
INCREMENTAL LANGUAGE MODELS
FOR SPEECH RECOGNITION USING FINITE-STATE TRANSDUCERS

Hans J.G.A. Dolfing

Philips Research Laboratories
Weißhausstrasse 2

D-52066 Aachen, Germany
hans.dolfing@philips.com

I. Lee Hetherington

Spoken Language Systems Group
MIT Laboratory for Computer Science

Cambridge, MA 02139 USA
ilh@mit.edu

ABSTRACT

In the context of the weighted finite-state transducer approach
to speech recognition, we investigate a novel decoding strat-
egy to deal with very large n-gram language models often
used in large-vocabulary systems. In particular, we present
an alternative to full, static expansion and optimization of
the finite-state transducer network. This alternative is useful
when the individual knowledge sources, modeled as trans-
ducers, are too large to be composed and optimized. While
the recognition decoder perceives a single, weighted finite-
state transducer, we apply a divide-and-conquer technique to
split the language model into two parts which add up exactly
to the original language model. We investigate the merits of
these ‘incremental language models’ and present some initial
results.

1. INTRODUCTION

In the context of the weighted finite-state transducer approach
to speech recognition, we investigate a novel decoding strat-
egy. Recent papers [1–3] show that finite-state transducers
are an attractive alternative for speech decoding. However,
there is some concern with respect to the size of the transduc-
ers, especially in the light of large-vocabulary speech recog-
nition tasks which involve very large language models. If
the sum of parameters from acoustic model, hidden Markov
model (HMM), lexicon, triphones, and language models, gets
too large, we cannot optimize the composed finite-state trans-
ducer anymore, losing the principal advantage of concentrat-
ing the speech decoding into one compact, minimally sized
transducer network.

A straight-forward solution is to employ multiple recog-
nition passes, composing only a part of the available knowl-
edge sources in the statically optimized transducer and apply-
ing the remainder in a second rescoring pass [2].

Because one of the main problems in speech decoding is
to minimize search errors, multi-pass recognizers are poten-
tially more vulnerable since they require tuning in every pass.

This research was supported by DARPA under contract N66001-99-1-
8904 monitored through Naval Command, Control, and Ocean Surveillance
Center and under an industrial constortium supporting the MIT Oxygen Al-
liance.

A one-pass recognizer can employ all available knowledge
sources at the same time which results in the best possible
recognition result, at the price of a more complex decoding
process. Therefore, many studies have explored one-pass de-
coders [1, 4].

Finite-state transducers have the potential of combining
the early use of all available knowledge sources, within a
well understood theoretical framework. However, the result-
ing networks must have a limited size to be optimized.

Inspired by [4–6] and based on the divide-and-conquer
idea, we split the main decoding finite-state transducer into
two parts. The first transducer is statically optimized and con-
tains the acoustic model information, lexical knowledge, and
the ‘important’ part of the language model. The second trans-
ducer part contains the remainder of the language model. The
two parts are composed on-the-fly during decoding, resulting
in the decoder operating on a single logical transducer repre-
senting all the knowledge sources, including the full language
model. Because the language model is now distributed over
the two component finite-state transducers, and the scores of
the language model add up exactly to the scores in the orig-
inal transducer, we refer to this approach as an ‘incremental
language model.’ In this way, we combine in a single decod-
ing pass the advantage of a small, minimal finite-state trans-
ducer for speech decoding with the smallest beam width in
decoding and best possible decoding results.

In Section 2, we briefly discuss the general properties of a
finite-state transducer–based recognition system and then in
Section 3 we describe our incremental language models. We
investigate the novel decoding strategy based on the Jupiter
[7, 8] system for weather information as explained in Sec-
tion 4 and we report results in Section 5. Finally, we summa-
rize our findings in Section 6.

