-tokyo.ac.jp/~genia/topics/Corpus/
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(HMMs) with orthographic features to discover gene names [13].

With the high density of medical terms in text, we can also use probabilistic

collocation extraction methods to identify terms of interest. A number of measures of

association have been used in previous research, including simple frequency, pointwise

mutual information [11], selectional association [63], log-likelihood [20], symmetric

conditional probability [71], and set association measures such as the Dice [17] and

Jaccard [37] indices. Many of these measures are defined in more detail in section 4.3,

where they are used to detect biases in word distributions.

2.2 Medical Applications

Using tools such as the UMLS, researchers have studied medical text for a wide range

of purposes. Weeber et al. found new applications for medical drugs through textual

analysis of PubMed articles. They argued that researchers should consider textual

databases as an additional source of knowledge. Reeve et al. used various associa-

tion measures to determine concept saliency in biomedical texts for extractive text

summarization. Plaza et al. [61] applied a graph-based approach to map terms in

biomedical documents to concepts found in UMLS, also for summarization purposes.

These studies, based on documents containing many technical biomedical terms, ben-

efit from the use of the UMLS Metathesaurus for mapping terms to medical concepts.

Additional applications include medical dialogue systems and biosurveillance, which

are described below.

2.2.1 Dialogue Systems

Personalized medical systems often implement a dialogue system that aims to simu-

late or supplement the expertise of health care providers [46]. Conversational systems

provide a more natural interface for users, and have been applied with limited success

to many domains. These systems face the challenges of adapting to unconstrained

interaction with patients, and generalization beyond the training data. Speech recog-

nition and language modeling are also challenges faced in this and other constrained
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domains, such as weather or flight booking [27, 68]. Furthermore, the usefulness of

a question answering system for patients depends not only on its ability to return

relevant answers, but on its ability to present these answers in a manner easily ac-

cessible to viewers. Improvements in natural language understanding and generation

are integral parts of such systems, which would ideally be able to respond to the kind

of unconstrained questions patients might direct to their physicians or pharmacists.

These challenges have been tackled by health dialogue systems; a notable example

is Chester, a personal medication advisor prototype developed at the University of

Rochester [2]. Chester was designed with the aim of alleviating the increasing bur-

den placed on patients to manage their health and medical treatments, especially in

light of the life-threatening complications that may arise from missed pills or drug

interactions. Communicating with patients using natural language dialogue makes

Chester most accessible to people familiar with the behavior of expert health care

providers, and requires minimal training to use. More specialized spoken medical

dialogue systems have also been developed, such as Rojas-Barahona et al.’s HomeNL

system, which engages in conversation with and offers suggestions to patients who

have hypertension [64].

Speech Recognition

An integral part of dialogue systems is speech recognition, which is the process of

turning a speech signal into a sequence of recognized words through appropriate rep-

resentation and the application of acoustic, lexical, and language models. At the

acoustic level, a live recognition system must be able to adapt to variations in micro-

phone placements or sound quality. In natural language understanding, difficulties

arise from ambiguities in both syntax and word meanings. A given sentence can be

produced from multiple parse trees, and the same word has different meanings in

different contexts. These problems are compounded with imperfect pronunciation,

spelling and punctuation, as is often the case with informal comments posted on-

line. To accurately parse sentences, we must use a combination of semantic rules and

probabilistic models. Statistical language models have been found to be very effective
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at improving speech recognition without needing complex syntactic rules, by giving

more probability to frequently observed word sequences.

However, while acoustic and lexical models are often portable across domains,

language models must be more carefully adapted for domain-specific use to achieve

higher performance in recognition systems. Adaptation of general language models

or cross domain training have been researched, with specific techniques including the

use of domain specific corpora [66], model interpolation [88], or training on artificial

corpora generated automatically from templates [42].

Of note in such previous research are the steps taken to address the domain-

specific data sparsity issues, and the lack of pronunciation data or mispronunciation

by users of the system. These health communication systems have also tackled the

problem of knowledge representation for the complex relations between drugs, drug

effects, and side effects in terms of time and severity.

2.2.2 Health Surveillance

The increased accessibility of public health information through the web has also

driven research in text mining for health surveillance. Many Web-based surveillance

systems have been developed that focus on event-based monitoring, including the

Global Public Health Intelligence Network (GPHIN) [58], HealthMap [25] and Bio-

Caster [12], which gather data from sources such as news reports, official reports, and

World Health Organization (WHO) alerts.

BioCaster’s system can be decomposed into three major subtasks, namely topic

classification, named entity recognition, and event extraction. Document classifica-

tion was performed using a naive Bayes algorithm, which achieved 94.8% accuracy,

and named entity recognition achieved an F-score of 77.0% using a support vector

machine. The task faced the challenge of high data volume, the fast response time

needed, and out-of-vocabulary terms. It was developed by researchers in Japan, Viet-

nam, and Thailand, and focuses on Asia-Pacific languages.

These surveillance systems can provide more comprehensive and timely informa-

tion. For example, GPHIN detected the 2002 outbreak of Severe Acute Respiratory
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Syndrome (SARS) through news media analysis three months before official WHO re-

ports [21]. HealthMap, developed in the Harvard-MIT Division of Health Sciences &

Technology, mines many online text sources and integrates data from location-aware

devices to create a “global disease alert map.” It was a useful tool to visualize and

track the spread swine flu during the 2009 flu pandemic.

Pharmacovigilance

A special category of health surveillance is pharmacovigilance, or the detection of

adverse drug reactions. Postmarketing pharmacovigilance is an area that benefits

greatly from NLP methods, as electronic health reports can be analyzed to detect

new drug side effects. One of the earliest studies of this kind involved the manual

review of patient-reported text comprised of emails sent to the BBC and messages on

an online discussion site. Medwara et al. [53] found that the user reports showed a

correlation between the antidepressant, paroxetine, and severe withdrawal symptoms

and suicide. This study lends support for the use of patient-provided text for detecting

drug and drug adverse reaction relationships.

A more recent study conducted on a wider range of drugs show even more promise

that user comments contain information that can be used in pharmacovigilance. Lea-

man et al. [48] studied user comments posted on the DailyStrength4 health site and

found that the incidence of patient-reported side effects were in line with documented

incidence from the FDA online drug library. They compared patient comments

against a lexicon of medical terms found in the FDA’s COSTART vocabulary set.

In another study, Cable [8] manually examined 351 patient-reported comments

on statin adverse reactions and found that not only all patients experienced side

effects, but more than 60% reported that they discontinued the drug because of the

severity of the side effects. While one may question the validity of using self-reported

anecdotes rather than controlled studies, in aggregate, anecdotes can provide useful

information, as Cable demonstrates. Furthermore, his findings are backed by research

literature, described in more detail in section 4.1.1.

4http://www.dailystrength.org
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2.3 Summary

Prior work has focused in part on improving term recognition, one of the largest

bottlenecks to medical text mining. The increased availability of electronic health

information and the development of medical lexica have enabled a number of projects

in personalized medical care and health surveillance. However, to improve the ac-

cessibility of health information, we still face the challenge of a large language gap

between consumers and clinical documents, and the overwhelming volume of text

now available online. In our research, we take a contrasting approach to previous

methods, placing emphasis on statistical and parsing techniques, instead of relying

on manually created knowledge sources such as the UMLS.
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Chapter 3

Data

A large part of the drug reports system is the large database of patient-provided drug

reviews and drug experience comments collected from various health-related sites.

This corpus of comments will be referred to as the DrugReports corpus hereafter. In

this chapter, we describe our data collection process and give an overview of the data

collected.

Because of the constant addition of new comments posted to online health sites,

we designed a comment collection system that would regularly update the database

of comments while being (1) extensible to new sites, (2) easy to configure for new

drug classes, and (3) minimal in bandwidth consumption.

3.1 Data Collection

For each web site, data collection is performed with the following steps:

1. Given a search term, URLs of relevant pages are collected.

2. URLs for all search terms are collected and a unique set of URLs are recorded.

3. Web pages corresponding to the URLs are downloaded and cached. Cached

web pages which are less than a week old are skipped, to reduce unnecessary

network bandwidth usage.
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4. Comments are extracted from the HTML pages, along with supplementary in-

formation such as author and time posted.

5. The comments are loaded into the database following the schema in Figure 3-1.

3.1.1 Data Sources

Each web site follows a different format, so we implemented site-specific scrapers that

collect all comments given the name of a drug. Drug reviews were harvested from

five sites dedicated to (or containing sections dedicated to) reviews of pharmaceu-

tical drugs: (1) WebMD1, (2)Askapatient2, (3) Medications3, (4) iGuard4, and (5)

DrugLib5. Many of these sites were established almost ten years ago (WebMD and

Askapatient), while some were established as recently as 2007 (iGuard). WebMD is

one of the largest online health portals, with over 17 million unique monthly visitors

in 2007.

