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Research Staff

VICTOR ZUE

Victor Zue is a Senior Research

Scientist, the head of the

Spoken Language Systems

Group, and an Associate

Director of the Laboratory for

Computer Science.  His main

research interest is in the

development of spoken

language interfaces to facilitate

natural human/computer

interactions, and he has taught

many courses and lectured

extensively on this subject. He

is best known for his acoustic

phonetic knowledge, and for

leading his research group in

developing conversational

systems that allow users to

access information using

spoken dialogue. In 1994, Zue

was elected Distinguished

Lecturer by the IEEE Signal

Processing Society. In 1999, he

received the "Sustained

Excellence" Award from

DARPA-DoD. Zue is a Fellow

of the Acoustical Society of

America. He received his Sc.D.

in Electrical Engineering from

MIT in 1976.

JAMES GLASS

James Glass is a Principal

Research Scientist and

Associate Head of the SLS

group. He received his Ph.D. in

Electrical Engineering and

Computer Science from MIT

in 1988. His research interests

include acoustic-phonetic

modeling, speech recognition

and understanding in the

context of conversational

systems, and corpus-based

speech synthesis. In addition

to publishing extensively in

these areas, he has supervised

S.M. and Ph.D. students, and

co-taught courses in spectro-

gram reading and speech

recognition. He served as a

member of the IEEE Acoustics,

Speech, and Signal Processing,

Speech Technical Committee

from 1992-1995.  Since 1997,

he has served as an associate

editor for the IEEE Transac-

tions on Speech and Audio

Processing.

LEE HETHERINGTON

Lee Hetherington received his

S.B., S.M., and Ph.D. degrees

from MIT's Department of

Electrical Engineering and

Computer Science. He

completed his doctoral thesis,

"A Characterization of the the

Problem of New, Out-of-

Vocabulary Words in Continu-

ous-Speech Recognition and

Understanding," and joined

the SLS group in October

1994. His research interests

include many aspects of speech

recognition, including search

techniques, acoustic measure-

ment discovery, and recently

the use of weighted finite-state

transduction for context-

dependent phonetic models,

phonological rules, lexicons,

and language models in an

integrated search.

T.J. HAZEN

Timothy James (T. J.) Hazen

arrived at MIT in1987 where

he received his S.B. degree in

1991, S.M. degree in 1993 and

PhD in 1998,all in Electrical

Engineering. T.J. joined the

SLS group as an undergraduate

in 1991 and has been with the

group ever since. He is

currently working as a research

scientist in the group. His

primary research interests

include acoustic modeling,

speaker adaptation, automatic

language identification, and

phonological modeling.



viii SUMMARY OF RESEARCH

STEPHANIE SENEFF

Stephanie Seneff has a B.S.

degree in Biophysics and M.S.,

E.E., and Ph.D. degrees in

Electrical Engineering and

Computer Science from MIT.

Her research interests span a

wide spectrum of topics related

to conversational systems,

including phonological

modelling, auditory modelling,

computer speech recognition,

statistical language modelling,

natural language understanding

and generation, discourse and

dialogue modelling, and

prosodic analysis. She has

published numerous papers in

these areas, and she is currently

supervising several students at

both master's and doctoral

levels.

RAYMOND LAU

Raymond Lau received the B.S.

in Computer  Science and

Engineering, the M.S. degree in

Electrical Engineering and

Computer Science, and the

Ph.D. degree in Computer

Science, all from the Massachu-

setts Institute of Technology in

1993, 1994, and 1998,

respectively. He was a National

Science  Foundation fellow and

is a member of Eta Kappa Nu.

His current research interests

are in the are area of speech

recognition and spoken

language systems with a

particular focus on subword

modelling, search strategies and

language modelling.

NIKKO STRÖM

Nikko Ström received the

Master of Science, (Engineer-

ing Physics) degree in1991, and

the Ph.D. degree in Electrical

Engineering (Department of

Speech, Music,and Hearing) in

1997 at the Royal Institute of

Technology (KTH), Stockholm,

Sweden. He joined SLS in May

1998 as a Postdoctoral

Associate, and was appointed

Research Scientist in January

1999.  His main areas of

interest are human/machine

dialogue, lexical search in

automatic speech recognition,

and acoustic/phonetic

modeling. At KTH, he

developed a continuous

automatic speech recognition

system that is still in use in

several dialogue systems. He is

also the author of the NICO

tool kit for Artificial Neural

Networks. The tool kit is

publicly available, and has been

downloaded from more than

1,000 different sites in 55

countries (September 1998).

JOSEPH POLIFRONI

Joseph Polifroni's interests

include language generation,

human-computer interaction,

and multilingual systems. He

has worked on the back-end

components of many of the

SLS systems, including GALAXY

and DINEX in addition to his

work on GENESIS, the natural

language generation system that

is part of the overall GALAXY

architecture. He has also

contributed to the Spanish and

Mandarin Chinese systems.

Before joining SLS, Joe worked

in the Speech Group at

Carnegie Mellon University

and was also a consultant for

Carnegie Group Inc. in

Pittsburgh. In addition, Joe

spent two years living in China,

teaching English at Shandong

University in Jinan.

Research Staff
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Administrative & Support Staff

VICTORIA PALAY

Victoria Palay has been a

member of the Spoken

Language Systems group since

1988. As SLS program

administrator, she manages

personnel, fiscal, publication

and contractual matters as well

as space and other group

resources. In addition, she

supports Victor Zue's duties as

LCS Associate Director by

coordinating equipment

donations made to the

Laboratory. Victoria has a B.A.

in Government and French

Studies from Smith College.

SALLY LEE

Sally Lee joined the Spoken

Language Systems group as

senior secretary in 1993. She

received a B.A. in Studio Art/

Art History from Colby

College in 1984. She also

studied at the Art Institute of

Boston and the New York

Studio School. In addition to

her secretarial duties, Sally has

made many of the animated

and still icons for SLS

programs including GALAXY and

JUPITER. She also is responsible

for transcribing sentences that

are recorded from people

calling into the JUPITER system.

Technical Staff

CHRISTINE PAO

Christine Pao has been a

member of the technical

research staff since 1992. She is

primarily involved in the

development and maintenance

of the GALAXY system. Her

research interests are in

discourse and dialog, systems

integration with a focus on

multilingual systems and

language learning, and open

microphone issues such as

rejection and channel

normalization. Christine has a

bachelor's degree in Physics

from MIT.
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Graduate Students

GRACE GHUNG

Grace Chung graduated in

Electrical Engineering and

Mathematics from the

University of New South

Wales, Sydney, Australia. She

earned a Fulbright scholarship

to attend MIT and completed

her master's degree in June

1997. Her interests are in

acoustic modelling and

prosodic modelling for speech

recognition.

Advisor: Stephanie Seneff

ANDREW HALBERSTADT

Andrew Halberstadt received

the B.S. and M.S. degrees in

Electrical Engineering from the

University of Rochester in 1992

and 1993, respectively. In

addition, he received the

Bachelor of Music degree in

1991 from the Eastman School

of Music in Rochester, NY. He

was the recipient of a Sproul

fellowship at the University of

Rochester, and is a member of

the engineering honor society

Tau Beta Pi. His research

interests include time-frequency

representations, phonetic

classification and recognition,

speech and audio processing,

and pattern recognition. Drew

completed his Ph.D. thesis in

November 1998.

Advisor: James Glass

ISSAM BAZZI

Issam Bazzi's research interest is

in the area of subword and

language  modeling for auto-

matic speech recognition. He

received his B.E. in computer

and communication engineer-

ing from the American

University of Beirut, Beirut,

Lebanon in 1993 and his S.M.

from MIT in 1997. Between

1993 and 1995, He did research

on networked multimedia

systems at the Center for

Educational Computing

Initiatives at MIT. Before

joining SLS in 1998, Issam was

a member of the Speech and

Language Department at BBN

Technologies, GTE

Internetworking where he did

research on language-indepen-

dent character recognition.

Advisor: James Glass

SIMO KAMPPARI

Simo Kamppari received the

S.B. degree in EECS from MIT

in 1998 and expects to receive

the M.Eng in the fall of 1999.

His thesis involves work in

word level acoustic confidence

scoring and user feedback

development in a spontaneous

speech understanding system.

While a member of SLS, he

has studied cellular phone

channel effects on speech

recognition, developed acoustic

confidence scoring methods,

and analyzed methods for

utilizing confidence scores for

improved user feedback.

Advisor: T.J. Hazen
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KAREN LIVESCU

Karen Livescu received her B.A.

in Physics at Princeton

University in 1996.  She spent

the following year at the

Technion in Haifa, Israel, as a

visiting student in the

Electrical Engineering

department.  Karen started

graduate study in the SLS

group in September 1997.  She

is a National Science Founda-

tion fellow and expects to

complete her Master’s thesis in

September 1999.

Advisor: James Glass

HYUNG-JIN KIM

Hyung-Jin Kim spent his

undergraduate years at MIT

and completed a Master’s of

Engineering degree at the SLS

group in September 1998. His

thesis describes a system called

SeMole which is a framework

for robustly accessing informa-

tion on HTML pages. His

research interests include Java,

XML, and other web technolo-

gies.

Advisor: Lee Hetherington

KRISTINE MA

Kristine Ma joined the SLS

Group in September 1998 as

a Ph.D. candidate.

Advisor: Victor W. Zue

XIAOLONG MOU

Xiaolong Mou received his

bachelor's degrees in Computer

Science and Enterprises

Management from Tsinghua

University, Beijing, China in

1996. He completed his

Master's thesis on continuous

speech recognition systems and

received his master's degree in

Computer Science from

Tsinghua University in

1998. He is currently pursuing

a Ph.D. in the SLS group.

Xiaolong's research interest

includes conversational speech

systems, automatic speech

recognition and speech

understanding.

Advisor: Victor W. Zue
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MICHELLE SPINA

Michelle Spina received the

B.S. in Electrical Engineering

from the Rochester Institute of

Technology in 1991, and the

S.M. in Electrical Engineering

from MIT in 1994. She is

currently pursuing a Ph.D.

degree in the SLS group.

Michelle's research interests

include automatic indexing of

audio content, speech

recognition and understanding,

and biomedical issues of speech

processing as they relate to

automatic speech recognition.

Her current research involves

general sound understanding

and orthographic analysis of

general audio data. Michelle

was a 1995 Intel Foundation

Graduate Fellow, and is a

member of Tau Beta Pi, Eta

Kappa Nu, and Phi Kappa Phi.

Advisor: Victor Zue

CHAO WANG

Chao Wang received her

bachelor's degree in Biomedical

Engineering, with a minor in

Computer Science from

Tsinghua University, Beijing,

China in 1994. She started her

graduate study in MIT in

September 1995 and joined the

SLS group in April 1996.

Chao's master's degree,

completed in June 1997,

worked on porting the GALAXY

system to Mandarin Chinese.

Advisor: Stephanie Seneff

JON YI

Jon Yi received the S.B. and the

M.Eng. degrees in Electrical

Engineering and Computer

Science from the Massachusetts

Institute of Technology in 1997

and 1998, respectively. He also

graduated in 1997 with a

minor in Music. At SLS he has

worked on developing a

Mandarin Chinese

concatenative  speech synthe-

sizer and a UNICODE/Java

World Wide Web interface for

the GALAXY system. His research

interests include speech

synthesis, communications

systems, and multilingual

speech understanding systems.

Advisor: James Glass

KENNEY NG

Kenney Ng's current research

interest is in the area of

information retrieval of spoken

documents, which is the task of

identifying those speech

messages stored in a large

collection that are relevant to a

query provided by a user. Prior

to his return to MIT in 1995,

Kenney was a member of the

Speech and Language Depart-

ment at BBN Systems and

Technologies where he did

research on large vocabulary

recognition of conversational

speech, word spotting, topic

spotting, probabilistic

segmental speech models, and

noise compensation. He

received his B.S. and M.S.

degrees in EECS from MIT in

1990.

Advisor: Victor Zue

Graduate Students
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Visitors

YI-CHUNG LIN

Yi-Chung Lin received his

Ph.D. in Electrical Engineering

from the Electrical Engineering

Institute of National Tsing Hua

University, Taiwan, in July

1995. In his Ph.D. thesis he

investigated the use of "A Level

Synchronous Approach to Ill-

formed Sentence Parsing and

Error Recovery". He joined SLS

in March 1999  as a Visiting

Scientist. He is interested in

building Chinese conversa-

tional systems for real users.

His main focus has been in the

area of language understand-

ing, language generation

and dialogue management. He

has been working on Chinese

JUPITER, the weather informa-

tion system using spoken

Mandarin Chinese.

YASUHIRO MINAMI

Yasuhiro Minami received the

M. Eng. Degree in Electrical

Engineering and the Ph.D. in

Electrical Engineering from the

Keio University, in 1988 and

1991, respectively. He joined

NTT in 1991. He had worked

in robust speech recognition.

He joined SLS in 1999 as a

visiting researcher. He is

interested in modeling for

robust speech recognition and

building conversational

systems. He has been working

on porting JUPITER to Japanese.
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Undergraduate Students

Chian Chuu

Michael Freedman

Jonathan Lee

Mark Knobel

Vivian Ma

Eric Sandness

Rafael Schloming

Archit Shah

Samuel Wong

James Wood

Minnan Xu

Andrew Halberstadt, PhD., 11/98

Philipp Schmid, 11/98 joined Microsoft Corp.

Nikko Ström, promoted to Research Staff, 1/99

Ed Hurley, departed 1/99.

Hyung-Jin Kim, M.Eng., 9/98.

Joseph Polifroni, promoted to Research Staff, 7/98

Transitions
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Research Sponsorship

Defense Advanced Research Projects Agency 1

BellSouth Intelliventures

Industrial Technology Research Institute

National Science Foundation 2

Nippon Telegraph & Telephone

In addition, discretionary funds for research are provided by ATR Interpreting Telecommunications Research

Laboratories, Hughes Research Laboratories, the IBM University Partnership Program, Intel Corporation and

 Science Applications International Corporation.

1. Contract Nos. N66001-96-C-8526 and N66001-99-1-8904, from the Information Technology Office, monitored by the Naval Command
Control, and Ocean Surveillance Center and contract no. DAAN02-98-K0003, monitored through US Army Soldier Systems Command.

2. NSF grant no. IRI-9618731.
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Research Highlights
Victor Zue

SPEECH
SYNTHESIS

LANGUAGE
UNDERSTANDING

LANGUAGE
GENERATION

SPEECH
RECOGNITION

SYSTEM
MANAGER

DATABASE

DISCOURSE
CONTEXT

SEMANTIC
FRAME

Graphs
& Tables

Figure 1. A generic block diagram
of a typical MIT conversational
system.

SLS is ten years old!

For many years, the founding members

of the Spoken Language Systems (SLS)

Group conducted their research at the

Speech Communication Group, headed by

Prof. Kenneth Stevens, at the Research

Laboratory of Electronics.  The SLS group

was established at the MIT Laboratory for

Computer Science in 1989.  For readers not

familiar with the goals of our research,

motivations of our approaches, strategies

that we have adopted, and technology and

systems that we have developed, I refer you

to our web page (www.sls.lcs.mit.edu) for

background information.

Briefly stated, the group’s goal is to

develop human language technologies that

will one day lead to interfaces for informa-

tion creation, access, and management

anytime, anywhere, and by anybody.  With

the increasing demand for information

access while un-tethered, speech is fast

becoming a desirable, if not required,

interface.  In our view, this capability calls

for a new generation of speech-based

interfaces that enable the computer to serve

as a conversational partner to the user.

