
ORION: FROM ON-LINE INTERACTION TO OFF-LINE DELEGATION 1

Stephanie Seneff, Chian Chuu, and D. Scott Cyphers

Spoken Language Systems Group
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, Massachusetts 02139 USA

ABSTRACT

This paper introducesORION, a conversational system that per-
forms off-line tasks and initiates later contact with a user at a pre-
negotiated time. Orion has two major episodes of activity: the
enrollment of new tasks and the execution of pending tasks. The
task manager periodically checks the pending tasks and updates
their status, sending off requests to other servers for information
and possibly launching a phone call when a particular task has
reached its trigger time. A separate user interface engages in a
dialogue with a user to enroll new tasks and/or update existing
tasks. ORION is still in an early stage of its development cy-
cle, but it has introduced several interesting new research issues,
such as continuous state maintenance and contact verification.

1. INTRODUCTION

For more than a decade, the Spoken Language Systems (SLS)
Group at the MIT Laboratory for Computer Science has been
conducting research leading to the development of conversa-
tional interfaces: interfaces that will enable naive users to ac-
cess and manage information using spoken dialogue. To real-
ize such systems, several language-based input and output tech-
nologies, including speech recognition/synthesis and language
understanding/generation have been developed and integrated.
Typically, these systems engage the user in a dialogue to retrieve
information from databases.

Until now, all of our systems have assumed that each task is
completed as soon as the user hangs up the phone. However, it
seems reasonable to suppose in principle that a conversational
system could perform certain tasksoff-line, i.e., that the user
could delegateinformation-dependent activities to the system,
which would later inform them of the outcome, either through
e-mail or through system-initiated telephone contact.

This paper describes our newest conversational domain, called
ORION, which for the first time begins to address the idea of
delegation. The user can request a task to be executed at some
later time, andORION must then initiate a follow-up contact with
the user, once the assigned task has been completed. Some of the
tasks involve monitoring a dynamically changing database over
time. Others involve a single look-up at the designated call-back
time.

The Orion system is configured using the Galaxy Communica-

1This work was supported by DARPA under contract N66001-99-1-8904
monitored through Naval Command, Control and Ocean Surveillance Center.

tor architecture, in which all servers communicate via a common
hub. ORION consults other domain servers to retrieve critical in-
formation. The Orion server plays two distinct roles, each imple-
mented as a separate stream. One is devoted to the enrollment
of new tasks and the other is concerned with the execution of
existing tasks. Users first enroll by providing critical informa-
tion about their name, appropriate phone numbers, and e-mail
address. To edit existing tasks or add new tasks, the user inter-
acts withORION at a Web site, in conjunction with conversation
through speech over the telephone, or through typing at the GUI
interface. Pending tasks are displayed in the graphical interface,
and ORION engages the user in a mixed-initiative conversation
until a new task is fully specified, or a pre-existing task is appro-
priately modified. If a new task needs to be executed today, it
is sent to the agent stream for an immediate update. ORION can
currently handle a number of types of requests, as suggested by
the examples given in Figure 1.

Call me at 4 p.m. tomorrow to remind me to pick up my son
at soccer practice.
Call me every weekday morning at 6:30 a.m. and tell me the
weather in Boston.
Call me an hour before American flight 93 lands in Dallas.
Call me at work between 5 and 6 p.m. if the traffic on route
93 is at a standstill.

Figure 1: Examples of the types of tasks that Orion can currently
handle.

A unique aspect ofORION is that it behaves like a user in request-
ing information from other domains. ORION finds it convenient
to make these requests using standard English as a natural and
intuitive scripting language.

The notion of off-line delegation is a radical departure from our
prior research activities, and it opens up a number of interesting
research issues, such as continuous maintenance of state infor-
mation, dealing with the termination of or corrections to previ-
ously assigned reiterant tasks, and verification that the call-back
was successful. A domain of the degree of complexity ofORION

would not have been feasible for us to develop prior to the intro-
duction of theGALAXY Communicator architecture [4].

In the remainder of this paper, we will first describe the task ne-
gotiation phase, followed by the task execution phase. We will
then discuss a number of issues that have emerged as a conse-
quence of our explorations withORION. We conclude with a
discussion of some of our future visions.



Orion: Welcome to the Orion planning system. Please type your
user name, or, if you have not enrolled, type ’new user’.

User: Stephanie Seneff

Orion: Here is your personal information in our database,
Stephanie Seneff. What is the task that you have in mind?
(wakeup call,reminder, flight status, or traffic update)
<shows user profile and list of prior tasks>

User: Call me at six thirty tomorrow morning and tell me
the weather in Boston.