These sites each allow users to post reviews of specific drugs, providing comments

labeled with the drug name. Some sites encourage users to specify supplementary

information such as gender, age, side effects and ratings, similar to product and

restaurant review sites. Table 3.1 presents a numerical overview of the collected data

with contributions from each site.

Site Review count Contribution
WebMD 4124 34%
Askapatient 3960 33%
Medications 3055 25%
iGuard 897 7%
DrugLib 82 1%

Table 3.1: Sources of data and number of reviews of cholesterol lowering drugs.

In addition, many health websites allow users to post general comments in forums,

1http://www.webmd.com/
2http://www.askapatient.com/
3http://www.medications.com/
4http://www.iguard.com/
5http://www.druglib.com/
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Figure 3-1: Database schema for storing patient comments.
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or as responses to articles posted by the site’s editors. These sites include: (1) WebMD

Blog6, (2) People’s Pharmacy7, (3) Healing Well8, and (4) Spacedoc9. Most of these

are general health web sites with the exception of Spacedoc.net, which has forums

focused on cholesterol related drugs. Unlike the sites dedicated to drug reviews, these

sites tend to contain comments that are less relevant to specific drugs.

3.1.2 Data Coverage

Because many substances are marketed under country-specific brand names, we col-

lected reviews for all brand names popular in English speaking countries, as well as the

generic names. For example, simvastatin is marketed as Zocor in the US and Lipex in

Australia. The drug classes covered are separately configured in a file that contains

the names of all drugs and the hierarchy. The drug hierarchy is adapted from the

Anatomical Therapeutic Chemical (ATC) Classification System, which is managed

by the WHO Collaborating Centre for Drug Statistics Methodology, and organizes

drugs based on their therapeutic use and chemical characteristics. A portion of the

drug hierarchy we use can be found in Appendix A.

For the scope of this thesis, we focused on cholesterol-lowering drugs, which rank

among the most prescribed pharmaceuticals ever. Their prevalence allows for a large

quantity of patient-reported data. Furthermore, preliminary examination of online

medicine and patient forums shows a large number of responses which include re-

ported drug side effects such as muscle weakness and memory loss [1]. We collected a

total of over 12,000 reviews about drugs falling under ATC class C10, which includes

all lipid modifying drugs. These drugs may be referred to interchangeably as choles-

terol lowering drugs. Figure 3-2 presents an overview of the size and distribution of

comments over different classes of cholesterol lowering drugs.

6http://blogs.webmd.com/
7http://www.peoplespharmacy.com/
8http://www.healingwell.com/
9http://www.spacedoc.net/
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Figure 3-2: Distribution of comments in cholesterol lowering drug class. Numeric
values are total number of reviews in each class.

3.2 Example Comments

The comments collected often consist of very detailed descriptions of their drug use

and symptom progression. For example, one user who posted on People’s Pharmacy

shared the following:

My father was perscribed lipitor in March of 2004, subsequently he de-

veloped muscle weakness and numbing and stopped taking it. The weak-

ness did not go away, he got progressively weaker and was recommended

to see a neurologist. In September of 2004 the neurologist diagnosed him

with ALS . . . He died in March of 2005, one month after his birthday and

less than one year after taking lipitor.

The above is quite typical of comments posted online, whether on forums or in

response to articles relating to statins. They are written in natural language, with a

variety of sentence structures, misspellings, or grammar mistakes. Acronyms such as

“ALS” (which stands for amyotrophic lateral sclerosis) abound. At the same time,

these anecdotes allow users to share more relevant information than can be anticipated

by structured forms.
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3.3 Spelling Correction

We performed spelling correction on the entire corpus of user comments as a prepro-

cessing step for all NLP tasks, with the goal of correcting words of medical interest

that were misspelled frequently by many users. Collected data were first tokenized

and case-normalized, and stop words were removed, following a commonly used stop-

word list [24]. Comments were then processed with automatic spelling correction as

described below.

We began with a unique list of all unigrams composed only of the characters a-z.

These 20,601 words were first sorted by likelihood of being misspelled based on the

log ratio of unigram probabilities between the DrugReports corpus and the Google

n-gram corpus10. The Google n-gram corpus is a collection of unigrams up to 5-grams

with counts collected from public Web pages, and thus contains a wider vocabulary

than conventional corpora.

For a given word w, we can define cg(w) as the count of w in the Google n-gram

corpus, and cd(w) as the count in the DrugReports corpus. Words that have a high

ratio of unigram probabilities are either more likely to be misspelled, because they

have low or zero cg(w), or more likely to be medically relevant with a higher cd(w).

Upon manual inspection, we set a threshold cutoff for the unigram probability

ratio at 0.20, resulting in a list of 17,199 unique words. We then further pruned

the list of potentially misspelled words by eliminating those that satisfied any of the

following conditions:

1. cg(w) > 1, 000, 000

2. cd(w) > 120

3. w appears in comments from only one site.

4. w appears in an external corpus that is unlikely to contain misspellings.

10http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.
html
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The count thresholds were manually chosen to eliminate all frequent words that

were not misspellings. Words that appeared only on one website (of the nine sites

scraped) were removed because they are inherently uninteresting; often these were

usernames or repeating character sequences. We also removed words that appeared

in a set of commonly used external corpora11 - the Brown corpus, Project Gutenberg

Selections, the Genesis corpus, the Australian Broadcasting Commission corpus, the

Reuters corpus, the Wordlist lexicon, and health articles and documents from Google

Health, NIH, WebMD, Wikipedia, and iGuard. These published texts were chosen

because they are less likely to contain misspellings.

The filtered list contained 3,025 candidate misspelled words. Proposed corrections

were automatically generated for these words based on near-miss match to words

that appeared at least 8 times in the DrugReports corpus (single-letter substitution,

insertion, deletion; two letters inverted). In the case of multiple matches, the word

with the highest unigram was chosen. Implausible corrections were discarded after

manual inspection, resulting in a final count of 2,678 spelling correction rules. These

were then applied to the entire corpus.

11http://code.google.com/p/nltk/wiki/Corpora
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Chapter 4

Automatic Discovery of Side

Effects: Focus on

Cholesterol-Lowering Drugs

We explore the use of the corpus of patient-provided drug reviews in discovering drug

adverse reactions. Patient-provided medical drug experiences can supplement drug

adverse reaction findings and address the issue of the large language gap between

patients and technical medical documents [93].

Previous work has been conducted to extract drug side effects from text, for

example, mining drug package inserts to link drugs to side effects [45] or detecting

infectious disease outbreaks by monitoring online news reports [12]. These studies

have generally been concerned with technical text. Self-reported data poses a greater

NLP challenge because of misspellings, ungrammaticality, and shorthand. While

little extensive research has been conducted on patient-reported comments, we can

compare with electronic health records, written unedited by clinicians to document

patient conditions, that have as high as 10% incidence of misspellings [65]. Studies

have also raised the problem of mapping terms in consumer health texts to concepts

in UMLS; Divita [18] found that MetaMap Transfer had only a 53% success rate at

matching terms in free text to concepts in UMLS. It is possible that patient-provided

comments are even more difficult to analyze because, without any medical training,
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non-clinicians are more likely to misspell and misuse words, and employ more creative

use of language.

Leaman et al. [48] attempt to account for unexpected vocabulary by using the

UMLS lexicon, further supplemented with a few colloquial terms, to detect adverse

reactions from self-reported online posts. One of their observations was that the fre-

quency of side effects in user comments was highly correlated with their documented

frequency as provided by the FDA. Their study is the only one that we are aware of

that performs textual analysis of online patient-provided comments.

In this chapter, we use several popular statistical NLP techniques to detect bi-

ases in word distributions when comparing reviews of statin drugs with reviews of

other cholesterol-lowering drugs. We focus on these drugs because they are widely

prescribed and have diverse side effects. We will begin with a review of the research lit-

erature reflecting known or suspected side effects associated with cholesterol-lowering

drugs. We will then describe the set of statistical NLP techniques we used to de-

tect likely associations between particular drug classes and particular health issues.

We verify that many of our extracted associations align with observations from the

literature.

4.1 Side Effects of Cholesterol-lowering Drugs: Brief

Literature Review

In this section, we briefly review some of the literature on associations between

cholesterol-lowering drugs and certain side effects. We will focus our discussion on

the important class of HMG coenzyme A reductase inhibitors (statins) which have

become increasingly prescribed as very effective agents to normalize serum cholesterol

levels. The most popular of these, atorvastatin, marketed under the trade name, Lip-

itor, has been the highest revenue branded pharmaceutical for the past 6 years1. The

official Lipitor web site lists as potential side effects mainly muscle pain and weakness

and digestive problems. However, several practitioners and researchers have identified

1http://www.drugs.com/top200.html
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suspected side effects in other more alarming areas, such as heart failure, cognition

and memory problems, and even severe neurological diseases such as Parkinson’s

disease and ALS (Lou Gehrig’s disease).

