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Research Staff

VICTOR ZUE

Victor Zue is a Senior Research

Scientist, the head of the

Spoken Language Systems

Group, and an Associate

Director of the Laboratory for

Computer Science.  His main

research interest is in the

development of spoken

language interfaces to facilitate

natural human/computer

interactions, and he has taught

many courses and lectured

extensively on this subject. He

is best known for his acoustic

phonetic knowledge, and for

leading his research group in

developing conversational

systems that allow users to

access information using

spoken dialogue. In 1994, Zue

was elected Distinguished

Lecturer by the IEEE Signal

Processing Society. In 1999, he

received the "Sustained

Excellence" Award from

DARPA-DoD. Zue is a Fellow

of the Acoustical Society of

America. He received his Sc.D.

in Electrical Engineering from

MIT in 1976.

JAMES GLASS

James Glass is a Principal

Research Scientist and

Associate Head of the SLS

group. He received his Ph.D. in

Electrical Engineering and

Computer Science from MIT

in 1988. His research interests

include acoustic-phonetic

modeling, speech recognition

and understanding in the

context of conversational

systems, and corpus-based

speech synthesis. In addition

to publishing extensively in

these areas, he has supervised

S.M. and Ph.D. students, and

co-taught courses in spectro-

gram reading and speech

recognition. He served as a

member of the IEEE Acoustics,

Speech, and Signal Processing,

Speech Technical Committee

from 1992-1995.  From1997-

1999, he served as an associate

editor for the IEEE Transac-

tions on Speech and Audio

Processing.

T.J. HAZEN

Timothy James (T. J.) Hazen

arrived at MIT in1987 where

he received his S.B. degree in

1991, S.M. degree in 1993 and

PhD in 1998, all in Electrical

Engineering. T.J. joined the

SLS group as an undergraduate

in 1991 and has been with the

group ever since. He is

currently working as a research

scientist in the group. His

primary research interests

include acoustic modeling,

speaker adaptation, automatic

language identification, and

phonological modeling.

SCOTT CYPHERS

D. Scott Cyphers received his

S.B. at MIT in 1982, and S.M.

in 1985. While at MIT, he

worked on program under-

standing, speech recognition,

and systems to support speech

recognition research (Spire). In

1986 he left MIT for

Symbolics, where he worked

on many parts of the operating

system, compiler, and

implemented the CLOS object

system. Scott switched to the

Object-Oriented database world

at Object Design in 1991,

where he worked with schema,

Windows operating system

interactions, COM integration,

and XML. In 1999 Scott

returned to the speech

recognition world at MIT.

Scott’s professional interests

include distributed objects,

natural language processing,

problem solving and knowledge

representation. Scott is also

interested in mathematics,

logic, meta-mathematics,

astronomy, and cosmology.
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RAYMOND LAU

Raymond Lau received the B.S.

in Computer  Science and

Engineering, the M.S. degree in

Electrical Engineering and

Computer Science, and the

Ph.D. degree in Computer

Science, all from the Massachu-

setts Institute of Technology in

1993, 1994, and 1998,

respectively. He was a National

Science  Foundation fellow and

is a member of Eta Kappa Nu.

His current research interests

are in the are area of speech

recognition and spoken

language systems with a

particular focus on subword

modelling, search strategies and

language modelling.

JOSEPH POLIFRONI

Joseph Polifroni's interests

include language generation,

human-computer interaction,

and multilingual systems. He

has worked on the back-end

components of many of the

SLS systems, including GALAXY

and DINEX in addition to his

work on GENESIS, the natural

language generation system that

is part of the overall GALAXY

architecture. He has also

contributed to the Spanish and

Mandarin Chinese systems.

Before joining SLS, Joe worked

in the Speech Group at

Carnegie Mellon University

and was also a consultant for

Carnegie Group Inc. in

Pittsburgh. In addition, Joe

spent two years living in China,

teaching English at Shandong

University in Jinan.

Research Staff

LEE HETHERINGTON

Lee Hetherington received his

S.B., S.M., and Ph.D. degrees

from MIT's Department of

Electrical Engineering and

Computer Science. He

completed his doctoral thesis,

"A Characterization of the the

Problem of New, Out-of-

Vocabulary Words in Continu-

ous-Speech Recognition and

Understanding," and joined

the SLS group in October

1994. His research interests

include many aspects of speech

recognition, including search

techniques, acoustic measure-

ment discovery, and recently

the use of weighted finite-state

transduction for context-

dependent phonetic models,

phonological rules, lexicons,

and language models in an

integrated search.
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STEPHANIE SENEFF

Stephanie Seneff has a B.S.

degree in Biophysics and M.S.,

E.E., and Ph.D. degrees in

Electrical Engineering and

Computer Science from MIT.

Her research interests span a

wide spectrum of topics related

to conversational systems,

including phonological

modelling, auditory modelling,

computer speech recognition,

statistical language modelling,

natural language understanding

and generation, discourse and

dialogue modelling, and

prosodic analysis. She has

published numerous papers in

these areas, and she is currently

supervising several students at

both master's and doctoral

levels.

NIKKO STRÖM

Nikko Ström received the

Master of Science, (Engineer-

ing Physics) degree in1991, and

the Ph.D. degree in Electrical

Engineering (Department of

Speech, Music,and Hearing) in

1997 at the Royal Institute of

Technology (KTH), Stockholm,

Sweden. He joined SLS in May

1998 as a Postdoctoral

Associate, and was appointed

Research Scientist in January

1999.  His main areas of

interest are human/machine

dialogue, lexical search in

automatic speech recognition,

and acoustic/phonetic

modeling. At KTH, he

developed a continuous

automatic speech recognition

system that is still in use in

several dialogue systems. He is

also the author of the NICO

tool kit for Artificial Neural

Networks. The tool kit is

publicly available, and has been

downloaded from more than

1,000 different sites in 55

countries (September 1998).
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Administrative & Support StaffTechnical Staff

CHRISTINE PAO

Christine Pao has been a

member of the technical

research staff since 1992. She is

primarily involved in the

development and maintenance

of the GALAXY system. Her

research interests are in

discourse and dialog, systems

integration with a focus on

multilingual systems and

language learning, and open

microphone issues such as

rejection and channel

normalization. Christine has a

bachelor's degree in Physics

from MIT.

VICTORIA PALAY

Victoria Palay has been a

member of the Spoken

Language Systems group since

1988. As SLS program

administrator, she manages

personnel, fiscal, publication

and contractual matters as well

as space and other group

resources. In addition, she

supports Victor Zue's duties as

LCS Associate Director by

coordinating EPOCH-IT

activities and distributing

equipment donations made to

the laboratory. Victoria has a

B.A. in Government and

French Studies from Smith

College.

SALLY LEE

Sally Lee joined the Spoken

Language Systems group as

senior secretary in 1993. She

received a B.A. in Studio Art/

Art History from Colby

College in 1984. She also

studied at the Art Institute of

Boston and the New York

Studio School. In addition to

her secretarial duties, Sally has

made many of the animated

and still icons for SLS

programs including GALAXY and

JUPITER. She also is responsible

for transcribing sentences that

are recorded from people

calling into the JUPITER system.
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Graduate Students

ISSAM BAZZI

Issam Bazzi's research interest is

in the area of subword and

language  modeling for auto-

matic speech recognition. He

received his B.E. in computer

and communication engineer-

ing from the American

University of Beirut, Beirut,

Lebanon in 1993 and his S.M.

from MIT in 1997. Between

1993 and 1995, He did research

on networked multimedia

systems at the Center for

Educational Computing

Initiatives at MIT. Before

joining SLS in 1998, Issam was

a member of the Speech and

Language Department at BBN

Technologies, GTE

Internetworking where he did

research on language-indepen-

dent character recognition.

Advisor: James Glass

LAUREN BAPTIST

Lauren Baptist joined the

Spoken Language Systems

Group in September 1999,

with a fellowship from NTT.

She received the S.B. from

Dartmouth College in May

1999. She expects to receive

the S.M. degree from MIT in

August 2000. Her thesis is

entitled “Genesis-II: A

Language Generation Module

for Conversational Systems.”

Advisor: Stephanie Seneff

GRACE GHUNG

Grace Chung graduated in

Electrical Engineering and

Mathematics from the

University of New South

Wales, Sydney, Australia. She

earned a Fulbright scholarship

to attend MIT and completed

her master's degree in June

1997. Her interests are in

acoustic modelling and

prosodic modelling for speech

recognition.

Advisor: Stephanie Seneff

THERESA BURIANEK

Theresa Burianek joined the

Spoken Language Systems

group in September 1999 after

receiving the S.B. from MIT in

Computer Science and

Engineering in June 1999. She

is researching the use of word-

spotting understanding to ease

the creation of spoken

language systems and imple-

mented verbal responses for

direction queries in VOYAGER, an

interactive city guide that uses

verbal human to computer

interaction to process and

retrieve queries between

locations in Boston. She

expects to receive the M.Eng.

degree in July 2000.

Advisor: T.J. Hazen
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KENNEY NG

Kenney Ng's current research

interest is in the area of

information retrieval of spoken

documents, which is the task of

identifying those speech

messages stored in a large

collection that are relevant to a

query provided by a user. Prior

to his return to MIT in 1995,

Kenney was a member of the

Speech and Language Depart-

ment at BBN Systems and

Technologies where he did

research on large vocabulary

recognition of conversational

speech, word spotting, topic

spotting, probabilistic

segmental speech models, and

noise compensation. He

received his B.S. and M.S.

degrees in EECS from MIT in

1990 and completed his Ph.D.

in February 2000.

Advisor: Victor Zue

Graduate Students

XIAOLONG MOU

Xiaolong Mou received his

bachelor's degrees in Computer

Science and Enterprises

Management from Tsinghua

University, Beijing, China in

1996. He completed his

Master's thesis on continuous

speech recognition systems and

received his master's degree in

Computer Science from

Tsinghua University in

1998. He is currently pursuing

a Ph.D. in the SLS group.

Xiaolong's research interest

includes conversational speech

systems, automatic speech

recognition and speech

understanding.

Advisor: Victor Zue

KAREN LIVESCU

Karen Livescu received her

B.A. in Physics at Princeton

University in 1996. She spent

the following year at the

Technion in Haifa, Israel, as a

visiting student in the

Electrical Engineering

department.  Karen started

graduate study as a National

Science Foundation fellow in

the SLS group in September

1997 and completed her

Master’s thesis on improved

speech recognition for non-

native speakers in September

1999.  Her research interests

include statistical modeling and

lexical feature design for speech

recognition.

Advisor: James Glass

ATTILA KONDACS

Attila Kondacs earned his BA

and MSc in mathematics at

Eotvos University, Hungary in

1995. He researched Quantum

Computation, an emerging

area within complexity theory

in computer science. Attila

went on studingat the

University of Cambridge in

England where he recieved a

Diploma in Economics

in 1996. Before starting his

graduate studies at MIT, he

worked for 3 years first in a

telecommunication

startup called TeleMedia,

followed by the product

management branch of a larger

telecom, Matav in Hungary

where he was a product

manager and later the staff

asistant to the director.

Advisor: Victor Zue
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MICHELLE SPINA

Michelle received the B.S.

degree in electrical engineering

from the Rochester Institute of

Technology in 1991, and the

S.M. degree in electrical

engineering from the Massa-

chusetts Institute of Technol-

ogy  in 1994.  She completed

her Ph.D. degree in May of

2000 in the Spoken Language

Systems Group at the MIT

Laboratory for Computer

Science. Michelle’s research

interests include automatic

indexing of audio content,

speech recognition and

understanding, and biomedical

issues of speech processing as

they relate to automatic speech

recognition. Her Ph.D. thesis

involved general sound

understanding and ortho-

graphic analysis of general

audio data.  Michelle was a

1995 Intel Foundation

Graduate Fellow, and is a

member of Tau Beta Pi,

Eta Kappa Nu, and Phi Kappa

Phi.

Advisor: Victor Zue

JEF PEARLMAN

Jef Pearlman joined the Spoken

Language Systems Group in

September 1999. He expects to

complete the M.Eng. degree in

August 2000. His thesis is

entitled “SLS-Lite: Enabling

Spoken Language Systems

Design for Non-Experts.”

Advisor: James Glass

ERIC SANDNESS

Eric Sandness joined the SLS

Group in June 1999 as a

participant in the Undergradu-

ate Research Opportunities

Program. His summer project

was entitled “Real-Time Speech

Recognition.” Eric was

appointed as a Research

Assistant in September 1999.

He received the M.Eng. degree

in June 2000. His thesis is

entitled “Discriminative

Training of Acoustic Models in

a Segment-based Speech

Recognizer.”

Advisor: Lee Hetherington

ATIWONG SUCHATO

Atiwong Suchato joined the

Spoken Language Systems

group in the fall of 1999. He

graduated from Engineering

department at Chulalongkorn

University, Bangkok Thailand

with B. Eng., major in

Electrical Engineering in 1998.

His Master’s thesis is entitled

“Framework for Joint

Recognition between Spelled

and Pronounced Proper

Names” and is expected to be

completed in September 2000.

Advisor: Stephanie Seneff
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Visitors

JON YI

Jon Yi received the S.B. and the

M.Eng. degrees in Electrical

Engineering and Computer

Science from the Massachusetts

Institute of Technology in 1997

and 1998, respectively. He also

graduated in 1997 with a

minor in Music. At SLS he has

worked on developing a

Mandarin Chinese

concatenative  speech synthe-

sizer and a UNICODE/Java

World Wide Web interface for

the GALAXY system. His research

interests include speech

synthesis, communications

systems, and multilingual

speech understanding systems.

Advisor: James Glass

CHAO WANG

Chao Wang received her

bachelor's degree in Biomedical

Engineering, with a minor in

Computer Science from

Tsinghua University, Beijing,

China in 1994. She started her

graduate study in MIT in

September 1995 and joined the

SLS group in April 1996.

Chao's master's degree,

completed in June 1997,

worked on porting the GALAXY

system to Mandarin Chinese.

Advisor: Stephanie Seneff

Graduate Students

YI-CHUNG LIN

Yi-Chung Lin received his

Ph.D. in Electrical Engineering

from the Electrical Engineering

Institute of National Tsing Hua

University, Taiwan, in July

1995. In his Ph.D. thesis he

investigated the use of "A Level

Synchronous Approach to Ill-

formed Sentence Parsing and

Error Recovery". He joined SLS

in March 1999  as a Visiting

Scientist. He is interested in

building Chinese conversa-

tional systems for real users.

His main focus has been in the

area of language understand-

ing, language generation

and dialogue management. He

has been working on Chinese

JUPITER, the weather informa-

tion system using spoken

Mandarin Chinese.

EUGENE WEINSTEIN

Eugene joined the Spoken

Language Systems Group in

June 2000 as a Research

Assistant. He is working on

SPEECHBUILDER and expects to

receive his MEng degree in

2001.

Advisor: James Glass
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YASUHIRO MINAMI

Yasuhiro Minami received the

M. Eng. Degree in Electrical

Engineering and the Ph.D. in

Electrical Engineering from the

Keio University, in 1988 and

1991, respectively. He joined

NTT in 1991. He had worked

in robust speech recognition.

He joined SLS in 1999 as a

visiting researcher. He is

interested in modeling for

robust speech recognition and

building conversational

systems. He has been working

on porting JUPITER to Japanese.

MIKIO NAKANO

Mikio Nakano obtained his

M.S. degree in Coordinated

Sciences and Sc.D. degree in

Information Science from the

University of Tokyo respec-

tively in 1990 and 1998. In

1990 he joined NTT, where he

had worked on unification-

based parsing, spoken language

analysis, and real-time spoken

dialogue systems. He joined the

SLS group in February 2000 as

a visiting scientist. His current

research interests include

spoken language understanding

and generation as well as

building integrated spoken

dialogue systems. He is now

working on multilingual

conversational interface

through the development of

MOKUSEI, the Japanese version

of the JUPITER weather

information system.

ALEJANDRA OLIVIER

MERINO

Alejandra Olivier received her

S.B degree in Computer

Science from the Universidad

de las Americas-Puebla, Mexico,

in 1999. She joined Tlatoa, a

Speech Technology Research

Group, the same year. She had

worked in automatic transcrip-

tions and she is interested

in building conversational

systems. She joined SLS in

June 2000 as a visiting

scientist, where she has been

working on porting JUPITER to

Spanish.

ALCIRA VARGAS

GONZALEZ

Alcira Vargas obtained her S.B

degree in Computer Science

from the Universidad de las

Americas-Puebla, Mexico in

1998 and joined the speech

technology research group

TLATOA. As a visiting

scientist, she joined the SLS

group in January 2000 to work

on the Spanish version of the

JUPITER weather information

system. Her current research

interests include language

modelling, language under-

standing and spoken dialogue

systems.
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Undergraduate Students

Chian Chuu
Michael Freedman
Mark Knobel
Vivian Ma
Matthew Mishrikey

Christine Pao, departed August 1999
Simo Kamppari, received M.Eng. September1999
Yi-Chung Lin, departed September 1999
Scott Cyphers joined October 1999
Ray Lau, departed January 2000
Kenney Ng, received Ph.D. February 2000
Yasu Minami, departed March 2000
Michelle Spina, received Ph.D. June 2000
Eric Sandness, received M.Eng. June 2000

Transitions
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Research Sponsorship

Defense Advanced Research Projects Agency 1

BellSouth Intelliventures
Industrial Technology Research Institute
National Science Foundation 2

Nippon Telegraph & Telephone

In addition, discretionary funds for research are provided by ATR Interpreting Telecommunications Research
Laboratories, Hewlett-Packard Laboratories -Bristol, Hughes Research Laboratories, Science Applications
International Corporation, Telcordia Technologies, Inc. and VoiceIn VoiceOut Corporation.

1. Contract Nos. N66001-96-C-8526 and N66001-99-1-8904, from the Information Technology Office, monitored by the Naval Command
Control, and Ocean Surveillance Center and contract no. DAAN02-98-K0003, monitored through US Army Soldier Systems Command.

2. NSF grant no. IRI-9618731.
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Research Highlights
Victor Zue

SPEECH
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CONTEXT

SEMANTIC
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Graphs
& Tables

Figure 1. A generic block diagram
of a typical MIT conversational
system.

During this reporting period, we
continued our research and development of
human language technologies and conversa-
tional systems in several directions. Consid-
erable efforts have been devoted to improv-
ing our speech recognition system’s perfor-
mance. These include the use of discrimina-
tive training for acoustic models (c.f. page
65) and better phonological modeling for
non-native speakers (c.f. page 55).  To make
the recognition system more robust, we have
extended the utterance-based confidence
measures to word-based ones (c.f. page 22).
We also introduced the notion of dynamic
reliability scoring during recognition that
adjusts the partial path score while the
recognizer searches through the lexical and
acoustic-phonetic network (c.f. page 58).
Related work deals with speech understand-
ing using simple word- and phrase-spotting
methods (c.f. page 50).

Almost all speech recognition systems
are formulated as a problem of recognizing
the underlying word sequence.  As a result,
these systems require the availability of

domain-specific training data to derive the
statistical language models.  To separate the
use of domain-independent and -dependent
knowledge, we have started a promising line
of investigation on how to develop a
domain-independent recognition kernel
based on sub-word units such as the syllable
(c.f. page 45) and an entire sub-word
phonological hierarchy, including morphs,
syllables and other constituents based on
ANGIE (c.f. page 52).  Related work deals with
the recognition of pronounced and spelled
proper names (c.f. page 70).

Much of our group’s research over the
years has been treating speech as an
“interface” problem.  With the increase of
speech as a data type on the World Wide
Web, speech is fast becoming a “content”
problem.  Two of our students completed
their Ph.D. theses in this general area.  In
one case, mixed-speaker and -environment
broadcast data were analyzed and classified
(c.f. page 67). In another case, speech-based
information retrieval is being pursued by
representing the signal as a concatenation of
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sub-word units (c.f. page 60).
For the past three years, we have been

pursuing a concatenative approach to
speech synthesis in our ENVOICE system.
While the technique is domain-dependent,
requiring a certain amount of domain-
specific data, the resulting synthetic speech
is quite natural.  Besides, it has always been
our intention to relax the domain-depen-
dency, so that ENVOICE can eventually
produce natural output without the need
for domain-specific data.  As a first step in
this direction, we have begun to build a sub-
word based version of ENVOICE using finite-
state transducers (c.f. pages 35 and 75).