2. FINITE-STATE TRANSDUCERS

Typically, within a finite-state transducer–based recognition
system the various constraints such as language model, lex-
icon, phonological rules, context-dependency, HMM topol-
ogy, etc., are each represented as a possibly weighted trans-
ducer, and these transducers are composed together to form
the single transducer to be used for recognition [3]. Within

the MIT SUMMIT system used for the experiments to follow,
we typically use the weighted finite-state transducer CPLG
= opt(C◦P ◦L◦G) for recognition, where G is an n-gram lan-
guage model, L the lexicon, P is a set of phonological rules
[9], and C adds context-dependent phonetic models (usually
diphones). Here, the optimization operator opt(·) performs
ε-removal, weight pushing, determinization, 1 and minimiza-
tion.

3. INCREMENTAL LANGUAGE MODELS

Particularly with large vocabularies and large language mod-
els, computing CPLG as in Section 2 can yield a transducer
that is too large to be useful, even if it can be optimized. It
has been observed that the size of this transducer is roughly
proportional to the size of the language model [3]. Some
large-vocabulary recognition tasks, e.g., broadcast news Hub-
4 with 64,000-word vocabulary, can have trigram language
models with in excess of 65 million parameters [10]. Thus, if
we wish to build a one-pass recognition system using such a
large language model, it is clear that we cannot precompose
and optimize our CPLG. Even if we could construct it, it
would be too large to fit into a reasonable amount of mem-
ory.

A straightforward solution would be to perform recog-
nition on opt(C ◦ P ◦ L) ◦ G, where the composition with
G would be on-the-fly during decoding and opt(C ◦ P ◦ L)
is the statically optimized component. However, this would
lose the advantages of having G inside the optimization. In
particular, when G is composed inside the determinization,
the language model scores become distributed or ‘smeared’
along the weights of the resulting transducer. As we will see
in Section 5, this language model score smearing is advanta-
geous within a decoder using beam-pruning [4, 5] and can be
thought of as language model lookahead. At the beginning
of a word, we may get a piece of the word’s eventual lan-
guage model score (along with all the scores of other words
sharing the transitions). This tends to incorporate part of the
language model sooner in the decoding process, and it also
tends to smooth out the finite-state transducer weights. With-
out such language model smearing, a word’s full language
model contribution would be located on a single transition,
and this sudden contribution could knock the word out of the
decoder’s search beam.

The question is how to get the advantages of language
model smearing or lookahead, without having to use the full,
and possibly too large, language model within the statically
optimized finite-state transducer. If we factor our language
model as G = Gs ◦ Gi, consisting of a smearing language
model Gs and an incremental language model G i, we can
then perform recognition on

CPLG = opt(C ◦ P ◦ L ◦ Gs) ◦ Gi .

1In the experiments to follow, we used partial determinization of degree
4, meaning that we allow up to four transitions with the same input label to
remain undeterminized. We find that this partial determinization often yields
smaller transducers and better time/space tradeoffs.

Gs is a hopefully smaller language model to be used during
the static optimization, and G i is the desired full language
model with its scores adjusted for the already applied G s.
Thus the relatively large Gi will be applied on-the-fly dur-
ing decoding, correcting the net language model scores to be
those of the desired G.

We can construct Gi from G by adjusting G’s scores for
those already applied by Gs. In particular, if the weights are
log probabilities, for each G weight we subtract the appropri-
ate Gs weight to form Gi. In our construction, Gi will have
exactly the same topology as G; only its weights will be dif-
ferent. For comparison, the traditional approach to smearing
in a LVCSR system [6] is to compute on demand the n-gram
score distributions over the phonetic prefix tree. The pro-
posed incremental language model which uses a general G s

for smearing is much more flexible and integrates well with a
general finite-state transducer–based decoder.

In the case of backoff n-gram language models, care must
be used when applying Gi. Generally, when we apply Gs,
we allow backoff ε paths to compete with non-backoff paths.
In constructing our n-grams, we can guarantee that all non-
backoff paths always score better than their corresponding
backoff paths. A problem arises when constructing G i due to
the subtraction of Gs scores: a backoff path within Gs that
scores worse than a non-backoff path can result in a backoff
path in Gi that scores better than its non-backoff counterpart.
The subtraction of scores negates the sense of better scores.
We avoid this problem by using G i in a strictly deterministic
manner. We have an n-gram-specific finite-state transducer
type that we can put into deterministic mode to follow back-
off only where strictly necessary. Thus, with G i in determin-
istic mode we can apply it and guarantee that the net language
model is the desired G.