4.1.1 Statin Drugs

It is widely acknowledged that statin drugs cause muscle pain, weakness, and dam-

age [32, 56], likely due in part to their interference with the synthesis of the potent

antioxidant Coenzyme Q10 (CoQ10) [47]. CoQ10 plays an essential role in mitochon-

drial function to produce energy. Congestive heart failure is a condition in which the

heart can no longer pump enough blood to the rest of the body, essentially because it

is too weak. Because the heart is a muscle, it is plausible that heart muscle weakness

could arise from long-term statin usage. Indeed, atorvastatin has been shown to im-

pair ventricular diastolic heart performance [72], and low cholesterol levels were also

found to be associated with greater 12-month mortality risk in patients with chronic

heart failure [62]. Furthermore, CoQ10 supplementation has been shown to improve

cardiac function [57,86].

The research literature provides plausible biological explanations for a possible

association between statin drugs and neuropathy [73, 94]. A recent evidence-based

article by Cable [8] found that statin drug users had a high incidence of neurological

disorders, especially neuropathy, parasthesia, and neuralgia, and appeared to be at

higher risk to the debilitating neurological diseases, ALS and Parkinson’s disease.

His study was based on careful manual labeling of a set of self-reported accounts

from 351 patients. A mechanism for such damage could involve interference with the

ability of oligodendrocytes, specialized glial cells in the nervous system, to supply

sufficient cholesterol to the myelin sheath surrounding nerve axons. Higher serum

cholesterol levels have been correlated with prolonged survival in patients diagnosed

with ALS [19]. Sim et al. [74] showed that statin drugs lead to recruitment of large

numbers of glial progenitor cells to mature into oligodendrocytes, likely because of a

reduced efficiency of the pre-existing oligodendrocytes. Genetically-engineered mice

with defective oligodendrocytes exhibit visible pathologies in the myelin sheath which
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manifest as muscle twitches and tremors [67].

Cholesterol depletion in the brain would be expected to lead to pathologies in

neuron signal transport, due not only to defective myelin sheath but also to interfer-

ence with signal transport across synapses [81]. Cognitive impairment, memory loss,

mental confusion, and depression were significantly present in Cable’s patient popula-

tion [8]. Wagstaff et al. [84] conducted a survey of cognitive dysfunction from AERS

data, and found evidence of both short-term memory loss and amnesia associated with

statin usage. Golomb et al. [29] conducted a study to evaluate evidence of statin-

induced cognitive, mood or behavioral changes in patients. She concluded with a plea

for studies that “more clearly establish the impact of hydrophilic and lipophilic statins

on cognition, aggression, and serotonin.” It is anticipated that lipophilic statins would

be more likely to cross the blood-brain barrier and therefore induce more neurological

problems.

Wainwright et al. [85] provide compelling arguments for the diverse side effects

of statins, and attribute them mainly to cholesterol depletion in cell membranes.

Another study by Goldstein and Mascitelli [28] found that in cardiovascular patients,

those taking statins are at a 9% higher risk of developing diabetes compared to those

on a placebo. Statins have also been linked to decreased serotonin levels [14], and

thus depression, as well as decreased testosterone [16], which may affect male sexual

response.

4.1.2 Non-Statin Cholesterol-Lowering Drugs

The four main alternatives to statin drugs for improving lipid profile are fibrates, bile

acid sequestrants (such as Questran and Welchol), nicotinic acid (niacin) derivatives

and ezetimibe, which interferes with the absorption of cholesterol through the gut.

The main side effect associated with niacin is the so-called “niacin flush.” A biological

explanation for its cause is provided in [33]. Patients taking ezetimibe can experience

abdominal or back pain, diarrhea, joint pain, and sinusitis. Rare side effects include

coughing, fatigue, sore throat, sexual dysfunction and viral infection2. A popular drug

2http://www.zetia.com/ezetimibe/zetia/consumer/index.jsp
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combination is Vytorin, which contains simvastatin (a statin) combined with Zetia.

Possible side effects are rash, pancreatic inflammation, nausea, headache, dizziness,

gallstones, gallbladder inflammation, and swelling of the face, lips, tongue, and throat.

4.2 Data

We use data from drugs affecting the cardiovascular system, specifically those falling

under ATC class C10, which includes all lipid modifying drugs. Statin drugs and

other cholesterol-lowering drugs belong in this class. In addition, we collected data

on drugs used to treat hypertension (ATC class C09), which serves as a fair corpus

for comparison with cholesterol-lowering drugs, as it also affects the cardiovascular

system.

The sites that these reviews were drawn from include all sites that contain labeled

drug reviews, as seen in Table 3.1.

4.3 Methods

Our goal was to assess the usefulness of patient-reported free-text drug reviews in

determining the side effects and areas of concern associated with certain drugs. We

compared two mutually exclusive drug classes at one time, for example, statin drugs

and other non-statin cholesterol lowering drugs. Such a comparison should highlight

the side effects more associated with statin drugs than other drugs used for the same

purpose of improving lipid profile. By comparing drugs within the same class, we can

highlight features that distinguish two drugs that are used for the same purpose, thus

controlling for patient preconditions.

We map our problem onto the general task of measuring association between two

discrete random variables, X and Y . In our case, P (X = x) is the probability of a

term x being contained in any document. P (Y = y) is the proportion of documents

in a given class (e.g. statin). P (x, y) is the probability that any given document is

both in class y and contains term x. Terms can be n-grams with n ≤ 5.
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Association measures have been used extensively for collocation identification [11],

sentence boundary detection [91] and word sense disambiguation purposes [63]. From

an information-theoretic perspective, our problem maps well to the approach taken by

[63] for word sense disambiguation by characterizing the co-occurrence of predicates

with conceptual classes. We define the measures we use below, along with brief

explanations of their adaptation to our problem.

4.3.1 Log Likelihood Statistic

Dunning’s likelihood ratio test [20] is a statistical tool used to compare the homo-

geneity of two independent binomial distributions. It follows the χ2 distribution with

one degree of freedom, but unlike the χ2 test, has the benefit of being robust to

non-normal and low-volume data. We derive the likelihood ratio below.

Suppose a document has a probability p of containing the term x and we observe

k documents of n total containing at least one instance of x. We can express the

likelihood of this observation as the result of a repeated Bernoulli trial:

H(x) = pk(1− p)n−k

(
n

k

)
(4.1)

With the log likelihood ratio (LLR), we compare the maximum values of the

likelihoods of the null hypothesis (H0) of there being a single probability p that

explains both classes with the likelihood of two classes having different probabilities

p1 and p2 of containing the term x (H1). The likelihoods of these two hypotheses are

expressed in Equations 4.2 and 4.3.

H0(x) = pk1+k2(1− p)n1−k1+n2−k2

(
n1

k1

)(
n2

k2

)
(4.2)

H1(x) = pk1
1 (1− p1)

n1−k1

(
n1

k1

)
pk2

2 (1− p2)
n2−k2

(
n2

k2

)
(4.3)
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The log likelihood ratio is then defined as:

LLR(x) =
∑

i∈{1,2}

ki log
pi

p
+ (ni − ki) log

1− pi

1− p
(4.4)

where p and pi are the values that maximize the likelihoods, i.e.:

p =
k1 + k2

n1 + n2

, pi =
ki

ni

To avoid division by zero and to compensate for sparse data, we used add-one smooth-

ing scaled by the data set size.

Because the log likelihood statistic only tells us how unlikely it is that the two

classes of documents have the same probability of containing the term x, we further

define here a class preference measure, obtained by splitting the log likelihood ratio

into two terms. The first term, defined in Equation 4.5, collects the terms associated

with class 1. A symmetrical calculation can be made for class 2. The difference

between these two terms is a measure of class preference.

A1 = k1 log
p1

p
+ (n2 − k2) log

1− p2

1− p
(4.5)

4.3.2 Pointwise Mutual Information

Commonly used in information theory, pointwise mutual information allows us to

quantify the association between the two discrete random variables associated with

outcomes x and y:

PMI(x, y) = log
P (x, y)

P (x)P (y)
(4.6)

Furthermore, the ratio between PMI(x, y1) and PMI(x, y2) (i.e. the difference)

can tell us which words are more closely associated with one class than another, much

as the semantic orientation of words was calculated by Turney [82].
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4.3.3 Set Operations

We also include two set operation based measures - Dice and Jaccard coefficients. Let

Dx and Dy be two sets of documents containing the term x and relating to drug class

y, respectively. Dice’s coefficient calculates their similarity as follows:

Dice(x, y) =
2|Dx ∩Dy|
|Dx|+ |Dy|

(4.7)

The Jaccard coefficient is defined as:

Jaccard(x, y) =
|Dx ∩Dy|
|Dx ∪Dy|

(4.8)

The preference of a term x for class y1 over class y2 can be found as a ratio between

Dice(x, y1) and Dice(x, y2), or the Jaccard coefficients.

4.4 Results

Below, we will highlight some of the most interesting results that emerge from com-

parisons of various data sets.