One active area of research for us this
year has been the development of multilin-
gual conversational systems. Our approach
to developing multilingual conversational
systems is predicated on the assumption
that it is possible to extract a common,
language-independent semantic representa-
tion from the input, similar to the
“interlingua” approach to machine transla-
tion. Whether such an approach can be
effective for unconstrained machine
translation remains to be seen.  However,
we suspect that the probability of success is
high for spoken language systems operating
in restricted domains, since the input
queries will be goal-oriented and therefore
more constrained.  In addition, the seman-
tic frame may not need to capture all the
nuances associated with human-human
communication, since one of the partici-
pants in the conversation is a computer.
Thus far, we have applied this formalism
successfully across several languages and
domains. Our most recent effort involves

the development of a Japanese version of
our JUPITER weather information system
called MOKUSEI (c.f. page 25).  This is a
collaborative project with NTT.  We have
also developed a Mandarin version of
JUPITER called MUXING, partly funded by ITRI
(c.f. page 27).  Work related to this latter
project deals with the modeling of Manda-
rin tones (c.f. page 72).  We also have an
ongoing collaboration with the Universidad
de las Americas Puebla in Mexico on the
development of a Spanish version of JUPITER.

The development of multilingual
systems, especially for Asian languages,
exposed some of the shortcomings of our
language generation component, GENESIS.
As a consequence, considerable effort has
been devoted to rewriting GENESIS (c.f. page
43).  The resulting system, GENESIS-II, can
provide very straightforward methods for
simple generation tasks across multiple
languages, while also supporting the
capability of handling more challenging
generation requirements, such as movement
phenomena, propagation of linguistic
features, and the context-dependent
specification of word sense.

At the system development level, most
of our effort has been devoted to the
development of MERCURY, which can provide
real flight schedules and fare information.
MERCURY provides a platform for us to
investigate conversational interfaces that
require language generation (c.f. 9) and
dialogue management (c.f. 10) that is
considerably more complex than in previous
systems that we have developed.  We have
also collected hundreds of dialogues from
real users interacting with MERCURY to book
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real flights, and the data have enabled us to
propose some dialogue related metrics to
evaluate system performance (c.f. page 15).
In related work, we have also begun to
investigate the use of intelligent barge-in,
which can be overridden under certain
circumstances, for example, when the
system is describing a disclaimer or provid-
ing instructions (c.f. page 39).

This reporting period saw the beginning
of two new projects that are motivated by a
lab-wide five year initiative called Oxygen.
The goal of the Oxygen project is to create a
system that will bring an abundance of
computation and communication to users
through natural spoken and visual inter-
faces, making it easy for them to collaborate,
access knowledge, and automate repetitive
tasks. An important aspect of Oxygen is the
ability to rapidly deploy speech-based
interfaces for naïve users.  In this regard, we
started the development of a research
infrastructure called SPEECHBUILDER that will
enable novice users to develop conversa-
tional systems with little or no knowledge of
the underlying human language technolo-
gies (c.f. pages 31 and 64).  Another goal of
Oxygen is the need to automate some of the
information-related tasks (e.g., “Call me
when United flight thirty-four lands.”)  We
have begun the development of a conversa-
tional agent called ORION, which can accept
tasks specified verbally and deliver the
information requested at a later time (c.f.
page 29).  We expect both of these areas to
flourish in the coming years.

Finally, the GALAXY Communicator
architecture continues to serve as the
reference architecture for the DARPA
Communicator Program. Recently, we have
decided to make this architecture open
source to promote standard setting.  Users
can freely download this architecture, and
the associated libraries, for their own use,
unencumbered by IP issues.
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MERCURY
Stephanie Seneff and Joseph Polifroni

MERCURY is a spoken conversational system
that allows users to make flight reservations
among several hundred cities worldwide.
MERCURY engages the user in a mixed-
initiative dialogue to plan an itinerary.
Once the itinerary is fully specified,
MERCURY then prices the itinerary and sends
the user an e-mail message containing a
detailed record of the flights and fares.
MERCURY runs in both a displayful and a
displayless mode. In displayful mode,
MERCURY provides, in addition to the spoken
output, a paraphrase of the original user
query in a paraphrase window, as well as a
text of the verbal response and a table of the
set of flights retrieved from the database.
MERCURY is configured as a suite of servers
that communicate with one another via a
central programmable hub using the
GALAXY Communicator architecture. In this
section, we will highlight two different
aspects of MERCURY where we have spent
considerable research effort: (1) language
generation and (2) dialogue control.

Language Generation
The generation server plays an important,
multi-faceted role in MERCURY, serving all
generation needs for both natural and
formal languages, as indicated in Figure 2
and described more fully in [3]. We have
recently developed a new generation server,
which we call GENESIS-II [1] (c.f. page 43),
which is significantly improved over the
original system, in terms of both its
capabilities and ease of use. One of the

most important roles is to generate a natural
language response for the user. GENESIS-II
uses a common grammar file but distinct
lexicons to convert the response frame into
a well-formed English text to display in the
graphical interface and into a marked-up
text format for further processing by the
ENVOICE speech synthesizer (c.f. pages 35 and
75), to produce the response speech
waveform. Often, just before going to the
database, MERCURY paraphrases back to the
user the topic of their question, as in,
“Okay, United flights from Boston to Dallas
on March third. One moment please.” In
displayful mode, the full paraphrase of the
user query is displayed in a special para-
phrase window. These mechanisms serve to
inform the user the degree to which
MERCURY understood the question. The full
paraphrase is especially difficult for wh-
queries, where a trace mechanism is
necessary to move the wh-marked noun
phrase to the front of the surface form
string.

GENESIS-II also handles several instances
of paraphrases into formal languages. The
first is to convert the linguistic frame (in
context) that the NL component produces
into a flattened electronic form (E-form), a
representation that is more convenient for
the dialogue manager to interpret. In this
case, GENESIS-II produces a string in a simple
mark-up language, which is then converted
into an E-form frame by a GALAXY library
routine. Another formal language task is to
convert the E-form into the database query
appropriate for database retrieval. Finally, in
displayful mode, it converts the retrieved list
of flights into a hyperlinked HTML table
for graphical display. The user can click on
an item in the table and refer to it verbally
in a follow-up question.

Figure 2. Various generation needs
in Mercury that are handled by the
Genesis-II server.

input query frame —> English paraphrase

 —> Electronic Form

database frame —> Database query string

response frame —> English text

—> synthesized speech

flight list —> html table
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Dialogue Management
Dialogue modeling is a critical and challeng-
ing aspect of conversational systems,
particularly when users are permitted
flexibility with regard to defining the
constraints of the task. For systems that
adopt a strict system-initiated approach, it is
feasible to define a set of states and state
transitions depending on the usually small
number of possible user actions at each
state. However, MERCURY follows a mixed-
initiative dialogue strategy, as do all of our
other systems, where the system may make
specific requests or suggestions, but the user
is not required to be compliant. When the
the user is permitted to say anything within
the scope of the recognizer at any time, a
finite-state solution becomes unwieldy.

As described more fully in [2],
MERCURY’s dialogue is controlled by a turn
manager that manipulates linguistic and
world knowledge represented in the form of
semantic frames. At each turn it begins with
an E-form representing the constraints of
the current query as a set of [key: value]
pairs. This E-form provides the initial values
in the dialogue state, which evolves over the
course of the turn as rules are executed. The
turn manager consults a dialogue control
table to decide which operations to per-
form, and typically engages in a module-to-
module subdialogue to retrieve tables from
the database. Finally, it prepares a response
frame, which may or may not include
tabular entries.

In addition to the dialogue state,
MERCURY also makes use of several other
internal representations which retain state.
These are packaged up into a turn-manager
history frame which is passed to the hub for
safe-keeping at the end of each turn, and
returned with each subsequent turn. The

user model contains a record of the system’s
current belief about the state of the user’s
flight plan, as well as any user preferences
specified at enrollment time and all of the
details of the current flight plan as they
become available. The turn manager also
retains internally a list of all the flights that
matched the user’s constraint specifications,
as well as a list of the subset of the flights
that it has spoken about (e.g., the nonstop
flights or the earliest flight).

Given MERCURY’s complex dialogue state,
and our desire to have a flexible mixed-
initiative dialogue strategy, we have opted to
use an “ordered rules” strategy for dialogue
control. The activities for a given turn
typically involve the sequential execution of
a number of specialized routines, each of
which performs a specific part of the
dialogue requirements and alters the state
variables in particular ways. To determine
which of the operations should be per-
formed, the system consults a dialogue
control table, which is specified in a simple
scripting language.

In addition to possibly altering the
values of variables in the dialogue state,
operations also have the responsibility to
return, upon completion, one of three
“move” states. The majority of the opera-
tions return the state “CONTINUE” which
means simply to continue execution just
beyond the rule that just fired. The two
other possibilities are “STOP,” i.e., exit from
the dialogue control table, and “RESTART”
which means to return to the top of the set
of dialogue rules and start over. An (op-
tional) distinguished operation, which
handles activities that should occur rou-
tinely at every turn, is executed upon exiting
the dialogue control process. The tests on
variables can be binary, arithmetic, or string

MERCURY
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matching on values. Figure 3 shows several
examples of actual rules in MERCURY’s
dialogue control table.

There are currently a total of over 200
rules in MERCURY’s dialogue control table.
These rules can be organized logically into
three groups. The first of these deal with
the input query representation, determining
what type of information is being asked for
and checking that sufficient information
has been obtained for answering the query.
The second group deals with obtaining the
answer to the query, either from the
database server (typically in a module-to-
module subdialogue) or from a pre-existing
flight list. The third group concerns
preparing the reply frame, after the database
retrieval has already taken place. The
purpose of this last set of rules is to reduce
the number of database tuples returned for
a given query to a manageable set for a
spoken response. In addition to these three
broad categories, there are miscellaneous
rules that have to do with updating the user
model, preparing the intermediate reply,
pricing or e-mailing the itinerary, preparing
the database query, filtering flights, or
updating the itinerary.

From the system developers’ point of
view, this dialogue control strategy has made
development of complex systems much
easier. Although the number of rules can
grow to be as large (or as small) as the
developer wants, having one central file that

maps out the control flow through a system
turn introduces a level of abstraction above
the level of the code itself that facilitates
both development and debugging. The
operations specified by each rule are general
functions, and it is up to the system
developer to decide how to parcel up the
computational requirements into the
individual operations.

With experience, one acquires a set of
guidelines to help formalize this process. As
a general rule, it is preferrable to limit the
use of nested function calls. Instead, an
operation can set a variable to indicate that
another operation needs to be called, and
then the intended subroutine gets promoted
to the status of a dialogue control opera-
tion. This has the effect of exposing more of
the internal activities of the system to the
dialogue control table, which serves as a
very useful outline of system control flow.
Another general policy is that each opera-
tion should be concerned with a single well-
defined task, again in order not to conceal
complexity.

Figure 4 gives an example dialogue
between MERCURY and a user illustrating
some of the complexities that can arise in a
mixed-initiative interaction,
including early specification of the return
date, the rejection of an offered
airline, and a final adjustment to the
original itinerary to improve the fare.

Figure 3. Selected rules from the
MERCURY dialogue control table.
“&” stands for “AND” and “|”
stands for “OR”.

STEPHANIE SENEFF AND JOSEPH POLIFRONI

clause request_keypad —> keypad_input

week | day | rel_date —> resolve_relative_date

flight_number & !airline —> need_airline

clause price & topic itinerary & truth_value deny —> dont_price_itinerary

clause book & num_found =1 —> add_flight_to_itinerary

num_nonstops >1 & num_nonstops <4 & arrival_time —> speak_three_arrivals
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Figure 4. Example illustrative
dialogue in the MERCURY domain
involving an initial itinerary that is
later adjusted for a cheaper fare.

S: Welcome to the initial development version of the MIT air travel
information system.  This call is being recorded for system develop-
ment.  You may hang up or ask for help at any time.  For enrolled users
please say your first and last name.  Otherwise, say ‘new user.’

U: Joe Polifroni

S: Please speak the month and day you registered as your password, as in
‘May first.’

U: I want to key in my password.

S: Okay, Please enter your four digit date password... <keyed in>

S: Welcome, Joe.  You have successfully logged onto mercury. How may I
help you?

U: I want to fly to San Francisco the first Sunday in November and return the
following Thursday.

S: Okay, flights from Boston to San Francisco on Sunday November 5.
Can you provide the approximate departure time or airline prefer-
ence?

U: Are there any flights in the morning?

S: Okay, flights from Boston to San Francisco departing between 5 a.m.
and 12 p.m. on Sunday November 5.  One moment please. ... Can you
provide a departure or arrival time?  I have flights on American,
Frontier, America West, Nordic East Airways, Northwest, and United.
The earliest nonstop United flight leaves at 7 a.m. and arrives at 10:20
a.m.

U: I don’t want to fly on United.

S: I have a nonstop American flight leaving at 9 a.m. arriving at 12:40
p.m. Would that work?

U: Yes, I’ll take that one.

S: American flight 195 has been added to your itinerary. You depart
Boston at 9 a.m. and arrive in San Francisco at 12:40 p.m. Shall I help
you with the return flight now?

U: Yes, please.

MERCURY
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S: Okay, American flights from San Francisco to Boston on Thursday Nov.
9. One moment please. ... I have three nonstop flights:  a flight leaving
at 7:30 a.m., a flight leaving at 3:30 p.m. and a flight leaving at 10 p.m.
Are any of these okay?

U: what time does the morning flight arrive?

S: American flight 196 arrives at 3:57 p.m. in Boston. Shall I add this
flight to your itinerary?

U: Yes, please.

S: American flight 196 has been added to your itinerary. You depart San
Francisco at 7:30 a.m. and arrive in Boston at 3:57  p.m.  Shall I price
your itinerary?

U: Yes, please.

S: Pricing your itinerary will take awhile.  In the meantime I’ll summa-
rize your itinerary for you.  On Sunday Nov. 5, on American flight 195,
you depart from Boston at 9 a.m. and arrive in San Francisco at 12:40
p.m. On Thursday, Nov. 9, on American flight 196 you depart from San
Francisco at 7:30 a.m. and arrive in Boston at 3:57 p.m. The cheapest
price for your itinerary is $2210.50. Shall I email your itinerary to you?

U: I want to change the first flight in my itinerary.

S: Okay, American flights from Boston to San Francisco on Sunday
November 5. One moment please. ...  I have three nonstop flights: a
flight leaving at 9 a.m. a flight leaving at 3 p.m. and a flight leaving at
5:15 p.m. Would one of these work?

U: What if I leave on Saturday?

S: Okay, American flights from Boston to San Francisco on Saturday
November 4. One moment please. ... I have three nonstop flights: a
flight leaving at 9 a.m., a flight leaving at 3 p.m. and a flight leaving at
5:15 p.m. Do you like any of these?

U: I’ll take the nine o’clock flight.

S: I have changed your itinerary. On Saturday, Nov. 4, on American flight
195, you depart from Boston at 9 a.m. and arrive in San Francisco at
12:40 p.m. Shall I price your itinerary?

U: Yes, please.

S: Pricing your itinerary will take awhile. In the meantime I’ll summarize

STEPHANIE SENEFF AND JOSEPH POLIFRONI
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your itinerary for you. On Saturday Nov. 4, on American flight 195, you
depart from Boston at 9 a.m. and arrive in San Francsco at 12:40 p.m.
On Thursday Nov. 9, on American flight 196, you depart from San
Francsco at 7:30 a.m. and arrive in Boston at 3:57 p.m.  ... The cheapest
price for your itinerary is $827.50.  Shall I email your itinerary to you?

U: Yes, please

S:  Your itinerary has been emailed to joe@lcs.mit.edu.  Is there some-
thing else I can do for you?

U: No thank you. Goodbye.

S: Thanks for using Mercury. Have a nice day!

MERCURY
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Data Collection and Performance Evaluation
of MERCURY
Joseph Polifroni, Stephanie Seneff, James Glass and Victor Zue

Data Collection
For just over three years, our group has
been deploying mixed-initiative spoken
dialogue systems on toll-free telephone
numbers in North America. Our motiva-
tion was to perform a wider-scale data
collection than we were able to do within
our laboratory environment.  In this regard
we have been quite successful: in the past
year alone, our JUPITER weather information
line received 70,132 calls (out of approxi-
mately 97,000 total) accounting for nearly
516,000 utterances.  The growth in the
number of callers to JUPITER in the three
years of its existence has been very gratify-
ing, especially considering that we have
done no overt recruitment for subjects.
These data have been invaluable in improv-
ing the performance of our speech recogni-
tion and understanding components.

Over the past year, we have increased
our efforts in collecting data for the
MERCURY flight travel domain, moving
beyond the scenario-based data collection
that we used initially. We have made the
system available to users outside the group
and have also encouraged group members
to arrange all business and personal travel
through MERCURY. Although the totals for
MERCURY for the past year, 4464 utterances
from 385 callers, dwarfs in comparison with
JUPITER, our data collection effort for
MERCURY is just getting underway.  (Calls to
JUPITER have peaked in the last year after a
comparably slow start.) Just as with JUPITER,
our MERCURY system is designed, first and
foremost, to provide useful information to
users who have real problems to solve. We
are currently looking into ways of recruiting
subjects for MERCURY who have real, complex
travel plans.

Evaluation Metrics
 Over the past year, we have begun develop-
ing metrics for evaluating system perfor-
mance at the dialogue level.  Our previous
work has focused on utterance-level
evaluation, moving from word/sentence
error rates (WER, SER, respectively) to
concept/understanding error rate (CER,
UER) [1].  We have found that the GALAXY

Communicator architecture [2] has enabled
us to instrument these metrics in a way that
insures that off-line evaluation is performed
on exactly the same configuration as the on-
line system [3].  The GALAXY Communicator
architecture has been particularly useful in
helping us move beyond utterance-level
evaluation to measuring dialogue perfor-
mance.  To do this, we have created two new
measures which can quantify how effectively
a user can provide novel information to a
system, and how efficiently the system can
understand information concepts from a
user.  The query density measures the mean
number of new concepts introduced per
user query, while the concept efficiency
tabulates the average number of turns it
took for a concept to be successfully
understood. In addition to being useful for
quantifying longitudinal improvements in a
particular system, we also believe these
measures may be useful for comparing
different mixed-initiative systems.

Query density, QD , measures the mean

number of new concepts introduced per
user query,

where Nd  is the number of dialogues, )(iN q

is the total number of user queries in the i th

dialogue, and )(iNu  is the number of unique
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concepts understood by the system in the ith

dialogue.  A concept in a dialogue is not
counted in Nu  if the system had already
understood it from a previous utterance,
and is only counted when it is correctly
understood by the system.  Thus, a concept
that is never understood will not contribute
to Nu .

To illustrate, consider the two dialogues
in Figure 5.  In the dialogue on the left, the
user introduces one concept per turn, the
destination in the first query and the source
in the second.  QD for this dialogue would
be 1.0.  In the second dialogue, the user
introduces the same two concepts in one
utterance, for a QD of 2.  In a recent
evaluation on over 200 dialogues from naive
users of the MERCURY system (see below), we
measured a QD of 1.47, showing that users
are making use of our system’s ability to
understand more than one concept per
turn.

Concept efficiency, CE, quantifies the
average number of turns (expressed as a
reciprocal) necessary for each concept to be
understood by the system,

where  is the total number of concepts
in the ith  dialogue.  A concept is counted
whenever it was uttered by the user and was
not already understood by the system.

Since, )()( ii NN uc ≥ , then 10 ≤≤CE .
Figure 6 illustrates two dialogues with

contrasting values for CE . In the first

dialogue, there is a misrecognition on the
first user utterance, leading to a repair in
the second utterance.  It took two turns to
introduce one concept, making CE  .5 for
this dialogue.  In the second dialogue, the
destination is understood correctly in one
turn, making CE  1.0 for that exchange.
Measuring CE  on the same subset of the
MERCURY data used for QD above (see
below), we obtained a value of .92, meaning
that approximately one in ten concepts had
to be repeated by users.

The criteria for incrementing the counts

for Nu  and Nc  are based on monitoring
concepts derived from the reference
transcriptions.  Increments only take place
when an input concept, A , is not present

(i.e., ) in the internal dialogue state,
meaning that it had not been previously
understood by the system.  When this

condition occurs,  is incremented, to
indicate that the user was trying to convey a
concept to the system.  If the concept is also
understood by the system (i.e., the hypoth-
esis representation also contains concept

A ), then  is also incremented.