 Figure 1 shows the major components

of a typical conversational system.  The

spoken input is first processed through the

speech recognition component to convert

the acoustic signal into words. The natural

language component, working in concert

with the recognizer, produces a meaning

representation.  For information retrieval

applications illustrated in this figure, the

meaning representation can be used to

retrieve the appropriate information in the

form of text, tables and graphics.  If the

information in the input utterance is

insufficient, the system may choose to query

the user for clarification through dialogue

interaction.  Speech output can be obtained

by processing the information through

natural language generation and text-to-

speech synthesis. Throughout the process,

discourse and contextual information is

maintained and fed back to the speech

recognition and language understanding

components.
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RESEARCH HIGHLIGHTS

Since 1989, the SLS group has been

involved in the development of human

language technologies.  For example, our

segment-based speech recognition system,

SUMMIT, represents a radical departure from

the prevailing frame-based HMM systems.

Our continuing refinement of SUMMIT has

led to phonetic recognition performance

that is state of the art.  Similarly, our

probabilistic natural language understand-

ing system, TINA, was one of the first natural

language systems specifically designed for

speech, instead of text, input.  Its utility has

been demonstrated repeatedly in different

languages and applications.  The technology

components that we have developed have

been integrated into real applications, so

that we can study the interactions of various

components and collect useful data on how

real users will behave when faced with this

new generation of speech-based interfaces.

Some of these systems, such as the JUPITER

system for weather information, have

enjoyed widespread use.  Last but not least,

we continue to play our educational role,

teaching courses and supervising students at

MIT and elsewhere.  Over the ten-year span,

we maintained a student population of 10-

15, and have graduated many students,

totaling more than 50 degrees.

During this reporting period, we

continued our research and development in

human language technologies and conversa-

tional systems on several fronts.  Inspired by

work at AT&T, we have re-implemented the

lexical access search component of our

SUMMIT speech recognition system using

weighted finite-state transducers (cf. page

29).  This parsimonious framework has led

to greater flexibility in utilizing constraint

and better performance both in accuracy

and speed.  We continue to refine ANGIE, a

hierarchical, morpho-phonological frame-

work for representing speech and language,

incorporating several sub-word layers for

speech processing (cf. page 31). ANGIE’s

utility has been demonstrated in many

areas, including duration modelling, speech

recognition and understanding, and new

word detection and learning.

On another front, we have completed a

major redesign of GALAXY a client-server

architecture that we introduced in 1994 for

accessing on-line information using spoken

dialogue.  This effort was motivated by the

fact that, in 1998, GALAXY was designated as

the first reference architecture of the newly

launched DARPA Communicator initiative.

As a result, we developed a new version of

the GALAXY architecture, this time with the

specific goals of promoting resource sharing

and plug-and-play across multiple sites (cf.

page 9). To enable multiple sites to experi-

ment with different domains, components,

and control strategies, we made the hub

“programmable,” i.e., a scripting language

controls the flow through each dialogue

without recompiling.  The hub communi-

cates with the various servers via a standard-

ized frame-based protocol. The resulting

GALAXY-II architecture has been delivered to

MITRE for distribution, documentation,

and maintenance.  At the DARPA

Communicator’s PI meeting in June 1999,

eleven organizations demonstrated their

GALAXY-II architecturally compliant systems.

With regard to system development,

several aspects are particularly noteworthy.

First, we continue to develop JUPITER, a

telephone-only system for weather informa-

tion for more than 500 cities worldwide.

Since May 1997, we have collected over

250,000 utterances from more than 40,000

calls to a toll-free number.  These data have



5SPOKEN LANGUAGE SYSTEMS

VICTOR ZUE

proved to be invaluable for system develop-

ment, training, and evaluation.  In recent

months, JUPITER has become our testbed for

developing multilingual conversational

interfaces (cf. page 17).  Following the

success of JUPITER, we have started to develop

other, similar applications.  For example,

PEGASUS can provide flight status informa-

tion (cf. page 19) and VOYAGER can provide

traffic and navigation information (cf. page

20).  More recently, we have started to

develop MERCURY, a system that can help

with air travel planning (cf. page 23).

MERCURY requires considerably more

complex dialogue management than the

other systems.  All these systems provide

real information that is updated in a timely

manner, and they can all be accessed via a

telephone.

With a large number of students

completing their degrees the previous year,

the SLS student body is in its rebuilding

phase. The research topics that students are

addressing include acoustic modelling

(heterogeneous features, non-native

speakers, etc.), word-and phone-level

confidence scoring, sub-word modelling for

speech recognition and understanding, tone

recognition, prosodic modelling,

concatenative speech synthesis, analyses and

recognition of audio content, speech based

document retrieval, and semantics-based

information extraction from HTML

documents. A brief description of their

work can be found in this document.

Copies of completed theses, as well as all

our publications, are available for download

from our web page.
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GALAXY-II
Stephanie Seneff, Raymond Lau, Christine Pao and Nikko Ström

Through our experience over the last

decade in designing conversational systems,

we have come to realize that an essential

element in being able to rapidly configure

new systems is to allow as many aspects of

the system design as possible to be specifi-

able without modifying source code.  To

this end, we recently redesigned our core

architecture to support complex system

configurations controlled by a run-time

executable scripting language.  Using this

new framework, we have been able to

configure multi-modal, multi-domain, multi-

user, and multilingual systems with much

less effort than previously.  We are discover-

ing that we can now configure systems

whose capabilities are well beyond what was

previously considered feasible.

The resulting new architecture, GALAXY-II

[8], has recently been designated as the

initial common architecture for the multi-

site DARPA Communicator project in the

United States.  A main goal of this program

is to promote resource sharing and plug-and-

play interoperability across multiple sites for

the research and development of dialogue-

based systems.  MIT has been given the

responsibility of developing the architecture,

which is being maintained and distributed

from MITRE Bedford1.  Research on the

architecture design is ongoing, and MIT has

thus far delivered several updates of the

libraries to MITRE.  Multiple sites2 have

successfully adopted the framework and

incorporated it into their dialogue system

research platforms.

GALAXY-II differs from its predecessors

mainly in two ways: (1) a central hub

handles all communications among the

various servers via a standardized protocol3,

and (2) system control flow is maintained

through a specialized run-time executable

programming language interpreted by the

hub. GALAXY was first introduced in 1994,

as a client-server architecture for accessing

on-line information using spoken dialogue

[2].  Since then,  GALAXY has served as the

testbed for our research and development of

human language technologies, resulting in

systems in different domains (e.g., automo-

bile classified ads [4], restaurant guide [5]

and weather information [11]), different

languages [9], and different access mecha-

nisms [4,5,11].  In 1996, we made our first

significant architectural redesign to permit

universal access via any web browser [3].

The resulting WEBGALAXY architecture

makes use of a “hub” to mediate between a

Java GUI client and various compute and

domain servers, dispatching messages

among the various servers and maintaining

a log of server activities and outputs.

In the process of developing dialogue

control modules for various domains in

GALAXY, we came to the realization that it is

critical to be able to allow researchers to

easily visualize program flow through the

dialogue, and to flexibly manipulate the

decision-making process at the highest level.

To this end, we developed a simple high-

level scripting language that permits

boolean, string, and arithmetic tests on

variables for decisions on the execution of

particular functions.  A domain-dependent

dialogue control table specifies a set of

sequential rules in this scripting language.

1 For a description of the Communicator Program and documentation of the architecture,
see http://fofoca.mitre.org.

2 Including AT&T, BBN, CMU, SRI, MIT Lincoln Laboratory, MITRE, Lockheed Martin, and HRL.
3 For high bit rate transmissions the hub brokers the relationship and the data are transmitted directly between

the two servers.
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Generally, multiple rules fire in the course

of a single turn.  We found this mechanism

to be very powerful, and were successful in

incorporating it into our newest domain

servers for weather and flight status

information4.  We then began to contem-

plate the idea of incorporating an analogous

mechanism into the program control of the

entire system, which was being maintained

by the GALAXY hub.  At about the same time,

discussions were beginning on the possibil-

ity that GALAXY be designated as the refer-

ence architecture for the DARPA Commu-

nicator Program. It seemed possible for a

scripting language, modelled after the

dialogue tools developed for our domain

servers, to support a programmable hub for

the DARPA Communicator.

In the design of GALAXY-II, we retained

the notion of a central hub, but regularized

the communication protocol between the

hub and all servers, permitting users to

configure “hub scripts” to easily specify the

flow of information among servers perform-

ing their specialized tasks in the course of a

dialogue turn. Analogous to the dialogue

control table, sequential rules fire based on

tests on hub variables.  The hub variables

are represented in a data structure that we

call a “frame,” which permits typed variables

(e.g., string, integer, float, binary, and

(recursively) frame) to be packaged together,

manipulated, and transmitted.

An interesting research issue also

addressed here is how the complex tasks of

mixed-initiative dialogue systems should be

partitioned into a set of semi-autonomous

servers, each of which has clearly assigned

roles.  If the community intends to experi-

ment with plug-and-play options, then it will

be important to partition the space into

servers in a consistent way.  It is logical to

define separate servers for speech recogni-

tion, natural language understanding,

natural language generation, and speech

synthesis.  However, the components that

deal with context resolution, response

planning, and database retrieval are not

necessarily organized the same way by

different groups of researchers.  In the

systems we have thus far designed at MIT,

the task of “turn management” is handled

by a suite of domain-specific servers, as

mentioned previously.  Each of these servers

is controlled by a separate dialogue control

table.  However, a single database server

takes care of database needs for all of the

domain servers, with capabilities of consult-

ing both the Web and local relational

databases.  The turn managers routinely

consult the database multiple times5 in the

course of resolving a single user query.

Discourse inheritance is managed separately

from turn management, and the context

record is updated after both the user turn

and the system turn.  All domains are

handled by a single generic server, but

controlled by domain-specific discourse

tables [6].

The Hub Scripting Language
The GALAXY-II system consists of a central

hub that controls the flow of information

among a suite of servers, which may be

running on the same machine or at remote

locations.  The hub interaction with the

servers is controlled via a scripting language.

A script includes a list of the servers,

specifying the host, port, and set of opera-

tions each server supports, as well as a set of

4 This mechanism is now utilized by all the domain servers in GALAXY-II.
5 In module-to-module subdialogues.

GALAXY-II
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one or more  programs.  Each program

consists of a set of rules, where each rule

specifies an operation, a set of conditions

under which that rule should “fire,” a list of

input and output variables for the rule, as

well as optional store/retrieve variables

into/from the discourse history.

When a rule fires, the input variables

are copied into a token and sent to the server

that handles the operation.  The hub

expects the server to return a token contain-

ing the output variables at a later time.

There is the option of no output variables,

in which case interaction is one-way only.

The input and output variables are all

recorded in a hub-internal master token.  The

discourse history will also be updated, if the

rule has so specified.  The conditions

consist of simple logical, string, or arith-

metic tests on the values of the typed

variables in the master token.  The hub

communicates with the various servers via a

standardized frame-based protocol.

Each individual user is associated with a

unique session; user state information, such

as the current language, domain, etc., is

recorded via session variables.  Each session is

usually associated with a particular GUI

and/or audio server.  Discourse context is

organized utterance-by-utterance within a

session. Variables can be passed among

different tokens associated with the same

session via a device of prepending

“hub_session” to the key’s name.  Tokens

associated with different sessions compete

for available resources, and are queued up

by the hub when requested servers are busy.

The hub automatically garbage collects

tokens when they are no longer active.

Example Rule
An example rule is shown in Figure 3.  This

rule states that, if a ParseFrame exists but a

RequestFrame has not yet been generated

Figure 2. Architecture of GALAXY-II.
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(denoted by “!”), then call the

“context_tracking” operation, by sending

the ParseFrame to the discourse module6 for

evaluation. Also send the previous history

to define the context, which is retrieved

from the hub’s history record logged with

the session.  This operation, when com-

pleted, will return a token to the hub,

containing an updated version of the

HistoryFrame, a commitment to a particular

domain, and a RequestFrame, which is the

user query expanded to include any

augmentations due to inheritance rules.

The updated HistoryFrame is stored in the

history record to become context for the

next utterance.  The RequestFrame and

Domain are recorded in the log file.

Program Flow Control
A simple communication protocol has been

adopted and standardized for all hub/server

interactions.  Upon initiation, the hub first

handshakes with all of the specified servers,

confirming that they are up and running

and sending them a “welcome” token that

may contain some initialization informa-

tion, as specified in the hub script.  The

hub then launches a wait loop in which the

servers are continuously polled for any

“return” tokens7.  Each token is named

according to its corresponding program in

the hub script, and may also contain a rule

index to locate its place in program execu-

tion8, and a “token id” to associate it with

the appropriate master token in the hub’s

internal memory.  The rule is consulted to

determine which “OUT” variables to

update in the master, and which variables, if

any, to store in the discourse history or the

log file.  Following this, the master token is

evaluated against the complete set of rules

subsequent to the rule index, and any rules

that pass test conditions are then executed.

A top-level flag controls whether the

program is to run in “single-threaded” or

“multi-threaded” mode, where the former

permits only a single rule to fire and the

latter immediately executes all rules that

fire.  Servers other than those that imple-

ment user-interface functions are typically

stateless; any history they may need is sent

back to the hub for safekeeping, where it is

associated with the current utterance.

Common state can thus be shared among

multiple servers.  Furthermore, state is

insensitive to server crashes.

To execute a given rule, a new token is

created from the master token, containing

only the subset of variables specified in the

rule’s “IN” variables9.  This token is then

sent to the server assigned to the execution

of the operation specified by the rule.  If it

RULE: :ParseFrame & !:RequestFrame -->  context_tracking

RETRIEVE: :HistoryFrame
IN: :ParseFrame
OUT: :RequestFrame :HistoryFrame :Domain
LOG_OUT: :RequestFrame :Domain

STORE: :HistoryFrame

Figure 3. Example rule in the hub
script.

6 “Context_tracking” would have been included in the list of operations supported by the discourse server.
7 Servers can also spontaneously send tokens to the hub without having first received a token from the hub.
8 The sequential constraints can be easily eliminated, leading to a type of control that resembles an open-agent

architecture.
9 There may also be variables set immediately by a “PARAM” field.

GALAXY-II
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is determined that the designated server is

busy (has not yet replied to a preceding rule

either within this dialogue or in a compet-

ing dialogue) then the token is queued up

for later transmission10.  Thus the hub is in

theory never stalled waiting for a server to

receive a token.  The hub then checks

whether the server that sent the token has

any tokens in its input queue. If so, it will

pop the queue before returning to the wait

loop.

Semantic Frame
Representation
We expect that researchers utilizing the

GALAXY-II system will be developing servers

which will need to interface with a suite of

existing servers already in place.  In such

cases, it is necessary for the servers to share

a common language in the representations

they jointly process.  Researchers who

choose to replace all the servers are free to

use whatever meaning representations they

find convenient.  However, if the intent

were to replace a subset of servers, for

example, a new dialogue manager or a new

language generation server, then the new

server would have to adopt the meaning

representation protocol that was in use by

the replaced component11.  Thus we think it

is appropriate to provide a brief description

of the meaning representation formats that

have been adopted by our systems.

In the process of developing conversa-

tional systems in multiple domains over the

last decade, we have constructed a minimal

linguistic specification of a meaning

representation that we feel is adequate for

most applications of interest to us.  Our

TINA system [7] converts recognizer hypoth-

eses into semantic frames in this format, and

our context tracking component [6] depends

critically upon this format for proper

functioning.  Our GENESIS [1] system can

paraphrase semantic frames into multiple

languages, not just natural languages but

also into SQL, into a flattened “E-form”

representation, and into waveform concat-

enations for our  Envoice speech synthesizer

[10].