4.4.1 Cholesterol-lowering vs Blood-pressure-lowering Drugs

Terms related to muscle pain and weakness and memory problems were far more

common for the cholesterol-lowering drugs, as well as more unexpected words like

arthritis, joint pain and spasms. Blood pressure drugs had a much more frequent

appearance of words related to the cough associated with ACE inhibitors, such as

chronic cough, hacking, throat, etc. Sex drive and dizziness were also prominent for

blood pressure drugs. Selected terms can be found in Table 4.1.
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Term k1 k2 LLR p-value
cholesterol 3108 91 3644.78 0?

arthritis 325 86 128.39 9.22E-30
spasms 212 56 83.42 6.63E-20
joint pain 560 293 63.78 1.39E-15
cough 66 2583 3644.78 0?

blood pressure 292 2556 2573.64 0?

throat 160 745 485.9 1.11E-107
hacking 3 219 299.32 4.63E-67
dizziness 376 821 226.14 4.14E-51
chronic cough 3 66 77.33 1.45E-18
sex drive 124 181 17.07 3.60E-05

Table 4.1: Selected words and phrases that distributed differently over cholesterol-
lowering drug reviews and renin-angiotensin drug reviews. The log-likelihood ratio
(LLR) and p-value are provided. k1: cholesterol-lowering drugs. k2: renin-angiotensin
drugs. ?Values are essentially 0 (< 1E − 300).

4.4.2 Statins vs Non-statins

Within the cholesterol-lowering drug class, we compared the set of 7,971 statin reviews

with 3,549 non-statin reviews. Table 4.2 shows the top 20 terms associated with

statins, ranked by each of the association measures discussed in Section 4.3. Table

4.3 presents the terms for non-statin cholesterol-lowering drugs. The rankings from

these measures exhibit high correlation with one another.

Gastrointestinal issues and rashes are common to patients taking other cholesterol-

lowering drugs. These findings are in line with the expected side effects of niacin

derivatives, fibrates, and ezetimibe, which dominate the non-statin reviews.

The drug names can be used as a reference against which to compare the other

terms. The fact that pain appears between lipitor and zocor shows that pain is

strongly associated with statins in the drug reviews. The list is highly dominated by

unigrams because of data sparsity. Methods to better treat low count data may be

an area of further investigation.

Table 4.4 highlights a few terms that are highly associated with either the statin

or the non-statin class, ranked by the log likelihood ratio expressed in Equation 4.4.

The class preference measure determines whether the term was more associated with
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Rank PMI Ratio LL Ratio Dice Jaccard
1 lipitor lipitor lipitor lipitor
2 short term memory loss pain zocor pain
3 pain zocor simvastatin zocor
4 short term memory simvastatin pain muscle
5 zocor muscle crestor simvastatin
6 muscle crestor memory crestor
7 term memory loss memory muscle cholesterol
8 simvastatin loss loss loss
9 crestor memory loss walk memory
10 memory loss walk cholesterol legs
11 muscle pain cholesterol memory loss walk
12 term memory pravachol legs symptoms
13 cholesterol legs symptoms taking
14 memory pains pains drug
15 loss left left pains
16 symptoms symptoms feet muscle pain
17 legs feet statin left
18 walk walking muscle pain feet
19 pains term memory muscles muscles
20 left short term memory walking statin

Table 4.2: Twenty terms with highest class preference for statin drug reviews.
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Rank PMI Ratio LL Ratio Dice Jaccard
1 niaspan niaspan niaspan niaspan
2 flushing flushing flushing flushing
3 tricor tricor tricor tricor
4 zetia aspirin aspirin itching
5 itching itching itching zetia
6 aspirin zetia zetia aspirin
7 welchol welchol welchol welchol
8 low fat snack fire fire fire
9 taking tricor niacin niacin triglycerides
10 niaspan er sunburn triglycerides niacin
11 niacin snack burning burning
12 burning triglycerides flush flush
13 triglycerides flush taking tricor skin
14 fire burning sunburn bedtime
15 sunburn niaspan er snack reaction
16 baby aspirin benadryl bedtime sunburn
17 flush trilipix skin diarrhea
18 snack gallbladder reaction woke
19 chronic diarrhea bedtime diarrhea snack
20 night applesauce woke bathroom

Table 4.3: Terms with high class preference for non-statin cholesterol-lowering drug
reviews.
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Term k1 k2 LLR p-value
memory loss 318 11 166.2 5.1E-38
muscle pain 864 196 89.0 3.9E-21
depression 335 56 58.4 2.1E-14
muscle weakness 257 62 21.3 4.0E-06
als 38 1 21.0 4.7E-06
hair loss 126 26 14.9 1.1E-04
diabetes 133 31 11.9 5.6E-04
heart failure 24 1 11.6 6.7E-04
parkinson’s disease 19 1 8.4 3.8E-03
chronic diarrhea 3 44 84.2 4.6E-20
gall bladder 16 44 46.3 9.9E-12
rash 127 121 36.1 1.8E-09
severe itching 14 35 34.5 4.3E-09

Table 4.4: Selected words and phrases that distributed differently over statin and
non-statin cholesterol lowering drug classes. The log-likelihood ratio (LLR) and p-
value are provided. k1 and k2: number of statin and non-statin reviews containing
the term, respectively. The upper set are far more common in statin drug reviews,
whereas the lower set are more frequent in non-statin reviews.

statins or non-statin cholesterol lowering drugs. Many memory and muscle-related is-

sues are more apparent with patients taking statins. The highly significant results for

diabetes are in line with recent concern about the possibility that statins may increase

risk to diabetes [31]. Depression also exhibits a significant bias towards statins. This

effect may be attributable to their known interference with serotonin receptors [70].

Heart failure was also much more common in the statin drug branch, consistent with

the findings of Silver et al. [72].

4.4.3 Gender Differences

We compared the reviews posted by males and females taking statin drugs. A large

portion of the reviews collected were labeled with gender, with 2,770 female and 2,156

male reviews. While it is possible that gender-specific word choice may influence the

term distributions, females clearly had more problems with neuromuscular disorders,

including muscle spasms, trouble walking and fibromyalgia. This is in line with ob-
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servations from the literature [34]. The prevalence of terms relating to libido among

males is possibly due to the fact that statins interfere with testosterone synthesis from

cholesterol [79]. Selected terms are shown in Table 4.5.

Term k1 k2 LLR p-value
sex drive 50 16 28.3 1.0E-07
libido 38 15 17.1 3.6E-05
soreness 69 44 13.9 1.9E-04
fibromyalgia 6 42 22.3 2.3E-06
cramps 139 264 15.7 7.6E-05
muscle spasms 11 38 9.8 1.7E-03
trouble walking 0 11 9.7 1.9E-03
arthritis 46 94 7.2 7.5E-03

Table 4.5: Selected words and phrases in the statin reviews that distributed differently
over gender. k1: male reviews. k2: female reviews.

4.4.4 Lipophilic vs Hydrophilic Statins

For this comparison, we were most interested in the supposition that lipophilic statins

may have a greater impact on the nervous system, particularly on oligodendrocytes,

as discussed in Section 4.1. We consider statins with a positive lipophilicity to be

lipophilic, and negative lipophilicity to be hydrophilic. Of the widely prescribed

statins, atorvastatin (Lipitor) and simvastatin are both lipophilic, while rosuvastatin

is hydrophilic [89]. Results were striking in that the severe neurological disorders,

ALS and Parkinson’s, occurred almost exclusively in comments associated with the

lipophilic class. Selected terms can be found in Table 4.6.

4.5 Discussion

The results of these experiments show that corpus comparison methods can identify

side effects and areas of concern that are more associated with one class of drugs
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Term k1 k2 LLR p-value
tingling 278 47 14.61 1.32E-04
tremors 38 1 13.32 2.63E-04
parkinson’s 29 0 13.01 3.10E-04
als 35 3 5.98 1.44E-02
neurological 16 0 6.55 1.05E-02

Table 4.6: Selected words that were more common in lipophilic than in hydrophilic
statin reviews. k1: lipophilic statin reviews. k2: hydrophilic statin reviews.

than another. One initial concern was that it may be difficult to distinguish between

patient preconditions and side effects using a bag-of-words approach. For example,

a patient might state “I took Lipitor because I had high cholesterol but it caused

muscle aches.” However, by comparing drug classes used for the same purpose (e.g.

of lowering cholesterol), we control for preconditions which should distribute evenly

across both classes.

The highly ranked terms are those that not only appear frequently in one class,

but also are more skewed to one class than another. A patient who takes statins, for

example, is more likely to experience muscle pain than a patient who takes another

cholesterol-lowering drug, such as niaspan, because the class preference of the term

muscle pain is skewed toward statins. However, a patient taking statins is not neces-

sarily more likely to experience memory loss than muscle pain, even though memory

loss appears higher on the ranked list of terms that prefer statin drug reviews. What

this means instead is that the skew in the two data sets on memory loss is greater

than it is on muscle pain.

