
Unsupervised Spoken Keyword Spotting via
Segmental DTW on Gaussian Posteriorgrams

Yaodong Zhang and James R. Glass

MIT Computer Science and Artificial Intelligence Laboratory
32 Vassar Street, Cambridge, Massachusetts 02139, USA

{ydzhang, glass}@csail.mit.edu

Abstract—In this paper, we present an unsupervised learn-
ing framework to address the problem of detecting spoken
keywords. Without any transcription information, a Gaussian
Mixture Model is trained to label speech frames with a Gaussian
posteriorgram. Given one or more spoken examples of a keyword,
we use segmental dynamic time warping to compare the Gaussian
posteriorgrams between keyword samples and test utterances.
The keyword detection result is then obtained by ranking the
distortion scores of all the test utterances. We examine the TIMIT
corpus as a development set to tune the parameters in our system,
and the MIT Lecture corpus for more substantial evaluation.
The results demonstrate the viability and effectiveness of our
unsupervised learning framework on the keyword spotting task.

I. INTRODUCTION

Automatic speech recognition (ASR) technology typically
requires large quantities of language-specific speech and text
data that is used to train complex statistical acoustic and
language models. Unfortunately, such valuable linguistic re-
sources are unlikely to be available for the majority of
languages in the world, especially for less frequently used
languages. For example, commercial ASR engines typically
support 50-100 (or fewer) languages [1]. Despite substantial
development efforts to create annotated linguistic resources
that can be used to support ASR development [2], the results
fall dramatically short of covering the nearly 7,000 human
languages spoken around the globe [3]. For this reason, there is
a need to explore ASR training methods which require signif-
icantly less language-specific data than conventional methods.

There has been past work which has addressed issues related
to sparse amounts of annotated training data. The work of
Lamel et al. for example showed the potential for training
with lightly annotated data [4]. The more recent work of
Novotney et al. showed the potential for leveraging small
amounts of annotated data to train initial models, which can
then be used to automatically annotate much larger quantities
of unannotated data [5]. The approach by Gish et al. requires
even less supervision by creating initial acoustic models using
unsupervised techniques on unannotated audio data [13]. This
latter work is most similar to our ongoing research directed
towards rapid portability of ASR technology to languages with
limited linguistic resources. Our initial efforts have focused on
techniques that lend themselves to spoken term and key phrase

detection, although our ultimate goal is to develop methods
that would be useful for general ASR.

The problem of keyword spotting in audio data has been
explored for many years, and researchers typically use ASR
technology to detect instances of particular keywords in a
speech corpus [7]. Although large-vocabulary ASR methods
have been shown to be very effective [6], a popular method
incorporates parallel filler or background acoustic models to
compete with keyword hypotheses [11], [12]. These keyword
spotting methods typically require large amounts of transcribed
data for training the acoustic model. For instance, the classic
filler model requires hundreds of minutes of speech data tran-
scribed at the word level [12], while in some phonetic lattice
[9], [17] or phone N-gram [15] matching based approaches,
the training of an appropriate recognizer needs annotated data
in phone/word level. The annotation work is not only time
consuming, it also requires linguistic expertise for providing
necessary annotations which can be a barrier to new languages.

As we enter an era where digital media can be created and
accumulated at a rate that far exceeds our ability to annotate
it, it is natural to question how much can be learned from the
speech data alone, without any supervised input. A related
question is what techniques can be performed well using
unsupervised techniques in comparison to more conventional
supervised training methods. These two questions are the
fundamental motivation of our research.

In this paper, we present a completely unsupervised learning
framework to address the problem of audio keyword spotting.
Without any transcription information, a Gaussian mixture
model (GMM) is trained to represent each speech frame
with a Gaussian posteriorgram. Given one or more spoken
examples of an input keyword, a segmental dynamic time
warping (SDTW) technique is used to compare the Gaussian
posteriorgrams between keyword examples and unseen test
data. Keyword spotting is achieved by processing the distortion
scores on the test utterances and selecting the best matching
candidates as keyword hits. We use the TIMIT dataset as a
development set to tune the parameters in our system, and
a large vocabulary experiment is conducted on a corpus of
academic lectures. The results demonstrate the feasibility and
effectiveness of our unsupervised learning framework for the
task of keyword spotting.