We view the linguistic/semantic world

as consisting of three main types of constitu-

ents, which we call clause, topic, and predi-

cate12. A clause constituent generally occurs

at the highest level, and usually represents

the high level goal of the user request,

which could be, for example, “display,”

“record,” “repeat,” “reserve,” etc.  Topics

generally correspond to noun phrases, and

predicates are typically attributes, which

could be expressed as verb phrases, preposi-

tional phrases, or adjective phrases.  A

semantic frame is, then, a named and typed

structure, with one of the above three types.

Semantic frames also contain contents,

and there is a library of tools available for

manipulating the contents.  Traditional

linguistic contents include an optional topic

and zero or more predicates.  A frame can

also contain a set of (key: value) pairs, where

the key can be any symbol-string, and the

value is one of: (1) an integer, (2) a string,

(3) a semantic frame, and (4) a list of values

in categories (1)-(3).  We use the (key: value)

notation for syntactic features such as

number and quantification; there is also a

distinguished “name” key for named

entities.  The (key: value) notation is very

10If multiple instances of a given server are running then it will redirect the query to one that is not currently busy.
11Or at least be able to translate it into something more convenient for its purposes.
12A somewhat different intent from the usual definitions of these terms.

STEPHANIE SENEFF, RAYMOND LAU, CHRISTINE PAO AND NIKKO STRÖM
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generic, and it has allowed us to represent

almost any information we need to record,

most especially database retrievals, in

semantic frame format.  For instance, the

key “airline” has the value “United” as

retrieved from the database.  In fact, the

token that is sent between the hub and the

servers is also itself a [degenerate] instance

of a semantic frame13, although at the

highest level it only utilizes the (key: value)

feature of the frame.

An example semantic frame for the

sentence “Show me flights from Boston to

Denver.” is shown in Figure 4.

Audio Server
The audio server has been upgraded to

handle multiple simultaneous user sessions.

The new server has a well-defined interface

to computer telephony (CT) hardware,

which can be implemented for different CT

APIs. However, we are currently using

hardware from Dialogic Corp. With this

new server, multiple phone lines can be

connected to a system, or different systems

may share lines from one audio server.

The new server has an event-based

design that allows it to react faster to user

input and system responses. Furthermore,

by continuously playing and recording

audio on the hardware, we gain total

software control of the audio. A useful side

effect is that entire sessions can be continu-

ously recorded, and therefore effects of

speech detection errors and user barge-in

can more easily be analyzed.

To further increase the system’s

responsiveness to user input we have

improved the speech detection algorithm.

We no longer rely on simply the signal

energy to make a speech/non-speech

decision, but we also take the degree of

periodicity into account. The improved

accuracy is used to reduce the speech-end

detection time. We have also improved the

logic for generating so called horizon events.

A horizon event is a signal that tells the

recipient that no events will occur before a

certain time. By sending appropriate

horizon events to the recognizer we opti-

mize the CPU resources spent in real time

by the recognizer.

Figure 4. Example semantic frame
for the sentence, “Show me flights
from Boston to Denver.”

clause:
  { display
    topic:
        { flight
          number: pl
          predicate:
               { from
                 topic: { city name: Boston }
               }
          predicate:
               { to
                 topic: { city name: Denver }
               }
         }
  }

GALAXY-II

13It is a clause whose name is the program it refers to.



15SPOKEN LANGUAGE SYSTEMS

Future Plans
Over the past year, we invested significant

resources towards the development of the

GALAXY-II architecture, but we feel that the

result was well worthwhile.  We have

generally found that the flexibility inherent

in hub scripting empowers us to conceive of

systems that we formerly considered to be

impossibly complex.  We have recently

envisioned two extensions to our GALAXY-II

system that we feel will be relatively straight-

forward to implement.

The first would be a wizard-mode system

that makes use of two telephone interfaces,

one of which records input from the user

and speaks system responses to the same

user, the other of which plays these same

user queries to a wizard who then speaks a

“translation” of the user query, either in a

simplified form in the same language, or

into a different language that the system

understands. The wizard’s query gets

processed through usual channels, except

that the audio output is directed to the user,

and the GUI output is displayed on the

wizard’s screen.  We believe that such a set-

up, which will be a powerful mode for

collecting user data for maturing systems,

can be configured completely within the

hub script.

A second mode that we are just

beginning to explore is a system that

behaves as an agent, calling back a user when

a predesignated condition is met.  We

envision an “agent” server, which might be

monitoring a number of events, such as a

particular flight or the traffic on a given

highway.  As soon as the specified condition

has occurred (the flight has arrived, the

traffic is at a standstill, etc.) the agent server

issues a “call me” request, providing both

the appropriate phone number and the

appropriate “welcome” message, detailing

the outcome of the event.  Our initial

efforts in developing a system supporting

such capabilities have been very encourag-

ing.  We have been able to rapidly configure

hub scripts to support interaction between

the agent server and other domain servers

(to field questions) and between the agent

server and the user (both for calling them

up at the appropriate time and for negotiat-

ing a new agent activity to be performed in

the future).
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clause: weather_event
   topic: accumulation
       name: snowfall
       pred: amount
         topic value, name: 2
            pred: to_value
              topic: value, name: 4, units: inches
       pred: by_time
          pred: time_interval
            topic: time_of_day, name: morning

Input: 2 to 4 inches snowfall accumulation by morning
English: snowfall 2 to 4 inches by morning
German: Schneefall 2 bis 4 Inch bis am Morgen
Spanish: nevada 2 a 4 pulgadas antes de la manana

Figure 5. Example semantic frame
for the sentence “two to four inches
snow fall accumulation by
morning” with paraphrases in three
languages.

Multilingual JUPITER
Stephanie Seneff, Joseph Poliforni, Yasuhiro Minami and Yi-Chung Lin

We have recently begun work on porting

the JUPITER system to a number of other

languages, initially concentrating on

Japanese and Chinese. These efforts are

taking place within the context of the

GALAXY-II architecture (c.f. page 53).

Because the information that JUPITER

maintains is represented in a semantic

frame format, it is straightforward to

translate this information to another

language besides English. We have begun an

effort to paraphrase the weather responses

into Japanese, Mandarin Chinese, German

and Spanish. For each of these languages, a

native speaker who is fluent in English is

preparing the corresponding GENESIS

generation rules.

We had not dealt extensively in the past

with German, a particularly difficult

language due to its extensive use of inflec-

tional endings. We had to augment GENESIS

with a more sophisticated ability to deal

with case, which can be assigned in the

vocabulary file by prepositions and verbs. In

addition, we needed to be able to specify the

correct inflectional endings for nouns and

adjectives as a function of case, gender, and

number.

There were a few instances when the

same word in English had to be given a

different translation depending on the

context. For example, the word “light,”

translates differently into Mandarin for the

two phrases, “light wind” (“qinq1”) and

“light rain” (“xiao3”). GENESIS handles this

situation using a semantic grammar that can

categorize the two cases into different

adjective types.

Figure 5 gives an example of a semantic

frame for the sentence, “2 to 4 inches

snowfall accumulation by morning,” along

with the corresponding paraphrases in three

languages. Note that the preposition “by”

has been interpreted in the semantic frame

as denoting a time expression, allowing the

appropriate translation of this diversely

realized preposition.

With the help of visiting researchers, we

are working on the paraphrasing of incom-

ing English weather reports into Chinese

and Japanese. Because local sources provide

the most detailed weather information, we

also plan to obtain weather reports from

Japanese and Chinese information provid-

ers. The data from these local sources can

be paraphrased into English so that our
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MULTILINGUAL JUPITER

English system can benefit as well from this

more in-depth knowledge.

We have had Chinese recognition,

understanding, and generation capability

for many years and we recently incorporated

those capabilities into the current GALAXY

architecture. It is now possible for a user to

speak to the system in Chinese, see the

response in Chinese characters and hear the

response in English. Although we do this

because we do not yet have a Chinese

speech synthesizer, it also demonstrated the

strength and flexibility of the hub architec-

ture, in allowing us to specify separate

grammars and generation catalogs within a

given discourse context.
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PEGASUS
Stephanie Seneff and Joseph Polifroni

Our PEGASUS flight status system was first

introduced in 1998 [1]. Over the past year

we have paid particular attention to

database issues in PEGASUS. Our database of

flight status information, which is updated

every six minutes, is now kept current on

flights throughout the entire calendar day.

Previously, as flights disappeared from our

updates (approximately two hours after

landing), they were also expunged from our

database. Now users can find on-time

information for any flight that has taken off

and/or landed on the particular day they

ask. Flight records in our database now

maintain a timestamp for their latest

update, which the PEGASUS system consults

when deciding on how to answer a query.

Only current information (defined as

information obtained that same day) is

provided to the user.

We are currently exploring a new

mechanism for updating the database of

schedule information, which the PEGASUS

system uses to answer queries that do not

contain an airline and flight number. We

have found it important that this informa-

tion be kept as current as possible. There-

fore, flight schedules are now obtained live

at the time of the user query via an on-line

information provider.

We have developed more sophisticated

mechanisms for dealing with errors caused

by misrecognition of flight numbers. We

were able to implement fairly complex

algorithms quickly, directly as a conse-

quence of the hub scripting capabilities of

GALAXY-II. When the system proposes a

query containing an airline and flight

number that is not in our schedule or status

databases, the N-best list is set aside while

the system engages the user in a clarification

sub-dialogue to elicit a source and destina-

tion city. The system then queries the

database for a set of flight numbers consis-

tent with those two cities and refilters the

N-best list based on these new flight

numbers. After this short sub-dialogue and

using this intelligence, the system is able to

correct a flight-number misrecognition

without ever revealing to the user that a

mistake was made.

Reference
[1] S. Seneff, J. Polifroni and P. Schmid, “PEGASUS:

Flight Departure/Arrival/Gate Information
System,” MIT Spoken Language Systems Group
Research Summary, p. 25-26, July 1998.
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Development of the VOYAGER System
TJ Hazen

Over the course of the last year, a significant

effort has been placed on the development

of a new and improved VOYAGER system.

VOYAGER has been one of the cornerstone

systems of the Spoken Language Systems

group since its inception in 1989 [1,2]. The

basic function of the system is to provide

tourist and travel information for the city of

Boston. In the past, the system has focused

on static map-based information, allowing

the user to ask about sites and landmarks,

view maps, and obtain directions from place

to place.

In the last year the VOYAGER system has

undergone a major overhaul in two main

areas. First, the system has been completely

ported to the new GALAXY-II spoken language

system architecture [3]. Second, it has been

augmented with new, dynamic information

about current traffic conditions (as provided

by SmartRoute Systems). These two changes

have allowed the system to become viable

for use by the general public over a standard

telephone line.

In developing the new VOYAGER system,

various technical challenges have presented

themselves. First, the complexity of the

queries that can be asked of VOYAGER

exceeds the complexity of queries typically

asked of our other systems, such as JUPITER

[4]. This required that the flat key-value

dialogue representation used in our

previous systems be expanded to handle lists

and hierarchical constructs. With this

augmented dialogue structure complex

requests, such as “Show me a map with

museums and historic sites in Boston,

Brookline and Cambridge”, can be handled.

From the query the system generates the

semantic representation shown in Figure 6,

for use by the dialogue manager and

database server.

The inclusion of a hierarchical structure

and lists in this query allows for a straight-

forward representation of the complex

query which, despite its increased complex-

ity, is easily handled by the back-end

components of the system (i.e., the dialogue

manager and the database server).

The particular query also contains an

example of semantic ambiguity, which the

turn manager is responsible for resolving.

The hierarchical structure indicates that the

parser interpreted the query as a request for

“museums” first and then “historic sites in

Boston, Brookline, and Cambridge” second.

Although this particular parse is technically

an acceptable interpretation, the more

{c eform
    :action “display”
    :list ( {q list_item
               :category “museum” }
            {q list_item
               :category “historical_site”
               :in ( {q list_item
                        :category “city”
                        :name “Boston” }
                     {q list_item
                        :category “city”
                        :name “Brookline” }
                     {q list_item
                        :category “city”
                        :name “Cambridge” } ) } ) }

Figure 6. Eform structure
associated with the query “show
me a map with maps and historic
sites in Boston, Brookline and
Cambridge”.
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appropriate interpretation would attach the

“in Boston, Brookline, and Cambridge”

prepositional phrase to both “museums and

historic sites”. Currently, the turn manager

has a set of heuristic rules for detecting and

correcting these types of parse ambiguities.

Another technical challenge of VOYAGER

is the ability to generate short and concise

traffic reports from the traffic information

reports provided by SmartRoute. The traffic

reports are distributed in small capsules,

each reporting the traffic conditions for a

particular roadway segment. Typical users

will ask for a traffic report covering multiple

roadway segments. The challenge is to

aggregate the traffic reports from these

roadway segments without generating

excessive or redundant information. To

provide an example, consider the reports

generated for the following user query,

“What is the traffic like on Route 2?” The

database returns reports for four different

segments of road for this query. If the four

reports are generated independently then

the user might hear the following :

On Route 2 heading east from
Route 495 to Route 95 the
traffic is moving freely with an
average speed of 41 miles per
hour. On Route 2, heading east
from Route 95 to Memorial Drive,
the traffic is moving freely
with an average speed of 36
miles per hour. From the Ground
Round Rotary to Huron Avenue,
there is a utility crew. Various
lanes are restricted. You are
advised to expect delays. On
Route 2 heading west from
Memorial Drive to Route 95 the
traffic is moving freely with an
average speed of 36 miles per
hour. On Route 2 heading west
from Route 95 to Route 495, the
traffic is moving freely with an

average speed of 46 miles per
hour.

However, the system contains a series of

rules designed to cut down on the verbosity

of the traffic reports that are generated.

These rules can apply various linguistic

phenomena, such as segregatory coordina-

tion and ellipsis, as well as some task

specific heuristics for eliminating redundant

information. After applying these rules, the

report above is reduced to the more concise

report listed below:

On Route 2 heading east from
Route 95 to Memorial Drive, the
traffic is moving freely with an
average speed of 36 miles per
hour. From the Ground Round
Rotary to Huron Avenue, there is
a utility crew. Various lanes
are restricted. You are advised
to expect delays. Traffic on the
other roadway segments for Route
2 is moving freely at or near
the speed limit.

Various other research areas that have

been investigated under VOYAGER include the

development of a robust recognizer trained

from out-of-domain data and the study of

the dialogue management issues surround-

ing reading driving directions to a user over

the phone.

In the coming year, we hope to con-

tinue to improve the VOYAGER system. One

potential future direction for VOYAGER is its

use in a mobile environment. If VOYAGER

becomes portable and is augmented with

GPS information, it can be used in a mobile

environment such as an automobile. This

will allow the system to dynamically update

the user about travel conditions or informa-

tion based on the user’s current position as

well as the user’s stated goals and desires.
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The MERCURY System
for Flight Browsing and Pricing
Stephanie Seneff, Raymond Lau, James Glass and  Joseph Polifroni

In June, 1999,  we completed the first

working demonstration of our  MERCURY

system for obtaining flight schedule

information and for pricing potential

itineraries via an over-the-telephone

conversational interface. MERCURY supports

queries about air travel amongst the 150

busiest airports worldwide, as measured by

1997 passenger traffic, and can help a caller

plan and price an intinerary involving one

or more destinations. Information for

MERCURY is presently obtained from The

Sabre Group’s Travelocity service. In June,

we conducted an initial evaluation of the

system involving eighteen callers from

within our group but who were not system

developers. On average, thirty-six queries

were required to plan an itinerary involving

three legs. The average call duration was

thirteen minutes.