In summary, by factoring our language model G = Gs ◦
Gi, we have the flexibility to explore how much complexity
to put into the statically optimized component opt(C ◦ P ◦
L ◦ Gs) and how much to leave to the dynamically applied
incremental language model component G i.

4. EXPERIMENTAL SETUP

For the experiments to follow, we used the recognition task
of the Jupiter conversational weather information system [8].
The test corpus contains 1,711 utterances, totalling 9659
words and in 1.6 hours of data. The data is recorded over
a variety of telephone lines. The statistical significance of
the reported word error-rates at a 95% level is approximately
0.6%.

For training, we used 116,867 utterances totalling 105
hours. The training results in an acoustic model with al-
most 30,000 Gaussian densities with density-specific vari-
ance. The preprocessing employs segmental modeling. The
lexicon contains approximately 2000 words which we model
with diphones.

The recognizer decodes speech based on a precompiled
finite-state transducer network. The finite-state transducer
network maps diphones to word sequences and was build

n-gram|Gs|
1 2 3 4 5

∅ 27.4 13.9 13.2 12.6 12.7
1 – 11.0 10.2 9.8 9.8
2 – – 9.7 9.2 9.3
3 – – – 9.2 9.2
n 27.3 10.6 9.7 9.2 *

(a) Beam width = 1000 nodes.

n-gram|Gs|
1 2 3 4 5

∅ 27.4 11.3 10.6 10.1 10.0
1 – 10.6 9.5 9.0 9.0
2 – – 9.3 8.8 8.8
3 – – – 8.8 8.7
n 27.3 10.5 9.3 8.8 *

(b) Beam width = 5000 nodes.

Table 1. Comparison of word error-rates [%] for various G
and Gs. |Gs| is the order m of the m-gram smearing lan-
guage model Gs. |Gs| = ∅ corresponds to the full language
model applied on-the-fly (i.e., Gi = G), and |Gs| = n cor-
responds to the full language model statically composed and
optimized into CPLG (i.e., Gs = G). All language models
are unpruned here. Tables (a) and (b) differ in the beam width
(number of active nodes) used for decoding. * indicates we
could not build the static CPLG with the 5-gram.

from a lexicon, a set of phonological rules, and a language
model as described in [7]. During the decoding, we apply
histogram pruning on the number of active nodes, e.g., we
limit the search space to 5000 active nodes. The experiments
were performed on a variety of Intel Pentium III systems run-
ning Linux, including one with 2GB RAM for manipulating
the largest transducers.

5. RESULTS

Because we want to compare the behaviour of CPLG with
CPLGs ◦ Gi, we investigate the effects when Gs is empty,
or when Gs is a full n-gram model with n ≥ 1. In a second
experiment, we prune the n-gram language models with var-
ious count thresholds, and use these pruned language models
as Gs. In all experiments, the invariant is G = Gs ◦Gi. Note
that the full, statically expanded network is CPLG while the
on-the-fly composition with the complete language model G
is CPL ◦ G with an empty Gs.

In a first experiment, we compare incremental language
models where Gs is a complete n-gram model. Table 1 shows
us that decoding with the full, statically optimized network
generally achieves the best error-rate. However, if Gs is a
bigram or higher-order language model then we achieve the
same error-rate as with the statically optimized network. If
Gs is a unigram model then the decoding achieves a better
error-rate compared to an empty Gs. However, it does not

9

9.2

9.4

9.6

9.8

10

10.2

0 5000 10000 15000 20000 25000 30000 35000

W
E

R
[%

]

Parameters/arcs in 4-m partial language model FST

4-2
4-3
4-4
3-2

Fig. 1. Comparison of word error-rates in [%] with the num-
ber of parameters (arcs) of a pruned Gs. The notation n-m
means an n-gram G and an m-gram Gs. Actually, the 4-m
curves start at an error-rate of 12.6% and converges to 9.2%.
For 3-m, the curve goes from 13.2% to a best error-rate of
9.7%. Pruning threshold 1000 nodes.