II. RELATED WORK

Over the past few years, there has been related research
investigating the use of unsupervised methods to perform
keyword spotting [13], [14], [16]. In [13], the authors proposed
a subword-unit modeling approach that consisted of three main
components. First, a segmental GMM was used to label speech
segments by the index of the most probable Gaussian com-
ponent. Given a word level transcription, a Joint Multigram
model ([10]) was trained to build a mapping between letters to
the labeled Gaussian component indices. When a new keyword
was given, the previously trained Multigram model could
be used to convert the keyword to a sequence of Gaussian
component indices. Finally, a string matching algorithm was
employed to locate the possible occurrence of the keyword in
the test set by calculating the edit distance.

The research in [14] presented an HMM-based keyword
spotting system using filler/background-model approach. They
used a single 128-state ergodic HMM to represent the key-
word, filler and background model. In the modeling stage,
the ergodic HMM was trained on all speech frames in an
unsupervised manner. For keyword detection they required one
or more spoken instances of a keyword and used the ergodic
HMM to convert each instance into a series of HMM states.
These HMM state sequences were then combined to create
a conventional HMM to represent the keyword. For keyword
spotting, each test utterance was decoded by the ergodic HMM
as well as the keyword model and a putative hit was produced
for high confidence scores.

The recent work of [16] made use of some prior knowl-
edge in the form of phonetic posteriorgrams. A phonetic
posteriorgram is defined by a probability vector representing
the posterior probabilities of a set of pre-defined phonetic
classes for a speech frame. By using an independently trained
phonetic recognizer, each input speech frame can be converted
to its corresponding posteriorgram representation. Given a
spoken sample of a keyword, the frames belonging to the
keyword are converted to a series of phonetic posteriorgrams
by a full phonetic recognition. Then, they use dynamic time
warping to calculate the distortion scores between the keyword
posteriorgrams and the posteriorgrams of the test utterances.
The detection result is given by ranking the distortion scores.

In sum, [13], [14] require no transcription for training
either the segmental GMM or the ergodic HMM. [13] requires
transcription for training the multigram model, while [14] and
[16] need spoken instances of a keyword. [16] also requires no
transcription for the working data but needs an independently
trained phonetic recognizer.

III. SYSTEM DESIGN

Our approach is most similar to the research explored
in [16]. However, instead of using an independently trained
phonetic recognizer, we directly model the speech using a
GMM without any supervision. As a result, the phonetic poste-
riorgram effectively becomes a Gaussian posteriorgram. Given
spoken samples of a keyword, we apply the segmental dynamic
time warping (SDTW) that we have explored previously [18]

to compare the Gaussian posteriorgrams between keyword
samples and the test utterances. We output the keyword
detection result by ranking the distortion scores of the most
reliable warping paths. We give a detailed description of each
procedure in the following sections.

A. Gaussian Posteriorgram Definition

Posterior features have been widely used in template-based
speech recognition systems [8], [20]. In a manner similar to
the definition of the phonetic posteriorgram in [16], a Gaussian
posteriorgram is a probability vector representing the posterior
probabilities of a set of Gaussian components for a speech
frame. Formally, if we denote a speech utterance with n frames
as S = (s1, s2, · · · , sn), then the Gaussian posteriorgram (GP)
is defined by:

GP (S) = (q1, q2, · · · , qn) (1)

Each qi vector can be calculated by

qi = (P (C1|si), P (C2|si), · · · , P (Cm|si))

where Ci represents i-th Gaussian component of a GMM and
m denotes the number of Gaussian components.

B. Gaussian Posteriorgram Generation

The generation of a Gaussian posteriorgram is divided into
two phases. In the first phase, we train a GMM on all the
training data and use this GMM to produce a raw Gaussian
posteriorgram vector for each speech frame. In the second
phase, a discounting based smoothing technique is applied to
each posteriorgram vector.