User Interaction Paradigm
The current MERCURY system presumes that

the user is a schedule-sensitive, as opposed

to price-sensitive, traveler attempting to plan

an air itinerary. The system supports both

enrolled users and guest users. For enrolled

users, certain profile information, such as

initial origin city, is assumed and the user is

provided with an option to receive an

emailed copy of his/her itinerary at the end.

The user is asked to construct his/her

itinerary, one leg at a time, making a

selection of specific flights for each leg. At

any point in time, the user is permitted to

modify previous legs by specifying updated

constraints. Examples of permissible queries

are given in Figure 7. After constructing an

itinerary, the user is permitted to ask for a

price, and if enrolled, to have the final

itinerary, with pricing information, emailed

to him/her. An example of a complete

interaction with the system is shown in

Figure 8.

System Architecture
The MERCURY system is built within the

GALAXY-II architecture ([1]). MIT’s SUMMIT

([2]) is used for the speech recognition

component, TINA ([3]) is used for natural

language understanding and context-

tracking, GENESIS ([4]) is used for language

generation.  For speech synthesis, a commer-

cial-off-the-shelf solution (DECTalk) is used.

The telephony interface is a Dialogic board.

The entire system runs in real time prima-

rily on Intel-based PCs. Information on

flight schedules and pricing is obtained in

I want to fly from Boston to London on British Air next Friday.
      [Interpretation of dates.]

I want to depart in the morning.
[Adding a departure time constraint to present leg.]

I want to arrive in Tokyo a little earlier.
[Modification of constraints for a leg to Tokyo already
in partially constructed itinerary.]

I want to return three days later.
[Date is relative to arrival date on previous leg, and
destination is inferred to be origin of itinerary.]

Figure 7. Examples of permissible
queries for MERCURY along with
some comments indicating
supported functionality.
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real-time from the Travelocity Website via

screen-scraping. A small local database of

pragmatic information, such as geographic

location of airports, provides supplemental

input into the turn manager component.

Dialogue Challenges
We believe the flight domain to be much

more complex, in terms of potential

dialogue interactions, than domains of our

other demonstration systems, such as the

JUPITER weather information system.

Planning an air travel itinerary involves

more than basic information access. The

traveler, together with the system, must

jointly arrive at a solution set that satisfies

both the constraints of the traveler and

those inherent in the availability of commer-

cial flights. The natural expression of these

constraints also typically involve numerous

pragmatic details, such as the structure of

the calendar, time zone differences, geo-

graphical proximity of airports, etc. Beyond

the challenges of understanding and

negotiating constraints, a dialogue typically

also involves the user wishing to browse

multiple flight choices suggested by the

system. In such cases, inexact references to

an item in a list must be understood by the

system.  For example, a flight departing at

7:56 AM might be referred to as “the eight

o’clock flight.” In order to properly handle

such references, we developed a “fuzzy”

matching heuristic that accounts for

departure/arrival times, airline names,

flight numbers, and source/destination/

connection cities. Another complication is

that typically, there are two lists to which a

user can refer - the partially constructed

itinerary and the list of recently retrieved

flights. Contextual information, along with

heuristics accounting for the pragmatics of

competing references, need to be employed.

An extremely ambiguous aspect of air

travel planning is that users have numerous

ways of expressing an intention to book a

flight but not all such manners of expres-

sion are necessarily booking requests. For

example, if the user says “the later flight,” it

is unclear whether he wants more informa-

tion or wants an actual booking. MERCURY

adopts the general strategy of treating these

potential booking requests as more informa-

tion requests and follows up with “Shall I

book this flight for you?” A similar confir-

mation strategy is employed by MERCURY

when “dangerous” actions are requested by

the user. For example, we discovered that

when city name requests are misrecognized

and the source city is changed during the

itinerary planning stage, an extensive repair

process must be undertaken by the user to

recover. To help protect against this, the

system now explicitly requests confirmations

in such instances. The top level dialogue

control table for the initial demonstration

system consists of approximately 200 if-then

rules.

Response Challenges
There are numerous challenges in generat-

ing a response to a user query, particularly

when a display is not available. Typically,

numerous flights are available to satisfy a

given set of user constraints. This list must

be prioritized to one to three reasonable

choices to allow the system to present

information in fragments small enough not

to be overwhelming. A heuristic accounting

for non-stop, time and airline preferences is

used for the prioritization. During the

negotiation between the user and the system

to arrive at a set of mutually agreeable

constraints, we would like the system to



25SPOKEN LANGUAGE SYSTEMS

MERCURY: Welcome to MERCURY, the MIT air travel planning system.
I can help plan your air travel itinerary. Please tell
me your user name. If you do not have a user name,
please say new user.

USER: NEW USER

MERCURY: Welcome. You have successfully logged onto MERCURY as a
new user. How may I help you?

USER: I WOULD LIKE TO FLY FROM BOSTON TO LONDON

MERCURY: Flights from Boston to London. What date will you be
traveling?

USER: NEXT FRIDAY IN THE EVENING

MERCURY: Okay. flights from Boston to London departing between
5:00 pm and midnight o n June 25. Can you provide a
departure or arrival time? The earliest nonstop flight
from Boston to London departing between 5:00 pm and
midnight on June 25 leaves at 5:30 p.m. and arrives at
4:55 a.m. on British Airways. You arrive one day later.

USER: IS THERE A UNITED FLIGHT?

MERCURY: Okay. United flights from Boston to London departing
between 5:00 pm and mid night on June 25. One moment
please... I have a nonstop United flight leaving at
6:40 p.m. and arriving at 6:25 a.m. the following day?

USER: BOOK THAT FLIGHT

MERCURY: United flight 998 has been added to your itinerary. You
depart Boston at 6:40 pm and arri ve in London Heathrow
at 6:25 am. You arrive one day later. Where would you
like to go next?

USER: I WOULD LIKE TO RETURN TO J F K THE FOLLOWING TUESDAY

MERCURY: Okay. United flights from London Heathrow to New York’s
Kennedy on June 29. One moment please... I have a
flight departing at 1:55 p.m., a flight departing at
9:00 a.m., and a flight dep arting at 6:00 p.m. Please
select one.

USER: BOOK THE EARLIEST FLIGHT

MERCURY: United flight 957 has been added to your itinerary. You
depart London Heathrow at 9:00 am and arrive in New
York’s Kennedy at 11:50 a.m.. Where would you like to
go next?

Figure 8. Example interaction with
MERCURY.

Cont’d

STEPHANIE SENEFF, RAYMOND LAU, JAMES GLASS, AND JOSEPH POLIFRONI
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present confirmations to the user of the

current desired constraint understood by

the system. However, this confirmation

soon becomes wordy and inefficient. We

have adopted a tersification heuristic which

tries to only respond with the change in the

constraint set, except when a major mile-

stone, such as the booking of a flight, is

reached. Finally, because computerized

reservation systems, the ultimate data

sources underlying MERCURY, are relatively

slow at providing responses, we introduced

intermediate replies to inform the user that

the query is being processed. When an

intermediate reply is used, MERCURY includes

the confirmation information as part of the

intermediate reply in order to make efficient

use of otherwise idle time.

Evaluation
We conducted an initial evaluation of

MERCURY on eighteen members of our

research group who were not system

developers. Of the subjects, five were non-

native speakers of English and four were

novices on our systems, in that they joined

the group recently. The subjects were asked

to plan the following itinerary: City A to B

on a date in the near future. City B to C on

a date n days later where n is at least one.

Finally, returning to city A later that same

day. A total of 648 utterances were evalu-

ated. The average utterance contained 5.6

words. Each session lasted an average of

12.4 minutes. All but one session lasted

under eighteen minutes. The fastest sessions

were approximately seven minutes. Figure 9

USER: I WOULD LIKE TO RETURN TO BOSTON THAT SAME EVENING

MERCURY: Okay. United flights from New York’s Kennedy to Boston
departing between 5:0 0 pm and midnight on June 29. One
moment please... I have a flight departing at 8:55 p.m.,
and a flight departing at 7:00 p.m. Please select one.

USER: I WOULD LIKE THE SEVEN O+CLOCK FLIGHT

MERCURY: United Airlines flight 7282 leaves New York’s Kennedy at
7:00 p.m. and arrives in Boston at 8:31 p.m. The total
flight time is 1 hours and 31 minutes. The aircraft is a
Jetstream 41 Turbo. Shall I book this flight for you?

USER: YES PLEASE

MERCURY: United flight 7282 has been added to your itinerary. You
depart New York’s Kennedy at 7:0 0 pm and arrive in
Boston at 8:31 pm. Shall I price your itinerary?

USER: YES

MERCURY: The price for your itinerary is $2065.40. Is there
anything else I can do for you?

USER: NO THANK YOU GOOD BYE

MERCURY:Thanks for using MERCURY. Have a nice day!

Figure 8. (cont’d)
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shows the distribution of call durations

graphically.

All eighteen callers were able to

complete an itinerary satisfying the param-

eters of the task. It is now known how many

actually completed a desired itinerary vs. any

itinerary. The class bigram language model

achieved a perplexity of 20.7 and the class

trigram model achieved 17.4. The language

models were trained on over 48,000

sentences, drawn from an internal data

collection effort and from previous data

used in our earlier work in air travel and

other domains. The vocabulary size was 959

words. The recognizer, using diphone

boundary acoustic models trained on data

from our JUPITER weather information

system, had an overall word error rate of

20.5% and an overall sentence error rate of

43.7%. Of the sentences, 91% had refer-

ences and hypotheses that were parseable by

the natural language component and thus

can be used for natural language under-

standing evaluation. The remainder consists

of 7% where the reference cannot be parsed

and 2% where only the recognizer hypoth-

esis cannot be parsed. Various error rates

for each of these classes are given in Table 1.

Summary and Future Work
While we have made significant progress on

MERCURY as an air travel planning system,

several major obstacles remain. One is that

prior user-enrollment via an out-of-band

mechanism is required. We would like users

to be able to enroll directly over-the-

telephone or to provide an email address for

an itinerary at the end of a session, even

without any enrollment. To enable such

functionality, we are actively pursuing

proper noun and spelling recognition.

Another limitation lies in our choice for a

user-interaction model - namely having a

scheduling-sensitive focus. Our experience

with developing conversational systems is

that they typically improve only with the

collection of more user data from a large

user population. However, before we can

obtain such user data, we need to convince

users to call. While business travelers are

scheduling-conscious, that segment of the

population will likely continue to deal with

their existing travel agent, especially since

we are unable to actually issue the final

tickets. However, we believe that if instead,

we were to provide a service for the price-

sensitive shopper, and we are able to deliver
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Figure 9. Durations of the eighteen
evaluation calls to MERCURY.
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28 SUMMARY OF RESEARCH

competitive pricing and comprehensive

ticketing information, such as fare basis

codes, that can be used to complete a

reservation with an actual travel agent, we

will deliver significant enough value to

attract users. The primary reason we chose

to start with a schedule-sensitive paradigm is

that the dialogue interaction is likely to be

simpler, because the system needs to worry

primarily about one leg at a time. In a price-

sensitive paradigm, the user must be

encourage to specify a minimal set of

constraints to enable effective price search-

ing. The legs of a trip must not be fixed

until all user constraints are known. This

can greatly complicate the dialogue, but is a

challenge we are ready to address. Also,

effective price search requires a much higher

bandwidth access to a flight pricing

database than possible with screen-scraping

a Web-based service. We are presently

evaluating alternative data providers.

Another area we would like to improve is to

make the system output sound more natural

to the user. Because of the complexity in

flight descriptions, improving intelligibility

of the system response is important. We

believe that by using our ENVOICE ([5])

concatenative synthesizer, we can have much

better sounding and more easily understood

output.
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Evaluable Ref Fails to Parse Hyp Fails to Parse
# Utterances 587 45 16
WER (%) 13.9 42.1 41.2
UER (%) 20.9 N/A N/A

Table 1. Performance statistics for
preliminary MERCURY evaluation.
The understanding error rate
measures key-value errors.
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Finite-State Transducers
Lee Hetherington

Spoken language systems make use of a

diverse set of models and constraints in

translating from spoken utterances to

meaning representation and back again.

Many of these models and constraints take

the form of converting from one level of

representation to another. Many of these

mappings can be modeled using various

forms of finite-state transducers (FSTs) [1,2].

Often these mappings are weighted,

meaning that conversions have scores (often

probabilities) attached to them. For

example, a dictionary or lexicon can

represent the conversion or mapping from

phonemes to words and vice-versa. Figure 10

is an example showing a small subset of a

lexicon.

Furthermore, FSTs representing

individual mappings can be chained

together, or composed, to create another

FST representing the total chain of map-

pings. FSTs can be combined using compo-

sition, concatenation, union, and closure

operations to construct new FSTs. FSTs can

also be manipulated using identity opera-

tions such as epsilon removal,

determinization, and minimization to

produce equivalent FSTs that may have

desirable performance properties.

A big advantage to using FSTs to

represent various constraints or models

within a spoken language system is that by

choosing a common representation, we are

able to utilize powerful generic finite-state

algorithms at all levels. If components of a

system are written to operate on a generic

FST, then those components will work on

any we provide without having to rewrite

code. For example, many speech recognition

systems are hardwired to use a bigram

language model in the first (Viterbi) pass.

However, if this search component is

instead written to operate on any FST, then

it will also work on arbitrary n-gram, finite-

state, or even context-free language models.

Furthermore, many of the aforementioned

FST operations can be applied on-the-fly,

meaning that FSTs do not need to be

combined in advance. Thus, an FST that a

system component sees may in fact be

composed of several FSTs, yet that compo-

nent need not be aware of this construction.

Over the past two years, we have

developed an extensive C++ library and

associated tools that implement the various

FST operations, allowing us to reimplement

the lexical search component of the SUMMIT

speech recognition system to utilize FSTs

[3]. In particular, the search component sees

a single FST encompassing everything from

context-dependent acoustic model labels to

word-level language constraint. We typically

use the cascade of FSTs C o P o L o G as

the constraint.  Starting at the highest level

and working down, we have G representing

the grammar or language model constrain-

ing word sequences, L the lexicon or

dictionary mapping from words to pho-

nemes, P the context-dependent phonologi-

cal rules mapping from phonemes to

phones, and C the mapping from context-

independent phones to context-dependent

acoustic model labels.

In our system, the language model G

can currently be an arbitrary n-gram, finite-

state network, or context-free grammar.

(Even though a context-free grammar is in

general infinite-state, on a finite-length

utterance, the search will only explore a

finite part of it, so it can appear to be finite

when expanded on-the-fly.) Note that G

need not simply constrain the word

sequences; since it is a transducer, it could

be constructed to output some level of
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Figure 10. A subset of a lexicon
represented as an FST.  Transition
labels are of the form input:output,
with epsilon representing an empty
label.  In this case, the input labels
are phonemes, and the output
labels words.

0

1/b/:ε

2
/ao/:AUSTIN

3
/ao/:ε

4

/s/:ε

/s/:BOSTON

5/z/:BOSNIA

6
/t/:ε

7/n/:ε

8
/ax/:ε

9/iy/:ε

10/n/:ε

/ax/:ε

meaning extraction. Thus, for some

domains, it may possible for SUMMIT to go

from waveform to meaning representation

without the need for a more powerful

natural language understanding system such

as TINA.

Not only can many of the spoken

language constraints be represented using

FSTs, but many of the system’s internal and

external results can be represented using

them as well. For example, speech recogni-

tion output may include N-best paths or

word and phonetic graphs (lattices). Our

system also represents these using generic

FSTs, allowing us to manipulate them using

our FST tools and also to use them as

constraints for subsequent recognition runs.