We believe the QD metric is useful for
quantifying the behavior of individual
dialogue systems, as well as for making cross-
system comparisons.  The higher the
density, the more effectively a user is able to
communicate concepts to the system.
Dialogues which prompt for specific
concepts one-by-one may have lower QDs, as
will those which contain more confirma-
tions, or mis-recognitions.  The CE is also a
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Figure 5.  Two dialogues
illustrating QD.  “U” refers to user
utterances; “S” refers to system
utterances.

U:  I would like to fly to Boston. U: I would like to fly from Boston to Denver.

S:  To Boston from where? S: What date will you be travelling on?

U:  Denver.

S:  What date will you be travelling on?
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useful diagnostic metric, as it is an indicator
of recognition or understanding errors.
The higher the efficiency, the fewer times a
user had to repeat a concept.

Evaluation
Infrastructure
The task of evaluating complex conversa-
tional systems is inherently difficult.  In the
first place, component technologies are
interdependent. Typically, a spoken dialogue
system is comprised of multiple modules,
each of which performs its task within an
overall framework, sometimes completely
independently but most often with input
from other modules. Secondly, once a
mechanism is in place for running data
through an off-line system, a simple
reprocessing of data with a new version of
any component can lead to an incoherent
interaction, as only one side of a two-sided
conversation has changed.

The GALAXY Communicator architec-
ture, originally developed within our group,
has enabled us to duplicate on-line behavior
for both system development (e.g., new
speech recognition or language understand-
ing components) and off-line performance
evaluation.  This allows all components to
interact in a consistent manner.  We have
achieved this goal by developing two new
servers: a “Batchmode” server and an
“Evaluate” server.

The batchmode server is used to
generate inputs to a system during off-line
processing (as opposed to an on-line system,

which would deploy an audio- and/or GUI-
server instead).  The batchmode server can
be used to simulate the behavior of a system
during actual data collection, or can be used
in conjunction with the evaluation server to
quantify the performance of pre-recorded
data.  The batchmode server can generate
inputs from an existing log file (which was
generated by the system at the time the
interaction actually took place), or can
directly process waveforms, orthographic
transcriptions, word graphs, semantic
frames, etc., and pass them to the appropri-
ate server via the hub.

The evaluation server is used to gather
performance statistics for an off-line
evaluation.  The server can measure both
word- and concept-level error rates, and can
be used to measure the QD and CE metrics
described in the previous section.  To
compute the QD and CE metrics, we
reprocess a log file after the orthographic
transcription has been provided for the user
queries.  As illustrated in Figure 7, both the
recognizer hypothesis and the original
orthography are run through the system
utterance by utterance, with the discourse
and dialogue states being maintained
exclusively by the recognizer branch.  If the
database content remains unchanged from
when the dialogue originally occurred, then
system responses derived in this way would
be identical to those originally produced by
the system.  However, all of our systems
make use of continually updated, dynamic
data sources.  It is therefore virtually

Figure 6.  Two dialogues
illustrating CE.  “U” refers to user
utterances; “S” refers to system
utterances.

JOSEPH POLIFRONI, STEPHANIE SENEFF, JAMES GLASS AND VICTOR ZUE

U:  I would like to fly to Boston.  U: I would like to fly to Boston.

S:  To Austin from where? S: To Boston from where?

U:  No, to Boston.     

S:  To Boston from where?    
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impossible to guarantee that the system
responses which occur during a subsequent
evaluation will be the same as the original
ones.  Thus, it is possible that dialogues
could become incoherent during an
evaluation. The only way to prevent this
would be to freeze a version of the database
used at the time, or store the answers
retrieved during the dialogues.

Another problem has to do with the use
of time expressions in user queries.  If the
database is static, it is usually just a matter
of resetting the reference date of the
dialogue so that relative expressions (e.g.,
“tomorrow”) can be correctly understood.
Where the data are dynamic, and time-
sensitive (e.g., short-range weather forecasts,
flight schedule and fare information) the
solution is more complex.  In the case of
MERCURY for example (described in the next
section), we shift all dates in the dialogue to
make all references to time occur in the
future.

Experiments
Table 1 provides a breakdown of MERCURY

performance on a subset of the data
collected this year.  This subset was selected

specifically to maximize for the number of
naive users solving real problems (i.e., not
scenario-based dialogues).  The “All”
condition reports results for the utterance-
based and dialogue-based metrics we have
described above for all 648 utterances in the
test set.  We then subdivide these data into
three categories.  “Accepted” utterances
were those in which the reference orthogra-
phy and recognition hypothesis were both
parsable by our understanding component.
“No Hyp” utterances were the ones in
which the recognition hypothesis failed to
parse, while “No Ref” utterances were the
cases where the reference orthography could
not be parsed.  CER and UER were not
available for the “No Ref” condition
because we could not automatically produce
a set of reference concepts.  QD and CE are
only reported for the “All” condition
because they are intended to quantify the
dialogue as a whole.

The WER on the accepted Mercury
utterances is similar to our performance in
JUPITER [4].  The CER and overall UER are
higher however, which we attribute to the
fact that MERCURY is in its early development
stages, and because the air-travel domain is

Figure 7. A flow graph illustrating
the procedure for synchronizing
discourse context during an off-line
log-file evaluation.
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inherently more challenging than weather,
both in terms of number of concepts, and
the complexity of the interaction.  We plan
to make QD and CE part of our regular
evaluations.

Table 1. Evaluation results for a
set of recent MERCURY data.
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Condition # Utts. WER CER UER QD CE

All 648 21.5 24.4 42.3 1.47 0.92
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No Hyp. 21 47.9 88.5 - N/A N/A

No Ref. 76 48.9 N/A N/A N/A N/A
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Acoustic Modeling Improvements in SUMMIT
Nikko Ström, Lee Hetherington, T.J. Hazen, Jim Glass, and Eric Sandness

We have recently made several improve-
ments to our SUMMIT speech recognition
system including the simultaneous use of
both boundary and segment context-
dependent acoustic models to improve
accuracy and the use of Gaussian selection
and Pentium-III optimizations to improve
speed [1,2].

The SUMMIT segment-based speech
recognition system is capable of handling
two rather different types of acoustic
models: segment models and boundary
models. Segment models are intended to
model hypothesized phonetic segments in
an acoustic-phonetic graph, and can be
context-independent or context-dependent.
The observation vector for these models is
of fixed dimensionality and is typically
derived from spectral vectors spanning the
segment. Thus we extract a single feature
vector and compute a single likelihood for a
phone regardless of its duration. In contrast,
boundary models are intended to model
transitions between phonetic units. The
observation vector for these diphone
models is also of fixed dimensionality and is
centered at hypothesized phonetic boundary
locations or landmarks. Since some
hypothesized boundaries will in fact be
internal to a phone, both internal and
transition boundary models are utilized.
Typically, the internal models are context-
independent, and the transition models
represent diphones.

Because the observation spaces of
segment and boundary models differ
significantly, they tend to contribute
different information about the recognition
search and ranking of hypotheses. The
baseline JUPITER system uses boundary
models only, and this work investigated the
addition of triphone segment models and

their effect on accuracy and speed.
In the early development of the JUPITER

system, context-independent segment
models were used. As more data became
available, context-dependent (diphone)
boundary models were added. The log
probability model scores of the boundary
and segment models were linearly combined
for every phone. Ideally, this combination
of models should have been more accurate
than either of the segment or boundary
models separately. However, the boundary
models, with their higher degree of context
dependency, benefited more from the
increased training data than the segment
models, and thus as more data became
available the context-independent segment
models began to actually degrade perfor-
mance as compared to boundary models
only.

In our experiments, for boundary
models we used 61 context-independent
internal models and 715 diphone transition
models. For segment models, we used 935
triphones, 1190 diphones, and 61
monophones. Examining the pronunciation
network, we find that 71% of all arcs have
triphone labels, the rest having diphone or
monophone labels. For segment models, the
selection of triphones and diphones was
based on the number of occurrences in the
training data by using a count threshold of
250.

SUMMIT now makes use of finite-state
transducers (FSTs) [3] to represent context,
phonological, lexical, and language model
constraints. In particular, the first (Viterbi)
pass of the recognition search makes use of
a single FST composed of all these compo-
nents. Such a formulation makes the correct
application of cross-word context-dependent
acoustic models very straightforward.
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Boundaries only CombinationBecause adding triphone segment
models more than quadrupled the number
of acoustic models evaluated on average, we
incorporated the technique of Gaussian
selection [4] to reduce the number of
Gaussian mixture model components
evaluated. The basic idea behind Gaussian
selection is to apply vector quantization
(VQ) to a feature vector and then evaluate
only those mixture components that
influence the mixture sum in the vicinity of
a VQ codeword. Mixture components that
are too far away will not contribute apprecia-
bly to the sum when other mixtures are
significantly closer. The mapping from VQ
codeword to mixtures to evaluate can be
computed ahead of time, leaving only VQ
and reduced mixture computation to do at
runtime. In our system, we use binary VQ
with 512 codewords. At the pruning levels
used in this work, Gaussian selection
evaluates approximately 20% of the
mixtures that would otherwise be evaluated.
This results in an overall system speedup
factor of about 1.8.

Further speed gains were made by hand-
optimizing the key parts of Gaussian code to
take advantage of the Pentium III’s floating-
point SIMD assembly instructions. This
optimization was good for a speedup factor
of about 1.8 as well.

Putting all the pieces together, Figure 8
shows word error rate vs. speed for the
boundary model-only system and the
combined boundary and triphone segment
model systems when running on a 500MHz
Pentium III system. The horizontal axis
shows the real-time factor (xRT), with 1.0
corresponding to “real-time”, meaning that
our pipelined recognizer can keep up with
incoming speech. We see that the combined
system can achieve better accuracies, but

only at greater computational effort. These
results demonstrate that triphone segment
models do offer accuracy gains compared to
a boundary-only system, whereas previously
monophone segment models were detri-
mental.
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Figure 8. Word error rate (WER)
vs. speed (xRT) for boundary-only
and combination configurations.
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Confidence Scoring
for Use in Speech Understanding Systems
T. J. Hazen, Theresa Burianek, Joseph Polifroni and Stephanie Seneff

Current speech recognition technology is
still far from perfect and must be expected
to make mistakes. A well designed speech
understanding system should be able to
recognize when speech recognition errors
are likely to have occurred and take actions
which gracefully recover from recognition
errors in order to avoid frustrating the user.
To develop such a system, two specific
research goals must be addressed. First, a
recognition confidence scoring technique
which accurately determines when a
recognizer’s output hypothesis is reliable or
unreliable must be developed. Second,
confidence scores must be integrated into
the back-end components of the system
(e.g., language understanding and dialogue
modeling) thereby enabling these compo-
nents to make an informed decision about
the action that should be taken when a
confidence score indicates that a hypothesis
may be incorrect. It is these two goals that
we have strived to address in this research.

Over the last several years we have
developed and refined a technique where
confidence scores are computed at the word
and utterance levels [1,2,3,4]. For each
recognition hypothesis, a set of confidence
measures are extracted from the computa-
tions performed during the recognition
process and combined into a confidence
feature vector. The feature vectors for each
particular hypothesis are then passed
through a confidence scoring model which
produces a single confidence score based on
the entire feature vector.

The same confidence scoring technique
is used for both word and utterance level
confidence scoring. To produce a single
confidence score for a hypothesis, a simple
linear discrimination projection vector is
trained. This projection vector reduces the

multi-dimensional confidence feature vector
from the hypothesis down to a single
confidence score. Mathematically this is
expressed as

(1)

where f
�

 is the feature vector,  is the
projection vector, and  is the raw confi-
dence score. The projection vector  is
trained using a minimum classification error
(MCE) training technique.

Because the raw confidence score  is
simply a linear combination of a set of
features, a probabilistic score is generated
from the raw score based on the following
maximum a posteriori probability (MAP)
classification expression:

(2)

Note that a constant decision threshold
 is applied to the score. After the decision

threshold  is subtracted, a negative score
for  results in a rejection while a non-
negative score results in an acceptance.

To test the confidence scoring tech-
niques we utilize the recognizer for the
JUPITER weather information system [5,6].
The recognizer is trained from over 70,000
utterances collected from live telephone
calls to our publicly available system. The
recognizer’s vocabulary has 2,005 words. A
test set of 2,388 JUPITER utterances is utilized
for evaluation. The recognizer achieved a
word error rate of 19.1% on this test set.

When evaluating the utterance level
confidence scoring mechanism it is found
that 13% of the test utterances were
rejected. The word error rate on this 13% of
the data was over 100% (e.g., there were
more errors than actual words in the
reference orthographies). By comparison,
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the word error rate on the 87% of the
utterances that were accepted was 14%.
These results indicate that the utterance
level confidence scoring mechanism is
rejecting only the utterances which the
recognizer has extreme difficulty recogniz-
ing.

To examine the performance of the
word confidence scoring mechanism a
receiver-operator characteristic (ROC) curve
can be generated. Figure 9 shows the ROC
characteristics of the three best individual
confidence features and the confidence
scoring method which combines the ten
different individual features. A significant
improvement is achieved by the combined
model over all of the individual features.

The performance of the confidence
scoring technique can also be examined in
several other interesting ways. When
examining accepted utterances only, the
system correctly rejects 51% of the incor-
rectly hypothesized words while only falsely
rejecting 4% of correct words. Furthermore,
across all utterances the combination of
utterance and word level scoring correctly
detects 72% of the errors introduced by
unknown words and 85% of the errors
introduced by non-lexical artifacts.

During recognition an N-best list of
sentence hypotheses is generated. A
confidence score is computed for each word
in each sentence hypothesis. A two-step
process is utilized to integrate confidence
scores into the TINA natural language
understanding component [7,8]. First, if an
utterance is rejected at the utterance level,
the understanding component does not
attempt to understand the utterance and
assumes that no useful information for
understanding can be extracted from the
recognizer’s output. If the utterance is

accepted, the second step is to allow the
natural language parser to try to interpret
the utterance, given that some words may be
misrecognized. Words with poor confidence
scores can be “rejected” and replaced in the
N-best with a rejected word marker. Either
hard rejection (where rejection of poorly
scoring words is required) or soft rejection
(where rejection of poorly scoring words is
optional) can be employed. In order to
utilize an N-best list containing rejected
words, the grammar must be augmented to
incorporate rejected words.

To examine the effects of confidence
scoring on language understanding, the
JUPITER system can be evaluated on the test
data under five different conditions: (1)
using the original system which did not
utilize word confidence scores, (2) using the
new system which utilizes word confidence
scores but does not perform any rejection,
(2) using the new system with utterance
rejection, (3) using the new system with
utterance rejection and optional word
rejection, and (4) using the new system with
utterance rejection and hard word rejection.
These conditions are investigated using key-
value pair concept error rate [9]. The results
are shown in Table 2 in terms of substitu-
tion, insertion, deletion, and total error
rates for each condition. The table shows

Figure 9. The ROC curves
indicating relative word level
confidence performance for three
individual confidence features and
the fully combined feature set.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Acceptance Rate

C
or

re
ct

 A
cc

ep
ta

nc
e 

R
at

e

10 Combined Features
Mean Normalized Acoustic Score
Nbest Purity Score
Utterance Confidence Score



24 SUMMARY OF RESEARCH - JULY 2000

that concept error rate reduction of 35%
has been achieved when confidence scoring
with word and utterance level rejection is
incorporated into the system.

This work has shown that confidence
scoring can provide extremely useful
information about the reliability of recogni-
tion hypotheses. This information can be
used to guide the understanding and
dialogue components of the system towards
a useful interpretation and response to the
user. Future work will focus on fully
integrating these confidence scoring
techniques into all of our publically
available systems, especially MERCURY and
VOYAGER. This will involve upgrading the
grammars and dialogue modeling compo-
nents of each system. As our understanding
of the dialogue modeling issues matures,
our systems should develop a range of
dialogue actions based on confidence
scoring including such actions as confirma-
tion and clarification.
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Table 2. Understanding error rates
as confidence scores and different
levels of confidence rejection are
added to the system.

Experimental

Conditions Sub. Ins. Del. Total

Original System 1.9 20.2 6.4 28.5

New system w/o rejection 2.1 18.2 16.1 26.3

+ utterance rejection 1.8 12.7 7.1 21.7

+ optional word rejection 1.3 9 8.4 18.7

+ hard word rejection 1 7.2 10.5 18.6

Error Rates (%)

CONFIDENCE SCORING FOR USE IN SPEECH UNDERSTANDING SYSTEMS
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MOKUSEI:  A Japanese, Telephone-based,
Conversational System in the Weather Domain
Victor Zue, Stephanie Seneff, Joseph Polifroni, Yasuhiro Minami, Mikio Nakano, T.J. Hazen
and James Glass

In 1997, we introduced the JUPITER weather
information system in English [1].  Since it
came on-line via a toll free telephone
number, we have collected over 600,000
utterances from over 100,000 calls, which
provide a rich corpus for training and
refinement of system capabilities.  Since
JUPITER is our most mature conversational
system to date, it has become the platform
for our multilingual spoken language
research effort.  In 1998, we started the
development of MOKUSEI1, a conversational
system that provides weather information in
Japanese over the telephone [3].  This is a
collaborative project between NTT and our
group.

Like its English predecessor, MOKUSEI

consists of a number of specialized servers
that communicate with one another via a
central programmable hub, using the
GALAXY Communicator architecture [2].  An
audio server captures the user’s speech and
transmits the waveform to the speech
recognizer.  The language understanding
component parses a word graph produced
by the recognizer and delivers a semantic
frame, encoding the meaning of the
utterance, to the discourse resolution
component.  The output of discourse
resolution is the “frame-in-context,” which is
transformed into a flattened E-form
(electronic form) by the generation server.
This E-form is delivered to the dialogue
manager, and provides the settings of the
dialogue state.  The dialogue manager
consults a dialogue control table to decide
which operations to perform, and typically
engages in a module-to-module sub-dialogue
to retrieve tables from the database.  It
prepares a response frame, containing

weather reports represented as semantic
frames, which is sent to the generation
component for translation into the target
language2.  The speech synthesizer then
translates the response text into a speech
waveform, which it sends to the audio
server.  Finally, the audio server relays the
spoken response to the user over the
telephone.

MOKUSEI utilizes most of the same
human language technology components as
JUPITER, although some modifications were
necessary to account for differences between
English and Japanese.  For speech recogni-
tion, alternative pronunciations of lexical
items are generated using a set of phonologi-
cal rules appropriate for Japanese.   For
example, one set of phonological rules
accounts for the deletion of /i/ and /u/,
resulting in the word sequence “desu ka”
being pronounced as /d e s k a/.  Acoustic
models for the MOKUSEI recognizer were
initially trained entirely from English
utterances.  As Japanese data became
available, these models were retrained using
a combination of read and spontaneous
utterances.  For language modeling, the
class n-gram (consisting of some 50 classes)
were either created by hand and trained, or
derived automatically from the natural
language grammar used by the understand-
ing component of the system.

For language understanding, we were at
first concerned that a top-down parser, TINA,
might not be an appropriate choice for
Japanese, which is a left-recursive language.
The problem is that the system must
propose the entire parse column above the
first word before it has seen the rest of the
sentence.  The solution to this problem was

1 Mokusei is the Japanese name for the planet Jupiter.
2 Our English JUPITER system translates weather reports from English back into English.
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found through TINA’s trace mechanism.
Using this approach each new content word
is parsed first in a shallow parse tree, and
then later moved to a position just after the
subsequent particle that defines its role.
The upper columns of the parse tree are not
constructed until after the appropriate role
has been identified.  This has the intended
effect of reordering the constructs to appear
right-recursive.  The current grammar for
MOKUSEI has more than 900 categories and
more than 2,000 vocabulary entries.