Orion: What phone number should I call you at?
User: Call me at home.

Orion: You have entered all the necessary data, stephanie seneff.
Is the following information correct?<shows task>

User: Yes.

Orion: You will receive a call at the appropriate time.
Thank you for using Orion.

Figure 2: Example dialogue between a user and Orion negotiat-
ing a wake-up call, in the context of a graphical interface.

2. Task Negotiation Phase

The first step in task negotiation is to enroll a new user. This is
done at a graphical interface whereORION asks a series of ques-
tions and the user types the responses into a GUI type-in window
integrated into a Web browser. ORION seeks three phone num-
bers (home, work, and cell) as well as the user’s name and e-mail
address. Once the user has enrolled, they can type, “call me now
at work,” to initiate an immediate call-back for spoken interac-
tion, or they can continue to interact through typed queries.

ORION then launches a mixed initiative dialogue to invite the
user to specify a task, or to edit any existing tasks, should this
be a follow-up interaction. In the latter case, all pre-existing
tasks are displayed to the user in the graphical interface. The
user could, for example, click on a given task and say, “Edit this
task.”

If the user intends a new task, they can simply specify it through
speech. They might say, for example, “Call me to remind me
to call my sister.” ORION will prompt the user for a date, time,
and phone number, where “work,” “home,” and “cell” are all
possible, in addition to a unique newly introduced task phone
number. Figure 2 shows an example dialogue between a user and
ORION, where the user is requesting a wake-up call the following
morning.

If the user cannot remember the particulars of a task, he/she can
ask to talk to one of the other domains. The user might, for
example, find out from thePEGASUSflight status domain or the
MERCURY flight reservations domain [5] the flight number of
a flight they are interested in monitoring. In the same phone
conversation, the user can return toORION, andORION will be
able to obtain directly fromMERCURY’s dialogue state all the
information concerning the flight in focus, whichORION then
assumes is of relevance to the conversation.

Figure 3: The graphical interface for Orion, showing the task
under negociation, the user’s profile, and a list of three previ-
ously specified tasks.

Figure 3 shows a GUI interaction withORION. Once the new
task is fully specified and confirmed,ORION updates the user’s
personalized file of pending tasks. If the task is scheduled for
today, ORION wakes up the agent stream via a special hub-
mediated operation devoted to newly introduced tasks, as will
be more fully described in the next section.

If the user asks to be called at some future time, but does not
mention a particular task,ORION by default invites them to pre-
record a message to be played back at the designated time. This
is a very general device with wide utility, that allows the user to
say anything at all in the recording, subject to a length constraint.

In order to plan its interactions with the user and the other
servers, ORION makes use of a dialogue control table, as de-
scribed more fully in [5]. TheGENESIS-II [1] generation server
is invoked to paraphrase users’ requests into an appropriate elec-
tronic form (henceforthe-form) format, which is used to ini-
tialize the dialogue state at each new turn. Figure 4 shows the
query, the semantic frame, and the derivede-form obtained via
GENESIS-II for the sentence, “Call me at six a m and tell me the
weather in Boston.” The dialogue state is consulted to determine
which functions to call to carry out the task-specification phase,
using dialogue control procedures that are common to all of our
domain servers.

GENESIS-II is also responsible for altering the pronominal refer-
ences from first to second person, so that “call me to remind me
to call my sister” becomes “This isORION calling to remindyou
to callyoursister.”

3. Agent Activities

The agent stream currently maintains information about all of its
users in data structure files that are reloaded every day at mid-
night. It first determines which tasks are possible on the current
day, including reiterant tasks (e.g., “every weekday”). It then
creates an internal data structure for each pending task that in-
cludes slots for various temporal events such as the next update



QUERY: ”Call me at six a m and tell me the weather in Boston”

LINGUISTIC FRAME:

{c call_me
:domain "Orion"
:reason

{c inform
:topic {q weather

:quantifier "def"
:pred {p in

:topic
{q city

:name "boston"
}

}
}

}
:pred {p at :topic {q time :hour 6

:xm "am" } } }

E-FORM:

fc eform :action “callme” :time “6:00 am” :clause “inform”
:task label “weather” :in “boston”g

Figure 4: Example linguistic frame ande-form for a user query
in theORION domain.

time or the estimated (or exact)trigger time (time to contact the
user).