The GMM training in the first phase is a critical process
of our system. Without any transcription information, we
train a GMM by assuming the labels for all speech frames
are the same. This might introduce a problem that, without
any guidance, it is easy to generate an unbalanced GMM.
Specifically, it is possible to have a GMM with a small number
of Gaussian components that dominate the probability space,
with the remainder of the Gaussian components representing
only a small number of training samples. We found this to be
particularly problematic for speech in the presence of noise
and other non-speech artifacts, due to their large variance. The
unfortunate result of such a condition was a posteriorgram
that did not discriminate well between phonetic units. Our
initial solution to this problem was to apply a speech/non-
speech detector to extract speech segments, and to only train
the GMM on these segments.

The GMM consists of diagonal variance Gaussian com-
ponents, initialized by the K-means algorithm. No variance
floor is applied. After a GMM is trained, we use Equation
(1) to calculate a raw Gaussian posteriorgram vector for
each speech frame and the given spoken keyword samples.
To avoid approximation errors, a probability floor threshold
Pmin is set to eliminate dimensions (i.e., set them to zero)
with posterior probabilities less than Pmin. The vector is
re-normalized to set the summation of each dimension to

one. Since this threshold would create many zeros in the
Gaussian posteriorgram vectors, we apply a discounting based
smoothing strategy to move a small portion of probability mass
from non-zero dimensions to zero dimensions. Formally, for
each Gaussian posteriorgram vector q, each zero dimension
zi is assigned by zi =

λ·1
Count(z) where Count(z) denotes the

number of zero dimensions. Each non-zero dimension vi is
changed to vi = (1− λ)vi.

C. Modified Segmental DTW Search
After extracting the Gaussian posteriorgram representation

of the keyword samples and all the test utterances, we perform
a simplified version of the segmental dynamic time warping
(SDTW) to locate the possible occurrences of the keyword in
the test utterances.

SDTW has demonstrated its success in unsupervised word
acquisition [18]. To apply SDTW, we first define the difference
between two Gaussian posterior vectors p and q:

D(p, q) = − log(p · q)

Since both p and q are probability vectors, the dot product
gives the probability of these two vectors drawing from the
same underlying distribution [16].

SDTW defines two constraints on the DTW search. The first
one is the commonly used adjustment window condition [21].
In our case, formally, suppose we have two Gaussian posteri-
orgram GPi = (p1, p2, · · · , pm) and GPj = (q1, q2, · · · , qn),
the warping function w(·) defined on a m×n timing difference
matrix is given as w(k) = (ik, jk) where ik and jk denote the
k-th coordinate of the warping path. Due to the assumption
that the duration fluctuation is usually small in speech [21],
the adjustment window condition requires that |ik − jk| ≤ R.
This constraint prevents the warping process from going too
far ahead or behind in either GPi or GPj .

The second constraint is the step length of the start co-
ordinates of the DTW search. It is clear that if we fix the
start coordinate of a warping path, the adjustment window
condition restricts not only the shape but also the ending
coordinate of the warping path. For example, if i1 = 1
and j1 = 1, the ending coordinate will be iend = m and
jend ∈ (1+m−R, 1+m+R). As a result, by applying different
start coordinates of the warping process, the difference matrix
can be naturally divided into several continuous diagonal
regions with width 2R+1, shown in the Figure 1. In order to
avoid the redundant computation of the warping function as
well as taking into account warping paths across segmentation
boundaries, we use an overlapped sliding window moving
strategy for the start coordinates (s1 and s2 in the figure).
Specifically, with the adjustment window size R, every time
we move R steps forward for a new DTW search. Since the
width of each segmentation is 2R+1, the overlapping rate is
50%.

Note that in our case, since the keyword sample is fixed,
we only need to consider the segment regions in the test
utterances. For example, if GPi represents the keyword poste-
riorgram vector and GPj is the test utterance, we only need to

Fig. 1. The first two start coordinates of the warping path with R = 2

consider the regions along with the j axis. Formally, given the
adjustment window size R and the length of the test utterance
n, the start coordinate is

(1, (k − 1) ·R+ 1), 1 ≤ k ≤
⌊
n− 1

R

⌋
As we keep moving the start coordinate, for each keyword,
we will have a total of

⌊
n−1
R

⌋
warping paths, each of which

represents a warping between the entire keyword sample and
a portion of the test utterance.