Perhaps the most difficult aspect of
MOKUSEI is the translation of English
weather reports into Japanese.  In attempt-
ing to generate well-formed Japanese from
the semantic frames for the weather reports,
we encountered several situations where our
language generation component, GENESIS,
was unable to produce a natural Japanese
translation.  We found that more explicit
control was needed over the choice of both
the correct alternative translation of a given
word and the correct ordering of certain
constituents that were too deeply embed-
ded.  To solve these problems, we found it
necessary to completely redesign the GENESIS

system, thus providing far greater flexibility
in translation tasks.  Additional features of
this GENESIS-II system (c.f. page 43) include
better control over the ordering of constitu-
ents (e.g., noun phrase modifiers), and the
capability of selecting for context-dependent
lexical realization using the new  “push” and
“pull” capabilities.  These additional
features were essential for high quality
generation in Japanese.  For MOKUSEI, we
have created nearly 500 generation rules,
along with a generation vocabulary of about
3,000 entries.  For Japanese synthesis, we
made use of FLUET, a software synthesizer
provided by NTT Cyber Space Laboratories.

The database for MOKUSEI is nearly
identical to the one used by JUPITER.
However, we expanded the number of
Japanese cities from 6 to 46 for MOKUSEI.
We also provided in a geography table
information about the prefecture for each
city.  The weather information for the
expanded Japanese set is obtained from a
Web site.

The current status of MOKUSEI is that the
entire system is operational at MIT, and we
have used the system to collect some 2,000
read sentences, as well some 6,000 sponta-
neous sentences (in over 400 dialogues)
from naïve Japanese users who called the
system from Japan.  The current word error
rate, based on a 1,200 utterance test set
containing no out-of-vocabulary words and
with a test-set bigram perplexity of 22, is
15.4%.  In the coming months, we plan to
continue our data collection by installing a
system in Japan, and to improve all compo-
nents of MOKUSEI.  We will also expand its
domain of expertise, and evaluate its overall
performance.
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MOKUSEI:  A JAPANESE, TELEPHONE-BASED, CONVERSATIONAL SYSTEM IN THE WEATHER DOMAIN
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MUXING
Chao Wang, Victor Zue, Joe Polifroni, Stephanie Seneff, Jon Yi, and T.J. Hazen

Over three years after deployment, our
JUPITER weather information system has
proven to be a valuable resource for data
collection and system development.
Recently, we have become interested in
porting JUPITER to other languages besides
English, mostly to address issues of language
portability, but also with the hope that
JUPITER could become a vehicle for foreign
language learning. Over the past year, we
have developed a Mandarin Chinese version
of JUPITER, which we call “MUXING1.” MUXING

is now operational end-to-end, and we are
currently collecting additional data from
native speakers of Mandarin in order to
begin a process of refinement modelled
after our experiences with English. The
system is integrated into our overall GALAXY

Communicator architecture, configured as a
central hub providing the communications
links among a suite of servers, each specializ-
ing in different aspects of the overall system.

The JUPITER discourse and dialogue
components, as well as the database server,
are all language-transparent, operating from
a meaning representation which we call a
“semantic frame,” but which can also be
viewed as an interlingua. For the language-
dependent components such as speech
recognition, natural language understand-
ing, and language generation, the language-
specific knowledge, such as acoustic models
and grammar rules, is provided as control
files external to the servers. Currently, the

system uses a software synthesizer provided
by ITRI. However, we are in the process of
developing our own Mandarin synthesizer
based on the ENVOICE system (c.f. pages 35
and 75).

The recognizer is adapted from the
segment-based SUMMIT system. The initial
vocabulary is about 700 words, covering
more than 400 place names and other
common words used in weather queries.
Chinese syllable initials and finals are used
as acoustic model units. Tone models were
included in post-processing the recognizer
N-best output, as described in (c.f. page 72)

We were interested in modelling
contextual effects through the use of
boundary models. However, we have not
been able to train boundary models for the
Mandarin recognizer in the past, due to the
difficulty in manually grouping cross-phone
boundary classes based on phonological
knowledge, especially when training data are
very sparse. To address this problem, we
have implemented a data-driven approach to
derive boundary classes automatically, using
a decision-tree based clustering technique.
Altogether, forty one broad boundary
classes were obtained in this way.

A hierarchical language model was
developed which gave improved recognition
accuracy over a class N-gram model. It uses
N-gram probabilities to link “concepts,”
each of which expands recursively into
weighted sequences of concepts or words.
The language model is trained by parsing a
corpus using the TINA natural language
formalism. Each grammar rule is decom-
posed into a set of trigrams linking left
siblings with possible right siblings, in the
context of the parent. A set of distinguished

Table 3. Summary of syllable error
rate in percentage.

Configuration Dev Set Test Set

Baseline 20.1 23.1

+ Boundary 14.5 15.1

+ Tina LM 17.9 19.3

+ Both 13.7 13.9

1Muxing is the Chinese name for the planet Jupiter.
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categories are identified as classes for the
top-layer class n-gram. Once the grammar is
trained, it is written out as a finite state
transducer, which can then be composed
with the lexicon to define the search space
for recognition. Table 3 shows system
performance as each of these improvements
were added. The error rates are given for
syllables.

One of the most challenging aspects of
multilingual implementations is natural
language generation, since it is essentially a
translation of existing weather reports from
English. In preparing generation rules for
multilingual systems, we encountered a
number of new phenomena, which ulti-
mately inspired our group to develop an
entirely new version of GENESIS, our genera-
tion server (c.f. page 43).

Different mappings for particular
concepts in a semantic frame posed a
problem for generation in Chinese. For

{c weather_event
:pred

  {p becoming
:topic

    {q weather_act
:conditional “mostly”
:name “sunny”
:pred

      {p in_time
:topic

        {q time_of_day
:modifier “late”
:name “afternoon” } } } } }

Pinyin Paraphrase:
bang4 wan3    zhuan3  zhu3 yao4 wei2 qing2 tian1
around evening becoming   mostly    sunny

Figure 10. Example semantic
frame for the sentence, “becoming
mostly sunny in late afternoon,”
along with its paraphrase into
pinyin.

late “ ” ; $:late
afternoon “xia4 wu3” $:late “bang4 wan3”

Figure 11. Selected vocabulary
entries to illustrate mechanisms to
creatively combine two words into
a single mapping.

MUXING

example, the semantic frame in Figure 10
contains a modifier “late” for the word
“afternoon,” translated into Chinese as
“bang4 wan3.” However, it is not possible to
choose a single meaning for “late” that is
correct for “morning,” “afternoon,” and
“evening,” and likewise, it is not possible to
choose a single word for “afternoon” that is
correct for “early,” “late,” or no qualifier.
GENESIS-II provides the cabability for a
vocabulary item to specify a “selector,” that
is used to determine the surface form of any
other vocabulary item that falls within its
scope. Figure 11 contains examples from a
GENESIS-II vocabulary file showing the
placement of the selector “$:late” in the
vocabulary entry for “late,” and the associa-
tion of the surface form “bang4 wan3” with
that selector for the vocabulary item
“afternoon.”

Other phenomena such as temporal
order of adjectives and adverbs, which varies
greatly from Chinese to English, were
accounted for in a similar way in GENESIS-II.
GENESIS-II provides a mechanism to allow a
vocabulary item to generate a [:key value]
pair that is inserted directly into the
semantic frame. This mechanism interacts
with the message templates to essentially
post-hoc edit the frame to reassign inappro-
priately labelled keys, and, consequently, to
reposition their string expansions in the
surface form generation.

MUXING has been deployed on a publicly
available phone number, and we are in the
process of collecting and analyzing data
obtain from real users.

Reference
[1] C. Wang, S. Cyphers, X. Mou, J. Polifroni, S.
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access Mandarin Conversational System,” to
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2000.
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ORION
Stephanie Seneff, Chian Chuu and Scott Cyphers

Over the past year, we have begun to
explore the idea of off-line delegation, as a
natural extension of on-line interaction.  By
this, we mean that the user engages the
system in a conversation in order to specify
a task that the system should perform off-
line, contacting the user at a later time to
provide the requested information.

To this end, we have developed a new
system, ORION, which represents a distinct
departure from our standard system design
in three significant ways: (1) Delayed task
resolution: the user initially engages ORION

in a conversation in order to request that a
task be carried out at some designated time
in the future. (2) Server acts as a user: ORION

consults other conversational systems at
intervals in order to seek information that it
needs to execute the user’s task, and (3)
System initiates the call: at the appropriate
time, ORION calls back the user and provides
the requested information.  ORION can
currently handle a variety of different types
of tasks, as suggested by the list of example
queries in Figure 12.  It consults four other
systems to retrieve critical information:
MERCURY for flight schedules, PEGASUS for
flight status, VOYAGER for traffic conditions,
and JUPITER for weather.

The ORION system is configured using
the GALAXY Communicator architecture.
All of the servers communicate via a
common hub.  The ORION server plays two
distinct roles, each implemented as a
separate stream.  One is devoted to the
enrollment of new tasks and the other is
concerned with the execution of existing
tasks.  Users first enroll by providing critical
information about their name, appropriate
phone numbers, and e-mail address.  To edit
existing tasks or add new tasks, the user
interacts with ORION at a web site, using

spoken or typed interaction.  The tasks are
displayed in the graphical interface, and
ORION engages the user in a mixed-initiative
conversation until the task is fully specified.
The user can also enter new tasks in a
telephone-only interaction.  If a new task
needs to be executed today, it is sent to the
agent stream for an immediate update.
Eventually, the system will also support
speech-only task editing.

Generally there is a stack of pending
tasks being monitored by the agent stream.
A structure encoding the status of each task
is examined and updated at strategic times.
Updates usually involve enquiring for
information from one of the other servers,
using a module-to-module subdialogue.  For
example, a call-back request on a flight
would involve first determining from
MERCURY the scheduled departure time, then
requesting information about the actual
status of the flight from the PEGASUS server
at strategic intervals while the flight should
be in the air.  Finally, a call to the user is
launched at the predesignated trigger time.

ORION represents the early stages of an
ambitious long-term project. In the future,
we envision that people will be able to take
advantage of available on-line information
systems such that routine tasks can be
delegated to the computer as much as
possible, thus freeing humans to attend to
tasks that truly need their attention. We will
explore how we can build systems that can
easily customize and adapt to the users’
needs and desires. In the process, we will
also examine how a system such as ORION

could be made more intelligent by incorpo-
rating into its decision-making process all
available information at its disposal, both
about the domain and about the individual
user.  We believe that ORION has tremendous
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potential, although we are still working out
the details of some of the more difficult
aspects of its design, including user identifi-
cation, customization, resource allocation,
and task completion verification.

Figure 12. Examples of user
requests within the ORION domain. “Call me every weekday morning at 6 a.m. to wake me up.”

“Can you call me at 4:30 in the afternoon to remind me to take my medicine?’’

“Call me a half hour before flight 20 lands in Dallas”

“Send me e-mail any time between 6 and 8 a.m. if the traffic on Route 93          
Southbound is at a standstill.”

“Call Jim at 4 p.m. at 333-3333 to remind him to go to the dentist.”
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[1] S. Seneff, C. Chuu, and D. S. Cyphers,“ORION:
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Facilitating Spoken Language System Creation
with SPEECHBUILDER

James Glass, Jef Pearlman and Eugene Weinstein
Over the past decade researchers in the
Spoken Language Systems group have
developed several different conversational
systems.  These mixed-initiative systems are
research prototypes which require a large
amount of expertise in human language
technology (HLT) by the developers.  This
requirement represents an impediment to
the rate at which new systems can be
deployed, since it limits the pool of develop-
ers.  To address this issue, we have begun to
create a utility called SPEECHBUILDER, which
will lower the barrier to novice and interme-
diate developers, and allow them to rapidly
create conversational interfaces using state-
of-the-art human language technology
components.

From a research perspective, there are
several benefits to making the technology
more accessible to developers.  First, there is
an issue of automation; can infrastructure
be put in place to fully automate all aspects
of conversational system development?  This
task could involve research in missing
technologies, such as improved pronuncia-
tion generation of new words, or unsuper-
vised learning of acoustic and linguistic
models.  Second, there is the issue of
portability; how can the technology be made
to work robustly with a limited amount of
training data from a new domain?  Since
system development is often tied to data
collection, any data collected from new
application domains will benefit research in
portability by allowing researchers to
evaluate robustness of HLT components.

The SPEECHBUILDER utility is intended
to allow people unfamiliar with speech and
language processing to create their own
speech-based application.  The initial focus
of SPEECHBUILDER has been to allow
developers to specify the knowledge

representation and linguistic constraints
necessary to automate the design of speech
recognition and natural language under-
standing.  To do this, SPEECHBUILDER uses a
simple web-based interface which allows a
developer to describe the important
semantic concepts (e.g., objects, attributes)
for their application, and to show, via
example sentences, what kinds of actions are
capable of being performed.  Once the
developer has provided this information,
along with the URL to their CGI-based
back-end application, they can use
SPEECHBUILDER to automatically create their
own spoken dialogue system which they,
and others, can talk to in order to access
information.

Architecture
A SPEECHBUILDER application has two basic
parts: first, the HLTs which perform speech
recognition, language understanding etc.,
and second, the application back-end which
takes a semantic representation produced by
the language understanding component and
determines what information to return to
the user.  The HLTs are automatically
configured by SPEECHBUILDER using informa-
tion provided by the developer, and run on
compute servers residing at MIT.  The back-
end consists of a program (e.g., Perl script)
created by the developer using the Common
Gateway Interface (CGI) protocol, running
on a CGI-capable web server anywhere on
the Internet.  The semantic representation
produced by the HLTs takes the form of
conventional CGI parameters which get
passed to the back-end via standard HTTP
protocols.

There are four CGI parameters which
are currently used by SPEECHBUILDER: text,
action, frame, and history.  As may be
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surmised, the text parameter contains the
words which were understood from the
user, while the action parameter specifies
the kind of action being requested by the
user.  The frame parameter lists the
semantic concepts which were found in the
utterance.  In their simplest form, semantic
concepts are essentially key/value pairs (e.g.,
color=blue, city=Boston, etc).  More
complex semantic concepts have hierarchi-
cal structure such as:

time=(hour=11,minute=30,xm=AM),
item=(object=box,beside=(object=table)))

The following examples illustrate
possible action and frame values for
different user queries:

Since a CGI program does not retain
any state information (e.g., dialogue), the
history parameter enables a back-end to
provide information back to the HLT
servers that can be used to help interpret
subsequent queries.  For example, in the
following exchange the history parameter is
used to keep track of local discourse
context:

Knowledge Representation
Semantic concepts and linguistic constraints
are currently specified in SPEECHBUILDER via
keys and actions.  Keys usually define classes
of semantically equivalent words or word
sequences, so that all the entries of a key
class should play the same role in an
utterance.  All concepts which are expected
to reside in a frame must be a member of a
key class.  The following table contains
example keys.

Actions define classes of functionally
equivalent sentences, so that all the entries
of an action class perform the same
operation in the back-end.  All example
sentences will generate the appropriate
action CGI parameter if they are spoken by
the user.  SPEECHBUILDER will generalize all
example sentences containing particular key
entries to all the entries of the same key
class.  SPEECHBUILDER also tries to generalize
the non-key words in the example sentences
so that it can understand a wider range of
user queries than were provided by the
developer.  However, if the user does say
something that cannot be understood, the
action CGI parameter will have a value of
“unknown”, while the frame parameter will
contain all the keys which were decoded
from speech signal.  The following table
contains example actions.

turn on the lights in the kitchen

action=set&frame=(object=lights, room=kitchen, value=on) 

will it be raining in Boston on Friday

action=verify&frame=(city=Boston,day=Friday,property=rain)

are there any chinese restaurants on Main Street

action=identify&frame=(object=(type=restaurant,

cuisine=chinese, on=(street=Main,ext=Street))) 

I want to fly from Boston to San Francisco arriving before ten a m

action=list&frame=(src=BOS,dest=SFO,

arrival_time=(relative=before,time=(hour=10,xm=AM))) 

what is the phone number of John Smith

action=identify&frame=(property=phone,name=John+Smith) 

what about his email address

action=identify&frame=(property=email)

&history=(property=phone,name=John+Smith) 

what about Jane Doe

action=identify&frame=(name=Jane+Doe)

&history=(property=email,name=John+Smith) 

Key Examples

color red, green, blue 

day Monday, Tuesday, Wednesday 

room living room, dining room, kitchen

appliance living room, dining room, kitchen
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SPEECHBUILDER allows the developer to
build a structured grammar when this is
desired.  To do this, the developer needs to
bracket parts of some of the example
sentences in the action classes, in order that
the system may learn where the structure
lies.  For example, a bracketed sentence
might look like “Please put source=(the blue
box) destination=(on the table in the
location=(kitchen)).”  Based on the bracket-
ing, SPEECHBUILDER creates hierarchy in the
meaning representation and the frame
parameter.  Hierarchy can be recursive, or
conversely, can be flattened so that sub-
structure is removed from the final frame
parameter.  Note that bracketing a sentence
only involves pointing out the hierarchy as
the keys are still automatically discovered by
SPEECHBUILDER.

Web Interface
The first version of SPEECHBUILDER has a

web interface which allows developers to
edit their domains from anywhere on the
Internet.  The utility allows a developer to
modify or delete any of the applications
which they have previously created, or create
new ones.  To create a speech application, a
developer needs to provide to
SPEECHBUILDER 1) a comprehensive set of
semantic concepts, and example queries for
their particular domain (specified in terms
of keys and actions), and 2) the URL of a

CGI script which will take the CGI
parameters produced for a user query, and
provide the appropriate information.  Once
this has been done, the developer 1) presses
a button for SPEECHBUILDER to compile the
information for their application into a
form needed by the human language
components, 2) presses another button to
start the human language components for
their application running (on an MIT web
server), and 3) calls the SPEECHBUILDER

developer phone number and starts talking
to their system.

The concepts and actions specified by
the developer are stored in an XML
representation which is stored on our local
file system.  Since the SPEECHBUILDER utility
is a CGI script, the file is modified every
time changes are made to the domain.  If a
developer wishes to edit the XML file
themselves, it is possible to download the
XML file by selecting that option at the
upper left of the SPEECHBUILDER utility.
Similarly, it is possible to upload an XML
file into the user’s SPEECHBUILDER directory.

In addition to specifying constraints
and example sentences for their application
domain, the developer needs to build the
back-end which will provide the actual
domain-specific interaction to the user.  To
do this, the developer needs to have access
to a CGI-capable web server, and place the
script to be used at a URL matching the one
specified to SPEECHBUILDER.  Because of the
flexibility of CGI, it doesn’t matter whether
the CGI back-end is actually a Perl script, a
C program pretending to be a web server
itself, an Apache module, or any other
particular setup, as long as it adheres to the
CGI specification.  All of our testing to date
has been done using Perl and CGI.pm.  We
provide each developer with a sample

Action Examples

what is the forecast for Boston

identify what will the temperature be on Tuesday

I would like to know today's weather in Denver

turn the radio on in the kitchen please

set can you please turn off the dining room lights

turn on the tv in the living room

good bye

good_bye thank you very much good bye

see you later 

JAMES GLASS, JEF PEARLMAN AND EUGENE WEINSTEIN
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application domain when they register, and
provide a useful Perl module for parsing the
semantic arguments for developers creating
their CGI script.

Human Language Technology
The current focus of SPEECHBUILDER has
been on robust understanding so that the
discourse and dialogue components used
for our mainstream systems (e.g., JUPITER,
MERCURY, etc) are not yet incorporated.  In
addition the language generation compo-
nent is only used to create CGI parameters,
and has not been used for response genera-
tion.  These activities are the subject of
ongoing and future research.

In the area of language understanding,
the current interface with the speech
recognizer is via the conventional N-best
interface.  As in all our other systems, a
robust parsing mechanism is used to analyze
the utterance if no full parse is found.  For
speech recognition, a bigram language
model is derived from the language under-
standing component using a hierarchical n-
gram structure [1].  Acoustic models are
trained from telephone-based speech
collected from all our domains.  A phone-
based out-of-vocabulary model is incorpo-
rated to more robustly identify spoken
words which were not specified by the
developer [2].

Status and Plans
As of this date, the SPEECHBUILDER utility
has been used internally to create domains
in the control of home appliances, as well as
access to music and personnel information.
Once the necessary infrastructure to
support multiple developers has been put in
place, we plan to expand the pool of
developers to include people outside of our
group.