To execute its various plans, the system consults a second dia-
logue control table [5], distinct from the one used to plan new
tasks. It iterates through the dialogue table repeatedly until all
tasks are completed as fully as possible. At midnight, this would
typically include consulting theMERCURY flight information
server to determine the scheduled departure and arrival times of
any flights being monitored.

Once all tasks have been initiated, theORION agent stream goes
into a sleep cycle until the minimum next update time of its set of
pending tasks. However, it could be awakened at any time by a
new request from a user who has just finished specifying all the
particulars of this request, or who may have altered a previous
request that now needs immediate attention. These interruptions
are implemented as a separate operation, invoked by a rule in a
hub script, according to theGALAXY Communicator design [4].

When the next update time has been reached,ORION con-
sults a dialogue control table to determine which functions to
call. Functions may involve module-to-module subdialogues
with other domains to look up information about weather [6],
flights [5], or traffic. These subdialogues are controlled by a sep-
arate hub program appropriately namedorion, and they involve
calls to the natural language server to parseORION’s request, and
calls to the designated turn manager to fully interpret the parsed
frame and produce a reply frame. This is accomplished via a
database request initiated in a nested module-to-module subdia-
logue (through normal channels used for all user requests). Se-
lected rules from theorion program are shown in Figure 5.

PROGRAM: orion

RULE: :call request! dispatchto main
IN: (:input string :call request) :domain :recording

RULE: !:requestframe & :input string! createframe
IN: :input string :domain
OUT: :requestframe :domain

RULE: :requestframe & :domain Jupiter! jupiter.turnmanagement
IN: :requestframe
OUT: :reply frame

RULE: !:reply string & :reply frame! paraphrasereply
IN: :reply frame :domain (:outlang english)
OUT: :reply string :replyframe

Figure 5: Example rules from theorion program used by the
GALAXY hub. Note: “!” stands for “NOT”, and “&” is a logical
“AND.”

For example, ifORION has been requested to call the user at
some designated time relative to the arrival of a flight, it mon-
itors the flight at appropriate intervals throughout the period of
time that the flight is in the air. Its algorithm is to cut the time by
half between the current time and the currently estimated arrival
time to determine when to next check the flight status. Checking
the status involves a contact with thePEGASUSflight status do-
main. As soon as the estimated callback time is reached,ORION

delegates toPEGASUSthe task of actually calling the user.

When a trigger time is reached,ORION executes the function
named “callusernow,” but only after it has prepared a frame
containing an appropriate welcome message. If the task involves
a particular domain of expertise,ORION currently delegates the
phone call to the appropriate domain server2. From ORION’s
standpoint, this is easy to do: it just prepares a query of the
form “<domainname> call me at<task phone number>.” The
orion hub program dispatches the query to the main program3,
along with the welcome message, which might be pre-recorded.
It follows normal channels, modelled after the pre-existing fea-
ture that a user can type a call-back request into a GUI interface.
For reminders that don’t invoke any of the other domains, e.g.,
“call me to remind me to pick up my son,”ORION itself initiates
the call, and is then prepared to negotiate further tasks if the user
so desires.

4. Unresolved Issues

ORION is an early prototype of a conversational intelligent agent
(IA) that interacts with the real world. We have barely tapped
into the large body of research in IAs at this time [3]. Spe-
cial considerations are required when IAs are exposed to the real
world, several of which are discussed here.

Security ORION must be protected from hackers who could po-
tentially use it to place unwanted calls, change other users’ tasks,
etc. We must devise secure mechanisms for user authentication,
and extend existing access control mechanisms to conversational
systems.

2Although the user can ask to speak toORIONshould they have further tasks
in mind.

3see the dispatchto main operation in the example rules of Figure 5.



Reliability ORION must be dependable. Tasks must survive sys-
tem crashes. Infrastructure must be developed to reduce the com-
plexity of our existing system development and support the new
capabilities required byORION.

Efficiency ORION currently uses a polling mechanism to track
actions. Polling is complex and innefficient, and will not scale
as the number of users and tasks increases.

In the future, we expectGALAXY to make use of daemon agents
to update system data such as weather and flight information as
we receive it from our data sources. For example, a user agent
can tell the flight information update daemon to notify it when-
ever flight information about United flight 805 changes, and then
sleep until thirty minutes before arrival. If the flight information
changes, the daemon agent notifies the user agent which wakes
up, reschedules its future wakeup, and goes back to sleep. This
approach reduces complexity because it allows the same user
agent code to be used for weather and flight notifications, and
it increases efficiency because the agent only runs when it has
something to do.