Gs opt(CPLGs)|Gs|
states arcs states arcs

∅ 0 0 7,082 23,026
1 1 1,232 7,082 23,026
2′ 793 6,816 26,771 110,434
2 1,225 25,863 49,968 336,860
3 24,634 119,185 436,535 1,912,475
4 94,549 304,208 1,948,391 12,964,061
5 209,659 561,288 * *

Table 2. Sizes of various n-gram language models and re-
sulting CPLGs. |Gs| = 2′ indicates a bigram pruned to
keep only those bigrams that occurred at least 8 times.

achieve full performance.
Second, we test the effect when Gs is a pruned language

model instead of the full language model as in Table 1. Fig-
ure 1 shows that at an equal number of parameters for the
Gs model, the 4-2 decoding (static bigram and incremental
4-gram) is most effective.

Interestingly, both 4-2 and 3-2 decoding exhibit a min-
imum error-rate for a bigram Gs of around 7000 arcs. In
Table 2, this is the |Gs| = 2′, which is approximately 21%
of the full bigram. The error-rate difference of 0.1% with
respect to the error-rate of the full, statically optimized trans-
ducer, is not significant. Future experiments will have to
study this in more detail, as well as investigate information-
theoretic methods to generate the smearing language model.

Finally, we investigate the space/time properties of de-
coding with incremental language models. A subset of 50 ut-
terances was used in this test. The results are summarized in
Table 3 and Table 4, which show that there is a classic trade-
off. The decoding is faster when more memory is used, i.e.,
to represent the fully optimized transducer. However, bigram
pruned (2′), containing all bigrams that occurred at least 8

n-gram|Gs|
2 3 4

∅ 1.03 1.04 1.04
1 0.89 0.93 0.98
2′ – 0.88 0.86
2 – 0.94 0.95
3 – – 0.95
n 0.61 0.65 0.76

(a) Beam width = 1000.

n-gram|Gs|
2 3 4

∅ 2.62 2.93 2.93
1 1.65 1.87 1.89
2′ – 1.71 1.66
2 – 1.86 1.81
3 – – 1.92
n 0.87 1.05 1.23

(b) Beam width = 5000.

Table 3. Decoding speed (xRT) on 1.5GHz Pentium 4.

n-gram|Gs|
2 3 4

∅ 58 60 63
1 57 59 62
2′ – 63 66
2 – 71 74
3 – – 132
n 67 125 457

(a) Beam width = 1000.

n-gram|Gs|
2 3 4

∅ 69 71 75
1 64 68 72
2′ – 75 78
2 – 84 87
3 – – 150
n 76 141 478

(b) Beam width = 5000.

Table 4. Peak memory use (MB).

times, represents a particularly attractive operating point.
If we use the incremental language model approach, the

memory savings are substantial. The 4-2 ′ decoder uses less
than 20% of the memory compared to the fully optimized,
static 4-gram finite-state transducer, achieves the same accu-
racy, but runs only 35% slower. Additionally, Table 2 shows
that the static transducer is more than 100 times smaller com-
pared to the fully optimized, static 4-gram transducer.

Also note that the decoding speed is not proportional to
the number of arcs in the fully optimized finite-state trans-
ducer. For example, the decoding with the static 4-gram
transducer is only 25–40% slower compared to the static bi-
gram transducer, despite the fact that the 4-gram network is
10 times larger.

In addition, we conducted an experiment where the static
network is fully determinized instead of the partial deter-
minization (degree 4). This has only minor effects on the
decoding speed but results in significantly larger transducers.
Thus our use of partial determinization when statically opti-
mizing.