One of the next phases of research will
be to re-design our discourse component so
that it may be used by SPEECHBUILDER.
Future work will also develop an interface to
create mixed-initiative dialogues which can
automatically interface with our dialogue
module.  Finally, we would like to develop
an interface for our language generation
component, so that we can begin to develop
multilingual conversational interfaces with
SPEECHBUILDER without having to modify
the application back-end.
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Finite-State Transducer-Based Unit Selection
for Concatenative Speech Synthesis
Jon Yi, James Glass, and Lee Hetherington

Corpus-based concatenative methods and
unit selection mechanisms have recently
received increasing attention in the speech
synthesis community (e.g., [3,5]). Our
previous work with speech synthesis has
focused on using unit selection and
waveform concatenation techniques to
synthesize natural-sounding speech for
constrained spoken dialogue domains [6].
Following Hunt and Black [3], we organized
the synthesis constraints of unit selection
into concatenation and substitution costs,
which essentially prioritize where the speech
signal is spliced and which units are
appropriate for concatenation. Our
concatenative synthesizer, called ENVOICE, is
phonologically-based (i.e., symbolic), uses
phones as the fundamental synthesis unit,
and selects variable-length segments for
concatenation. When combined with a
domain-dependent corpus, it has produced
very natural sounding speech for several of
our spoken dialogue domains.

Our recent work has revolved around
developing a more general framework for
this synthesizer that would be easier to
maintain, extend, and deploy. Following our
successful use of finite-state transducers
(FSTs) for speech recognition [2], we have
also converted our synthesizer to an FST-
based representation. Synthesis is now
modeled as a composition of five FST
components: the word sequence, W, a
lexicon, L, containing baseform pronuncia-
tions, a set of phonological rules, P, a set of
transition phones, T, (used primarily for
search efficiency), and a synthesis compo-
nent, S, which maps all possible phone
sequences to waveform segments for a given
speech corpus. Unit selection is accom-
plished with a Viterbi or N-best search. Just
as we, and others, have found for speech

recognition, the FST formulation provides
clarity, consistency, and flexibility. In our
case, it also allows leveraging off of our
previous work with FST-based speech
recognition (e.g., pronunciation modelling
and search).

One of the main challenges of convert-
ing our phonological synthesis framework to
an FST representation was determining an
efficient structure for the synthesis FST, S.
Our solution was to introduce a series of
domain-independent intermediate layers,
which efficiently encapsulate both the
substitution and concatenation costs
between every phonetic segment in a speech
corpus. This structure has the property that
the size of the intermediate layers is fixed, so
that the size of the FST grows linearly with
the size of the corpus. This allows us to
avoid pruning mechanisms which would
need to be implemented if we had directly
connected every segment in the corpus [1].
Furthermore, this synthesis framework
incorporates both concatenation and
substitution costs as part of the FST, and
not just concatenation costs.

FST Representation
One of the key reasons we adopted an FST
representation is its ability to completely
and concisely capture finite-state con-
straints. Given a permissible input se-
quence, an FST can generate a graph of
output sequences [4]. The process of
transforming an input language into an
output language is guided by the states and
arcs specified in the FST topology. Arcs
have optional input and output labels (the

absence of a label is represented by the ε
symbol), and can also have weights associ-
ated with them. For example, a lexical
dictionary can be implemented with an FST
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that maps words to phonemes, with weights
possibly being used to model alternative
pronunciations. Since FSTs can be cascaded
in succession to effect further mappings, a
second phoneme-to-phone FST could be
used to transduce the phonemic sequence
into a phonetic sequence. The overall
composition would then map words to
phones.

With this representation, unit selection
for concatenative speech synthesis can be
modeled as a mapping from words to
waveform segments. Five FST components,
W, L, P, T, and S, perform the intervening
steps. This factoring allows us to indepen-
dently model, design, and refine the
underlying processes. When combined with
a search, these components work in
succession from an input sequence of words
to produce a sequence of waveform seg-
ments suitable for concatenation. For more
details of the individual FSTs, see the
student report by Jon Yi.

Search
The role of the search component is to find
the least-cost sequence of speech utterance
segments for a given text input. Specifically,
the search finds the least-cost path through

the composition of 

with S. In keeping with our parallelism
between recognition and synthesis, the
search we use is essentially the same Viterbi-
style dynamic programming beam search
that is used for recognition, except that
different graphs are searched. For synthesis,

we optimize TPLW ��� )( and then walk

through its states in topological order,
exploring compatible arcs in S at the same
time. Pruning consists of dynamic program-
ming pruning plus score- and count-based
beam pruning, which are tuned to achieve

real-time synthesis.
To reduce latency when synthesizing a

long system response, we break the response
into chunks separated by sentence bound-
aries and explicitly referenced pauses or
waveform segments called “shortcuts”
(described in the next section). Since the
state of the system is known at these
boundaries, the searches for each chunk can
be performed separately, allowing us to
perform waveform output for one chunk
while performing the search for a subse-
quent chunk.

Implementation
Based on the structures and algorithms
described in the previous section, we have
developed a set of software tools and servers
for working with this new FST framework.
These tools encompass the steps that are
performed in the assembling, testing, and
running of an FST-based concatenative
speech synthesizer. We use command-line
utilities for lexicon creation, constraints
compilation, and corpus instrumentation,
as well as for synthesis testing. The lexicon
creation process reuses tools from our
speech recognizer. The constraint kernel of
the synthesis FST is compiled from substitu-
tion and concatenation costs matrices. The
synthesis FST is then populated with
phones from a corpus of time-aligned
waveforms. FST synthesis can then be tested
with arbitrary sequences of in-vocabulary
words.

We have integrated FST synthesis as
networked servers into the GALAXY Commu-
nicator architecture which we use for all of
our spoken dialogue systems. Two servers
fulfill the text-to-speech conversion compo-
nent, and handle the separate tasks of unit
selection and waveform concatenation.
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Based on a client-server architecture, they
communicate with a central hub which
coordinates all tasks in a conversational
system. The two servers are pipelined and
perform synthesis at speeds sufficient for
interactive purposes.

Within our GALAXY Communicator
implementation, the first step of synthesis
actually begins in our natural language
generation server, GENESIS (c.f. page 43).
GENESIS recursively expands internal
meaning representations into text strings
which can be displayed directly on a display,
or sent to a synthesis server. The server
relies on a message or template file, a
lexicon, and a set of rewrite rules to perform
generation. For synthesis, the message file is
identical to that used for text generation.
The lexicon can optionally be modified to
expand abbreviations, or explicitly represent
waveform segments. These synthesis
“shortcuts” allow the developer to bypass
the search when desired, and provide
backwards compatibility with our earlier
word and phrase concatenation work.
Another feature of GENESIS which we use for
synthesis is the ability to specify features for
entries in the lexicon. We have used this to
help select words and syllables with the
correct prosodic context.

The GENESIS rewrite rules can be used to
perform text preparation for synthesis
beyond what may be needed for text
generation. For example, we have designed
regular-expression rules that rewrite flight
numbers and times originally in numerical
form into written form (e.g., 6425 –> sixty
four twenty five, 11:05 –> eleven oh five).
This configuration performs the responsi-
bilities typically assumed by a TTS text pre-
processing stage. Because it is part of the
generation component, it offers increased

accuracy (e.g., unambiguous abbreviation
expansion) and flexibility when developing
multiple domains and languages.

In the next step of the synthesis chain,
the unit selection server receives pre-
processed text to synthesize from the natural
language generation component. The word
sequence is converted into a phonetic
sequence by the lexical FST and prepared
for searching by the transition label FST. If
the word sequence is interrupted with
waveform segment “shortcuts”, phonetic
context must be maintained before and
after the waveform segment to ensure
correctness of the search.

Based on the results of the unit
selection search, the waveform concatena-
tion component receives instructions to
concatenate the appropriate waveform
segments. Currently, concatenation is
performed without signal processing. For
performance considerations, the waveform
concatenation server loads the entire corpus
of utterances from disk into memory at
startup time. As concatenation instructions
are received, waveform samples are streamed
to the output audio server. The waveform
concatenation and output audio servers can
be co-located for efficiency.

We have converted several of our
domains to use the ENVOICE synthesizer we
have developed [6]. The most recent system
consists of the MERCURY air travel domain for
flight information and pricing (c.f. page 9).
Synthesizer development typically begins
once the natural language generation
component has been completed for a
displayful system. Since the synthesizer
currently relies on a domain-dependent
corpus, the most time-consuming process is
usually the design of a set of prompts to be
read. As utterances are recorded, they can

JON YI, JAMES GLASS, AND LEE HETHERINGTON
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be transcribed with a speech recognizer and
inserted into the synthesis FST.

For domain specific synthesis, we have
used both manual and semi-automatic
means of designing recording prompts. For
example, static responses are recorded as a
whole. For covering responses with more
dynamic content, we use an underlying
generation template and fill it in with
different vocabulary items, such as numbers,
and names of cities and airlines. We have
also experimented with semi-automatic
means of selecting recording prompts. In
the past, for the purpose of synthesizing
proper nouns, we have used iterative, greedy
methods to compactly cover an inventory of
stress-marked, syllable-like units [6].

There are many other issues which we
plan to address in future work. In order to
reduce the abruptness of some concatena-
tion artifacts, we have begun to explore the
use of signal processing techniques to
modify both fundamental frequency and
segment duration. To date, we have taken
advantage of the constrained nature of
outputs in our conversational domains, and
have avoided the use of any kind of prosodic
generation module. Prosody has mainly
been incorporated at the lexical level in our
GENESIS language generation module, and
with our ongoing design of a general corpus
for the natural-sounding synthesis of
arbitrary words (e.g., proper nouns). We
would like to investigate corpus-based
prosodic generation in future work,
however.

Finally, we are interested in developing
synthesis capabilities for languages other
than English, and are actively working on a
version for Mandarin Chinese in a weather
information domain (c.f. page 27). This
system is currently using syllable onsets and

rhymes as the fundamental synthesis units
with tokenized phrases as the lexical
representation. We also have plans to work
on Spanish and Japanese synthesizers in the
near future.
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Barge-in
Nikko Ström

An important aspect of conversational
system design is the degree of naturalness
afforded the user in interacting with the
system. However, it is difficult to design a
system which can deal with the complex
nature of turn taking in a way that mimics
natural human-human interactions. While
it is desirable that the user be permitted to
interrupt the system at any time, in practice
this poses some technical difficulties that
may actually lead to intrusive disruptions of
the dialogue. The main problem is that it is
extremely difficult to design a capability to
detect true interruptions without ever
mistaking random environmental noises as
speech. One approach is to terminate the
verbal response only after carefully verifying
that the detected speech “makes sense,” i.e.,
that the recognition and understanding
components can interpret it as meaningful
speech. However, this approach suffers from
two problems: (1) the user perceives that the
system is unresponsive to their interruption,
due to the perceptibly long delay before it
stops talking, and (2) the superposition of
system speech intermixed with user speech
causes a degradation in recognition
performance, because the echo cancellation
signal processing is not 100% effective.

Given the above considerations, we
have implemented a barge-in capability
within the telephony server of our GALAXY

system which has a sophisticated model
permitting the system to respond immedi-
ately to perceived interrupts, and then
continue in a graceful and intuitive fashion
if the interrupt turns out to be a false alarm.
The system is designed as follows:

1. As soon as a candidate input speech
signal is detected, stop talking.

2. Process the recorded signal through
recognition and understanding.

3. If recognition confidence is suffi-
ciently high and the understanding
component produces a meaningful
semantic frame, proceed on to the
next turn.

4. Otherwise, the system speaks a filled-
pause signal (“um”), and continues
talking, beginning at the most recent
phrase boundary before the stopping
point.

This approach allows the barge-in
detector to occasionally make mistakes,
since the recovery process is natural and
non-disruptive.

The detection is based on a threshold
on the amount of energy detected at the
fundamental frequency of voicing. A simple
F0 detection algorithm provides a frequency
estimate, and the energy in the
autocorrelation coefficient at that frequency
is the thresholded parameter.

There may be times when it is desirable
that the system disallow barge-in, for
example if a disclaimer is presented, or
perhaps there is an advertisement that the
listener is required to hear. In these cases,
the system communicates to the user that
barege-in is disallowed by “raising its voice.”
This percept is implemented by a simple
high-frequency boost combined with a gain
in the total energy. This prosodic signal is
very clear and effective in communicating to
the user the desired message, that barging in
is not possible at this point.
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GENESIS-II
Lauren Baptist

Language generation is a fundamental
component of dialogue systems. In the
GALAXY conversational systems, the genera-
tion component, GENESIS, transforms a
meaning representation into a string in a
target “language” (e.g., English, Japanese,
SQL, speech waveforms). GENESIS’ role has
slowly expanded over time, and, conse-
quently, the original system is poorly suited
to some of the tasks for which it has been
adapted. In many cases, GENESIS exerts too
much control by “hardwiring” certain
features, such as conjunction generation
and wh-query movement, making it
difficult, if not impossible, to generate
appropriately in some situations. Further-
more, as we discovered through our
experiences with multilingual system
development, GENESIS’ method for ordering
constituents was often too constraining,
leading to awkward realizations in the target
language. Finally, the original system has a
somewhat idiosyncratic specification, using
different generation mechanisms for clauses,
predicates, topics, lists, and keywords.

Over the past year, we have imple-
mented a new version of GENESIS to resolve
many of the original system’s idiosyncrasies
and shortcomings. The resulting system,
GENESIS-II, has fulfilled our main goals,
which were to provide very straightforward
methods for simple generation tasks, while
also supporting the capability of handling
more challenging generation requirements,
such as movement phenomena, propagation
of linguistic features, structural reorganiza-
tion, generation from lists, and the context-
dependent specification of word sense.

In GENESIS-II, generation is controlled by
a set of generation rules in conjunction with
a lexicon mapping terminal strings to their
surface form realization. In defining the

syntax of the generation rules, we have
focused on creating an expressive language
with generalized mechanisms. This was
achieved by carefully designing notations
and commands in a generic way, so that
they would enjoy wider utility. Thus, the
same generation mechanism is used for
clauses, predicates, topics, and keywords.
Furthermore, users can explicitly (but
recursively) specify the ordering of all
constituents in the target string, allowing for
the correct generation of strings that were
impossible to generate in the original
system. Similarly, notations and commands
were carefully designed such that their
utility would extend beyond the original
requirement to other related aspects. For
example, we added selectors to allow for
context-sensitive word-sense disambiguation,
which were also effective in prosodic
selection for speech synthesis needs.

GENESIS-II also provides generic mecha-
nisms for handling conjunctions and wh-
query movement. Since the mechanisms for
wh-movement involve reorganizing frame
hierarchies, they also turned out to be
useful in the generation of foreign languages
with substantially different syntactic
organizations.

GENESIS-II allows frames to be grouped
into class hierarchies associated with
common generation templates, resulting in
a significant size reduction over the corre-
sponding rules in GENESIS-I. For example, we
were able to reduce the rule files for SQL in
the JUPITER weather domain by 50%. This
generality also leads to more efficient
porting to new languages.

We have thus far used GENESIS-II in a
number of specific domains and languages,
both formal and natural. In our JUPITER

domain, weather reports are being trans-
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lated into three languages besides English:
Spanish, Japanese, and Mandarin Chinese.
The quality of the translation is greatly
improved over what could have been
achieved using the original GENESIS system.
In the realm of formal languages, we use
GENESIS-II both to convert a linguistic frame
into an E-form and to generate database
queries, often represented in SQL. In our
MERCURY flight reservation domain, com-
mon generation rules are used for both
speech and text generation, where selected
entries in the speech lexicon can map
directly to pre-recorded waveforms, selected
for prosodic context when appropriate.

GENESIS-II

Reference
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Modeling Out-of-Vocabulary Words
for Robust Speech Recognition
Issam Bazzi

Current speech recognizers are capable of
recognizing only a fixed set of words
referred to as the recognizer vocabulary. No
matter how large this vocabulary is, there
are always out-of-vocabulary (OOV) words
that cannot be correctly recognized. OOV
words are a common occurrence in many
speech recognition applications, and are a
known source of recognition errors. For
example, in our JUPITER weather information
domain the OOV rate is approximately 2%,
and over 13% of the utterances contain
OOV words [1]. JUPITER utterances contain-
ing OOV words have a word error rate
(WER) of 51%, while those containing only
in-vocabulary words have a much lower
WER of 10.4%. Although part of the
increased WER on these OOV data is due
to out-of-domain queries and spontaneous
speech artifacts such as partial words, it is

true that OOV words contribute to the
increased WER. In this work, we introduce
a tactic for incorporating an explicit OOV
word model as part of the recognizer itself
to allow for OOV detection and recogni-
tion.

To incorporate an explicit OOV model
into the recognizer we start with a word-
based recognizer. The search space for
recognition can be viewed as finding the
best path(s) in the composition

where P represents the scored phonetic
graph, L is the lexicon mapping pronuncia-
tions to lexical units, and G is the language
model. Since an OOV word can consist of
any sequence of phones (subject to language
constraints), we construct a generic OOV
word model that allows for arbitrary phone

,GLPS ��=

Figure 13. The hybrid recognition
configuration.
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Figure 14. ROC curve for OOV
detection

MODELING OUT-OF-VOCABULARY WORDS FOR ROBUST SPEECH RECOGNITION

unknown word in the vocabulary.
The experiments we conducted for this

work are within the JUPITER weather
information domain [1]. The baseline
system is a word-based system that uses a set
of context-dependent diphone acoustic
models, whose feature representation was
based on the first 14 MFCCs averaged over
8 regions near hypothesized phonetic
boundaries [2]. Diphones were modeled
using diagonal Gaussians with a maximum
of 50 mixtures per model. The word lexicon
consisted of a total of 2,009 words, many of
which have multiple pronunciations.
Bigram language models were used both at
the word-level, as well as at the phone-level
for the OOV model. The main goal of these
experiments was to demonstrate whether we
can detect OOV words without significantly
degrading the performance of the word
recognizer on IV utterances. For this reason
we measured word error rates (WERs) and
OOV false detection (alarm) rates on In-
Vocabulary. We also measured the OOV
detection rate on the OOV test data to see
how well we could detect OOV words.

For the series of experiments we present
here, we varied the OOV penalty C

oov
.

Figure 14 shows the Receiver Operating
Characteristics (ROC) curve for several
values of C

oov
. Figure 15 shows the WER for

the IV test set as the false alarm rate
increases on the IV data. As expected the
WER increases with the increase in the false
alarm rate. The results we obtained so far
are quite encouraging. With a very simple
generic word model, we were able to detect
around half of the OOV words (47%) with a
very small degradation in WER (0.3%) as
well as a low false alarm (1.3%).

sequences during recognition. One of the
simplest word models is a phone recognizer.
In FST terms, a phone recognizer can be
represented as:

Where Lp  and Gp  are the phone lexicon
and grammar, respectively.

To incorporate this OOV model into
the word recognizer, we create a hybrid
recognizer by adding an OOV word to the
baseline word recognizer’s vocabulary. The
underlying model for this OOV word is the
generic word model. Figure 13 shows how
the word search space is augmented with
the generic word model. We simply allow
the search to have transitions into and out
of the generic word model.

The transition into the generic word
model is controlled via an OOV penalty (or
cost) C

oov
 . This penalty is related to the

probability of observing an OOV word and
is used to balance the contribution of the
OOV phone grammar to the overall score of
the utterance. The hybrid recognizer can be
represented with FSTs as follows:

where SH  is the hybrid search space. Toov is

the topology of the OOV word. G′  is

simply the same as  except for the extra
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Figure 15. IV WER versus false
alarm rate.

ISSAM BAZZI

For our future work, we are working on
incorporating a probabilistic duration
model for OOV words. This duration
model will require a minimum number of
phones for an OOV word as well as
probability scores for different word lengths.
Another aspect of the approach we are
working on is the use of larger units
(syllables) to model the OOV word.
Syllables should provide a more robust sub-
word unit to model generic words. In
addition, we are considering the use of
classes of OOV words (instead of only one)
such as an OOV model for city names,
another for weather terms, and so on.
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Using Support Vector Machines
for Spoken Digit Recognition
Issam Bazzi

would result in a variable size feature set
since different words have different dura-
tion. The approach we adopted is based on
removing MFCC vectors at points in time
where the MFCCs change the least until
only a fixed number of MFCC vectors are
left in the feature set.