Overall, our move to finite-state

transducers has really transformed our

system.  FSTs give us tremendous flexibility

in how we configure our system. On one

hand, by composing and optimizing FSTs

ahead of time we can make SUMMIT both

faster and more accurate than previously

possible. On the other hand, the system has

become much more flexible because we can

use arbitrary FSTs that can be combined in

novel ways.
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ANGIE
Stephanie Seneff

Over the past several years, we have been

exploring various models for accounting for

subword structure in American English

within a probabilistic framework. The

system we have developed, called ANGIE, has

been applied thus far to flexible vocabulary

speech recognition [2,3,4], hierarchical

duration modelling [1], and a reversible

letter-to-sound sound-to-letter system [5].

Recently we have used ANGIE to encode

English words into a special two-tiered

lexicon, wherein words are represented as

sequences of “morphs,” which in turn are

transcribed in an idealized phonemic form.

The morphs are analogous to Chinese

characters - they are generally syllable-sized

units spelled according to the subspellings

of the words that contain them, and marked

for position and stress.

By leveraging off of a pre-existing 11,000

word lexicon, we were able to obtain a high

quality lexicon for over 55,000 words from

Pronlex. This was done using a multi-step

procedure that began with training an ANGIE

grammar on the 11,000 word subset, for

both the letter inputs and the Pronlex

phone inputs. We then processed each word

in the larger lexicon through the following

set of steps:

1) Parse the Pronlex phones into a

phoneme graph, using ANGIE.

2) Parse the letter spelling into a

phoneme graph, restricted to be a subset of

the graph obtained in (1).

3) Parse both the dual-parse phoneme

graph and the letter spelling into morph

graphs based on the morph lexicon,

generalized to allow all combinations of

onset-rhyme in stressed roots.

4) Compose the two morph graphs into

an intersection space, which is then parsed

using our TINA natural language system into

candidate whole-word solutions in terms of

morphs (decomposed into onset-rhyme in

the case of stressed roots).

5) If appropriate, propose novel morphs

through observed recombination of onsets

and rhymes.

Having obtained morph representations

for the large lexicon, we can then retrain the

ANGIE grammar to improve the quality of the

letter-to-sound system. The morph lexicon

also serves as a potential vocabulary for a

first stage recognizer in a two-stage system,

whose intent is to provide linguistic

constraint in the absence of a word lexicon.

In such a model, the second stage would

reparse a high quality phone or letter graph

into proposed word hypotheses, utilizing

multiple language models (including full

parsing support from TINA) in parallel. Each

language model would be specific to a

particular domain such as weather or

flights. Ideally, this would permit seamless

domain switching, as well as an ability to

handle partial words (false starts) and new

or out-of-domain words (cf. page 37).
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Heterogeneous Lexical Units
for Automatic Speech Recognition
Issam Bazzi

Typical automatic speech recognition

systems can recognize only words that are

part of a predefined fixed size vocabulary.

This constraint degrades the recognition

performance when an Out-Of-Vocabulary

(OOV) word is encountered since such a

word will always be misrecognized. Increas-

ing the vocabulary size does not solve the

problem, since no matter how large a

vocabulary is, there will always be some

OOV words; names are one good example.

Furthermore, increasing the vocabulary size

slows down the recognition due to the

larger search space. A closely related

problem is recognizing partial words in

speech. Partial words are usually not in the

vocabulary and cannot be recognized

correctly.

In this work, we explore the use of a

vocabulary of subwords for recognition,

such as syllables. Breaking words down into

syllables reduces the vocabulary size and

ameliorates the OOV problem. Figure 11

shows the word level vocabulary coverage

versus the number of syllables. As we can

see from the graph, a vocabulary of 1,000

syllables covers around 45,000 words, a

fairly large coverage for a relatively small

vocabulary.

In order to perform syllable-level

recognition, we derive the lexical units from

syllables instead of words, where a syllable is

pronounced as the sequence of phonemes it

is made of. To build the syllable bigram or

trigram language model, we start with a

word-level training set, and we break the

words down into syllables to obtain syllable

sequences for training. The use of finite

state transducers (FST) in SUMMIT allows us

to further integrate the syllable level
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recognition with a word-level lexicon and

language model by composing the output

from the syllable recognizer with the word

lexicon and language model [1]. The

recognition is viewed as finding the best

path through the composition:

A o L(syl) o G(syl) o L(wrd) o G(wrd)

where A represents the acoustic component,

L represents the lexicon and G the gram-

mar.

We ran preliminary experiments on the

JUPITER weather domain. We started with a

word lexicon of 1956 words. The resulting

syllable vocabulary was 1624 syllables. We

used the same acoustic models from the

word recognizer [1] as well as the same

pronunciation model. We trained the

language model from 16,601 utterances of

syllables. Table 2 shows some preliminary

results of our preliminary tests on a JUPITER

test set of 1167 utterances.

When we perform recognition with a

word-level recognizer, the baseline word

error rate (WER) is 10.4%. Using the

syllable recognizer with a syllable trigram

language model, and applying the composi-

tion with a word level lexicon and language

model, the WER is 11.7%. we also experi-

mented with a different approach where

recognition was performed in two stages. In

the first stage, we use a syllable-level

recognizer to generate a syllablegraph, then

in the second stage, we compose this graph

with a word lexicon and language model.

The WER we obtained using syllable graphs

is 13.2%.

Considering the fact that the syllable-

based framework is less constrained than

the word-based framework, we believe that

these preliminary results are quite encourag-

ing. For our future work, we are looking

into building a domain-independent syllable

recognizer of a larger inventory of syllables.

This recognizer can then be combined with

a domain specific word level lexicon and

language model for better performance. We

are also looking into combining different

lexical units within the same recognizer,

mainly words and syllables. This way we can

include the most frequent words and

syllables in the vocabulary while allowing for

the recognition of new words as well as the

recognition of partial words. We are

currently developing a vocabulary selection

method for merging words and syllables

within the same lexicon.

Reference
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Table 2. Word error rates for word-
and syllable-based recognizers.

HETEROGENEOUS LEXICAL UNITS FOR AUTOMATIC SPEECH RECOGNITION

Condition WER

Baseline, word-level 10.4%

Syllable-level recognition 11.7%

with word-level composition

Syllable graphs 13.2%
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Towards Multi-Domain Speech Understanding
Using a Two-Stage Recognizer
Grace Chung

Spoken language systems today are increas-

ingly employed as human-computer

interfaces for information access and

interactive problem solving tasks. These

technologies are accomplished through

integrating speech recognition and language

understanding components, and challeng-

ing research problems have arisen from

contemplating the design of their architec-

tures. For one, conversational systems that

retrieve information from a broad variety of

sources and services, such as on-line

databases, must operate across multiple

domains and allow users to switch

seamlessly and transparently among them.

Secondly, their ability to handle unknown

words becomes very important. The

experience of other researchers has shown

that it is inevitable for systems to encounter

previously unseen words [3], despite very

large vocabularies. This is even more

relevant in real-world applications, where it

is not possible to anticipate all words used

by all potential users, and information being

accessed can change frequently and unpre-

dictably.

One approach is an architecture that

supports a flexible and easily extensible

vocabulary. With conventional systems,

developed over single domains, vocabularies

tend to be closed or fixed. When unknown

words emerge at the input, these systems

can only propose errorful hypotheses or

reject the utterance altogether. A more

useful system would detect new words,

deduce automatically their acoustic,

phonological and linguistic properties, and

subsequently acquire them into the lexicon.

Our work proposes an approach that is

intended to realize this vision. Consider a

two-stage architecture. The initial stage

consists of a domain-independent core

recognition engine which only utilizes

acoustic and general linguistic knowledge to

produce hypotheses. Trained on several

large corpora, this recognizer codifies

general English morphological and syllabic

information. It is our belief that within the

linguistic hierarchy, information up to and

including the syllable level can be valuable

in enforcing constraints in recognition

while maintaining generality without

confining the system to any fixed vocabulary

items. By training on a large number of

syllables, in an attempt to maximize

coverage, and thereby accumulating general

knowledge of English sublexical structures,

this recognizer serves as a first pass whose

function is to prune away a large portion of

the search space. Moreover, it is capable of

providing probabilistic support for novel

words (that are consistent with English word

structure), false starts and partial words.  A

recognizer with only phonemic level

information would not constrain the space

sufficiently, giving rise to a large number of

hypotheses. On the other hand, using word

level units soon becomes unwieldy because

no word level recognizer can cover all novel

constructions and partial word possibilities.

The output of the front-end is a subword

lattice which is then processed by a suite of

domain-dependent speech understanding

modules. With a reduced search space and

thereby more manageable computational

requirements, each of these modules utilizes

higher level linguistic information such as

domain-specific natural language (NL)

models which account for dialog context.

The final decision for the best meaning

representation is mediated by a top-level

decision algorithm.

In [1], we introduced a preliminary

system that experimented with the intelli-
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gent integration of structured linguistic

knowledge into a recognizer. We developed

a two-stage system which applied syllable-

level constraints within a first pass, and

word-level and natural language (NL)

constraints in the second pass. The first-pass

system produced an N-best list, from which

a phonetic lattice was subsequently gener-

ated. In [2], we have subsequently designed

and implemented an improved system in

which the first stage utilizes subword level

linguistic knowledge and outputs a high-

quality phonetic lattice directly, obviating

the need for an intermediate N-best stage.

To generate the phonetic lattice, our

system design folds hierarchical linguistic

knowledge into a finite-state transducer

(FST) representation. As in [1], the first pass

is a syllable-level speech recognizer. A major

step in performance improvements has been

achieved by incorporating the probability

models derived from ANGIE, our trainable

hierarchical sublexical framework. We have

transformed ANGIE’s representation into an

FST framework which can be easily inte-

grated with our most recent FST-based

version of SUMMIT via a composition

algorithm. The ANGIE FST with phone input

labels is precomposed with a syllable trigram

FST, enabling fast computation at run-time.

These new developments allow the first

pass to model phonological processes

probabilistically while retaining computa-

tional tractability. This is because the

dynamic parsing of ANGIE has been replaced

by a flattened FST representation with

ANGIE-derived probabilities precomputed on

the arcs from training data. This FST

representation preserves the benefits of

sharing probability space, a characteristic

inherent within ANGIE.

In comparison with the lattices in [1],

the current system is fundamentally

different. Our phonetic lattices have no

knowledge of time and are optimized by the

tools available for FSTs. As in [1], our

second-pass search tightly couples ANGIE

constraints and TINA -based NL contraints

via the stack decoder search algorithm. Here

our phonetic lattices have been topologically

reordered, and the search proceeds along

these ordered nodes.

Our work is conducted in the JUPITER

domain (world-wide weather information.)

On a development set, the first pass of our

current system gives a substantial improve-

ment in syllable recognition compared with

the results reported in [1] from 12.8%

syllable error rate down to 9.3% syllable

error rate, a relative error reduction of

27.3%.

TOWARDS MULTI-DOMAIN SPEECH UNDERSTANDING USING A TWO-STAGE RECOGNIZER
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Our complete baseline system consists

of a SUMMIT recognizer, which outputs an N-

best list, and an understanding component,

which subsequently selects the best hypoth-

esis from this list based on NL constraints

provided by the TINA framework.  For

evaluation, we use an understanding error

rate described in [1]. The baseline system

achieves an understanding error rate of

20.8% on a new test set. Our new system

can be evaluated with and without TINA  NL

constraints in the second pass. Without

TINA constraints, it achieves a 16.9%

understanding error rate, which improves to

15.9% with TINA integrated. This is a 23.6%

relative improvement over the baseline

system.

GRACE CHUNG
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Hetergeneous Acoustic Measurements and
Multiple Classifiers for Speech Recognition
Andrew Halberstadt

The acoustic-phonetic modeling component

of most current speech recognition systems

calculates a small set of homogeneous frame-

based measurements at a single, fixed time-

frequency resolution. This thesis presents

evidence indicating that recognition

performance can be significantly improved

through a contrasting approach using more

detailed and more diverse acoustic measure-

ments, which we refer to as heterogeneous

measurements.

This investigation has three principal

goals. The first goal is to develop heteroge-

neous acoustic measurements to increase

the amount of acoustic-phonetic informa-

tion extracted from the speech signal.

Diverse measurements are obtained by

varying the time-frequency resolution, the

spectral representation, the choice of

temporal basis vectors, and other aspects of

the preprocessing of the speech waveform.

The second goal is to develop classifier

systems for successfully utilizing high-

dimensional heterogeneous acoustic

measurement spaces. This is accomplished

through hierarchical and committee-based

techniques for combining multiple classifi-

ers.  The third goal is to increase under-

standing of the weaknesses of current

automatic phonetic classification systems.

This is accomplished through perceptual

experiments on stop consonants which

facilitate comparisons between humans and

machines.

Figure 12 shows the error rate reduction

obtained in a TIMIT phonetic classification

task when combining all possible subsets of

eight classifiers using an independence

assumption. Error rates are shown as a

function of the number of classifiers in the

Figure 12. Performance of classifier
combination using an
independence assumption for all
possible subsets of 8 classifiers.
Error rate is shown as a function
of the number of classifiers in the
set. Results are shown for
unigram, bigram, and trigram
phonotactic model conditions.
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subset. In the figure, individual data points

are evenly spaced along the x-axis in the

vicinity of the appropriate value of k, where

k represents the number of classifiers being

combined. Lines connect the mean values.

Unigram, bigram, and trigram phonetic

phonotactic models were used. The total

number of experiments for each

phonotactic model is 255. As k varies from

1 to 8, the number of individual classifica-

tion experiments is 8, 28, 56, 70, 28, 8, 1,

respectively. The results indicate that

combining classifiers using independence

produces favorable trends with all three

phonotactic models, with relative error rate

reduction of about 15% on average.

In further empirical work, systems using

heterogeneous measurements and multiple

classifiers were evaluated in phonetic

classification, phonetic recognition, and

word recognition tasks. On the TIMIT core

test set, these systems achieved error rates of

18.3% and 24.4% for context-independent

phonetic classification and context-depen-

dent phonetic recognition, respectively.

These results are the best that we have seen

reported on these tasks. Word recognition

experiments using the corpus associated

with the JUPITER telephone-based weather

information system showed 10-16% word

error rate reduction, thus demonstrating

that these techniques generalize to word

recognition in a telephone-bandwidth

acoustic environment.

This thesis fits into the growing

literature on pattern recognition using an

ensemble of classifiers [4]. The acoustic-

phonetic motivation for employing en-

semble classification for acoustic modeling

in speech recognition is developed through

comparisons between human and machines

in phonetic classification tasks, and through

signal processing knowledge of the funda-

mental tradeoffs in time-frequency resolu-

tion. In addition to the experiments

reported here, the use of multiple acoustic

information sources and multiple classifiers

has led to encouraging results in a wide

variety of speech recognition experiments

reported in the literature [5, 6, 7]. Further

research will explore new ways to combine

classifier ensembles and search for corre-

sponding high-dimensional acoustic feature

spaces which are made practical through

ensemble methods.
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Word and Phone Level
Acoustic Confidence Scoring
Simo Kamppari

While the recognition performance of

speech recognition systems improves

constantly, the systems remain far from

perfect. Accepting the fact that mistakes in

recognition will be made, it is desirable to

determine when these mistakes occur. The

purpose of word level confidence scores is

to indicate a certainty that a given word is

correctly recognized. Access to robust word

level confidence scores enables improve-

ments in various components of existing

spoken language systems and may also lead

to entirely new functionalities. This research

has focused on developing acoustic based

phone and word level confidence scores

within a segmentation based recognizer

SUMMIT [2,4], and exploring possible

applications for these scores. The work has

been implemented on the JUPITER [3]

weather information system which provides

weather information regarding approxi-

mately 500 cities around the world.