D. Voting Based Score Merging and Ranking

After collecting all warping paths with their corresponding
distortion scores for each test utterance, we simply choose
the warping region with the minimum distortion score as the
candidate region of the keyword occurrence for that utterance.
However, if multiple keyword samples are provided and each
sample provides a candidate region with a distortion score, we
need a scoring strategy to calculate a final score for each test
utterance, taking into account the contribution of all keyword
samples.

In contrast to the direct merging method used [16], we
considered the reliability of each warping region on the
test utterance. Given multiple keyword samples and a test
utterance, a reliable warping region on the test utterance is
the region where most of the minimum distortion warping
paths of the keyword samples are aligned. In this way a region
with a smaller number of alignments to keyword samples
is considered to be less reliable than a region with a larger
number of alignments. Therefore, for each test utterance, we
only take into account the warping paths pointing to a region
with alignments to multiple keyword samples.

An efficient binary range tree is used to count the number
of overlapped alignment regions on a test utterance. After
counting, we consider all regions with only one keyword
sample alignment to be unreliable, and thus the corresponding
distortion scores are discarded. We are then left with regions
having two or more keyword samples aligned. We then apply
the same score fusion method as in [16]. Formally, if we have
k ≥ 2 keyword samples si aligned to a region rj , the final
distortion score for this region is:

S(rj) = − 1

α
log

1

k

k∑
i=1

exp(−αS(si)) (2)

TABLE I
TIMIT 10 KEYWORD LIST

age(3:8) warm(10:5) year(11:5) money(19:9)
artists(7:6) problem(22:13) children(18:10) surface(3:8)
development(9:8) organizations(7:6)

where varying α between 0 and 1 changes the averaging
function from a geometric mean to an arithmetic mean. Note
that since one test utterance may have several regions having
more than two keyword alignments, we choose the one with
the smallest average distortion score. An extreme case is that
some utterances may have no warping regions with more than
one keyword alignment (all regions are unreliable). In this case
we simply set the distortion score to a very big value.

After merging the scores, every test utterance should have
a distortion score for the given keyword. We rank all the test
utterances by their distortion scores and output the ranked list
as the keyword spotting result.

IV. EVALUATION

We have evaluated this unsupervised keyword spotting
framework on two different corpora. We initially used the
TIMIT corpus for developing and testing the ideas we have
described in the previous section. Once we were satisfied
with the basic framework, we performed more thorough large
vocabulary keyword spotting experiments on the MIT Lecture
corpus [22].

The evaluation metrics that we report follow those suggested
by [16]: 1) P@10 : the average precision for the top 10 hits;
2) P@N : the average precision of the top N hits, where N is
equal to the number of occurrences of each keyword in the test
data; 3) EER : the average equal error rate at which the false
acceptance rate is equal to the false rejection rate. Note that
we define a putative hit to be correct if the system proposes
a keyword that occurs somewhere in an utterance transcript.

A. TIMIT Experiments

The TIMIT experiment was conducted on the standard 462
speaker training set of 3,696 utterances and the common
118 speaker test set of 944 utterances. The total size of the
vocabulary was 5,851 words. Each utterance was segmented
into a series of 25 ms frames with a 10 ms window shifting
(i.e., centi-second analysis); each frame was represented by
13 Mel-Frequency Cepstral Coefficients (MFCCs). Since the
TIMIT data consists of read speech in quiet environments,
we did not apply the speech detection module in the TIMIT
experiments. All MFCC frames in the training set were used
to train a GMM with 50 components. We then used the
GMM to decode both training and test frames to produce
the Gaussian posteriorgram representation. For testing, we
randomly generated a 10-keyword set and made sure that they
contained a variety of numbers of syllables. Table I shows the
10 keywords and their number of occurrences in both training
and test sets (# training : # test).

We first examined the effect of changing the smoothing
factor, λ in the posteriorgram representation when fixing the
SDTW window size to 6 and the score weighting factor α
to 0.5, as illustrated in Figure 2. Since the smoothing factor

−5 −4 −3 −2 −1

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

log(smoothing factor)

P
er

ce
nt

ag
e(

%
)

P@N
EER

Fig. 2. Effect of different smoothing factors

1 2 3 4 5 6 7 8

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

SDTW Window Size

P
er

ce
nt

ag
e(

%
)

P@N
EER

Fig. 3. Effect of different SDTW window sizes

ranges from 0.1 to 0.00001, we use a log scale on the x axis.
Note that we do not plot the value for P@10 because as we
can see in Table I, not all keywords occur more than ten times
in the test set. In the figure, λ = 0.0001 was the best setting
for the smoothing factor mainly in terms of EER, so this value
was used for all subsequent experiments.