An SVM is only a binary or a 2-way
classifier. For our problem of digit recogni-
tion, we need to be able to classify among
10 classes. Performing N-way classification
with a 2-way classifier is usually done using
either a voting or a scoring mechanism. The
first approach we explored was to train 10
binary classifiers. Each of the binary
classifiers is trained to recognize a particular
digit from all other digits. Having these 10
classifiers, we can test membership of a test
point by running it through all of them. If
all but one test negative, the one that tests
positive will be our classification choice.
This is not usually the case since more than
one classifier could test positive (or none).
Hence, we used a more general scheme: the

class of choice is Copt  such that:

Where [ ]Cd iSVM  is the distance of the test
point from the separating hyper-plane for

classifier Ci . In the second approach, we
build classifiers for each pair of digits, hence
the term pair-wise classifiers. For 10 digits,
the number of classifier is 45 (10-choose-2).
Running the test point through each
classifier gives us 45 hypotheses for the
possible class the point could belong to. The

class of choice is Copt  such that:

Where NSVM  is the number of classifiers

voting for class Ci . Hence deciding on the

Support Vector Machines (SVM) is a novel
pattern classification technique that has
been successfully applied to many pattern
recognition problems in the areas of
machine vision, text classification, market-
ing, and medicine [1]. The SVM framework
is based on minimizing the expected risk of
making a classification error. In contrast to
traditional Bayesian classification methods,
where probability density estimation is
required for each class, an SVM does not
require any density estimation. An SVM
transfers the training data to a high
dimensional space via a kernel function.
Then, it finds an optimal separating hyper-
plane that divides this high dimensional
space into decision regions. The appeal of
the SVM framework for speech recognition
is twofold. First, SVMs have a great ability to
generalize even with a small number of
examples and a high-dimension feature
space. Second, a trained SVM needs a small
amount of computation to perform the
recognition task. As a result, SVM consti-
tutes an inexpensive classifier for systems
with a small vocabulary.

In this work, we address the problem of
recognizing isolated spoken digits in
English. Although the problem is simple, it
allows us to examine the potential use of
SVMs for speech recognition, the prepro-
cessing required to extract a fixed size
feature vector from the temporal speech
signal, and the size of the feature space that
can be used in this recognition framework.

The input to the SVM classifier is a
fixed-size feature vector that represents a
whole word (digit). The SVM feature vector
is generated from the Mel Frequency
cepstral coefficients (MFCCs). However,
concatenating all MFCC vectors associated
with a word into one SVM feature vector

[ ]CdC iSVMiopt maxarg=

[ ]CNC iSVMiopt maxarg=
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class is done via a voting scheme among all
classifiers.

For our work we used the 1992 and
1994 OGI speech database. For the
experiments we conducted, we used the
digit utterances from 133 speakers (two
thirds for training and one third for testing).
For the baseline, we used a Gaussian
mixture classifier, where the best accuracy
was 90.7% (9.3% classification error rate).

In one set of experiments, we investigate
varying an important parameter of the SVM
classifier, the variance of the Gaussian
kernel used to map the feature space.
Results are shown in Figure 16 for the 1-
versus-N classifier with 60 PCA features.

In another set of experiments, we look
at the impact of varying the number of PCA
features on the accuracy of the 1-versus-N
classifier with a Gaussian kernel. Figure 17
summarizes the results. The graphs indicate
that we obtain the best performance when
we use 45 PCA features.

Our best performing SVM classifier
achieves a 94.9% accuracy on digit recogni-
tion and outperforms a Gaussian mixture
classifier for the same training and testing
data. However, current speech recognition
systems can achieve 99% or more accuracy
for the task of spoken digit recognition for
phone numbers [2]. Given the scope of this
work, the simplified approach we followed,
and the fact that our method was purely
based on the acoustic evidence, we believe
that our results are quite encouraging as our
first attempt to using the SVM framework
for speech recognition. Current speech
systems rely heavily on various sources of
information that we did not utilize in our
approach. There is much that can be done
to improve the performance such as the use
of more training data and incorporating

phonological and pronunciation rules and
higher-level language constraints into the
recognition process.

References
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Figure 16. 1-vs-N classifier
performance vs Gaussian variance.

Figure 17. The effect of varying
the number of PCA features.
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Building a Speech Understanding System Using
Word Spotting Techniques
Theresa Burianek and Timothy J. Hazen

This work discusses the development and
evaluation of a simple word and phrase
spotting understanding component within a
spoken language system [1]. This use of
simple word and phrase spotting techniques
is explored as an alternative to the use of
TINA, a natural language understanding
system which attempts to perform full
understanding of input utterances [2]. This
topic is explored because the development
of word and phrase spotting grammars is
simpler and faster than the development of
typical full TINA grammars. This approach
may be easier for system developers who are
not knowledgeable in linguistics or do not
have the time to spend to develop a full-
understanding grammar.

A word spotting understanding server
was implemented within the GALAXY

Communicator architecture. The grammar
for this server is specified using the Java
Speech Grammar Format (JSGF), which can
represent basic context free grammars. The
server reads the JSGF grammar and
converts in into a finite state transducer
(FST) representation whose input is words
and whose output is concept [key:value]
pairs. This approach is quite flexible and
can even be incorporated directly into the
recognizer without requiring an additional
understanding server. The use of an
external server allows additional pre-

processing of the recognizer’s hypothesized
word strings, such as confidence scoring
rejection, to occur before the understanding
FST is applied.

An evaluation of the capabilities of this
server was conducted in the context of the
JUPITER weather information domain [3].
The initial word spotting grammar was
initially developed in a matter of hours and
was refined over the course of a few days
based on performance evaluations on a
development test set. The word spotting
technique was evaluated on an independent
test set of JUPITER utterances by comparing
its concept [key:value] pair understanding
error rate against that of the TINA natural
language understanding component [4]. The
understanding evaluation also incorporated
the use of word rejection based on confi-
dence scoring. The results, presented in the
table below, were encouraging and sustained
the hypothesis that simple word and phrase
spotting grammars can perform adequately
for basic understanding tasks. Regardless of
the use of word rejection, the full TINA

grammar had approximately 25% fewer
errors than the word spotting system.
However, considerably more effort was
expended on developing the TINA grammar
and additional effort applied to the word
and phrase spotting grammar should result
in further reductions in its error rate.
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Table 4. Concept error rates of the
word and phrase spotting
understanding server versus the
TINA natural language server when
using and not using rejection of
words with poor recognition
confidence scores.

Understanding Word Rejection
Approach Used? Sub Ins Del Total
Word Spotting No 3.9 18.5 12.9 35.2
TINA No 2.6 13.8 9 27.1
Word Spotting Yes 2.6 6.2 17.8 26.6
TINA Yes 1.8 4.3 13.6 19.7

Concept Error Rates (%)
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A Three-Stage Solution
to Flexible Vocabulary Speech Understanding
Grace Chung

For most conversational systems today, the
gap in performance between sentences with
out-of-vocabulary words and in-vocabulary
sentences remains wide. It is important for
systems to detect the incidence of unknown
words and handle them intelligently. In the
JUPITER weather domain, many user queries
pertain to weather information for un-
known cities, and currently the system
either misunderstands the utterance or
rejects it. We envision a future system that
can inform the user whenever weather for
the city in question is unavailable, and
additionally incorporate this previously
unseen city name into the lexicon. This
system would be able to detect out-of-
vocabulary items, dynamically incorporating
them during recognition time. In the past,
we have proposed a two-stage architecture
where a domain-independent first stage,
utilizing sublexical models, is interfaced via
a phonetic network to a second-stage
recognizer that utilizes probabilistic context
free grammars for both subword and higher
level linguistic knowledge in an integrated
search. Recently, we have developed a three-
stage implementation that enables our
speech understanding system to detect
unknown words, hypothesize their phonetic
and orthographic transcriptions, and
possibly incorporate them without addi-
tional training.

The current architecture consists of the
following stages. The first stage utilizes
sublexical information derived from the
ANGIE framework. ANGIE, first introduced in
[3], models sublexical phenomena via a
hierachical structure which is trainable and
probabilistic. Our work focuses on novel
ways to incorporate low-level linguistic
models, including those derived from ANGIE,
efficiently in the first stage. The output

from the first stage is a phonetic lattice. This
guides the second-stage search which yields a
word graph, indicating the locations of any
detected unknown words. Finally, the third
stage involves the application of a probabi-
listic natural language model by using the
TINA natural language system [2].

Our first stage is designed to be flexible
so that novel phonetic sequences associated
with new words are supported by the
language models, while recognition accuracy
on in-vocabulary data is maintained. This is
accomplished by maximizing linguistic
constraints that utilize only low-level
domain-independent information. Our
methods are facilitated by a system which
has adopted finite-state transducers (FSTs)
to represent its language models. Previously
in [1], we developed a method for encapsu-
lating the hierarchical models of ANGIE

within an FST. We have since introduced
the column-bigram method, which trans-
lates more efficiently the context-free
formalism of ANGIE into the more tractable
FST representation for integration with a
recognizer. After training on in-vocabulary
data, this FST is capable of accepting, with
non-zero probabilities, novel phonetic
sequences pertaining to unknown words.
While our previous representation simply
memorizes training data and their assigned
ANGIE probabilities, the column-bigram FST
generalizes across unseen data with similar
substructures. Yet it remains a compact
representation of ANGIE’s rich hierarchical
space.

A second feature is the ability to
augment the column-bigram FST with
grapheme information. We are motivated by
the desire to (1) derive letter spellings
directly during recognition upon encounter-
ing an unknown word, and (2) utilize
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grapheme information as an additional
source of low-level constraint in the first
stage. We have designed an ANGIE grammar
that simultaneously captures letter-to-sound
information and phonological phenomena
in the probability models. A set of hybrid
“letter-phonemes” enriches the probability
space by encoding both spelling and
phonemic information. These units were
designed by augmenting the original set of
phonemes with carefully chosen characteris-
tics such as spelling, pronunciation, syllable-
position and stress, (e.g. ea_l+ is a stressed
long vowel with spelling “ea.”) In the JUPITER

domain, the new enhanced ANGIE grammar
leads to perplexity reduction, an indication
of the tighter linguistic constraint it offers.
This “letter-phoneme” grammar is subse-
quently used in a column-bigram FST that
represents the corresponding ANGIE models.

The third feature of the first stage is the
use of an optimized lexical space that has
been automatically generated. This is driven
by the need for greater efficiency in stage
one but at the same time using linguistic
models that combine syllable n-gram
knowledge and sublexical probabilities
together with spelling information. Our
solution is to derive a novel set of syllable-
level units via an autmatic procedure which
aims to improve the probability likelihood
at every iteration. This procedure begins
with the column-bigram FST and iteratively
builds novel syllable-sized units by concat-
enating grapheme-based sequences. At each
iteration, lexical units are chosen to improve
probability modeling and reduce perplexity.
Upon achieving convergence, a more
compact syllable lexicon is produced.

The phonetic lattice from the first stage
constrains a best-first search in the second
stage. This recognizer allows the incidence

of unknown words and employs ANGIE’s
dynamic parse mechanism to guide pho-
netic hypotheses. In the case where a novel
phonetic sequence is proposed, and an
ANGIE parse has succeeded, the associated
probability score is returned with an out-of-
vocabulary flag. A hypothesized spelling may
also be accessed from ANGIE.

In the third stage, TINA parses word
graphs constructed during the second stage,
which may possibly contain unknown
words. The highest scoring sentence
hypothesis is selected according to TINA

models. This method also computes a
meaning representation for further process-
ing in the dialogue system.

This flexible vocabulary system has been
implemented in the JUPITER weather
information domain and we conducted
recognition experiments on utterances
containing unknown city names. On an
independent test set, we compare word
(WER) and understanding (UER) error rate
with a baseline recognizer that does not
have the capability to handle unknown
words. We also experiment with a two-stage
variant that employs TINA integrated with
ANGIE in the second-stage search [1]. In both
cases, TINA has been trained such that
unknown words are permitted to occur
exclusively when an unknown city category
can be admitted in the grammar. Compared
with the baseline, we achieve up to 29.3%
reduction in WER (from 24.6% to 17.4%)
and 67.5% reduction in UER (from 67.0%
to 21.8%) in the three-stage system. Such
significant improvements are derived from
increased in-vocabulary recognition
performance combined with success in
detecting unknown word occurrences. In a
separate pilot experiment, we extract
spelling hypotheses directly from our ANGIE
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models during recognition. For the subset
of utterances where an unknown city is
correctly detected, we computed the letter
accuracy to be 42.2%. Thus, we demon-
strate the possibility of instantaneously
incorporating the unknown city.
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Lexical Modeling of Non-Native Speech
for Automatic Speech Recognition
Karen Livescu

Automatic speech recognizers have been
observed to perform drastically worse on
non-native speakers than on native speakers.
We have investigated the effect of non-
native speech on several components of a
speech recognizer. Here we describe one
aspect of this work, namely a technique for
modeling the ways in which non-native
speakers pronounce words differently from
native speakers [2, 3].

In order to better model non-native
pronunciation, or lexical, patterns, we have
explored modifications to the lexicon to
account for pronunciation variants that
non-native speakers are likely to use. Ideally,
we would like to collect entire word
pronunciations and train their probabilities
from real non-native data. However, since
there are not enough instances of each word
in the non-native training data available to
us, we have instead chosen to derive simpler
rules from the data, which we then apply to
the baseline lexicon. Specifically, we have
constrained ourselves in this initial investi-
gation to context-independent phonetic
confusion rules, i.e., substitutions, dele-
tions, and insertions of phones irrespective
of the neighboring phones. Although
context-dependent rules would contain
more information, the larger required
number of parameters would be difficult to
train from the limited amount of available
training data.

The speech recognizer for these
experiments can be represented as a
composition of finite-state transducers
(FSTs), each of which models one of the
components of the recognizer (acoustic-
phonetic graph, lexicon, language model).
In this framework, phonetic confusion rules
can be easily and naturally incorporated
into the recognizer by adding a simple

transducer between the acoustic-phonetic
and lexicon FSTs. Each of the confusions is
associated with a probability of that
confusion occurring. This is equivalent to
adding a large number of pronunciations to
the lexicon, corresponding to applying each
of the confusions to each of the baseline
pronunciations, with two important
distinctions: (1) we need not actually rebuild
the lexicon for each experiment, thereby
saving the space that would be needed to
store all of the lexicons, and (2) we can
perform the composition of the confusion
FST with the lexicon during recognition,
dynamically pruning out unlikely hypoth-
eses and again reducing the space require-
ments of the recognizer. Using this architec-
ture, then, we can experiment with many
different versions of the confusion rules
simply by changing the corresponding
transducer.

In order to estimate the probabilities of
the confusions, we need a phonetic tran-
scription for each training utterance,
aligned with the corresponding pronuncia-
tion according to the baseline lexicon. In
our approach, these transcriptions are
generated automatically (as described below)
and aligned with the lexicon using an
automatic string alignment procedure. Once
the alignments are obtained, we estimate
the probability of each phonetic confusion
from its frequency in the alignments.

We have performed recognition
experiments on utterances recorded from
users of JUPITER [1], a conversational system
providing weather information. For the
initial set of experiments, we obtained the
phonetic transcription of each non-native
utterance by recognizing it with a phonetic
recognizer. This produces an errorful
transcription, since it does not use any
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knowledge of the words in the utterance,
but it serves as a starting point. After
transcribing the non-native training set in
this way, we obtain our first estimates of the
confusion probabilities. Recognition
experiments with this first iteration of
confusion estimates indicated that they were
not sufficiently well-trained to improve
recognition performance.

However, once initial estimates for the
confusion probabilities are obtained, they
can be used to produce more accurate
transcriptions. Using our knowledge of the
word sequence in each training utterance,
we combined the baseline lexicon with the
initial confusion estimates to obtain the
most likely pronunciation for each word.
This produced a set of improved transcrip-
tions, from which we computed new
estimates of the confusion probabilities.

The resulting probabilities corresponded
more closely to our expectations about likely
phonetic confusions in non-native speech.
Figure 18 shows the final probability
estimates in the form of a bubble plot.

Using this new set of confusions, we
performed experiments in which we varied
the size of the confusion FST by including
only the most likely confusions up to a
certain pruning threshold. Varying the
threshold allowed us to explore the tradeoff
between a faster recognizer with fewer
allowed confusions and a slower but more
accurate recognizer. Figure 19 shows the
word error rate of the recognizer for various
settings of the pruning threshold, with a
threshold of 0 corresponding to including
no confusions (i.e. using the baseline
lexicon) and 12 corresponding to allowing
all of the confusions that occurred in the

Figure 18. Bubble plot showing the
estimated probability of each
phonetic confusion. The y-axis
shows the intended (lexical) phone
and the x-axis shows the actual
(surface) phone used by non-native
speakers. The size of a bubble
represents how likely the
corresponding confusion is.
Deletions are represented as
confusions from some lexical phone
to the “NULL” surface phone, and
insertions are confusions from
“NULL” to some non-null surface
phone. For example, this plot
indicates that an [ih], if
mispronounced, is most likely to
become an [iy]; and a glottalized t,
[tq], is most likely to be deleted if
mispronounced. The bubbles along
the diagonal, corresponding to the
probabilities of correct
pronunciations, have been removed
for clarity.

LEXICAL MODELING OF NON-NATIVE SPEECH FOR AUTOMATIC SPEECH RECOGNITION
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training set. The word error rate monotoni-
cally decreases as we add more confusions.
When all of the confusions are included,
the error rate is reduced to 18.8%, a highly
significant improvement from the baseline
error rate of 20.9%.

These results demonstrate that, if the
recognizer knows that an input utterance is
non-native, then it can do significantly
better by including simple context-indepen-
dent phonetic confusion rules. These rules
can be automatically extracted from a non-
native training set and easily incorporated
into a finite-state transducer-based recogni-
tion architecture. It is noteworthy that using
the recognizer that achieved the best
performance on non-native speakers did not
degrade the performance on native speakers
(although it did increase the running time),
which is an encouraging sign for future
work combining native and non-native

Figure 19. Word error rate on a
non-native test set as a function of
pruning threshold on the confusion
probabilities, compared to a
baseline recognizer with no
confusions. The threshold cprune
corresponds to a negative log
probability rather than a
probability; therefore, the higher the
threshold, the more confusions are
allowed. The word error rate is
higher than baseline at the lower
pruning thresholds because of
measures that were taken to save
computation time.

recognition. Other possibilities for future
work in this area include performing
additional iterations of confusion probabil-
ity estimation, reducing the running time
and memory requirements of the modified
recognizer, and modeling context-dependent
confusions as more data become available.
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The Use of Dynamic Reliability Scoring
in Speech Recognition
Xiaolong Mou

Speech recognition is usually formulated as
a problem of searching for the best string of
symbols, subject to the constraints imposed
by the acoustic and language models. In
implementing such a formulation, systems
typically apply the constraints uniformly
across the entire utterance. This does not
take into account the fact that some units
along the search path may be modeled and
recognized more reliably than others. One
possible way to incorporate reliability
information is through word- and utterance-
level rejection [1]. However, this approach
only provides confidence information after
the recognition is done. In contrast, we
attempt to dynamically incorporate reliabil-
ity information into the search phase in
order to help the recognizer find the correct
path.

In this work, we introduce the notion of
dynamic reliability scoring that adjusts the
partial path score while the recognizer
searches through the composed lexical and
acoustic-phonetic network. In our scheme,
the recognizer evaluates the reliability of
choosing a hypothesized arc to extend the
current path by adding a weighted phonetic
reliability score to the current path score.
The reliability score is obtained from a
reliability model that gives the likelihood of
extending the current path using one
specific arc as opposed to using its immedi-
ate competing alternatives. The reliability
models are trained from transcribed speech
data. First a forced alignment search is
conducted to obtain the references to
correct paths. Then, for each partial path
along the forced path, the score of the arc
that extends the forced path, denoted s ,
and the scores of the arcs that are not in the
forced path, denoted  , are collected.
After that, Gaussian models for the correct

scoring (i.e., scores of arcs that are in the
forced path), sM  , and incorrect scoring (i.e.,
scores of those not in the forced path), tM ,

are trained. Figure 20 shows typical trained
reliability models sM and tM for a given arc
in the lexical network. The further apart the
two models and the smaller their variances
are, the easier it would be to distinguish the
correct arc from its immediate competing
alternatives while searching.

After all the models are trained, we can
obtain reliability measurement on the fly
while searching through the network. The
reliability measurement is essentially the
likelihood that a particular arc in the
network with score s  is in the right path
while its immediate competitors with
acoustic scores  are not in the right
path. It is given by the following formula
(assuming the correct and competing paths
are independent):
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Because we try to use the reliability
score to help the recognizer choose a
hypothesis arc from its immediate competing

arcs,  )|,,( 21 tn Mtttsp � is a constant factor

here, and we can then just use the log
domain score ))|()|(log( ts MspMsp  as the

reliability measurement, which saves a lot of
computation effort during the search.