The goal of word level confidence

scoring is to attach a confidence value with

each word in the recognition hypothesis,

indicating the likelihood that the word is

correctly recognized. An ideal confidence

metric would be a simple binary flag; it

would always correctly point out which

words in a hypothesis are correct and which

are wrong. As achieving such performance is

impossible in the absence of perfect speech

recognition, a probabilistic measure is a

more feasible goal. The probabilistic

measure is non-binary and reflects the

likelihood that a word is correctly recog-

nized.

This research approaches the word level

confidence scoring problem as a derivative

of the phone level confidence scores. The

phone level confidence scores are calculated

from the acoustic observations associated

with each phone. The basic phone level

confidence feature is a measure of how well

a proposed boundary model accounts for an

acoustic observation relative to a generic

catch-all model. The catch-all model repre-

sents all the possible boundary models in

JUPITER, and it is created by simply aggregat-

ing all the individual JUPITER boundary

models. This feature takes on the form of a

likelihood ratio )( xcC ill

r
  where ic  is the

proposed model and x
r

 is the acoustic

observation. It can alternatively be viewed as

a ratio of two scores, the score of the

acoustic observation given the proposed

model and the score of the acoustic

observation given the catch-all model, as

shown in Equation 1 . In addition to this

feature, a few other phone level features are

proposed.
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derived from combining phone level

confidence scores in various ways. The most
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of the phone level scores within a word

∑ =
= LN

k kkp
L

kkam xcC
N

cccxxxC
12121 )(

1
),,,,,,,(

r

K

r

K

rr

Other methods, like geometric means and

various min/max functions, were also used

to derive word level confidence measures.

Additional word level features can also be

used to augment these phone derived

confidence scores. All together 12 different

features were proposed as measures of word

level confidence.

To derive meaningful information from

the set of 12 unique features, Fisher Linear

(1)
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Discriminant Analysis [1] was used to

project the 12 dimensional feature space

into a single maximally discriminating

dimension. The theoretical performance of

the single dimension is capped at the

performance of the 12 dimensional space;

however this limit in performance is

outweighed by the simplification of the

analysis.

The performance of the word level

confidence scores was explored in terms of

the information content of words. The

results were encouraging as confidence

scores of words with higher information

content performed significantly better that

the scores of low information content

words. In terms of actual applications the

performance on content words is much

more important than that of non-content

words. Ultimately, most systems are

interested in correctly understanding a user

rather than correctly recognizing them. This

translates to a high tolerance in

misrecognizing words which do not affect

the meaning of an utterance, and a low

tolerance for miserecognizing words with

meaning. Figure 13 illustrates the differ-

ences in performance for high and low

content words in a form of a Receiver

Operating Characteristic (ROC), where  F
score

is the confidence metric derived from the

12 word level features using FLDA.

The above results, along with the fact

that the computation of the confidence

scores was made computationally reasonable

by using compact approximates of the catch-

all model, makes the confidence scores

viable for use in practical applications. This

research has worked in incorporating the

confidence scores into the parsing and
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understanding component in TINA. The goal

is to replace a current ad hoc method of

word graph node scoring with the confi-

dence scores. The confidence scores have

been incorporated in various ways, and the

performance has varied greatly. No signifi-

cant gains over the ad hoc method were

realized; however further work may lead to

more efficient ways for using the scores.

Further research is necessary to fully assess

the value of the confidence metrics in this

context.

In addition to this application, many

others exist. User feedback has great

potential for confidence scores. By utilizing

robust confidence scores, the human

machine interaction can be made both

more natural and robust. For example, the

system may potentially prompt the user to

repeat or clarify parts of an utterance the

computer may have not heard well. So far

this research has provided much insight into

confidence scoring analysis and has formed

a solid foundation from which further

research into various applications can take

place.
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The seMole: A Robust Framework for Accessing
Information from the World Wide Web
Hyung-Jin Kim

Although many people have labeled the

World Wide Web as the largest database

ever created, very few applications have been

able to use the web as a database. This is

because the web is dynamic: web pages

change constantly, sometimes on a daily

basis. I propose a system called the “seMole”

that aims to solve this problem by providing

a semantic interface into the web. The

semantic interface uses the semantic

content on web pages to map very high-level

concepts,  such as “weather reports for

Boston” to low-level requests for data (such

as getting the text in the third ‘A’ tag in a

web page). Therefore, even though web

pages change, the seMole will still be able to

find information on them.

The seMole will robustly access a web

page by taking advantage of the topology of

its underlying HTML. When web pages get

updated, the information that is presented

usually retains the same structure. For

example, when the CNN Weather Data site

changed in November of 1997, its facade

changed, but it still continued to present

the same information, namely data about

the current conditions of a city and a four-

day forecast. Furthermore, although the

HTML structure of this new page was

drastically different, the weather informa-

tion was still grouped in the same way (i.e.

high and low temperatures were still

presented next to each other).

The seMole uses semantic templates to

access information from web pages. In the

weather example, to gather all of the 4-day

forecasts of a city, the template in Figure 14

is used. The seMole takes this template and

matches it to the data on the web page. This

template essentially drills down through

high-level concepts presented on the web

page. First, it finds a “day” word e.g.,

“Monday” on the web page and then it tries

to find the words “low” and “high” that are

associated with that word. Finally, it finds

the integers that are most closely located to

the words “low” and “high”. Since this

semantic template is abstracting away from

the HTML structure, this template would

have found the same temperature informa-

tion before and after the change (Figure 15).

Notice that this template follows what a

human does to gather the same informa-

tion: first, he searches for a specific day and

then he searches for the temperatures

besides the words “high” and “low.”

In order to make use of semantic

templates, the seMole will require the

following facilities: a taxonomy of data

descriptors and a library of relationship

descriptions. A taxonomy of data descrip-

tors is used to describe all possible data or

recognizable features on a web page. In our

weather template, we used the names

“integer” and “day” to describe the data we

are looking for. In order for the seMole to

access many different types of web pages, a

large library of data types needs to be

created. One can imagine extending this

taxonomy to incorporate concepts of

“state,” “country,” and “car_name”. This

taxonomy can be hierarchical in that a

semantic idea can be built on top of other

semantic ideas, making them highly scalable

and re-usable. A library of relationship

descriptors describes all the ways in which

Figure 14. Semantic template for
CNN weather.
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features of a web page can relate to each

other. Descriptors such as “near” and

“on_top_of” are simple examples of

relationship descriptors. More complicated

descriptors include “encapsulate” which not

only define how one datum is positioned

relative to another, but also how the fonts of

each datum are related to each other (words

with large, bolded fonts encapsulate smaller

fonted words following them).

The seMole is potentially a very robust

Day

Word ("low") Word ("high")

Integer          Integer

Monday
High:  95
Low:  55

Monday
High:   Low:
  95       65

Figure 15. Mapping of the
semantic template to two versions
of the weather page (note: not
necessarily the CNN weather
page).

THE SEMOLE: A ROBUST FRAMEWORK FOR ACCESSING INFORMATION FROM THE WORLD WIDE WEB

and simple interface for applications to

access the web. By “lifting” semantic

concepts found on a web page away from

the HTML structure, the seMole will be

able to gather information from web pages

even when these pages change. In many

ways, semantic templates attempt to mimic

what a human does to find information. By

using concepts instead of HTML tags to

find information, the seMole is using web

pages as they were meant to be used: by the

human eye.
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Analysis and Modeling of Non-Native Speech
for Automatic Speech Recognition
Karen Livescu

The performance of automatic speech

recognizers has been observed to be

dramatically worse for speakers with non-

native accents than for native speakers. This

poses a problem for many speech recogni-

tion systems, which need to handle both

native and non-native speech. The problem

is further complicated by the large number

of non-native accents, which makes model-

ing separate accents difficult, as well as the

small amount of non-native speech that is

often available for training. Previous work

has attempted to address this issue by

building accent-specific acoustic and

pronunciation models or by adapting

acoustic models to a particular non-native

speaker.

In this study, we have examined the

problem of non-native speech in a speaker-

independent, large-vocabulary, spontaneous

speech recognition system for American

English, in which a large amount of native

training data and a relatively small amount

of non-native data are available. We have

investigated some of the major differences

between native and non-native speech and

have attempted to modify the recognizer to

better model the characteristics of non-

native data. This work has been performed

using the SUMMIT speech recognition system

[1] in the JUPITER weather information

domain [2].

We first examine the modification of

acoustic models for better recognition of

non-native speech. In order to take advan-

tage of the large amount of native training

speech available to us, as well as the

information that we can gather from the

small amount of non-native speech, we use a

model interpolation approach. In acoustic

model interpolation, a single model is built

by taking a weighted average of the probabil-

ity distribution functions corresponding to

several models. In this case, we interpolate

two models: One which has been trained on

native data, and is therefore robust but not

matched to the testing data, and another

which has been trained on the non-native

data, and is therefore less robust but better

matched. We have compared interpolated

models with varying component weights to

a set of baseline models trained on a pooled

set of all of the native and non-native

training data. We have found that we can

obtain a significant gain in recognition

accuracy for a large range of model weights.

The lowest word error rate we have obtained

using this method on a non-native test set is

19.2%, a relative reduction of 8.1% from

the baseline error rate of 20.9%. This

minimum occurs for a non-native weight of

0.54 and a native weight of 0.46. However,

the location of this minimum is likely to

depend on the relative amounts of native

and non-native training data (in our case,

the native utterances outnumbered the non-

native ones by a factor of about 12).

In the area of lexical modeling, we have

performed a small study of native and non-

native word pronunciation using manual

phonetic transcriptions. We have made

detailed hand transcriptions of about 200

utterances, equally divided between native

and non-native speakers. From both

subjective inspection of these transcriptions

and automatic alignments between the

transcriptions and the JUPITER lexicon, we

have observed some systematic differences

between natives and non-natives. This

suggests that we may be able to model non-

native pronunciation patterns by incorpo-

rating additional rules into the recognizer’s

lexicon. However, discovering such rules

and applying them to the lexicon is labor-
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intensive and prone to human error. We

have therefore attempted to model pronun-

ciation phenomena using an approach in

which patterns are automatically learned

from the non-native training data.

In this initial investigation, we constrain

the patterns to context-independent

substitutions, insertions, and deletions of

phones, independent of context. The

probabilities of these phonetic confusions

are estimated from non-native training data

by aligning automatically-generated pho-

netic transcriptions with the baseline

lexicon. The confusions are incorporated

into the recognizer using a simple weighted

finite-state transducer encoding the prob-

ability of each confusion. We have experi-

mented with various training mechanisms

within this general approach, and have

obtained relative reductions in error rate of

up to 10.0% over the baseline recognizer on

the non-native test set. Using both phonetic

confusions and interpolated acoustic

models, we have further reduced the word

error rate to 12.4% below baseline. These

results were obtained using a very simple

model with only context-independent

phonetic confusions. We believe that this

approach has many useful applications and

extensions, including context-dependent

modeling and data-driven learning of more

complex phonological rules. These methods

can be applied more widely, not only to

non-native pronunciation patterns but to

lexical and phonological modeling in

general.

Finally, we have performed a study of

language model differences between native

and non-native speakers in the JUPITER

domain. We have compared the entropies of

native and non-native utterances with

respect to n-gram language models and

studied the correlation between entropy and

word error rate. We have found that, within

the resolution of our analysis, language

model differences do not account for a

significant part of the degradation in

recognition performance between native

and non-native test speakers.  However, a

more detailed analysis may reveal more

specific differences and suggest possible

modifications to the language model. As a

starting point, it would be interesting to

attempt to interpolate separate language

models trained on native and non-native

speakers.

This work has shown that it is possible

to improve recognition accuracy on non-

native speech while treating all non-native

speakers as a single group. This is poten-

tially useful for the development of speech

recognition systems in domains in which

non-native data are limited, or in which it is

undesirable for other reasons, such as

ANALYSIS AND MODELING OF NON-NATIVE SPEECH FOR AUTOMATIC SPEECH RECOGNITION
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computational or time considerations, to

separate non-native speakers into specific

accents. Although the results show signifi-

cant gains in performance when modeling

all non-natives as a group, there are accent-

and speaker-specific phenomena that could

be better modeled.  A system that uses a

single set of baseline models for all non-

native speakers and adapts to the character-

istics of a particular test speaker may be a

good way to address the complexities of

non-native speech. For a conversational

system like JUPITER, in which the speaker

usually remains constant throughout a

multi-utterance interaction, an incremental

adaptation approach may be particularly

suitable.

KAREN LIVESCU
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Toward a General Framework
for Robust Understanding
Kristine Ma

The ultimate goal of the speech understand-

ing research field is to design a speech

understanding system that can degrade

gracefully under all levels of adverse

environment. This includes the ability to

handle speech recognition error, mis-

understanding error, and out-of-domain

queries. As a small step towards this goal, we

study the robustness of an understanding

system in the in the presence of recognition

error.

The Spoken Language Systems Group

at MIT has traditionally used a statistically

based parser called TINA [1] for spoken

language understanding. The underlying

approach of TINA is to first capture the full

meaning representation of the sentence,

then, having understood the sentence,

extract the relevant pieces of information

(such as city names) from the full semantic

representation. Such an approach is

powerful, yielding very low false acceptance

rate, however at the expense of development

time and robustness.

In this work, we took an approach from

the other extreme, an investigation into the

feasibility of using a phrase spotting system

for speech understanding within a narrow

application domain. Such a system, though

it differs in implementation, is similar in

spirit to [3]. The goal is first to compare,

quantitatively, the performance of a key-

phrase spotting style system versus a more

syntactically constrained understanding

system; second, to examine the strengths

and weaknesses of each of these approaches.

The eventual goal is to find a unified

framework where one can leverage the

strengths of both methods.

The baseline system for this project was

built using the Finite State Transducer

recognizer as the front-end, TINA as the back-

end understanding component, and JUPITER

[2], a weather information system, as the

task domain.

To build the key phrase spotter, we

generated 1638 sets of KEY:value pairs —

1026 geographical location names, 380

weather events, 193 dates or times, and 39

greeting or help requests. They are derived

based on observing the KEY:value tags of

1021 sentences generated by TINA. This set

of “words to KEY:value” mappings is then

compiled into a single finite state trans-

ducer, which in turn transforms the word-

graph from the recognizer’s output hypoth-

esis into concept graphs (a graph consists of

KEY:value pairs such as CITY:Boston,

WEATHER:snow, DATE:Saturday, etc.).

The best path through this concept graph is

then selected based on a combination of the

sentence likelihood score from the recog-

nizer and a bigram score on the KEYs. This

language model predicts the likelihood of

observing KEY i following KEY j for all i,j in

the KEY set. The model is trained using

26,000 JUPITER training sentences that have

been converted into strings of KEYs.

The two final systems have comparable

performance in terms of concept detection

error rate. Table 3 shows the evaluation

results of the two systems on unseen data

based on KEY:value detection. We divided

the test set into 4 subsets based on whether

the true transcription can be fully parsed via

word-graph by TINA, robustly parsed via

word-graph by TINA, keyword spotted via N-

best by TINA, or cannot be parsed at all by

TINA. Comparing the performance of TINA

versus the phrase spotter on each subset, we

observe that the phrase spotter is doing

better than TINA on all counts except on

sentences whose true transcription can be

fully parsed. Comparing the concept error
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rate (CER) versus the understanding error

rate (UER), we see that while the spotter is

better in spotting individual concepts, TINA

is better in capturing the complete meaning

of a query.

From intuition, we know that both TINA

and the phrase spotter have their own

weaknesses and strengths. From data

analysis, the contrast is even more apparent.