6. CONCLUSION

We have introduced the use of incremental language mod-
els as a way to combat the very large weighted finite-state
transducers that can result with large vocabularies and large
language models. We factor the desired language model into
two components, a relatively small component to be statically
combined and optimized with other system components, and
a larger incremental language model to be utilized during de-

coding. The flexibility provided by this factoring allows us
to choose different operating points depending on memory or
speed needs. By using on-the-fly composition, we combine
the two components in a one-pass decoder.

By varying the complexity of the smearing or lookahead
language model, we discovered that we can achieve optimal
recognition accuracy with a strategy of statically composing
and optimizing with a relatively small pruned bigram and
dynamically composing with a 4-gram incremental language
model on-the-fly. This strategy allows for optimal accuracy
within a decoder with beam pruning while greatly reducing
memory use as compared with using a single transducer con-
structed directly with the 4-gram. Speed is reduced modestly,
at least when the desired language model is relatively large.

Finally, although we introduced the technique of incre-
mental language models primarily to deal with large vocab-
ularies and very large language models, we have performed
the initial experiments in the medium-vocabulary system of
Jupiter that we are very familiar with. We have performed
some preliminary experiments with a 25,000-word large vo-
cabulary, continuous speech recognition task, and the results
very closely mirror the findings presented in this paper. We
intend to further investigate this technique with large vocab-
ularies in the future.

7. REFERENCES

[1] X.L. Aubert, “A brief overview of decoding techniques for
large vocabulary continuous speech recognition,” in Proc.
Automatic Speech Recognition workshop 2000, Paris, France,
Sept. 2000, vol. 1, pp. 91–96.

[2] A. Ljolje, M. Riley, D. Hindle, and R. Sproat, “The AT&T
LVCSR-2000 System,” in Proc. of the NIST Large Vocabu-
lary Conversational Speech Recognition Workshop, Maryland,
May 2000.

[3] M. Mohri, F. Pereira, and M. Riley, “Weighted finite-state
transducers in speech recognition,” in Proc. Automatic Speech
Recognition workshop 2000, Paris, France, Sept. 2000, vol. 1,
pp. 97–106.

[4] X.L. Aubert, “One pass cross word decoding for large vocab-
ularies based on a lexical tree search organization,” in Proc.
European Conference on Speech Communication and Technol-
ogy, Budapest, Hungary, Sept. 1999, vol. 4, pp. 1559–1562.

[5] X.L. Aubert, C. Dugast, H. Ney, and V. Steinbiss, “Large vo-
cabulary continuous speech recognition of Wall Street Jour-
nal data,” in Proc. IEEE International Conference on Acous-
tics, Speech, and Signal Processing, Adelaide, Australia, Apr.
1994, vol. 2, pp. 129–132.

[6] S. Ortmanns, H. Ney, and A. Eiden, “Language model
lookahead for large vocabulary speech recognition,” in Proc.
International Conference on Spoken Language Processing,
Philadelphia, PA, Oct. 1996, pp. 2095–2098.

[7] J. Glass, T.J. Hazen, and I.L. Hetherington, “Real-time
telephone-based speech recognition in the Jupiter domain,” in
Proc. IEEE International Conference on Acoustics, Speech,
and Signal Processing, Phoenix, AZ, Mar. 1999, vol. 1, pp.
61–64.

[8] V. Zue et al., “Jupiter: A telephone-based conversational inter-
face for weather information,” IEEE Transactions on Speech
and Audio Processing, vol. 8, no. 1, pp. 85–96, Jan. 2000.

[9] I. L. Hetherington, “An efficient implementation of phonolog-
ical rules using finite-state transducers,” in Proc. European
Conference on Speech Communication and Technology, Aal-
borg, Denmark, Sept. 2001.

[10] D. Klakow, X. Aubert, P. Beyerlein, R. Haeb-Umbach, M. Ull-
rich, A. Wendemuth, and P. Wilcox, “Language model inves-
tigations related to broadcast news,” in Proc. DARPA Broad-
cast News and Transcription Workshop, Lansdowne, VA, Feb.
1998.