The recognizer’s acoustic models and
reliability models are trained and evaluated
in an English weather information domain
called JUPITER and a development Mandarin
Chinese weather information domain called
PANDA. For the JUPITER domain, the training
set consists of 24,182 live utterances
recorded over the phone and the test set
consists of 1,806 utterances randomly
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selected from the data collection indepen-
dent of the training set. Both di-phone and
segment models are used, and the reliability
models are built on the normalized and
combined boundary and segment scores.
For the PANDA domain, the training set
consists of 1,455 utterances and the test set
consists of 244 utterances. Only segment
models are used because of insufficient
training data, and the reliability models are
built on the normalized segment scores.

We have incorporated the reliability
scheme into the segment-based, SUMMIT [2]
speech recognition system. On the JUPITER

test set of 1,806 utterances without out-of-
vocabulary (OOV) words, we achieve 9.8%
reduction in word error rate (WER) after
using the reliability modeling scheme
described above. On the PANDA test set of
244 utterances without OOV words, we
achieve 12.4% reduction in WER. This
demonstrates that reliability models can be
used to address the fact that units along the
search path are modeled and recognized
with different reliability, and to help early
recovery of search errors.

Figure 20. The reliability models

sM   (correct scoring) and tM
(incorrect scoring) trained for an
arc labeled [t] in the lexical
network of the word “want”.
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Subword-based Approaches
for Spoken Document Retrieval
Kenney Ng

This thesis explored approaches to the
problem of spoken document retrieval
(SDR), which is the task of automatically
indexing and then retrieving relevant items
from a large collection of recorded speech
messages in response to a user specified
natural language text query. We investigated
the use of subword unit representations for
SDR as an alternative to words generated by
either keyword spotting or continuous
speech recognition.  Our investigation is
motivated by the observation that word-
based retrieval approaches face the problem
of either having to know the keywords to
search for a priori, or requiring a very large
recognition vocabulary in order to cover the
contents of growing and diverse message
collections.  The use of subword units in the
recognizer constrains the size of the
vocabulary needed to cover the language;
and the use of subword units as indexing
terms allows for the detection of new user-
specified query terms during retrieval.  Four
research issues were addressed:

1) What are suitable subword units and
how well can they perform?

2) How can these units be reliably
extracted from the speech signal?

3) What is the behavior of the subword
units when there are speech recogni-
tion errors and how well do they
perform?

4) How can the indexing and retrieval
methods be modified to take into
account the fact that the speech
recognition output will be errorful?

In this thesis, we made the following
contributions to research in the area of
spoken document retrieval:

 - An empirical study of the ability of
different subword units to perform
spoken document retrieval and their
behavior in the presence of speech
recognition errors.

 - The development of a number of robust
indexing and retrieval methods that can
improve retrieval performance when
there are speech recognition errors.

 - The development of a novel spoken
document retrieval approach with a
tighter coupling between the recogni-
tion and retrieval components that
results in improved retrieval perfor-
mance when there are speech recogni-
tion errors.

 - The development of a novel probabilis-
tic information retrieval model that
achieves state-of-the-art performance on
standardized text retrieval tasks.

In the following sections, we give a brief
summary of the main chapters in the thesis
and finally close by mentioning some
possible directions for future work.

Feasibility of Subword
Units for Information
Retrieval
We first explored a range of subword units
of varying complexity derived from error-
free phonetic transcriptions and measured
their ability to effectively index and retrieve
speech messages [5,6]. These experiments
provide an upper bound on the perfor-
mance of the different subword units since
they assume that the underlying phonetic
recognition is error-free.  In particular, we
examined overlapping, fixed-length phone
sequences and broad phonetic class
sequences, and non-overlapping, variable-
length, phone sequences derived automati-
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cally (multigrams) and by rule (syllables).
We found that many different subword
units are able to capture enough informa-
tion to perform effective retrieval.  We saw
that overlapping subword units perform
better than non-overlapping units.  There is
also a tradeoff between the number of
phonetic class labels and the sequence
length required to achieve good perfor-
mance.  With the appropriate choice of
subword units it is possible to achieve
retrieval performance approaching that of
text-based word units if the underlying
phonetic  units are recognized correctly.
Although we were able to automatically
derive a meaningful set of subword “stop”
terms, experiments using the stop-list did
not result in significant improvements in
retrieval performance.

Extracting Subword Units
from Spoken Documents
Next, we trained and tuned a phonetic
recognizer to operate on the radio broadcast
news domain and used it to process the
spoken document collection to generate
phonetic transcriptions [7].  We then
explored a range of subword unit indexing
terms of varying complexity derived from
these errorful phonetic transcriptions and
measured their ability to perform spoken
document retrieval.  We found that in the
presence of phonetic recognition errors,
retrieval performance degrades, as expected,
compared to using error-free phonetic
transcriptions or word-level text units:
performance falls to 60% of the clean
reference performance.  However, many
subword unit indexing terms still give
reasonable performance even without the
use of any error compensation techniques.
We also observed that there is a strong

correlation between recognition and
retrieval performance: better phonetic
recognition performance leads to improved
retrieval performance. These experiments
establish a lower bound on the retrieval
performance of the different subword units
since no error compensation techniques are
used.  We know that there are speech
recognition errors, but we are not doing
anything about them.  Hopefully improving
the performance of the recognizer and
developing robust indexing and retrieval
methods to deal with the recognition errors
will help improve retrieval performance.

Robust Indexing and
Retrieval Methods
We investigated a number of robust
methods in an effort to improve spoken
document retrieval performance when there
are speech recognition errors [2].  In the
first approach, the original query is modi-
fied to include near-miss terms that could
match erroneously recognized speech.  The
second approach involves developing a new
document-query retrieval measure using
approximate term matching designed to be
less sensitive to speech recognition errors.
In the third method, the document is
expanded to include multiple recognition
candidates to increase the chance of
capturing the correct hypothesis. The fourth
method modifies the original query using
automatic relevance feedback to include
new terms as well as approximate match
terms.  The last method involves combining
information from multiple subword unit
representations.  We studied the different
methods individually and then explored the
effects of combining them.  We found that
using a new approximate match retrieval
metric, modifying the queries via automatic
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relevance feedback, and expanding the
documents with N-best recognition hypoth-
eses improved performance; subword unit
fusion, however, resulted in only marginal
gains. Combining the approaches resulted
in additive performance improvements.
Using these robust methods improved
retrieval performance using subword units
generated from errorful phonetic recogni-
tion transcriptions by 23%.

Probabilistic Information
Retrieval Model
We presented a novel probabilistic informa-
tion retrieval model and demonstrated its
capability to achieve state-of-the-art perfor-
mance on large standardized text collections
[3].  The retrieval model scores documents
based on the relative change in the docu-
ment likelihoods, expressed as the ratio of
the conditional probability of the document
given the query and the prior probability of
the document before the query is specified.
Statistical language modeling techniques are
used to compute the document likelihoods
and the model parameters are estimated
automatically and dynamically for each
query to optimize well-specified maximum
likelihood objective functions.  An auto-
matic relevance feedback strategy that is
specific to the probabilistic model was also
developed.  The procedure automatically
creates a new query (based on the original
query and a set of top-ranked documents
from a preliminary retrieval pass) by
selecting and weighting query terms so as to
maximize the likelihood ratio scores of the
set of documents presumed to be relevant to
the query.  To benchmark the performance
of the new retrieval model, we used the
standard ad hoc text retrieval tasks from the
TREC-6 and TREC-7 text retrieval confer-

ences.  Official evaluation results on the
1999 TREC-8 ad hoc text retrieval task were
also reported [1].  Experimental results
indicated that the model is able to achieve
performance that is competitive with
current state-of-the-art retrieval approaches.

Integrated Recognition
and Retrieval
We presented a novel approach to spoken
document retrieval where the speech
recognition and information retrieval
components are more tightly integrated.
This was accomplished by developing new
recognizer and retrieval models where the
interface between the two components is
better matched and the goals of the two
components are consistent with each other
and with the overall goal of the combined
system.  We presented a new probabilistic
retrieval model which makes direct use of
term occurrence probabilities that can be
computed by the recognizer.  We then
described several ways to compute the
desired term probabilities including using
the top one recognition hypothesis, using N-
best recognition hypotheses, expanding the
term set to include approximate match
terms, and modifying the speech recognizer
to enable it to output the term occurrence
probabilities directly.  We evaluated the
performance of the integrated approach and
found that the probabilistic model performs
slightly better than the baseline vector space
retrieval model, and the addition of
automatic relevance feedback resulted in a
significant performance improvement.  We
then measured the retrieval performance of
the integrated approach as different
methods for estimating the term occurrence
probabilities are used.  We found that
retrieval performance improves as more

SUBWORD-BASED APPROACHES FOR SPOKEN DOCUMENT RETRIEVAL
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sophisticated estimates are used.  The best
performance was obtained using term
occurrence probabilities computed directly
from the speech recognizer. The integrated
approach improved retrieval performance by
over 28% from the baseline.  This is
compared to an improvement of 23% using
the robust methods.

Future Directions
The experimental results presented in this
thesis demonstrate that subword-based
approaches to spoken document retrieval
are feasible and merit further research.
There are a large number of areas for
extension of this work.  One area is to
improve the performance of the extraction
of the subword units from the speech signal.
For example, more training data can be
used to improve model robustness and more
detailed and complex models can be used to
try to capture more information from the
speech signal.  Another approach would be
to modify the speech recognizer to recognize
the subword units directly from the speech,
rather than constructing them from a
phonetic string. Another area of work is to
improve the probabilistic information
retrieval model.  More sophisticated models
such as higher order statistical n-gram
language models and alternative probability
smoothing techniques should be explored.
Another interesting and potentially profit-
able area of research is on information
fusion methods for spoken document
retrieval [4].  We briefly looked at some
simple methods for combining multiple
subword unit representations. Although the
performance improvements we obtained
were small, the method of information
combination still holds promise.  Finally,
the approaches presented in the thesis

should be evaluated on larger sets of data.
This includes both the spoken document
collection and the  training set for the
speech recognizer.  More data will allow us
to build more robust models and to further
test the scalability and behavior of our
systems.
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Enabling Spoken Language Systems Design
for Non-Experts
Jef Pearlman

For my thesis research I designed and
implemented a utility for allowing non-
experts to build and run spoken language
systems.  This involved the creation of both
a web interface for the developer and a set
of programs to support the construction
and execution of the required internal
systems.  As shown in Figure 21, the utility
made use of the underlying GALAXY

Communicator architecture.  The architec-
ture was augmented by a server which
allowed developers to communicate with
their CGI-based application remotely over
the web.

For this research, we concentrated on
configuring the language understanding
components of a spoken language system.
By learning the required grammar from a
set of simple concepts and sentence
examples provided by the developer, we

were able to build a system where non-
experts could build grammars and speech
systems.  Developers could also easily specify
hierarchy in domains where a more complex
grammar was appropriate.

We demonstrated the utility, originally
known as SLS-Lite, now called
SPEECHBUILDER, by building several proto-
type domains ourselves, and allowing others
to build their own.  These included
domains for controlling the appliances in a
house, querying a directory of people in the
MIT Laboratory for Computer Science,
manipulating fictional objects, and asking
questions about music.

Reference
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Discriminative Training of Acoustic Models
in a Segment-Based Speech Recognizer
Eric Sandness

In this thesis work we investigated discrimi-
native training of acoustic models within
the SUMMIT system [1,2]. In particular, we
developed a new technique we called
keyword-based discriminative training which
focuses on optimizing a keyword error rate,
rather than the error rate on all words. We
hypothesize that improvements in keyword
error rate correlate with improvements in
understanding error rates. Keyword-based
discriminative training is accomplished by
modifying a standard minimum classifica-
tion error (MCE) training algorithm so that
only segments of speech relevant to keyword
errors are used in the acoustic model
discriminative training. When both the
standard and keyword-based techniques are
used to adjust Gaussian mixture weights, we
find that keyword error rate reduction
compared to baseline maximum likelihood
(ML) trained models isnearly twice as large
for the keyword-based approach. The overall
word accuracy is also found to be improved
for keyword-based training, and we ran
experiments to investigate this phenom-
enon.

In this work we used an utterance-level
MCE criterion [3,4] to train the Gaussian
mixture weights. We also attempted to train
the mixture means and variances, but
training convergence was unreliable and
considerably slower. All experiments were
carried out in the JUPITER weather informa-
tion domain, with boundary diphone
acoustic models with up to 50 mixtures per
model, and a bigram word-class language
model.

For each training utterance, complete
recognizer scores are computed for the
correct word sequence and an N-best list of
competing hypotheses. These scores are a
sum of acoustic and non-acoustic (i.e.,

lexical and language model) scores. The
acoustic scores are updated at each iteration
while the non-acoustic scores remain
constant.

We make use of what we call “hot
boundaries” to perform keyword-based
discriminative training. A hot boundary is a
boundary (potential phone boundary)
where the correct word sequence and
competing N-best hypotheses contain a
mismatched keyword. (See [1,2] for details.)
In regions of the utterance where there are
no keywords (correct or hypothesized) or
there are no keyword mismatches, there will
be no hot boundaries. In this way, hot
boundaries represent the regions of the
utterance relevant to optimizing the
keyword error rate.

The keywords we used were selected by
hand. Of JUPITER’s nearly 2,000-word
vocabulary, we identified 1,066 keywords,
primarily consisting of place names (e.g.,
Boston, Europe, India), weather terms (e.g.,
snow, humidity, weather, advisories), and
dates/times (e.g., tomorrow, tonight,
Thursday, weekend).

On a test set of 500 in-vocabulary
utterances, the baseline ML-trained system
achieved a keyword error rate of 6.0%. The
baseline MCE-trained improved to 5.7%.
The keyword-based MCE-trained system
achieved more than twice the improvement
at 5.2%.

Evaluating the overall word-error rates
yielded surprising results. The baseline ML
word error rate was 10.4%, and the baseline
MCE improved to 9.7%. Surprisingly, the
keyword-based MCE-trained system im-
proved even more to 9.3%.

We did not expect the keyword-trained
system to do as well over all words, and
performed some follow up experiments to
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deduce the reason. We hypothesized that
many of the non-keywords (e.g., function
words) are poorly articulated and thus may
contribute to inferior acoustic models. In
one experiment, we set the keywords to be
all words except for 148 manually chosen
function words. Training with this set of
keywords produced an overall word error
rate of 9.4%, very similar to the 9.3% we
achieved with the manually selected
keywords.

Other work in this thesis included the
implementation of Gaussian selection [5,6].
The goal of Gaussian selection is to speed
up computation of Gaussian mixture
models by preselecting a reduced subset of
mixtures to evaluate for each region of the
feature space. We used binary vector
quantization with 512 code words to divide
the feature space. For each code word,
mixtures whose mean is within a distance
threshold of the code word mean are noted,
with at least one mixture for each model
associated with each code word. At run
time, a feature vector is rapidly quantized
and the relevant mixture components
looked up and evaluated. Overall, the use of
Gaussian selection speeds up SUMMIT in the
JUPITER domain by a factor of 1.8 with the
pruning thresholds used.
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 Analysis and Transcription of General Audio Data
Michelle S. Spina

In addition to the vast amount of text-based
information available on the World Wide
Web, an increasing amount of video and
audio based information is becoming
available to users as a result of emerging
multimedia computing technologies. The
addition of these multimedia sources of
information have presented us with new
research challenges. Mature information
retrieval (IR) methods have been developed
for the problem of finding relevant items
from a large collection of text-based
materials given a query from a user. Only
recently has there been any work on
similarly indexing the content of multime-
dia sources of information.

In this work, we focus on general audio
data (GAD) as a new source of data for
information retrieval systems. The main
goal of this research is to understand the
issues posed in describing the content of
GAD. We are interested in understanding
the general nature of GAD, both lexically
and acoustically, and in discovering how our
findings may impact an automatic indexing
system. Specifically, three research issues are
addressed. First, what are the lexical
characteristics of GAD, and how do they
impact an automatic recognition system?
Second, what general sound classes exist in
GAD, and how well can they be distin-
guished automatically? And third, how can
we best utilize the training data to develop a
GAD transcription system?

In our attempt to answer these ques-
tions, we first developed an extensive GAD
corpus for study in this work. We chose to
focus on the National Public Radio (NPR)
broadcast of the Morning Edition (ME)
news program. NPR-ME is broadcast on
weekdays from 6 to 9 a.m. in the US, and it
consists of news reports from national and

local studio anchors as well as reporters
from the field, special interest editorials and
musical segments. We chose NPR-ME after
listening to a selection of radio shows,
noting that NPR-ME had the most diverse
collection of speakers and acoustic condi-
tions and would therefore be the most
interesting for study. We collected and
orthographically transcribed 102 hours of
data for lexical analysis. Ten hours were
further processed for acoustic analysis and
recognition experiments.

Next, we studied the lexical properties
of GAD to gain a better understanding of
the data, and to see how these data compare
with those typically used in the ASR
community. We then studied the properties
of the GAD vocabulary [1]. We are inter-
ested in determining the size of the NPR-
ME vocabulary and in observing how the
vocabulary grows with time. This analysis
discovered some potential problems for a
general large vocabulary continuous speech
recognition approach to the transcription of
GAD. Figure 22 plots the relationship
between the number of distinct words
encountered (i.e., the recognizer’s vocabu-
lary) and the size of the training set as the
training set size is increased. The upper
curve of Figure 22 shows the cumulative
sum of all the distinct words, and therefore
represents the potential vocabulary of the
recognizer. While the size of the vocabulary
after 102 shows (over 30,000 words) is
within the capabilities of current-day ASR
systems, it is quite alarming that the growth
of the vocabulary shows no sign of abating.
Next, we found that even for large training
set sizes and vocabularies, new words were
still regularly encountered. With a training
set of nearly one million words (resulting in
over 30,000 unique vocabulary words), the
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out of vocabulary rate was just over 2%. A
part-of-speech analysis determined that the
new words were predominately proper
nouns and nouns, which would be very
important to recognize if we were describing
the content of this data. This problem was
magnified when we investigated the more
realistic scenario of constructing a training
set from an out-of-domain source. In this
case, we found that the out of vocabulary
rate nearly doubled to 4% [2].

We then examined the acoustic
characteristics of GAD and developed a
sound recognition system to segment the
audio into its salient sound classes. For the
NPR-ME corpus, we subjectively identified
seven acoustically distinct classes based on
visual and aural examination of the data.
We found that these classes differed in their
spectral characteristics, statistical profile,
and segment duration. Specifically, we
found that high quality, prepared speech
constitutes only half of the entire corpus,
another 25% of the data contains speech
superimposed on other sounds, nearly 15%
of the data was of telephone bandwidth,
and the remaining 10% of the data was
non-speech. We also found that while pure
music segments are similar in length to
speech segments, other non-speech seg-
ments are substantially shorter in length.

We achieved a 79.4% recognition accuracy
for these seven classes on unseen data, using
relatively straightforward acoustic measure-
ments and pattern recognition and smooth-
ing techniques. A speech/non-speech
recognizer achieved an accuracy of 94.2%.

Finally, based on the results of our
lexical analysis, we proposed a subword
approach to the lexical transcription of
GAD. Since we discovered that GAD
contains a number of different acoustic
speaking environments and the perfor-
mance of ASR systems can vary a great deal
depending on speaker, microphone,
recording conditions and transmission
channel, we proposed that the transcription
of GAD would benefit from a preprocessing
step that first segments the signal into
acoustically homogeneous blocks so that
appropriate models could be used during
test. Specifically, we developed a phonetic
recognizer for GAD and investigated a
number of different training and testing
techniques. We found that for all of the
training techniques that we investigated the
phonetic error rates varied widely across the
NPR-ME speaking environments. By
systematically exploring different system
designs (one recognizer vs. multiple
recognizers) and different training tech-
niques, we were able to discover how each
technique affected each environment.