4.5.1 Limitations

While our study used only term and drug class co-occurrence, we believe further im-

provements can be made to side effect detection using parsing. For example, consider

the term heart failure. In the context below, it is part of a general statement someone

is making, based not on personal experience, but hearsay:

...statins are costly, marginally effective, and rife with adverse effects.
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Common side effects of statin drugs include muscle pain and weakness

and liver problems. However, they are also linked with memory problems,

heart failure, and increased risk of death...

This comment suggests potential side effects that the user did not personally experi-

ence. Whether the number of such comments significantly inflates the saliency of side

effects should be further investigated. Even when a term does appear in the context

of personal experience, it may be an existing precondition:

I am a 58 year old male diagnosed with heart failure and afib in Jan 2004.

I have been taking a combination of Lipitor, Topral, Hyzaar, Pacerone

and Magnesium and Potassium supplements since then...

We want to distinguish between existing preconditions and cases of interest where the

term is mentioned as a clear consequence of taking the drug, such as in the following

comment:

I haved been on Lipitor for a number of years with many of the side effects

posted here. I have had Heart Failure fo a year now ... i am off lipitor an

taking 400mg of coq10 per day. i am now in day seven an have slept in

my own bed with my wife for the first time in a year. i am less restless,

an have ha no recurrence of heart failure.

4.6 Summary

In this chapter, we have described a basic strategy of comparing word frequency distri-

butions between two databases with highly similar topics – e.g., statin and non-statin

cholesterol lowering therapies – as a means to uncover statistically salient phrase pat-

terns. Our efforts focused on statin drugs, as these are a widely prescribed medication

with diverse side effects. We uncovered a statistically significant association of statin

drugs with a broad spectrum of health issues, including memory problems, neurolog-

ical conditions, mood disorders, arthritis and diabetes, in addition to very common
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complaints of muscle pain and weakness. Many of our findings are supported by the

research literature on statins.

These experiments were inspired by the study conducted by Jeff Cable [8]. While

he looked at only 350 reviews, he used careful manual analysis to deduce associated

side effects. We looked at a much larger set of reviews (over 12,000), and used

statistical NLP techniques for analysis. On the one hand, it is gratifying that both

methods uncovered similar side-effect profiles on different data. On the other hand,

it is disturbing that a drug class as widely prescribed as the statin drugs has such

severe and sometimes life-threatening adverse reactions.

54



Chapter 5

Speech Recognition Experiments

As part of the drug reports system, users will have the ability to interact using natu-

ral language, making the system more engaging by better emulating interactions with

human experts. We would like to allow the system to support queries beyond simple

key word searching. Part of the challenge of applying speech recognition and lan-

guage modeling techniques in the medical domain is the limited coverage that general

lexica have for specialized words and pronunciations. General language and lexical

models need to be updated to include drug and disease names, and their pronuncia-

tions. Recognition must also be robust to mispronunciations when users often do not

know the right pronunciation, even when it is available. In this chapter, we present

the results of preliminary experiments conducted to develop a language model for

recognizing questions a user might ask relating to medical drugs and symptoms.

5.1 Collection of Spoken Questions Data

We collected spoken utterances relevant to the domain with Amazon Mechanical

Turk1 (AMT). AMT is a crowdsourcing tool has been used extensively by researchers

to collect large amounts of data in a quick and cost-efficient manner, especially for

natural language processing tasks. For example, it has been used to evaluate trans-

lation quality [9], annotate data [78], and transcribe spoken language [51].

1www.mturk.com
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We collected the data in two stages. First, a task was created in which workers

were asked to read an anecdote about a statin drug experience, and then come up

with questions that the anecdote might answer. The anecdotes were drawn from

snippets of comments collected online. An example prompt is shown in Figure 5-1,

and sample anecdotes can be found in Appendix B.

Ask 2 questions about cholesterol related drug experiences

Imagine that there exists a large set of patient-reported anecdotes about medical drug
experiences, specifically relating to cholesterol-lowering drugs (statins). Imagine also
that a service is available that allows you to ask questions related to drug experiences
and will provide you with a set of relevant anecdotes to browse.

Your task is to:

1. Read the following anecdote about a statin drug (or statin drugs).

2. Come up with two questions about the drug that might be answered by the
anecdote.

Please remember:

• The questions must use standard English and spelling.

• The questions must relate to statin drugs or cholesterol-related health problems.

• Try to phrase the questions in a variety of different ways.

Figure 5-1: Prompt presented to Amazon Mechanical Turk workers to collect sample
questions about cholesterol-lowering drug experiences.

In the second stage, speech data were collected from native speakers of American

English by asking another group of turkers to read the questions posed earlier. The

use of Amazon Mechanical Turk was a cost-effective way to collect speech data. Of

the over 4500 utterances collected, only 40 were unusable due to recording noise or

non-native pronunciation. Sample questions can be found in Appendix C.1.

In addition, turkers were asked to imagine that they were taking a new drug, and

to come up with questions they would ask to a group of people who had experience

taking that drug. From this task, we collected a set of less constrained questions in

text format. Sample questions can be found in Appendix C.2.
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From the AMT tasks, a total of 935 spoken questions relating to statins were

collected. An additional 318 general drug-related questions were collected in text

format only. Speech data were collected only for the statin questions because the

speech recognition tasks were primarily focused on statins and cholesterol.

5.2 Methods

To perform the speech recognition, we used the SUMMIT speech recognizer developed

in our group [95]. The SUMMIT recognizer works by composing a series of finite state

transducers modeling the acoustic information, the context dependent phones, the

pronunciation rules mapping phones to phonemes, the lexicon, and the grammar. In

adapting the models to the medical domain, we made changes mainly to the lexicon,

by adding pronunciations for words not found in the vocabulary, and developed a

domain-specific trigram language model.

5.2.1 Trigram Language Model

An n-gram language model predicts the most likely word given a history of n words.

This can be expressed as a probability:

P (wi|wi−1, wi−2, . . . , wi−n) (5.1)

The maximum likelihood estimation of these probabilities is based on the observed

counts of these n-grams in the training corpus:

PML(wi) =
count(wi−n, . . . , wi−2, wi−1, wi)∑

w∈V count(wi−n, . . . , wi−2, wi−1, w)

=
count(wi−n, . . . , wi−2, wi−1, wi)

count(wi−n, . . . , wi−2, wi−1)

(5.2)

where V is the vocabulary, or the set of unique words that appear in the training

data. The language model used was based on trigrams, which is probably the most

dominant language model used today.
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5.2.2 Data Sparsity

Given that this project concerns a new domain, we face issues with sparse data.

Maximum likelihood models often place too much emphasis on the training data

given, and do not generalize well to unseen word sequences.

Smoothing

Smoothing techniques help to alleviate the problem of data sparsity by redistributing

probability mass from observed n-grams to events that are unobserved in the training

corpus. We used Kneser-Ney discounting, in which rare n-grams have probabilities

that back off to lower-order n-grams. In a trigram model, rare trigram probabilities

will back off to the probability of the bigram, based on how many contexts the word

appears in.

Class N-gram Models

In addition to smoothing, we also used class n-grams to deal with the data sparsity

problem. Selected words were assigned to each class, and n-gram probabilities were

calculated using counts of class sequences. The class-based n-gram calculates word

probabilities as follows:

P (wi|wi−1, wi−2)

= P (wi|c(wi))× P (c(wi)|c(wi−1), c(wi−2))
(5.3)

where c(w) is the class that word w belongs to.

Using class n-grams allows us to easily incorporate semantic information into

models based heavily on statistics. Furthermore, this allows us to better predict

words that do not appear frequently in the training corpus, but that belong to the

same class as more frequent words.

The classes used in training the class n-gram models were manually created by

forming rules for words that were found to be significant in the corpus. Table 5.1 lists

the classes used and some representative word members.
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Table 5.1: Classes used for class n-gram training.

Class Words

statins lipitor, zocor, baycol,
simvastatin, crestor,
vytorin, lovastatin,
tricor, pravachol

body parts shoulder, arm,
fingers, muscle, leg,
tendon, thigh

symptoms anxiety, numbness
pain, tingling,
soreness, fatigue,
ache, exhaustion

diseases parkinson’s, polio,
alzheimer’s

Supplementary Training Data

The high cost of acquiring speech data for this new domain was a limiting factor on

the amount of training data available for generating these language models. How-

ever, the language model training data does not need to come solely from the spoken

questions collected. We also used text data to train the language models, including

the comments that inspired the questions (665 utterances), the general drug ques-

tions (318 utterances), and the Michigan Corpus of Academic Spoken English (Mi-

CASE) transcripts (96246 utterances), a general spoken English corpus containing

transcripts from lectures, classroom discussions, and advising sessions, among other

general speech activities [75].