As shown in Figure 3, we next investigated the effect of
setting different adjustment window sizes for the SDTW when
fixing the smoothing factor to 0.0001 and the score weighting
factor α to 0.5. The results shown in the figure confirmed
our expectation that an overly small DTW window size could
overly restrict the warp match between keyword references
and test utterances, which could lower the performance. An
overly generous DTW window size could allow warping paths
with an excessive time difference, which could also affect the
performance. Based on these experiments, a window size equal
to 6 was the best considering both P@N and EER.

We also ran keyword spotting experiments with different
settings of the score weighting factor α while fixing the
smoothing factor to 0.0001 and SDTW window size to 6. As
shown in Figure 4, P@N prefers the arithmetic mean metric,
while the EER metric is relatively steady. By considering both
metrics, we chose 0.5 as the best setting for α.

The number of Gaussian components in the GMM is another
key parameters in our system. With fixed smoothing factor

0 0.2 0.4 0.6 0.8 1

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Score Weighting Factor

P
er

ce
nt

ag
e(

%
)

P@N
EER

Fig. 4. Effect of different score weighting factors

0 10 20 30 40 50 60 70

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Gaussian Components

P
er

ce
nt

ag
e(

%
)

P@N
EER

Fig. 5. Effect of different numbers of Gaussian components

(0.0001), SDTW window size (6) and score weighting factor
(0.5), we ran several experiments with GMMs with different
numbers of Gaussian components, as illustrated in Figure 5.
Due to the random initialization of the K-means algorithm for
GMM training, we ran each setting five times and reported
the best number. The result indicated that the number of
Gaussian components in the GMM training has a key impact
on the performance. When the number of components is small,
the GMM training may suffer from an underfitting problem,
which causes a low detection rate in P@N. In addition, the
detection performance is not monotonic with the number of
Gaussian components. We think the reason is that the number
of Gaussian components should approximate the number of
underlying broad phone classes in the language. As a result,
using too many Gaussian components will cause the model to
be very sensitive to variations in the training data, which could
result in generalization errors on the test data. Based on these
results, we chose 50 as the best number of GMM components.

B. MIT Lecture Experiments

The MIT Lecture corpus consists of more than 300 hours of
speech data recorded from eight different subjects and over 80

TABLE II
MIT LECTURE 30 KEYWORD LIST

zero (247:77) space (663:32) solutions (33:29)
examples (137:29) performance (72:34) matter (353:34)
molecule (28:35) pretty (403:34) results (121:35)
minus (103:78) computer (397:43) value (217:76))
situation (151:10) therefore (149:46) important (832:47)
parameters (21:50) negative (50:50) equation (98:61)
distance (58:56) algorithm (35:36) direction (214:37)
maximum (20:32) responsible (92:10) always (500:37)
likelihood (13:31) mathematical (37:15) never (495:21)
membrane (19:27) problems (270:23) course (847:76)

TABLE III
EFFECT OF DIFFERENT NUMBERS OF KEYWORD SAMPLES

Examples P@10 P@N EER
1 27.0% 17.3% 27.0%
5 61.3% 33.0% 16.8%
10 68.3% 39.3% 15.8%

general seminars [22]. In most cases, the data is recorded in
a classroom environment using a lapel microphone. For these
experiments we used a standard training set containing 57,351
utterances and a test set with 7,375 utterances. The vocabulary
size of both the training and the test set is 27,431 words.

Since the data was recorded in a classroom environment,
there are many non-speech artifacts that occur such as back-
ground noise, filled pauses, laughter, etc. This non-speech data
could cause serious problems in the unsupervised learning
stage of our system. Therefore, prior to GMM training, we
ran a speech detection module [23] to filter out non-speech
segments. GMM learning was performed on frames within
speech segments. Note that the speech detection module was
trained independently from the Lecture data and did not
require any transcription of the Lecture data. 30 keywords
were randomly selected; all of them occur more than 10 times
in both the training and test sets. All keywords occur less than
80 times in the test set to avoid using keywords that are too
common in the data. Table II shows all the keywords and the
number of their occurrences in the training and test sets.