Relying on detecting just the presence of

key-phrases, a spotter will have problem

rejecting out of domain sentences that

contain keywords:

  what will the water temperature

be in new york city tomorrow
  what kind of clouds will be in

san jose

Unless the spotter has the a priori

knowledge that “water temperature” and

“clouds” are consider to be out of domain

queries, it will misinterpret the two ques-

tions for “temperature in new york city

tomorrow” and “ weather in san jose”,

respectively.

TINA, on the other hand, has a tendency

of falsely rejecting unexpectedly phrased

queries that arise due to recognition errors,

hesitation, restarts, the conjunction of

multiple short phrases, etc.  Here are some

examples:

    what is the weather like in
pittsburgh thi- this sunday

  fort lauderdale should i spell
it
  good bye and have a good day
bye bye

  what is up with boston

Using both semantic and syntactic

constraints, TINA is capable of capturing not

only long-distance context but also complex

sentence structures. Therefore one can

argue that given multiple alternatives, TINA

would select a grammatically more plausible

hypothesis, whereas the phrase spotter

might not. However from this investigation,

we found that using the KEY bigram

together with the recognition likelihood

scores, the spotter is capable of selecting as

good a hypothesis as TINA from word graphs

that contain an average size of 80 N-best.

However, JUPITER could be too simple an

application domain (in terms of linguistic

and dialogue complexity) to demonstrate

the advantage of using a full parser. The

main advantages of a phrase spotter is that

it is robust to real speech.

The KEY:value tags generated for the

phrase spotter reported here were derived

manually. However, this is in essence a

named-entity tagging problem and hence

can in theory be done automatically (with

tagged training data) using approaches such

as the Brill transformation tagger or the

BBN Nymble system.

In conclusion, this study gives us a

preview of the robust issue in the task of

#Sent WER SER   CER DET FA UER CER DET FA UER

FULL_PARSE    1803 14.9% 36.0% 16.20 90.67 10.02 19.2% 17.28 87.98 8.15 22.8%

ROBUST_PARSE  220 40.5% 88.6% 42.97 75.41 24.32 57.1% 42.16 75.95 21.89 62.7%

KEYWORD_PARSE 110 80.5% 98.2% 52.55 64.96 21.17 56.3% 40.88 80.66 29.20 51.6%

NO_PARSE      105 51.7% 88.6% 100.00 0.00 1.45 100.0% 69.57 57.97 36.23 76.2%

Total 2238 26.0% 46.7% 21.66 86.60 11.69 25.3% 21.45 86.03 10.73 28.2%

Recognition Error Rate Phrase spotting word-graph TINA parsing word-graph
Table 3. Performance comparison
sof two systems in the JUPITER

domain.
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spontaneous speech understanding. Future

work includes moving onto a more linguisti-

cally complex application domain, investi-

gating the issue of accurate out of domain

query rejection, and starting to look into a

unified framework that can bridge the gap

between these two extreme approaches with

robustness as the priority issue.
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PANDA: Telephone Based Chinese Conversational
System in Weather Domain
Xiaolong Mou

The motivations for implementing a

telephone based Chinese conversational

system in the weather domain are to explore

the multi-language ability of the SLS GALAXY-

II architecture, build a conversational system

prototype for further speech recognition

and understanding research in Chinese, and

study the Chinese language specific issues in

both acoustic modeling and natural

language understanding.

GALAXY-II [1] is a client-server architec-

ture developed at the MIT SLS group for

accessing on-line information. Various

human language processing servers are

connected through a central control, the

programmable hub, and mediated by the

hub script. The servers are designed to be as

language transparent as possible, such that

implementing a conversational system in a

different language would be relatively

convenient [2]. In this research project,

Chinese acoustic models, language models

and natural language understanding rules in

weather domain are developed for PANDA,

the telephone based Chinese Conversa-

tional system in the weather domain.

Paraphrased speech is collected for the

prototype system. In order to facilitate the

data collection effort via the telephone, we

have tried an automatic voice prompt

generation procedure. First we define a set

of weather related sentence templates with

substitutable variables. For example, the

template “What is the :WEATHER-DETAIL in

:CITY” and the variable definition “:CITY =>

Lanzhou, Beijing, Shanghai,” and

“:WEATHER-DETAIL => temperature, wind

speed,” would allow us to generate a variety

of sentences people can ask about weather.

Then the system will randomly substitute

the variables, and concatenate the pre-

recorded voice pieces to generate the

prompts over the telephone for subjects to

paraphrase. This procedure turns out to be

convenient and successful. We have

collected about 240 minutes of speech by 20

speakers for training, and about 60 minutes

of speech by 5 speakers for system develop-

ment. The baseline system is built on the

training data, then evaluated and improved

on the development data.

MIT SLS’s SUMMIT system is used for

speech recognition. SUMMIT is a segment-

based speech recognizer. A pronunciation

network is created from a baseform file and

a set of phonetic rules. The baseform file

specifies the basic pronunciation of each

word in the vocabulary, and the set of

phonetic rules will take actual pronuncia-

tion variations into account. The recognizer

then searches the best path through the

network, with the guidance of acoustic

models and language models. In this

project, efforts have been made to improve

the language model by trying different

smoothing techniques and combining word

models with class models.

Basically, smoothing is a technique to

adjust the maximum likelihood estimation

when the training data are sparse, such that

more accurate probability estimation can be

achieved. For n-gram models, a vocabulary

of size V will have Vn  n-grams; thus the

sparse data problem is one of the major

concerns when applying n-gram language

modeling technique. Smoothing generally

will adjust low probabilities upward and

high probabilities downward. It attempts to

improve the accuracy of the language model

as a whole by adjusting the model for the

unseen data. Several more sophisticated

smoothing methods have been tried as

opposed to the currently used simple

interpolation smoothing. Experiments show
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that Katz smoothing performs much better

when the training corpus is large.

In addition, we have tested a novel back

off idea. Instead of either using a word n-

gram model or a class n-gram model, we can

combine them. When a word has a high

count, the maximum likelihood estimation

is reliable, and then it is used directly; for

those words with a small number of

occurrences, we use a class n-gram model as

the back off model. The idea is to keep the

relatively accurate high probability word

estimation, and smooth the low probabili-

ties using a class n-gram model, thus

combining the advantages of both models.

The results show that the hybrid language

model achieves lower perplexity and word

error rate than either of the original models

does.

We use TINA for natural language

understanding. TINA is a robust probabilistic

natural language system based on a context-

free grammar augmented with a set of

features to enforce syntactic and semantic

constraints. Chinese-specific rules are

developed to handle Chinese weather

related queries. It is particularly important

to use TINA’s trace mechanism to deal with

movement phenomena in Chinese queries.

As an example, consider the following

query: Lanzhou you3 xue3 ma5? which

means Is there any snow in Lanzhou? The

word Lanzhou is moved to the beginning of

the sentence. With TINA’S tracing capability,

it can correctly generate a semantic frame

with an “in Lanzhou” predicate.

One unique problem of Chinese speech

processing arises from the fact that the

language does not have explicit word

boundaries. Without the natural language

understanding unit, the speech recognizer

would have to solely rely on the language

model to pick up one promising word

segmentation. However, the typical n-gram

language model does not have the ability to

model long distance constraints; thus word

segmentation errors are quite frequent in

this case. We can use TINA here to further

detect and correct such errors in the context

of the whole sentence, a much more robust

strategy.

Table 4 shows the preliminary recog-

nizer evaluation results. A 20K word corpus

of weather related articles and conversations

is used to train the language model.

Figure 16 shows the iterative training

procedure. We use the trained acoustic

models to refine the phonetic transcription,

then re-train the models. As we can see from

the figure, the iterative training effectively

reduced the word error rate.

PANDA: TELEPHONE BASED CHINESE CONVERSATIONAL SYSTEM IN WEATHER DOMAIN

Table 4. Recognition performance
with bigram and trigram language
models.

WER(%) Substitution(%) Insertion(%) Deletion(%)

Bigram Language Model 11.9 6.5 3.2 2.2

Trigram Language Model 8.4 4.3 2.1 2
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In summary, a Chinese telephone based

conversational system prototype for access-

ing weather information is implemented.

The prototype seems to have a satisfactory

performance with limited training data.

More work needs to be done to improve it,

including collecting more spontaneous data,

developing a more realistic and comprehen-

sive set of rules for TINA, and studying more

about Chinese specific issues.

XIAOLONG MOU
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Figure 16. Automatic iterative
transcribing and training.
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Subword-based Approaches to Spoken Document
Retrieval
Kenney Ng

Our research explores approaches to the

problem of spoken document retrieval

(SDR), which is the task of automatically

indexing and then retrieving relevant items

from a large collection of recorded speech

messages in response to a user specified

natural language text query. We investigate

the use of subword unit representations for

SDR as an alternative to words generated by

either keyword spotting or continuous

speech recognition. Our investigation is

motivated by the observation that word-

based retrieval approaches face the problem

of either having to know the keywords to

search for a priori, or requiring a very large

recognition vocabulary in order to cover the

contents of growing and diverse message

collections. The use of subword units in the

recognizer constrains the size of the

vocabulary needed to cover the language;

and the use of subword units in the

indexing allows for the detection of new

user-specified query terms during retrieval.

Three research issues are addressed. First,

what are suitable subword units and how

well can they perform? Second, how can

these units be extracted from the speech

signal in a reliable and efficient manner?

And third, how can the indexing and

retrieval methods be modified to effectively

deal with the fact that the speech recogni-

tion output is errorful?

We address the first issue in our

Eurospeech ‘97 paper [2] where we explore a

range of subword units of varying complex-

ity derived from phonetic transcriptions.

We find that subword units are able to

capture enough information to perform

effective retrieval. With the appropriate

subword units it is possible to achieve

performance comparable to that of text-

based word units if the underlying phonetic

units are recognized correctly. In our

ICASSP ‘98 paper [3], we explore the

second issue by developing a phonetic

speech recognizer, running it on the spoken

documents, processing the recognition

output to create subword units for indexing

and retrieval, and then examining the

effects of recognition errors on retrieval

performance. We find that in the presence

of phonetic recognition errors, retrieval

performance degrades but many subword

units are still able to achieve reasonable

performance even without the use of any

error compensation techniques.

Our recent work focuses on the third

issue by investigating robust indexing and

retrieval methods in an effort to improve

retrieval performance when there are speech

recognition errors [4]. We examine a

number of methods that take into account

the characteristics of the recognition errors

and try to compensate for them. In the first

approach, the original query representation

is modified to include similar or confusible

terms that could match erroneously

recognized speech; these terms are deter-

mined using information from the phonetic

recognizer’s error confusion matrix. The

second approach is a generalization of the

first method and involves developing a new

document-query retrieval measure using

approximate term matching designed to be

less sensitive to speech recognition errors.

In the third method, the document

representation is expanded to include

multiple recognition candidates (e.g., N-

best) to increase the chance of capturing the

correct hypothesis. The fourth method

modifies the original query using automatic

relevance feedback to include new terms

found in the top ranked documents. The

last method involves the “fusion” or
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combination of information from multiple

subword unit representations. We study the

different methods individually and then

explore the effects of combining them.

Experiments on radio broadcast news data

show that each method can help retrieval

performance and that using a combination

of these methods can improve performance

by over 20%. Future work in this area

include investigating more sophisticated

probabilistic models for approximate

matching; examining non-linear methods

for combining different subword units; and

exploring ways to integrate recognizer

likelihood and confidence scores more

directly into the indexing and retrieval

process.

Our other recent efforts have focused

on the development of a novel probabilistic

information retrieval model designed to

facilitate the tighter integration of the

speech recognition and information

retrieval components within the context of

the SDR task. The goal is to move away

from the standard approach of using the

speech recognizer to transform the speech

into text transcriptions and then feeding

those directly into a full text retrieval

system. Although this approach of simply

cascading the two processes is modular, it

may also be sub-optimal since each compo-

nent is originally designed with different

objectives and assumptions in mind. The

speech recognizer is designed to output the

most likely word sequence corresponding to

a given set of acoustic observations. The

full-text retrieval engine is designed to index

and search a collection of text documents

and expects error-free text representations as

input. Because the speech recognizer is not

perfect, there is a mismatch between what

the recognizer outputs and what the

retrieval system expects as input. Informa-

tion about the uncertainty of the recognized

words is likely to be useful in the indexing

and retrieval process. The question is then:

what is the best way to get this type of

information out of the recognizer and how

can it be effectively used in the retrieval

model.

One approach is to develop a retrieval

model that uses information that can be

directly computed by the speech recognizer.

We propose a novel probabilistic informa-

tion retrieval model that scores documents

based on the relative change in the docu-

ment likelihoods, expressed as the likeli-

hood ratio of the conditional probability of

the document given the query and the prior

probability of the document before the

query is specified. The idea is that docu-

ments that become more likely after the

query is specified are probably more useful

to the user and should score better and be

ranked ahead of those documents whose

likelihoods either stay the same or decrease.

The document likelihoods are computed

using statistical language modeling tech-

niques which eventually make use of the

probabilistic quantity p(t|d), the probability

that term t occurs in document d. The goal

of the speech recognizer can be modified to

generate these term occurrence probabilities

given the acoustic observations instead of

finding the most likely word sequence. In

this way, the interface between the speech

recognition and retrieval components are

matched and the goals of the two compo-

nents are consistent with the overall goal of

the combined system. To benchmark the

performance of the new retrieval model, we

use the standard ad-hoc text retrieval tasks

from the TREC-6 and TREC-7 text retrieval

conferences [1]. Experimental results
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indicate that our model is able to achieve

state-of-the-art retrieval performance on

these tasks. Continuing work in this area

includes modifying the speech recognizer to

output the desired term occurrence

probabilities given the acoustic observa-

tions, integrating the modified speech

recognizer with the new retrieval model,

and then evaluating the performance of the

combined system.

SUBWORD-BASED APPROACHES TO SPOKEN DOCUMENT RETRIEVAL
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Toward the Automatic Transcription of General
Audio Data
Michelle S. Spina

The last few years have been an exciting

time in the “information age.” We have

seen an enormous growth in the amount of

information available electronically to users,

and as the popularity of the World Wide

Web continues to grow, we will continue to

see further increases. Until recently, the vast

majority of this information has been text-

based, from sources such as quarterly

reports, text-based web pages, catalogs,

theses, conference proceedings, weather

reports, etc. Recently, in addition to the

increase in the amount of information

available to users we have also seen an

increase in the type of information avail-

able. In addition to text-based data, we now

are gaining access to images, video and

audio data from sources such as television,

movies, radio and meeting recordings.

Access to these multimedia sources of

information would allow us to fulfill such

requests as “Play me the speech in which

President Kennedy said `Ich bin ein

Berliner’,” “Show me the news segment in

which President Bush addressed the troops

in Desert Storm,” or “Summarize Victor’s

conclusions in the last staff meeting.”

These multimedia sources of informa-

tion have presented us with new research

challenges. Much research has been done on

the problem of selecting relevant items from

a large collection of text-based materials.

Traditionally, the key words present in the

text documents are used to index and

describe the content of the documents, and

information retrieval techniques have been

developed to efficiently search through large

collections of such data. Only recently has

there been work addressing the retrieval of

information from other media such as

images or audio. Unlike text-based data,

however, multimedia data sources do not

have such a natural way to index or describe

their content. Given that these multimedia

sources of information are becoming a large

portion of the available data to users, it is

critical to the success of future information

systems to have an ability to automatically

index and describe the content of multime-

dia information.