5.3 Results and Discussion

Five-fold cross validation was performed and the word error rate (WER) in both

the training and test sets were compared. The baseline recognizer simply trained a

trigram language model on 80% of the data and was tested on the remaining 20%,

achieving 44.84% WER. In table 5.2, we can see that using a class trigram model

improved the recognizer to a 44.04% WER.
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Class n-gram WER (train) WER (test)
no 26.46 44.84
yes 26.96 44.04

Table 5.2: The use of class n-grams slightly improves recognizer performance.

Next, the performance of class trigram models trained only on the training data

was compared to language models trained with supplementary texts. Various com-

binations of supplementary texts were tested. For each supplementary text, I tested

allowing only sentences with in-vocabulary words, and allowing all words, including

those that were out of the vocabulary of the training questions (OOV words). Table

5.3 summarizes the findings.

Allow OOV Add. corpus WER (train) WER (test)
yes Drug comments 30.11 43.70
no Drug comments 26.98 43.90
yes Gen. questions 27.88 43.24
no Gen. questions 26.92 43.86
yes Gen. questions, 30.08 43.02

Drug comments
no Gen. questions, 26.94 43.84

Drug comments
yes Gen. questions, 49.64 59.42

Drug comments,
MiCASE

no Gen. questions, 28.98 46.66
Drug comments,
MiCASE

Table 5.3: Word error rate for various training sets. Additional corpora were used to
train the language model, including the comments about statins collected from online
forums (and were then used to prompt turkers to ask questions), general medicine-
related questions, and the MiCASE corpus.

The use of both additional drug-related questions and the comments which in-

spired the statin-related questions improved the performance of the recognizer. These

additional corpora both add to the types of sentence structure on which the language

model is trained. We may observe the same phrasing in general drug questions as

those posed specifically regarding statins. The statin-related questions of interest may
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also have been phrased in a manner similar to the comments that the turkers first

read. With limited training data, these additional corpora help the language model

generalize and perform with anywhere from a 0.34% to 1.02% decrease in WER.

When the MiCASE corpus was added, we observed a dramatic drop in recognition

performance, because the language model is overwhelmed by irrelevant data, which

does not aid in predicting words for statin-related questions. Notice that the perfor-

mance improves when we limit the additional text to only in-vocabulary sentences in

the case of the MiCASE corpus. The opposite effect is seen with the drug comments

corpus and the general medicine questions corpora. Performance improvements in

the recognizer are only seen when the additional training corpora contain sentences

and sentence structure that relate to the recognition task.

Word error rates for the spoken question data were generally in the range of 40-

50% for test data using language models trained on a subset of the data. The best

performing training conditions used both a class n-gram and supplementary corpora of

both the online patient comments regarding statins and the general medical questions,

which resulted in nearly a 2% decrease in word error rates.

While the word error rates may seem high, the recognizer erred mostly on common

words, or plurality. The ability of the recognizer to identify important words - drug

names, symptoms - shows that it is still useful for our purposes of answering drug-

related questions. Some of these recognition problems can likely be overcome by using

a syntactic grammar to give higher probabilities to grammatical sentences, which is

part of an on-going investigation.

5.4 Summary

We presented the preliminary experiments on recognition of spoken queries to the

system. Methods to improve speech recognition through improved language modeling

were explored. The use of class-based trigrams demonstrated an improvement over

regular trigrams. Training on supplementary corpora related to statins and general

drugs led to modest performance increases.
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Chapter 6

Additional Preliminary

Experiments

This chapter presents a series of additional experiments conducted with the DrugRe-

ports data. We begin with a comparison of term identification methods, then show

the results from classification of the cholesterol-lowering drug reviews, and finally

demonstrate the application of LDA to automatically cluster related terms.

6.1 Multi-word Term Identification

In this section, we present some common methods of term extraction and preliminary

results. Term extraction is a process of automatically identifying multi-word units

(MWUs), or a group of two or more words that form a meaningful phrase. It is a

useful preprocessing step for tasks such as information retrieval to return relevant

documents [59], natural language generation [77], and parsing [87]. In our research,

it is used for topic identification with LDA, feature generation for classification, and

parsing.

The methods shown below are easily applicable to any n-grams, however we only

present detailed information for bigrams.
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Rank Bigram Count Rank Bigram Count
1 i have 10455 11 to be 3352
2 i am 8629 12 on the 3189
3 i was 6612 13 have been 3093
4 in the 6025 14 that i 3041
5 of the 5254 15 for the 2966
6 i had 5070 16 when i 2956
7 and i 4687 17 have a 2894
8 to the 3899 18 it was 2865
9 it is 3827 19 but i 2714
10 in my 3442 20 have to 2637

Table 6.1: Bigrams ranked by frequency.

6.1.1 Term Frequency

The simplest method of finding multi-word terms is by finding terms that appear the

most frequently. Using this method, many uninteresting terms appear because they

contain common words, as seen in Table 6.1. By simply filtering out stop words, we

can improve the candidate bigrams, as shown in Table 6.2.

Rank Bigram Count Rank Bigram Count
1 side effects 1736 11 go back 443
2 take care 1017 12 2 years 437
3 don’t know 956 13 fish oil 419
4 years ago 946 14 coq 10 417
5 blood pressure 697 15 much better 412
6 heart attack 599 16 started taking 407
7 muscle pain 577 17 stopped taking 394
8 feel like 546 18 40 mg 380
9 year old 525 19 sounds like 379
10 side effect 486 20 every day 377

Table 6.2: Bigrams ranked by frequency with stop words removed.
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6.1.2 Part of Speech Filter

Justeson and Katz [40] pass candidate terms through a part-of-speech filter to achieve

a huge improvement. They suggest patterns with examples, which we list briefly in

Table 6.3. The letters A, N, and P represent adjective, noun, and preposition, re-

spectively.

Pattern Example
AN linear function
NN regression coefficients
AAN Gaussian random variable
ANN cumulative distribution function
NAN mean squared error
NNN class probability function
NPN degrees of freedom

Table 6.3: Example part of speech patterns for terminology extraction.

When we apply a manual part of speech filter to the stoplist filtered terms, we see

much better results. The top ranked bigrams can be seen in Table 6.4. Other than

temporal and measure terms, the top bigrams are all valid terms. The difficulty with

this method is that many unknown words may not be recognized by a part of speech

tagger.

Rank Bigram Count Rank Bigram Count
1 side effects 1736 11 blood sugar 366
2 blood pressure 697 12 20 mg 356
3 heart attack 599 13 10 mg 354
4 muscle pain 577 14 3 months 351
5 side effect 486 15 heart disease 344
6 2 years 437 16 acid reflux 337
7 fish oil 419 17 vitamin d 337
8 40 mg 380 18 6 months 335
9 every day 377 19 last night 324
10 high cholesterol 375 20 2 weeks 324

Table 6.4: Bigrams passed through a part of speech pattern filter.

Passing through a character filter, that only allows the letters a-z, achieves much
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better results, as seen in Table 6.5

Rank Bigram Count Rank Bigram Count
1 side effects 1736 11 vitamin d 337
2 blood pressure 697 12 acid reflux 337
3 heart attack 599 13 last night 324
4 muscle pain 577 14 statin drugs 317
5 side effect 486 15 long time 296
6 fish oil 419 16 chest pain 294
7 every day 377 17 first time 262
8 high cholesterol 375 18 many people 259
9 blood sugar 366 19 high blood 252
10 heart disease 344 20 blood work 244

Table 6.5: Bigrams passed through a part of speech pattern filter and containing only
letters a-z.

6.1.3 Association Measures

Purely statistical measures can be used to extract terms. Below, we define some

commonly used association measures given a bigram, [w1, w2].

Pointwise Mutual Information

Pointwise Mutual Information, defined in Equation 6.1, was first defined by Fano [22]

and has been used by Church and Hanks [11] to find word association norms and

Smadja et al. [76] to find collocations for translation purposes.

Highly ranked bigrams can be seen in Table 6.6, where bolded terms are valid

multi-word units.

I(w1, w2) = log2

p(w1, w2)

p(w1)p(w2)
(6.1)

Symmetrical Conditional Probability

Silva [71] introduced the Symmetrical Conditional Probability (SCP) of bigrams,

which they showed to have the highest precision in detecting multi-word units when
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Rank Bigram PMI Rank Bigram PMI
1 alpha lipoic 17.0 11 panic resources 12.6
2 carpal tunnel 14.8 12 ct scan 12.3
3 coenzyme q 13.7 13 million dollars 12.2
4 peripheral neuropathy 13.5 14 nurse practioner 12.2
5 stretching exercises 13.3 15 cell phone 12.2
6 horror stories 13.0 16 dark urine 12.0
7 tennis elbow 12.8 17 play tennis 11.9
8 greatly appreciated 12.7 18 cold turkey 11.7
9 contributing factor 12.6 19 sudden onset 11.6
10 law suit 12.6 20 medical profession 11.6

Table 6.6: Bigrams ranked by pointwise mutual information.

compared to other measures such as PMI, Dunning’s log likelihood statistic, and the

Dice coefficient. The SCP measure is defined in Equation 6.2.