Table III shows the keyword detection performance when
different numbers of keyword samples are given. As a result
of the TIMIT experiments, we fixed the smoothing factor to
0.0001, the SDTW window size to 6 and the score weighting
factor to 0.5. All of the three evaluation metrics improve
dramatically from the case in which only one keyword sample
is given to the case in which five samples are given. Beyond
five examples of a keyword, the trend of the performance
improvement slows. We believe the reason for this behavior
is that the improvement from one sample to five samples is
mainly caused by our voting based score merging strategy.
When going from five samples to ten samples, we gain
additional performance improvement, but there are always
some difficult keyword occurrences in the test data. Table IV
gives the list of 30 keywords ranked by EER in the 10-example
experiment. We observe that the words with more syllables
tended to have better performance than ones with only two or
three syllables.

Since the data used in [16] is not yet publicly available,
we are unable to perform direct comparisons with their exper-
iments. Nevertheless, we can make superficial comparisons.
For example, in the case of 5 keyword samples, the P@10
performance (61.3%) of our system is competitive with their
result (63.3%), while for the P@N and EER metrics, we are
lower than theirs (P@N : 33.0% vs. 52.8%, EER : 16.8% vs.
10.4%). We suspect that one cause for the superior perfor-
mance of their work is their use of a well-trained phonetic
recognizer. However, this will require additional investigation
before we can quantify this judgement.

V. CONCLUSION AND FUTURE WORK

In this paper we have presented an unsupervised frame-
work for spoken keyword detection. Without any annotated
corpus, a completely unsupervised GMM learning framework
is introduced to generate Gaussian posteriorgrams for keyword
samples and test utterances. A modified segmental DTW is
used to compare the Gaussian posteriorgrams between key-
word samples and test utterances. After collecting the warping
paths from the comparison of every pair of the keyword sample
and the test utterance, we use a voting based score merging
strategy to give a relevant score to every test utterance for
each keyword. The detection result is determined by ranking
all the test utterances with respect to their relevant scores.
In the evaluation, due to various system parameters, we first
designed several experiments on the smaller TIMIT dataset to
have a basic understanding of appropriate parameter settings
as well as to verify the viability of our entire framework. We
then conducted experiments on the MIT Lecture corpus, which
is a much larger vocabulary dataset, to further examine the
effectiveness of our system. The results were encouraging and
were somewhat comparable to other methods that require more
supervised training [16].

While this work represents our first attempt to use un-
supervised methods to solve speech related problems such
as spoken keyword spotting, there is still much room for
further improvement. Specifically, in the unsupervised GMM
learning, the current training method needs to manually set
the number of Gaussian components. Based on the experiment
we presented on TIMIT, it is clear that a good choice for the
number of components can significantly improve performance.
In the future, we hope this number or the model structure can
be found in an unsupervised way [25] such as using ideas

TABLE IV
30 KEYWORDS RANKED BY EER

responsible (0.2%) direction (10.3%) matter (22.8%)
situation (0.5%) parameters (10.5%) always (23.0%)
molecule (4.9%) algorithm (11.3%) therefore (23.9%)
mathematical (6.7%) course (11.4%) membrane (24.0%)
maximum (7.5%) space (13.8%) equation (24.9%)
solutions (8.1%) problems (17.8%) computer (25.3%)
important (8.5%) negative (18.0%) minus (25.7%)
performance (8.8%) value (19.4%) examples (27.0%)
distance (9.0%) likelihood (19.4%) pretty (29.1%)
results (9.3%) zero (22.7%) never (29.5%)

from successive state splitting [24]. In the SDTW search, the
current system requires spoken samples of a keyword, which
may suffer from out-of-vocabulary (OOV) problem. Inspired
by the Joint Multigram model used in [10], [13], we also
plan to develop a letter to Gaussian posteriorgram model to
solve the OOV problem. Furthermore, since this framework is
completely language independent and generic, we would like
to examine its performance on languages other than English
as well as other signal processing pattern matching tasks.