The results of our experiments are
summarized in Figure 23. If a single
recognizer system is to be used, we found
that training on all of the available data
which contains a variety of speaking
environments was more effective than using
a smaller amount of homogeneous, clean
data. This result held true even when we
accounted for the discrepancy in the
amount of training data available for the
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two approaches. While we originally felt
that the transcription of GAD would
benefit from a preprocessing step that first
segments the data into acoustically homoge-
neous blocks so that appropriate models
could be used during test, overall, we found
that such a multiple recognizer system
achieved performance similar to a single
multi-style recognizer. However, upon closer
inspection of the results we found that the
multi-style system primarily benefitted from
the increased amount of data available for
training. We may be able to utilize the
strengths of both the multi-style and
environment-specific approaches by
developing interpolated models. By interpo-
lating between the well-trained multi-style
models and the more detailed environment-
specific models, we may be able to improve
our phonetic recognition results.

Figure 23. Summary of phonetic
error rate results for different
training methods. The multi-style1
system uses all of the available
training data, the clean speech
system uses only studio quality,
wideband training data, the multi-
style2 system uses an amount of
training data comparable to the
clean speech system and the multi-
style3 uses an amount of training
data comparable to each of the test
speaking environment systems.
Each of the environment-specific
systems used the sound recognition
system as a preprocessor to select
the appropriate models for testing.
The env-specific1 system uses the
four original speaking classes, the
env-specific2 system collapses music
and noisy speech into a single class,
and the env-specific3 system adds
bandlimited models for the field
speech data.
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Framework for Joint Recognition
of Pronounced and Spelled Proper Names
Atiwong Suchato

The goal of this thesis was to demonstrate
that a spoken name along with a spoken
version of the spelling of the name could be
combined to produce a proposed pronun-
ciation and spelling to augment the
vocabulary of an existing recognizer.

The system involves two recognizers,
both implemented within the SUMMIT

framework. The first one is based on a
vocabulary consisting of a set of “morph”
units that cover the majority of the syllables
appearing in peoples’ names. The other
recognizer has the 26 letters of the English
alphabet as its vocabulary, and is used to
recognize spoken spellings of the words.

The procedure is to first recognize the
letters, supported by a letter trigram
language model, into a set of candidate N-
best spellings. The TINA system is used to
parse the letter hypotheses into a set of
candidate morph sequences, with associated
probabilities, that are then written out as a
finite state transducer, to serve as a support-
ing language model for the pronunciation
recognition task.

Subsequently, the pronunciation of the
paired hypothesis is processed through the
morph recognizer, constrained by the
morph graph obtained from the letter
recognition task. The best scoring hypoth-
esis is then consistent with both the spelling
and the pronunciation, and its quality is
then conditioned on the joint performance
of the two recognizers.

We experimented with two versions of
the morph lexicon, one of which (type-i)
attempted to distinguish homomorphs
(same spelling, different pronunciation) as
distinct vocabulary entries, whereas the
other one (type-ii) simply allowed multiple

pronunciations for the homomorphs,
represented as a shared lexical unit. The
latter made it much easier to create a
lexicon of names decomposed into morphs,
because the distinct homomorphs did not
have to be specified lexically. We found that
the collapsed homomorphs were in general
better behaved, both in terms of overall
recognition accuracy and in terms of the
ability of the spellings to provide support to
the pronunciation recognition task.

Our speech corpus consisted of material
obtained from the Oregon Graduate
Institute through the Linguistic Data
Consortium, augmented with data obtained
by asking users of the Jupiter weather
domain to speak a name when they are first
greeted.  We separated the corpus into a
training and a test set, and evaluated the
system on both sets in order to assess the
degree of generality of the learned statistics.

For language modelling, we obtained a
text corpus of over 100,000 names, which
were converted into morph sequences
through a semi-automatic procedure. This
corpus was used to train both the letter
trigram for the letter recognizer and the
recursive grammar that converts letters to
morphs.

We performed a number of experi-
ments, varying the conditions of the n-gram
training and testing corpus and the size of
the morph lexicon. We also tested the ideal
condition where the letter recognition was
“perfect,” which of course resulted in a huge
gain in accuracy of the pronunciation task.
In all cases, we measured phone recogition,
letter recognition, and morph recognition
accuracies. Details of the results can be
found in the thesis, which showed that
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slight gains were obtained in phone
accuracy with the support of the errorful
letter sequences from the letter-recognition
task, and, likewise, the phone information
led to slight gains in the letter-recognition
task, but only for the type-ii morph lexicon,
as discussed above.
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Robust Pitch Tracking for Prosodic Modeling in
Telephone Speech
Chao Wang

Reliable pitch detection is very crucial to the
analysis and modeling of speech prosody.
The fundamental frequency (F0) is found to
be highly correlated with prosodic features
such as lexical stress and tone, which
provide important perceptual cues to
human speech communication. However,
most current automatic speech recognition
and understanding (ASRU) systems under-
utilize prosodic features, especially those
related to F0. This is partially due to the
lack of a robust parameter space for
statistical modeling. More specifically, errors
in F0 contours, both in terms of pitch
accuracy and voicing decision, can affect
feature measurements dramatically.

Various pitch detection algorithms
(PDAs) have been developed in the past [1].
While some have very high accuracy for
voiced pitch hypotheses, the error rate
considering voicing decision is still quite
high; and the performance degrades
significantly as the signal condition deterio-
rates. We are interested in developing a
PDA that is particularly robust for tele-
phone quality speech and prosodic model-
ing applications. In particular, we address
two problems: 1) missing fundamental and
high noise level in telephone speech, and 2)
discontinuity in the F0 contour due to the
voiced/unvoiced dichotomy. To address the
first problem, we adopt a frequency-domain
signal representation and rely on the overall
harmonic structure to estimate F0. To deal
with discontinuity of the F0 space for
prosodic modeling, we believe that it is
more advantageous to emit an F0 value for
each frame, even in unvoiced regions, and
to provide separately a parameter to reflect
probability of voicing. This is based on the
considerations that, first, voicing decision
errors will not be manifested as absent pitch

values; second, features such as those
describing the shape of the pitch contour
are more robust to segmental mis-align-
ments; and third, a voicing probability is
more appropriate than a “hard” decision of
0 and 1, when used in statistical models.

On a logarithmic frequency scale,
harmonic peaks appear at log F0, log F0 +
log 2, log F0 + log 3, ..., etc. To find the F0
value, one can sum the spectral energy
spaced by log 2, log 3, ..., etc., from the
pitch candidate and choose the maximum
[2]. This is equivalent to correlating the
spectrum with an n-pulse template, where n
is the number of included harmonics. We
adopt a similar method to find log F0 for
each frame, using a carefully constructed
template in place of the pulse sequence.
More importantly, we also obtain a reliable
estimate of delta log F0 across two adjacent
voiced frames of the speech by simple
correlation. These two constraints are
combined in a Dynamic Programming (DP)
search to find an overall optimum solution.
In the following, we introduce each module
in more detail.

The logarithmically spaced spectrum
was obtained by sampling a narrow band
spectrum in the low-frequency region at
linear intervals in the logarithmic frequency
dimension. We define this representation as
a discrete logarithmic Fourier transform (DLFT).
Figure 24 shows the waveform, Fourier
transform and DLFT for a 200 Hz pulse
train and a voiced speech signal. The DLFT
of the speech signal, sampled between 150
and 1500 Hz, has been normalized by mu-
law conversion to flatten out the formant
peaks. The weighted DLFT of the pulse
train will be used as a template for F0
estimation.
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The constraints for log F0 and delta log
F0 estimations are captured by two correla-
tion functions. The “template-frame”
correlation provides log F0 estimation by
aligning the speech DLFT with the tem-
plate. The position of the correlation
maximum should correspond to the
difference of log F0 between the voiced
signal and the impulse train. The “cross-
frame” correlation provides delta log F0
constraints by aligning two adjacent frames
of the signal DLFT spectra. The maximum
of the correlation gives a robust estimation
of the log F0 difference across two voiced
frames. For unvoiced regions, it is observed
that the “template-frame” correlation is
more or less random, and the “cross-frame”
correlation stays fairly flat both within an
unvoiced region and upon transition of
voicing status. This has important implica-
tions for our DP based continuous pitch
tracking as described next.

We can easily formulate the problem of
pitch tracking as a DP search given the two
correlation constraints. We define the score
function as the sum of the best past score as
weighted by the cross-frame correlation and
the template-frame correlation. The search
is forced to find a pitch value for every
frame, even in unvoiced regions. This is
feasible because the cross-frame correlation
stays relatively flat when at least one frame
is unvoiced. Thus, upon transition into
unvoiced regions, the best past score will be
inherited by all candidate nodes; and the
scores become somewhat random. However,
once in voiced regions, the sequence of
nodes corresponding to the true pitch
values will emerge because of high internal
scores enhanced by high cross-frame
correlation coefficients.

We evaluated our PDA for both voiced
pitch accuracy and tone classification
accuracy, and compared the performances
with those of an optimized PDA provided
by Xwaves [3].

The Keele pitch extraction reference
database [4] was used for voiced pitch
accuracy evaluation, because it provides
reference pitch as “ground truth.” While
Xwaves performs well on studio speech, the
performance degraded severely for tele-
phone speech, particularly with regard to
voicing decisions. Our PDA performs
substantially better than Xwaves for
telephone speech, and the overall gross
error rate for studio and telephone condi-
tions is nearly the same (4.25% vs. 4.34%).

We compared the tone classification
performance using F0 contours derived by
our system and Xwaves on a telephone-
quality, Mandarin digit corpus [5]. We
found that the classification error rate using
our system was much lower than that using

Figure 24. Windowed waveform,
FT, and adjusted DLFT (refer to
the text for details) for a pulse
train and a speech signal.
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Xwaves (19.2% vs. 25.4%); and the inclu-
sion of an average voicing probability
feature reduced error further down to
18.2% for our system. We tried two
approaches to deal with the unvoiced frames
when using Xwaves: 1) interpolate F0 from
the surrounding voiced frames, and 2) bias
the V/UV decision threshold to greatly
favor “voiced”, followed by interpolation.
However, neither method was particularly
successful.
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Methods and Tools
for Speech Synthesizer Design and Deployment
Jon Yi

In the recent year, we have re-engineered
our concatenative speech synthesis tools in
an effort to make them easier to use. We
adopted finite-state methods to concisely
capture principles of concatenative speech
synthesis laid out in earlier works [1,2]. As a
result we now have a set of tools to rapidly
design concatenative speech synthesizers for
constrained understanding domains. The
deployment is made possible by a suite of
networked servers operating within the
GALAXY Communicator framework. Speech
synthesizers which convert meaning
representations to speech waveforms have
been prototyped for the MERCURY, JUPITER

and MUXING domains.
Because many aspects of automatic

speech recognition can be modelled by
finite-state automata (e.g., dictionary lookup
and pronunciation variation), finite-state
methods which seek to unify representation
have recently gained popularity within the
speech community. More specifically,
weighted finite-state transducers (FST),
which map an input regular language to an
output regular language, have become the
abstraction of choice. This transformation
of input symbols to output symbols can be
prioritized by weights. Once the algebraic
algorithms have been implemented to
manipulate and optimize transducers, the
researcher is free to focus on the actual
graphical structure of the transducers.

Lexical access in automatic speech
recognition and unit selection in automatic
speech synthesis ultimately make use of a
search algorithm to seek the least-cost path
through a search space. Just as researchers in
our group (and elsewhere) have converted
the speech recognition framework to make
use of FSTs, we sought to do the same for
speech synthesis, the inverse problem.

While pronunciation generation and
variation components could be re-used from
recognition, it was imperative to design a
transducer structure that maps phonetic
symbols to waveform segments. This
structure, which is the key contribution of
our recent work [3], participates in a Viterbi-
style dynamic programming search during
the final stage of unit selection.

In corpus-based concatenative speech
synthesis approaches one finds the classical
trade-off between knowledge and data.
While synthesis constraints govern which
units and where to concatenate, a corpus
must provide enough examples of units in
all potential contexts. Our new tools allow
the complementary components to be
separately refined. A language expert can
craft the language-dependent synthesis
constraints independently of the domain,
whereas a domain expert can design and
acquire a synthesis corpus according to the
distributional properties of in-domain
responses. As delineated in a companion
research summary piece, a flexible FST
architecture was designed to encapsulate
both the synthesis constraints and corpus in
a scalable fashion.

In concatenative speech synthesis there
are essentially two tasks: unit selection and
waveform generation. In our implementa-
tion, unit selection is achieved through FST
methods as described above. Currently,
waveform generation simply consists of
sample re-sequencing. The actual deploy-
ment of our FST-based speech synthesis
framework is facilitated through two
Communicator-compliant components. A
fat server performs unit selection and
transmits the lightweight search result to a
thin client which performs waveform
generation using locally stored audio



76 SUMMARY OF RESEARCH - JULY 2000

waveforms. By moving waveform splicing
closer to the end user, such a framework
could be deployed in low-bandwidth
environments (i.e., not sufficient for real-
time audio transmission), where a mono-
lithic approach might fail.

In summary, the concatenative speech
synthesis system, ENVOICE, has undergone an
extensive rewrite that should make for easier
use and quicker development cycles.
Knowledge and data are coupled in a finite-
state transducer structure used for corpus-
based unit selection. Finally, complementary
search and waveform components work in
tandem to produce interactive responses in
spoken dialogue systems.
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K. Livescu. Analysis and Modeling of Non-
Native Speech for Automatic Speech Recognition.
Supervisor: J. Glass. August 1999.

M.Eng.  Theses Completed
S. Kamppari. Word and Phone Level Acoustic
Confidence Scoring for Speech Understanding
Systems. Supervisor: T.J. Hazen. September
1999.

E. Sandness. Discriminative Training of
Acoustic Models in a Segment-based Speech
Recognizer. Supervised by I.L. Hetherington.
May 2000.

In Progress
G. Chung. Towards Multi-Domain Speech
Understanding with Flexible and Dynamic
Vocabulary. Expected December 2000.

C. Wang. Incorporation of Prosody into Speech
Recognition and Understanding.
Expected 2001.

In Progress
T. Burianek. Building a Speech Understanding
System Using Word Spotting Techniques. M.Eng.
thesis. Supervisor: T.J. Hazen. Expected July
2000.

L. Baptist. GENESIS-II: A Language Generation
Module for Conversational Systems. S.M. thesis.
Supervisor: S. Seneff. Expected August
2000.

J. Pearlman, SLS-Lite: Enabling Spoken
Language Systems Design for Non-Experts,
M.Eng. thesis. Supervisor: J. Glass.Expected
August 2000.

A. Suchato, Framework for Joint Recognition of
Pronounced and Spelled Proper Names. S.M.
thesis. Supervisor: S. Seneff. Expected:
September 2000.
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Publications

G. Chung, S. Seneff and I.L. Hetherington,
"Towards Multi-Domain Speech Under-
standing Using a Two-Stage Recognizer,"
Proc. Eurospeech 99, Budapest, Hungary,
September 1999.

S. Seneff, R. Lau and J. Polifroni, "Organiza-
tion, Communication, and Control in the
GALAXY-II Conversational System," Proc.
Eurospeech 99, Budapest, Hungary, Septem-
ber 1999.

J. Glass, "Challenges for Spoken Dialogue
Systems," Proc. 1999 IEEE ASRU Workshop,
Keystone, CO, December 1999.

N. Strom, L. Hetherington, T.J. Hazen, E.
Sandness and J. Glass, "Acoustic Modeling
Improvements in a Segment-Based Speech
Recognizer," Proc. 1999 IEEE ASRU
Workshop, Keystone, CO, December 1999.

V. Zue, et al., "JUPITER: A Telephone-Based
Conversational Interface for Weather
Information" IEEE Transactions on Speech and
Audio Processing, Vol. 8 , No. 1, January
2000.

J. Polifroni and S. Seneff, "GALAXY-II as an
Architecture for Spoken Dialogue Evalua-
tion" Proc. Second International Conference on
Language Resources and Evaluation (LREC),
Athens, Greece, May 31-June 2, 2000.

I. Bazzi and J. Glass, "Heterogeneous Lexical
Units for Automatic Speech Recognition:
Preliminary Investigations" Proc.
ICASSP2000, Istanbul, Turkey, June 2000.

S. Kamppari and T.J. Hazen, "Word and
Phone Level Acoustic Confidence Scoring"
Proc. ICASSP2000, Istanbul, Turkey, June
2000.

K. Livescu and J. Glass, "Lexical Modeling
of Non-native Speech for Automatic Speech
Recognition" Proc. ICASSP2000, Istanbul,
Turkey, June 2000.

K. Ng, "Information Fusion for Spoken
Document Retrieval" Proc. ICASSP2000,
Istanbul, Turkey, June 2000.

C. Wang and S. Seneff, "Robust Pitch
Tracking for Prosodic Modeling in Tele-
phone Speech" Proc. ICASSP2000, Istanbul,
Turkey, June 2000.
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Presentations

V. Zue. “Next Generation Speech-based
Interfaces.” Invited talk at the Bell Atlantic
Speech Symposium. September 23, 1999.

V. Zue. “2001:  Why the Hal Not?” Invited
talk at SpeechWorks International, Boston,
MA, September 28, 1999.

V. Zue. “Speech is It”. Presentation at
DARPA. September 29, 1999.

J. Glass. “Challenges for Spoken Dialogue
Systems.” IEEE Automatic Speech Recogni-
tion and Understanding Workshop,
Keystone, Colorado, December 1999.

V. Zue. “Introduction to the MIT
Laboratory for Computer Science”.
Presentation at NTT-MIT Collaboration
Meeting, Tokyo, Japan. January 2000.

S. Seneff. “Multilingual Conversational
Interfaces: An NTT-MIT Collaboration”.
NTT-MIT Collaboration Meeting, Tokyo,
Japan. January 13, 2000

V. Zue. “The DARPA Communicator:
An MIT Progress Report”. Presentation at
the DARPA Communicator PI Meeting,
Charleston, SC, January 20, 2000

V. Zue. “Conversational Interfaces”.
Presentation to NOKIA, Helsinki, Finland,
January 25, 2000.

V. Zue. “2001:  Why the Hal Not?”
Invited talk at the Telephony Voice User
Interface Meeting, Pheonix, AZ, February 3,
2000.

V. Zue and J. Glass. “Conversational
Interfaces: Advances and Challenges”.
February 8, 2000. IEEE

V. Zue “Introduction to the MIT Laboratory
for Computer Science”. Invited talk at
MITRE, March 1, 2000.

V. Zue. “@ the Human Interface”. Panel
moderator at the Intel CCC Meeting, San
Francisco, CA, March 16, 2000.

J. Glass. “Overview of the MIT Language
Generation and Speech Synthesis Systems”.
DARPA Workshop on Corpus-Based Text
Generation and Synthesis, Seattle, WA,
April 30, 2000.

S. Seneff. and J. Polifroni. “Dialogue
Management in the MERCURY Flight
Reservation System”. Satellite Workshop on
Conversational Systems following ANLP/
NAACL 2000, Seattle, Washington.
May 4, 2000,

S. Seneff. “Spoken Dialogue Systems:
Dialogue Management and System Evalua-
tion Issues”. Panel at Satellite Workshop on
Conversational Systems following ANLP/
NAACL 2000, Seattle, Washington, May 4,
2000.

S. Seneff. “Spoken Language Technology
Research at MIT: A Progress Report”. ITRI,
June 15, 2000.

V. Zue “Acoustic Properties of Speech”.
Johns Hopkins workshop, Baltimore, MD,
July 2000.
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SLS Seminar Series

October 18, 1999
“Jana Speech API: Developing Speech Apps
in Java”
Andrew Hunt & Willie Walker
Sun Microsystems

October 25, 1999
“Toward Automatic Summarization of
Broadcast News Speech”
Sadaoki Furui
Tokyo Institute of Technology

February 28, 2000
“Persuasive Multi-modal Conversational
Systems”
Ganesh Ramaswamy
IBM TJ Watson Research center

March 27, 2000
“Stochastic Suprasegmentals: Relationships
Between Redundancy, Prosodic Structure
and Core Articulation in Spontaneous
Speech”
Matthew Aylett
University of Edinburgh

March 6, 2000
“Building Telephone-Based Spoken Dialog
Applications”
Mike Phillips
SpeechWorks International

May 1, 2000
“Natural Language in L&H Voice Xpress:
An Overview”
Jeff Adams
Lernout & Hauspie Speech products

May 22, 2000
Issues in Mandarin TTS Systems
Min Chu
Microsoft Research China
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Photography by Tony Rinaldo
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July 2000 MIT Laboratory for Computer Science - Spoken Language Systems Group MIT/LCS