Highly ranked bigrams can be seen in Table 6.7, where bolded terms are valid

multi-word units.

SCP (w1, w2) =
p(w1, w2)

2

p(w1)p(w2)
(6.2)

Rank Bigram PMI Rank Bigram PMI
1 carpal tunnel 9.1 11 acid reflux 1.7
2 side effects 6.0 12 q -10 1.6
3 alpha lipoic 5.3 13 heart attack 1.6
4 fish oil 4.8 14 panic resources 1.3
5 coenzyme q 2.8 15 side effect 1.1
6 blood pressure 2.7 16 greatly appreciated 1.1
7 peripheral neuropathy 2.6 17 years ago 1.1
8 coq 10 2.5 18 take care 1.1
9 ct scan 2.4 19 memory loss 1.0
10 vitamin d 1.8 20 year old 0.9

Table 6.7: Bigrams ranked by symmetric conditional probability.
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6.1.4 Discussion

The results from the association measures (PMI and SCP) were quite similar, with

both identifying about 15 valid multi-word units in the top 20. Though the filter

method presented better results, it relies on a part of speech tagger, which may not be

accurate for the out-of-vocabulary words common in the medical domain. Depending

on the purpose of the MWU extraction task, different methods may be preferred.

These methods are also valuable to generate a high quality list of MWUs for manual

identification.

6.2 Side Effect Term Extraction

Related to the task of MWU identification is term extraction. We are especially

interested in identifying side effect terms. While previous medical NLP research often

relies on medical lexica such as those provided by UMLS or the FDA’s COSTART

corpus, we chose not to use these restrictive lexica because they have low coverage of

colloquial side effect expressions.

We extracted side effects from the comments posted to Askapatient.com, which

contains over 100,000 drug reviews, covering all drugs, and has labeled side effect

data. Patients are able to submit drug reviews with an input for “side effects” where

they could enter comments specifically related to side effects. Not all users used that

area; some users entered free text. However, many users entered comma separated

side effect terms, such as the comment below:

Body aches, joint pain, decreased mobility, decreased testosterone and

libido, difficulty getting out of bed in the morning, tingling and itchy

hands,and decrease in overall strength.

Side effects were selected using regular expression (regex) string matching heuris-

tics, including searching for comma-separated values. Qualifying terms such as slight,

overwhelmingly and extremely were removed1, and plural terms were consolidated.

1The entire list can be found in AppendixD
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Terms that appeared at least 20 times were included. For a rough idea of the dispar-

ity, of the nearly 5,600 adverse effect terms found in the COSTART corpus2, only 176

are shared with the 1,057 side effect terms we identified from the online drug reviews.

Some of the most common side effects are shown in Table 6.8. The terms in bold

are not found in the COSTART corpus, and most are valid side effect terms. As we

go further down the list, we see even less coverage of colloquial terms.

Rank Side Effect Count Rank Side Effect Count
1 weight gain 5762 21 irritability 1248
2 headache 5689 22 weight loss 1219
3 nausea 5621 23 drowsiness 1129
4 none 4713 24 night sweats 1055
5 fatigue 4628 25 memory loss 995
6 depression 4562 26 acne 984
7 insomnia 3750 27 sleepiness 962
8 dizziness 3691 28 vomiting 899
9 anxiety 3592 29 confusion 884
10 dry mouth 3006 30 blurred vision 865
11 mood swings 2660 31 feet 860
12 constipation 2024 32 no side effects 849
13 loss of appetite 1795 33 itching 840
14 tired 1698 34 moodiness 820
15 bloating 1592 35 vivid dreams 807
16 hair loss 1525 36 sweating 779
17 tiredness 1361 37 lethargy 749
18 joint pain 1348 38 dizzy 726
19 hot flashes 1341 39 stomach pain 713
20 diarrhea 1308 40 weakness 671

Table 6.8: Side effects extracted from the Askapatient corpus. Bolded terms are not
found in the COSTART corpus of adverse reaction terms.

6.3 Review Classification

Unsupervised document classification is an important task previously applied to a

wide range of text such as technical abstracts, news stories, and spam e-mails. We

2http://hedwig.mgh.harvard.edu/biostatistics/files/costart.html
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perform the classification task on the cholesterol-lowering drug reviews, classifying re-

views as either a statin review or non-statin review. As each drug class has different

tendencies for specific side effects, we can train a document classification model to

classify an unlabeled drug review into a specific drug class using these terms as learn-

ing features. Our findings both validate the utility of the side effects for identifying

the drug class and offer a useful technique for automatic assignment of unlabeled re-

views. These experiments were conducted jointly with JingJing Liu, a fellow graduate

student.

6.3.1 Methods

We use a Support Vector Machine [39] classifier to classify comments based on the

drug class. We compared 7,971 reviews on statin drugs with 3,549 reviews on non-

statin drugs using ten-fold cross validation. As a baseline, we use a classification

model trained on all the unigrams in the drug reviews. We compare this with a

system that uses as features the words and phrases that are skewed in distribution

between the two datasets, according to the log likelihood statistic. Given the list

of terms ranked by log likelihood, we filtered out terms with p-value higher than

0.05 (equivalently, log likelihood lower than 3.85). 1,991 terms selected using this

threshold cutoff were used to train the LLR classification model.

Obviously, the drug’s name is a very strong indicator of the drug class, but has no

information about side effects (e.g., a review containing the term lipitor is most likely

to be a review related to statin drugs). Therefore, we conducted a second experiment

where all drug names were removed from both the unigrams used in the baseline

system and the terms used in the LLR system.

6.3.2 Results

Table 6.9 presents the experimental results on classification. BS represents the base-

line system using all the unigrams in the reviews for model training. LLR represents

our classification model trained on the 1,991 terms selected by the log likelihood
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Feature Set Accuracy Precision Recall F-score
BS 84.4% 82.9% 97.8% 89.7
LLR 87.1% 86.3% 96.8% 91.2
BS - DN 78.4% 76.8% 98.6% 86.3
LLR - DN 80.1% 80.6% 95.6% 87.4

Table 6.9: Drug review classification performance. BS: baseline; LLR: log likelihood
ratio; DN: drug names. Precision, recall, and F-score are for statin reviews.

method. BS - DN represents the baseline trained on unigrams without drug names.

LLR - DN represents the LLR system trained on 1,959 terms learned by the log

likelihood method with drug names removed. Experimental results show that the

LLR system outperforms the baseline system in both settings (with or without drug

names).

6.3.3 Discussion

As expected, without the drug name features, performance drops in both systems.

However, even without drug names, the LLR system can still achieve over 80% preci-

sion on the classification task. This indicates that the drug classes can be predicted

quite well based on their unique side effect profile, by exploiting the LLR-derived

features.

The classification experiments presented can serve as a good starting point for

identifying unlabeled patient reviews. While our experiments were conducted on la-

beled data from drug review sites, many patient comments on health forums also

contain personal anecdotes about medical drugs. We can use those comments to sup-

plement the drug reviews for a larger data set. For this application, the classification

threshold should be adjusted to achieve higher precision.

6.4 Topic Modeling

Topic models are also a useful tool for processing large collections of documents by

more efficiently representing text, and aid in discovering abstract concepts in text.
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Methods in Latent Semantic Analysis (LSA) and LDA, which is a generalization of

probabilistic LSA developed by Blei et al. [7], and currently one of the most used topic

models, represents documents as a random mixture of topics, or word distributions.

LDA has been employed in the biomedical domain to characterize the change in

research focus over time in a bioinformatics journal [90]. We applied LDA to the

corpus of cholesterol-lowering drug reviews to discover correlated terms.

6.4.1 Methods

We used the MALLET toolkit3 to perform topic classification with LDA on the entire

corpus. Because MALLET processes only unigrams, we preprocessed the raw text

data by joining (via the device of underbars) common multi-word side effect terms,

found as described in Section 6.2, as we are most interested in side effect classes.

6.4.2 Results and Discussion

A total of 100 latent topics were generated using LDA. While some of the automati-

cally generated topics appeared somewhat arbitrary, several topics could be assigned

a clear label associated with a side effect class, as illustrated in Table 6.10. Perhaps

the most striking topic is one we have labeled as “neurological,” which included lipitor

(a lipophilic statin) in a class with parkinson, neurologist, twitching and tremors.

LDA generated many useful classes of side effects. These can be used to as fea-

tures to improve classification [6], or associated with ratable aspects to generate text

summaries [80].