Resource ManagementTo satisfy ORION’s future needs,
GALAXY will need to support an additional layer of distributed
operations that provide common services like speech recogni-
tion, virtual device management (such as a pool of phone lines),
and persistence to agents. Systems such asJUPITERandMER-
CURY will be collections of related agents thatORION interacts
with.

Common SenseIf a user asks for a wakeup call every day at 6:00
a.m.,ORION should be aware that this means local time for the
user. IfORION knows a particular user will be travelling during
a certain time interval, it should be able to pro-actively enquire
whether the call should still happen, and, if so, perhaps suggest
calling on the cell phone. Also, how shouldORION negotiate day
by day monitoring of such reiterant tasks? If, on Friday, the user
says, “Don’t call me Monday,” shouldORION then enquire about
Tuesday, or assume that Tuesday is the next time to call?

CustomizationWe expect that in the futureORION will become
increasingly capable of managing an experienced user’s tasks.
ORION should be able to accumulate information on patterns
based on past experience, such that it will be increasingly able to
take the initiative in proposing or even executing specific plans.
Thus, for example, in the future, an expert user might be able to
askORION to make travel arrangements to Chicago, andORION

would be able to make decisions about the flights, hotel, and
rental car, calling back only to specify a fully executed solution.

Verification If the user fails to answer the phone whenORION

calls, thenORION would need to recognize that the call is incom-
plete, and perhaps try again ten minutes later, and/or send e-mail
informing the user of the failed contact. A more serious problem
is a pick up by an answering machine. How shouldORION be
made aware of this situation, and what should it do? Another
problem is the recognition of the voice of the user, or a verbal
verification that the person answering the phone is indeed the
intended user.

SocialUsers will be reluctant to depend on a system likeORION

for important tasks, particularly if the agents will be searching

for information, making decisions, or spending the user’s money.
We will need to provide ways for users to check the reasoning
process and to verify thatORION is really planning to do what
they think it will do.

5. Summary and Future Plans

This paper introducesORION, a system devoted to off-line del-
egation as a new paradigm in conversational systems. ORION

was made feasible as a consequence of the powerful capabili-
ties of theGALAXY Communicator architecture. We found that
it was straightforward to leverage off of pre-existing mechanims
with only minor modifications to carry out both the server initi-
ated queries to other domains and the user call-back procedures.
Thus farORION has been used only by researchers in our group
and their families, as well as in live demonstrations. We have
not yet begun the task of data collection from naive users, as the
system is not sufficiently mature.

We expect thatORION represents the early stages of an ambi-
tious long-term project. In the future, we envision that people
will be able to take advantage of available on-line information
systems such that routine tasks can be delegated to the computer
as much as possible, thus freeing humans to attend to tasks that
truly need their attention. We will explore how we can build
systems that can easily customize and adapt to the users’ needs
and desires. In the process, we will also examine how a system
such asORION could be made more intelligent by incorporating
into its decision-making process all available information at its
disposal, both about the domain and about the individual user.
We believe thatORION has tremendous potential, although we
are still working out the details of some of the more difficult as-
pects of its design, including user identification, customization,
resource allocation, and task completion verification.

6. REFERENCES

1. L. Baptist and S. Seneff, “GENESIS-II: A Versatile System for
Language Generation in Conversational System Applications,”
These Proceedings, Beijing, China, 2000.

2. Donald A. Norman, “How Might People Interact with Agents,”
in Software Agents, ed. Jeffrey M. Bradshaw, AAAI Press/The
MIT Press, Cambridge, Massachusetts, 1997.

3. Yoav Shoham, “An Overview of Agent-Oriented Program-
ming,” in Software Agents, ed. Jeffrey M. Bradshaw, AAAI
Press/The MIT Press, Cambridge, Massachusetts, 1997.

4. S. Seneff, E. Hurley, R. Lau, C. Pao, P. Schmid, and V. Zue,
”Galaxy-II: A Reference Architecture for Conversational Sys-
tem Development,”ICSLP ’98, pp. 931-934, Sydney, Australia,
December, 1998.

5. S. Seneff and J. Polifroni, “Dialogue Management in the Mer-
cury Flight Reservation System,” Proc.ANLP-NAACL 2000,
Seattle, WA, May, 2000.

6. V. Zue, S. Seneff, J. Glass, J. Polifroni, C. Pao, T.J. Hazen, and
L. Hetherington, “JUPITER: A Telephone-based Conversational
Interface for Weather Information,”IEEE Trans. on Speech and
Audio Processing, Vol. 8, No. 1, Jan., 2000, pp. 85-96.