REFERENCES

[1] http://www.nuance.com/recognizer/languages.asp.
[2] http://www.ldc.upenn.edu/.
[3] http://www.vistawide.com/languages/language statistics.htm.
[4] L. Lamel, J. Gauvain, and G. Adda, “Lightly supervised and unsuper-

vised acoustic model training,” Computer Speech and Language, 16(1),
115–129, 2002.

[5] S. Novotney, R. Schwartz, and J. Ma, “Unsupervised acoustic and
language model training with small amounts of labelled data,” in Proc.
ICASSP, 4297–4300, Taipei, 2009.

[6] M. Weintraub, “LVCSR log-likelihood ratio scoring for keyword spot-
ting”, in Proc. ICASSP, 129–132, 1995.

[7] I. Szoke, P. Schwarz, L. Burget, M. Fapso, M. Karafiat, J. Cernocky and
P. Matejka, “Comparison of keyword spotting approaches for informal
continuous speech”, in Proc. Interspeech, 633–636, 2005.

[8] G. Aradilla, H. Bourlard and M. Magimai-Doss, “Posterior features
applied to speech recognition tasks with user-defined vocabulary”, in
Proc. ICASSP, Taipei, 2009.

[9] K. Thambiranam and S. Sridharan, “Dynamic match phone-lattice
searches for very fast and accurate unrestricted vocabulary keyword
spotting”, in Proc. ICASSP, 2005.

[10] S. Deligne, F. Yvon and F. Bimbot, “Variable-length sequence matching
for phonetic transcription using joint multigrams”, in Proc. Eurospeech,
2243–2246, 1995.

[11] J. Wilpon, L. Miller and P. Modi, “Improvements and applications for
keyword recognition using Hidden Markov modeling techniques”, in
Proc. ICASSP, 309–312, Toronto, 1991.

[12] R. Rose and D. Paul, “A Hidden Markov Model based keyword
recognition system”, in Proc. ICASSP, 129–132, Albuquerque, 1990.

[13] A. Garcia and H. Gish, “Keyword spotting of arbitrary words using
minimal speech resources”, in Proc. ICASSP, 123–127, Atlanta, 2006.

[14] P. Li, J. Liang and B. Xu, “A novel instance matching based unsu-
pervised keyword spotting system”, in Proc. Int. Conf. on Innovative
Computing, Information and Control, 550-553, 2007.

[15] U. Chaudhari and M. Picheny, “Improvements in phone based audio
search via constrained match with high order confusion estimates”, in
Proc. ASRU, 665–670, 2007.

[16] T. Hazen, W. Shen and C. White, “Query-by-example spoken term
detection using phonetic posteriorgram templates”, in Proc. ASRU, 2009.

[17] H. Lin, A. Stupakov and J. Bilmes, “Improving multi-lattice alignment
based spoken keyword spotting,” in Proc. ICASSP, Taipei, 2009.

[18] A. Park and J. Glass,“Unsupervised pattern discovery in speech”, in
IEEE Trans. ASLP, 6(1), 1558–1569, 2008.

[19] J. Glass, “A probabilistic framework for segment-based speech recogni-
tion,” in Computer Speech and Language, 17, 137–152, 2003.

[20] G. Aradilla, J. Vepa and H. Bourlard, “Using posterior-based features in
template matching for speech recognition”, in Proc. Interspeech, 2006.

[21] H. Sakoe and S. Chiba, “Dynamic programming algorithm optimization
for spoken word recognition”, in IEEE Trans. ASSP, 26(1), 43–49, 1978.

[22] J. Glass, T. Hazen, L. Hetherington and C. Wang, “Analysis and
processing of lecture audio data: preliminary investigations”, in Proc.
HLT-NAACL, 9–12, Boston, 2004.

[23] J. Glass, T. Hazen, S. Cyphers, I. Malioutov, D. Huynh, and R. Barzilay,
“Recent progress in the MIT spoken lecture processing project”, in Proc.
Interspeech, 2553–2556, 2007.

[24] H. Singer and M. Ostendorf, “Maximum likelihood successive state
splitting”, in Proc. ICASSP, 601–604, Atlanta, 1996.

[25] S. Petrov, A. Pauls and D. Klein, “Learning structured modles for phone
recognition”, in Proc. EMNLP, 897–905, 2007.