If we concentrate on general audio data

(GAD) from sources such as radio, televi-

sion, movies, meeting recordings, etc., one

natural solution to this problem would be

to generate a full transcription of the audio,

in effect converting the audio data to text

data, such as is done with closed captioning.

Traditional text-based information retrieval

techniques could then be used directly on

the transcriptions. A manual approach to

this problem seems intractable, due to its

tedious and time-consuming nature.

However, in recent years we have made great

strides in automatic speech recognition

(ASR) as a user interface to information

retrieval systems. We may be able to

capitalize on the recent advances that have

been made in ASR technology to automati-

cally transcribe more general audio data.

However, this shift toward the use of speech

as a source of content from the traditional

use of speech as a user interface poses new

challenges to ASR technology. To under-

stand these new challenges, one of the goals

of this work is to study the general charac-

teristics of GAD to discover it’s acoustic and

lexical properties, as well as the general

structure of this type of data. Preliminary

analysis on a collection of broadcast news

data has found that GAD is characterized by

disfluent speech, often containing mispro-

nounced and incomplete words drawn from

a very large vocabulary, recorded from

multiple environments and speakers.
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Multiple speakers may overlap in their

utterances, and the speech signal may be

interspersed with music and other sounds

[1]. In addition, the speakers are not directly

interacting with the ASR system as in the

traditional use of ASR technology within

the context of user interfaces. It has been

shown that an ASR system does not

perform uniformly well over such a variety

of conditions [2].

Segmenting these data into acoustically

homogeneous blocks and using appropriate

models for each segment has been shown to

improve overall recognition accuracies [2].

However, when examining GAD we quickly

see that there are many different levels of

segmentation that can be constructed. We

can visualize a very coarse segmentation that

indicates boundaries between speech and

non-speech, another that indicates bound-

aries between different background acoustic

environments, another that indicates

boundaries between different speakers, etc.

Each of these possible segmentations is

useful for different reasons and should be

included in any representation of GAD.

However, computing such a segmentation

suffers from problems with scale. For

example, boundaries between very acousti-

cally distinct regions such as silence and

music must be detected, as well as bound-

aries between more subtly differing regions

such as those between two male speakers.

Even if we consider a single level of

segmentation, this scale problem exists. For

example, boundaries between two speakers

of different gender will presumably be easier

to detect than boundaries between two

speakers of the same gender. The segmenta-

tion algorithm must be tuned to locate

boundaries between very different regions,

and boundaries between more similar

regions. Because of this problem, we feel

that a single, linear segmentation could not

adequately represent all of the potential

segmentations that exist in the data.

Therefore, in this work we propose a graph-

based representation that captures many of

the possible scales of segmentation that are

present in GAD.

We have chosen to use a hierarchical

clustering algorithm that incorporates

temporal constraints to produce a multi-

level acoustic description of GAD. Such a

representation has been used successfully to

describe speech at a phonetic level [3]. We

are expanding this idea to capture the

higher level acoustic regularities found in

GAD. This algorithm first determines “seed

regions”, which define the smallest acousti-

cally homogeneous segments desired in the

data. Then, each segment is associated with

either it’s right or left neighbor using a

distance measure. When two segments

associate, they are merged into a new

segment. The merging process continues

until all segments are merged together. If we

keep track of the distance at which two

segments merge into one, we can display the

results as a dendrogram. The bottom layers

of the dendrogram structure display the fine

details of GAD, while higher layers display

the coarse details. Different paths through

the graph yield different levels of segmenta-

tion, such as speech/non-speech, back-

ground environment, or speaker.

There are two main steps in this

approach. First, we must determine how to

locate the initial seed regions. One method

of producing these seed regions is finding

locations of maximal change in some

representation of the audio signal. We are

initially using the smoothed spectrum as

our representation of the audio signal. We

TOWARD THE AUTOMATIC TRANSCRIPTION OF GENERAL AUDIO DATA



61SPOKEN LANGUAGE SYSTEMS

will be investigating the use of other

representations that are able to capture

higher level spectral change, such as that

between environments or speakers, rather

than locating phonetic boundaries. Second,

we must determine how best to merge

segments. We will be exploring a number of

different feature vectors to represent each

feature, as well as different distance metrics

in the clustering procedure.

MICHELLE SPINA

References:
 [1] M. S. Spina, and V. W. Zue, “Automatic

Transcription of General Audio Data: Preliminary
Analysis,” Proc. ICSLP ‘96, Philadelphia, PA,
October 1996.

[2] M. S. Spina, V. W. and Zue, “Automatic
Transcription of General Audio Data: Effect of
Environment Segmentation on Phonetic
Recognition,” Proc. Eurospeech ‘97, Rhodes,
Greece, September 1997.

[3] J. Glass, Finding Acoustic Regularities in Speech:
Applications to Phonetic Recognition. Ph.D. Thesis,
Massachusetts Institute of Technology, May 1988.



62 SUMMARY OF RESEARCH

Mandarin Tone Sandhi and Intonation for
Improved Tone Recognition
Chao Wang

Prosodic cues (namely, fundamental

frequency, energy and duration) provide

important information for speech. For a

tonal language such as Chinese, fundamen-

tal frequency (F0) plays a critical role in

characterizing tone as well, which is an

essential phonemic feature. In this regard,

we have focused our initial study of prosodic

features on fundamental frequency (F0)

contours of Mandarin Chinese. We believe

that, unlike the obscure correlation of the

F0 contour with stress, accent, rhythm in an

intonation language such as English, the

syllable level F0 contour in Mandarin clearly

defines tone; and the phrase or sentence

level F0 features, or intonation, can be

studied within the context of improving

tone recognition.

There are four lexical tones in Manda-

rin Chinese, each corresponding to a

canonical F0 pattern: “high-level”, “high-

rising”, “low-dipping” and “high-falling”.

However, tones in continuous speech can

vary dramatically from their canonical form,

due to coarticulation from surrounding

tones (tone sandhi), as well as influences

from intonation. The problem of tone

coarticulation, or tone sandhi, has been

studied extensively for tonal languages and

their dialects [1][2][3]. Shen[1] studied all

possible combinations of tones of Mandarin

on /pa pa pa/ tri-syllables, and found that

not only the onset and offset values but also

the overall heights of a tone were affected by

the contexts; and the coarticulatory effects

are bi-directional and symmetric. Xu [2]

studied F0 contours of Mandarin bi-syllables

/ma ma/ embedded in carrier sentences,

and found asymmetrical bi-directional

coarticulatory effects in terms of F0 onset

and offset changes. Xu [3] also conducted a

perceptual study of coarticulated tones and

found that human performance on tone

identification was highly dependent on the

availability of original tonal context when

the context was “conflicting” with the tone.

The intonation in tone languages is less

well-studied. Nevertheless, Chang [4] found

that in Szechuanese (a dialect of Chinese),

emphatic statements were produced with a

higher pitch; various attitudes were ex-

pressed by a wider pitch range; and ques-

tions changed the utterance-final tone.

In this work, we try to use a parametric

approach to characterize both the tone

coarticulation and intonation effects, so

that the results can be easily incorporated

into automatic tone recognition. We choose

Mandarin digit strings and phone numbers

as an initial domain in which to begin our

study, because: 1) Mandarin digits cover all

four lexical tones, thus continuous digit

strings provide an adequate domain to study

tone contextual effects; and 2) digit strings

have simple sentence and phrase level

intonation structure which are relatively

easy to characterize.

Tone is mainly dependent on the F0

contour pattern, i.e., its average, slope, and

curvatures. There are various ways to

quantify these features in a segment-based

system, by either fitting the F0 contour with

a certain type of function, or projecting it

onto some basis functions. We have chosen

to use the first four coefficients of the

discrete Legendre transformation to

characterize the tone contour[5]. Physically,

the first coefficient corresponds to the

average pitch; the second coefficient

correlates with the slope; the third coeffi-

cient correlates with the second-order

curvature, etc. Segment duration and

average probability of voicing are also

included in our tone feature vector. The
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duration feature does not contribute

significantly to tone discrimination, but it is

essential to limit insertion and deletion

errors in recognition. A principle compo-

nent analysis is applied to the tone feature

vector, and mixtures of diagonal Gaussians

are used to model the distributions. The

baseline tone classification achieved an

error rate of 18.8% in performance.

We use a “corrective” approach to

account for different tonal contexts, i.e., we

compensate the coarticulatory effects by

“undoing” those effects, so that the

resulting models will be more homoge-

neous. Specifically, we first train context-

dependent models for each tone, then

compare distributions of these context

dependent models with our baseline

context-independent models to obtain a set

of parameters reflecting the differences.

Since it is observed that the distributions of

Legendre coefficients are Gaussian-like, we

simply use the difference in the mean for

each coefficient to characterize the contex-

tual effects. We then alter the pitch contour

of each tone according to its contexts to

compensate for those differences. We then

train new context-independent models from

those corrected pitch contours. We per-

formed correction for the first two Legendre

coefficients and found that the variances of

the new models are significantly reduced for

those two dimensions, and the classification

error is reduced by 11.7% from baseline.

It is generally agreed that tonal lan-

guages may make use of a limited amount of

superimposed intonation. We have tried

linear or quadratic regression analysis for

the pitch contour of an utterance or its

component phrases to approximate the

intonation contour. However, the results

were not very reliable, due to interference

from tones as well as errors from pitch

extraction. Given that our data are digit

strings, we assume that the underlying

intonation components are similar. So we

use an “averaging” approach to smooth out

the “random” variations due to tones and

obtain the residue average as the underlying

intonation contour.

We tested our hypothesis by plotting the

pitch contours of all our data on a normal-

ized scale, as shown in Figure 17. It is very

obvious from the plot that there is a

downdrift of the averaged pitch contour. A

plot of pitch contours for only phone

numbers shown in Figure 18 also reveals a

more detailed phrase structure correspond-

ing to “xx-xxx-xxxx”. We then subtracted the

sentence level intonation component from

the original pitch contour and re-trained

tone models, which reduced the tone

classification error rate by 12.2% from the

baseline. When both normalization schemes

were combined, the error rate was reduced

by 26.1% from baseline. More refined

phrase level intonation models did not yield

significant improvement over the simple

sentence level model. We think this is

because the phrase boundary is treated as a

context in our context normalization; thus

the fine structure of the intonation contour

Figure 17. Pitch contours of all
digit strings.
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near the phrase boundary is already

accounted for in the context normalization.

We also tried our approach on sponta-

neous data from the Yinhe domain [6], and

obtained similar improvement for tone

classification. We are currently refining our

method to remove the dependency on the

prior knowledge of tone contexts, as well as

to achieve speech recognition improvement.
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Figure 18. Pitch contours of phone
numbers.
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Natural-Sounding Concatenative Speech
Synthesis of Multi-Sonorant Sequences
Jon Yi

Recently, it has become increasingly

apparent that natural-sounding speech

output is highly desirable for conversational

systems. Concatenative methods and unit

selection mechanisms have lately received

considerable attention in the speech

synthesis literature [1, 2]. Our initial work

in concatenative speech synthesis dealt with

the concatenation of word- and phrase-level

units. These units were carefully prepared

by recording them in the precise prosodic

environment in which they were to be used.

A synthesizer, ENVOICE, was created to

operate within the GALAXY architecture by

converting meaning representations into

speech waveforms. This overall system was

capable of producing very natural-sounding

synthesized speech in constrained applica-

tion domains. ENVOICE was used for

synthesizing responses in an air travel

domain called PEGASUS. Since the vocabulary

was relatively small, it was practical to record

every word in every prosodic environment

realizable. However, this technique may be

impractical for application domains

involving dynamic vocabularies or variable

syntax (i.e., names of newly introduced cars

in an automobile advertisement domain, or

complex sentence structure of weather

reports in a weather domain.) While brute-

force methods would dictate the recording

of every word, we decided to seek out

methods that concatenate sub-word units

for the synthesis of arbitrary words [3].

Our subsequent work with smaller-sized

units began with perceptual studies to

determine where speech could be spliced

with minimal audible distortion and what

contextual constraints were necessary to

maintain in order to achieve naturalness

during concatenation. We found splicing to

be less perceptually noticeable at places of

source change (e.g., unvoiced-voiced

transitions.) In the final stage of our work

with sub-word units, we designed a search

algorithm to select a sequence of sub-word

units from a speech corpus given an input

pronunciation. This process of unit

selection was guided by unit and transition

costs that encoded contextual constraints

and where speech could be spliced, respec-

tively. These costs were organized by manner

of production and place of articulation

equivalence classes indexed in a triphone

fashion. Because unvoiced-voiced transitions

mainly coincide with phonetic boundaries,

it was sufficient for our labelling of both the

synthesis corpora and the unit selection

search space to be purely symbolic. Provided

with only phonetic alignments of the

synthesis corpus, this symbolic approach

was capable of producing natural-sounding

synthesis for words containing single

sonorant sequences, for example. Later, we

found the addition of lexical stress informa-

tion into the unit labels to help improve the

prosody of poly-syllabic words.

Although synthesized words containing

single sonorant sequences sounded natural,

we noticed the tendency for poly-syllabic

synthesized words containing longer

sonorant sequences to sound unnatural. In

cases where it was necessary to synthesize

multi-sonorant sequences from smaller

units, mismatch of formant structure and

discontinuity in fundamental frequency at

concatenation points were perceptible.

From these observations it was clear that

greater care was needed at these boundaries

and that a purely symbolic search was not

capable of capturing numerical constraints

such as formant and fundamental frequency

continuity between voiced regions.

More recently we have begun to
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concentrate on the synthesis of contiguous

multi-sonorant sequences from their

constituent vowel and semivowel sounds.

Since constrictions in the vocal tract

typically result in energy minima, we

hypothesized that splices may not be

perceptible at these points and that speech

sounds could be naturally concatenated at

these boundaries. In Figure 19 we can see

the Concatenation View (cv) tool as used in

an example involving extreme articulation

in diphthongs. We synthesized “lawyer”

from an original “lawyer” by substituting the

first syllable from “loyal,” a word which

shares the same syllable and overall stress

pattern. The splice boundary was placed

pitch-synchronously where the second

spectral prominence (shown by the pink

trajectory in the figure) reaches a peak in its

evolution. Note that the /er/ segment

selected from the original “lawyer” starts

after the trajectory of the second spectral

prominence levels off (marked by the light

gray cursor.) When formant continuity is

maintained at splice boundaries between

voiced regions, we have found concatena-

tion to introduce minimal perceptual

distortion. Besides overlaying formant tracks

onto a spectrogram, the tool also provides a

separate plot of the fundamental frequency

with a following frequency cursor. For

example, F0 is 55 Hz at time 1.1109s as

shown by the dark gray cursor.

Future work in the area of

concatenative synthesis will involve the

extension of studies to more complex poly-

syllabic words, phrases, and sentences in

narrow domains. In the example above,

concatenative synthesis was carried out

manually with the aid of visual tools. In

order to synthesize naturally-sounding

speech in an automatic fashion, it would be

necessary to use estimates of formant and

fundamental frequency both in the segmen-

tation process of corpus preparation and in

the unit selection search metric. Further-

more, we have observed concatenated

sonorant sequences to sound most natural

when splice boundaries are placed pitch-

synchronously. It may also be necessary to

perform automatic detection of glottal

closure instants during the segmentation

process.
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J. Yi and J. Glass, “Natural Sounding

Speech Synthesis Using Variable Length

Units,” Proc. ICSLP ‘98, Sydney, Australia,
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V. Zue, “The Next Generation of Speech-

based Interfaces: from Recognition to

Conversation,” ASAT ‘98, San Francisco,

CA, July 28, 1998.

J. Glass, “Conversational Speech Under-
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Interaction: Applications of Dynamic
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invited presentation at the joint meeting of
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