3http://mallet.cs.umass.edu/

72



Topic Terms
muscle aches pain, left, arm, shoulder, neck, elbow, upper, shoulder, pain, hand,

developed, neck pain, lift, sore, feels, blade, upper back, hurts, blades,
arm pain

weakness muscle pain, weakness, fatigue, extreme, general, muscle weakness,
stiffness, symptoms,tiredness, joint, severe, malaise, muscle fatigue,
difficulty walking, cq, extremities, dark urine, clear, stronger

mental fatigue, depression, extreme, anxiety, insomnia, memory loss, weight
problems gain, energy, mild, tiredness, short term memory loss, shortness of

breath, exhaustion, muscle aches, night sweats, lethargy, mental,
experiencing, confusion

neurological lipitor, husband, diagnosed, recently, suffered, yrs, disease, parkinson’s,
disorders early, connection, mentioned, neurologist, diagnosis, result, tremors, prior,

suggest, possibility, twitching
indigestion stomach, gas, terrible, constipation, bloating, chest, back, chest pain,

abdominal pain, back pain, stomach pain, heartburn, acid reflux, bad,
chest pains, rib, sick, abdomen, indigestion

arthritis knees, joint pain, arthritis, joints, hand, pain, joint, hands, fingers, hips,
shoulders, stiff, painful, finger, elbows

skin problems itching, rash, skin, itchy, itch, reaction, burning, hot flashes, red, hives,
hot, relief, redness, cream, broke, allergic, area, benadryl, unbearable

Table 6.10: Examples of latent classes automatically discovered using LDA
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Chapter 7

Conclusions and Future Work

In this work, we have presented a new corpus of online patient-provided drug reviews

and described preliminary experiments in developing a speech-enabled online interface

for patients who want to learn more about side effects and experiences with pharma-

ceutical drugs. Using statistical methods, we demonstrate that patient-provided text

can be used both to confirm known side effects and to discover new side effects of

cholesterol-lowering drugs. They are also useful for extracting and grouping colloquial

side effect terms.

In our study of cholesterol-lowering drugs, we used several popular statistical NLP

techniques to detect biases in word distributions when comparing reviews of statin

drugs with reviews of other cholesterol-lowering drugs. We found a statistically sig-

nificant association between statins and a wide range of disorders and conditions,

including diabetes, depression, Parkinson’s disease, memory loss, Lou Gehrig’s dis-

ease, fibromyalgia and heart failure. A review of the research literature on statin side

effects also corroborates our findings. These results show promise for patient drug

reviews to serve as a data source for pharmacovigilance.

We also collected spoken data of questions regarding medical drugs and associ-

ated symptoms with transcriptions. Methods to improve speech recognition in the

medical domain through language modeling were explored, and we obtained slight

improvements using class-based trigrams and supplementary text training data.

Finally, we used statical measures and simple string matching to extract colloquial
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side effect terms from the drug reviews. We found that many concepts are represented

differently in patient vocabulary and medical lexica.

In the future, we plan to expand our methods to other drug classes, such as psycho-

pharmaceuticals and acid reflux therapies. We also encountered many terms in our

analysis that were biased toward one data set, but were not statistically significant.

The data sparsity issue can be addressed by collecting more drug experience com-

ments. Classification methods may also be used to identify unlabeled patient reviews

to supplement the labeled comments. Future work will address some of the issues

we encountered by better filtering comments for only personal experiences. Syntactic

parsers can also be applied to demonstrate a clearer cause and effect relation between

drugs and adverse reactions.

Ultimately, the results of these experiments will be used to help consumers decide

which medicines to take, if any.
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Appendix A

Hierarchy for Cholesterol Lowering

Drugs

I statin

– atorvastatin: lipitor, torvast

– cerivastatin: baycol, lipobay

– fluvastatin: lescol, lescol xl, canef, vastin

– lovastatin: altocor, altoprev, mevacor

– pravastatin: pravachol, selektine, lipostat

– pitavastatin: livalo, pitava

– rosuvastatin: crestor

– simvastatin: zocor, lipex, ranzolont, simvador, velastatin

I statin combination

– atorvastatin/amlodipine: caduet, envacar

– ezetimibe/simvastatin: vytorin

– niacin/lovastatin: advicor

– niacin/simvastatin: simcor

– pravastatin/fenofibrate

I bile acid sequestrant

– cholestyramine: questran, questran light, prevalite
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– colesevelam: cholestagel, welchol

– colestilan

– colestipol: colestid

– colextran: dexide

I fibrate

– aluminium clofibrate

– bezafibrate: bezalip

– ciprofibrate: modalim, oroxadin

– clinofibrate

– clofibrate: atromid-s, atromid

– clofibride

– etofibrate: clofibrate/niacin

– fenofibrate: tricor, trilipix, fenoglide, lipofen, lofibra, antara, fibricor, triglide

– gemfibrozil: lopid, gemcor

– ronifibrate

– simfibrate

I niacin derivatives

– niacin: nicotinic acid

∗ slo-niacin

∗ niaspan: niaspan er

– acipimox: olbetam

– nicotinamide: niacinamide, nicotinic acid amide

I cholesterol absorption inhibitor

– ezetimibe: zetia, ezetrol
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Appendix B

Anecdotes for AMT Question

Collection

Below are sample anecdotes presented to workers on Amazon Mechanical Turk to

collect questions that patients might ask that could be answered by these comments.

I My doctor recommended CoEnzyme Q10 after I complained about muscle pain

from Simvastatin. CoEnzyme Q10 works tremendously. I started with the

lowest dosage, 50mg, once per day and I haven’t needed to raise the dosage.

The pain was gone. Recently I needed to go off all vitamins, supplements for

a medical test. Within 2 days of being off CoEnzyme 10, the pain returned.

Looking forward to taking it again after the test.

I I am on a 80mg regimen of lipitor. I am experiencing severe leg cramps and my

legs have lost all muscle tone and are turning into sticks. Does this sound like

it is lipitor related? My doctor mentioned a CK test would this definitely show

something if it is?

I I have been diagnosed with severe arthritis for over ten years and told I need a

hip replacement. I knew until then I’d just have to tolerate the groin/thigh pain.

Well I started taking Lipitor and after about 6 months, I was in unbearable pain,

particularly both my thighs and buttocks and groin area. My doc took me off

the Lipito and in two weeks, my pain was lessened 50% or more - the right side
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not helped so much as that is where the “bad hip is”.

I Started taking simvastatin 40 mg and within 2 wks pain started in my neck and

thighs. The pain has gotten worse in my thighs, so I am going to stop med.

and see what happens. I have been this med. for 3 months.

I My aunt is 82 years old, has had heart valve surgery a few years ago and is on

Zocor. she is currently hospitalized with severe pain in the upper back area.

Nothing seems to helo and oain killers make her hallucinate. Does anyone think

this pain could be Zocor related?

I My husband started on Lovastatin in 2006. He started to notice weakness in his

right arm. This weakness progressed to the point that he saw his MD in June

2007 thinking he had a pinched nerve. After a couple of MRI’s which did not

show a pinched nerve, he was referred to a neurologist who gave him a diagnosis

of ”possible ALS”. In August 2007 on his 60th birthday, a second opinion

confirmed the diagnosis of ALS. Since that time, my husband has progressed

from weakness in his right arm to complete loss of function in his arms, very

weak leg muscles and difficulty breathing. The doctors are now encouraging us

to enter him into hospice care.

I I have been on 40mg Simvistatin for 3 years. The only problems have been

muscle twinges in one shoulder that has failed to heal over time as most muscle

twinges do. In fact, the source of pain seems to be growing or spreading, which

is worrying.

I I have been experiencing a considerable amount of pain in my legs and feet as

mentioned in previous posts by other people. I am on Lipitor and all of the

tendons in my arms and legs seem to be inflamed. All of this came upon me

slowly after starting Lipitor. I was once on Celebrex but discontinued use due

to stomach bleeding episodes. I now take Mobic. I am now under the care of a

“Pain Management” group.
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Appendix C

Sample Questions Collected Using

AMT

C.1 Cholesterol Lowering Drugs

I Are leg cramps a normal side effect of Lipitor?

I Could Lipitor be causing the numbness in my feet?

I Does Vytorin cause exhaustion?

I How long does it take to get your strength back after stopping statins?

I If I start taking Lipitor and have side effects, are there other drugs I can take?

I Is there any association between statin drug use and kidney problems?

I What are the long term effects of Lipitor?

I What other drugs can I try if I don’t like Zocor?

I Will discontinuing Zocor alleviate the muscle pain?

C.2 General Medication

I How soon can I drive after taking my Ambien?

I If I have to skip a dose of Nexium, how quickly will my acid reflux return?

I Will Yasmin hurt the baby if I get pregnant?

I Will taking this medication affect the use of other meds I am taking?
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I If I take prednisone for more than 2 weeks, can I stop it suddenly?

I Can Nexium cause diarrhea?

I What are the differences between Lexapro and Celexa?

I Are there particular drugs to avoid while on Ramipril?

I If I have bad kidneys, can I take Advil?
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Appendix D

Qualifying Terms Excluded from

Side Effects

almost

always

complete

constant

extreme

extremely

general

horrible

intense

intermittent

major

massive

mild

minor

occasional

overall

overwhelming

possible

serious

severe

slight

slightly

some

still

terrible

very
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