
Bayesian Distance Metric Learning on i-vector for

Speaker Verification

by

Xiao Fang

B. S., Electrical Engineering
University of Science and Technology of China, 2011

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2013

c© Massachusetts Institute of Technology 2013. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Electrical Engineering and Computer Science

August 20, 2013

Certified by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
James. R. Glass

Senior Research Scientist
Thesis Supervisor

Certified by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Najim Dehak

Research Scientist
Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Leslie A. Kolodziejski

Chairman, Department Committee on Graduate Students





Bayesian Distance Metric Learning on i-vector for Speaker

Verification

by

Xiao Fang

Submitted to the Department of Electrical Engineering and Computer Science
on August 20, 2013, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract

This thesis explores the use of Bayesian distance metric learning (Bayes dml) for the task
of speaker verification using the i-vector feature representation. We propose a framework
that explores the distance constraints between i-vector pairs from the same speaker and
different speakers. With an approximation of the distance metric as a weighted covariance
matrix of the top eigenvectors from the data covariance matrix, variational inference is
used to estimate a posterior distribution of the distance metric. Given speaker labels, we
select different-speaker data pairs with the highest cosine scores to form a different-speaker
constraint set. This set captures the most discriminative between-speaker variability that
exists in the training data. This system is evaluated on the female part of the 2008 NIST
SRE dataset. Cosine similarity scoring, as the state-of-the-art approach, is compared to
Bayes dml. Experimental results show the comparable performance between Bayes dml and
cosine similarity scoring. Furthermore, Bayes dml is insensitive to score normalization, as
compared to cosine similarity scoring. Without the requirement of the number of labeled
examples, Bayes dml performs better in the context of limited training data.
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Chapter 1

Introduction

Speaker verification is the use of a machine to verify a person’s claimed identity from

his/her voice. The applications of speaker verification cover almost all the areas where

it is necessary to secure actions, transactions, or any type of interactions by identifying

the person. Currently, most applications are in the banking and telecommunication areas.

Compared to other biometric systems, which are based on different modalities, such as a

fingerprint or face image, the voice has some compelling advantages [1]. First, speech is

easy to get at low cost. The telephone system provides a ubiquitous approach to obtain and

deliver speech signals. For telephone-based applications, there is no need to install special

signal transducers or networks at application access points since a cell phone gives one

access almost everywhere. For non-telephone applications, sound cards and microphones

are also cheap devices that are readily available. Second, speech is a natural signal which

is not considered threatening by users. Users won’t consider providing a speech sample for

authentication as an intrusive step.

In the last decade, research in speaker verification has made great improvements and

we have seen successful commercial applications in some products. Depending on whether

the spoken phrase is fixed or not, a speaker verification system can be classified as text-

dependent or text-independent [1]. We focus on the text-independent speaker verification

system in this research.

A typical speaker verification system involves two steps: feature extraction from the

speech signal, and statistical modeling of feature parameters. Since it was proposed in the

mid 1990s, Gaussian Mixture Models (GMMs) have become the dominant approach for

modeling text-independent speaker verification [2]. In the past decade, the GMM-based

system with Bayesian adaptation of speaker models from a universal background model

and score normalization has achieved the top performance in the NIST (National Insti-

tute of Standards and Technology) speaker recognition evaluations (SRE) [3]. This system

is referred to as the Gaussian Mixture Model-Universal Background Model (GMM-UBM)
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CHAPTER 1. INTRODUCTION

speaker verification system.

In the GMM-UBM approach, the speaker’s model is derived from the UBM via a max-

imum a posterior (MAP) adaptation. When the speaker training data is limited, some

Gaussian components were prevented from being adapted [10]. In order to address this

problem, the theory of Joint Factor Analysis (JFA) is used for speaker modeling [6]. JFA-

based methods model both speaker and channel/session variability in the context of a

GMM [4] [5]. A more recent approach represents all the variabilities in a single low-

dimensional space named total variability space, with no distinction between speaker and

channel subspaces [13]. A speech utterance is represented by a new vector called total fac-

tors (also referred to as an i-vector) in this new space. The i-vector contains both speaker-

and channel-variability. We can generally treat i-vectors as input to common classifiers

such as Support Vector Machines (SVMs), a cosine distance classifier, or probabilistic lin-

ear discriminant analysis (PLDA). In [13], the authors show that cosine distance scoring

achieves state-of-the-art performance. In the i-vector training and score verification pro-

cess, we don’t use speaker labels at all, which suggests that algorithms with the full use of

speaker labels might get better performance.

Note that the basic speaker verification task is to determine whether the test utter-

ance and the target utterance are from the same speaker. Thus we can view the speaker

verification system as a distance metric leaning problem: given speaker labels of training

utterances, we aim to find an appropriate distance metric that brings “similar” utterances

(belonging to the same speaker) close together while separating “dissimilar” utterances (be-

longing to different speakers) [32]. In this thesis, we present a speaker verification system

based on the distance metric learning framework. In [33], Yang and Jin present a Bayesian

framework for distance metric learning, which has achieved high classification accuracy in

image classification. In addition, this approach is insensitive to the number of labeled ex-

amples for each class, as compared to most algorithms requiring a large number of labeled

examples [33]. This advantage is particularly important for realistic speaker verification

systems, as it can be difficult to collect plenty of samples from every speaker in many in-

dustrial applications, although possible to collect samples from a large number of different

speakers.
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The rest of this thesis is organized as follows: Chapter 2 will give a background review of

speech parameterization and Gaussian Mixture Models. Chapter 3 will introduce the the-

ory of factor analysis in speaker verification. The compensation techniques to remove the

nuisance variabilities among different trials are explained afterwards in Chapter 4. Then,

the Bayesian distance metric learning framework is presented in Chapter 5. Chapter 6 will

provide the experimental set up for the system, and show some results. Finally, Chapter 7

concludes this thesis and suggests possible directions for future work.
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Chapter 2

Background and Related Work

The speech signal conveys rich information, such as the words or message being spoken, the

language spoken, the topic of the conversation, and the emotion, gender and identity of the

speaker. Automatic speaker recognition aims to recognize the identity of the speaker from a

person’s voice. The general area of speaker recognition involves two fundamental tasks. The

Speaker Identification task is to determine who produces the speech test segment. Usually

it is assumed that the unknown voice must come from a fixed set of known speakers. Thus,

the system performs a 1 : N classification, referred to as a closed-set identification. The

Speaker Verification task is to determine whether the claimed identity of the speaker is the

same as the identity of the person who produced the speech segment. In other words, given

a segment of speech and a hypothesized speaker Q, the task of speaker verification is to

determine if this segment was spoken by the speaker Q. Since the impostors who falsely

claim to be a target speaker are generally not known to the system, this task is referred to

as an open-set classification. This thesis studies the problem of Speaker Verification.

In most speaker verification systems, an input speech utterance is compared to an

enrolled target speaker model, resulting in a similarity measure computed between them,

also called a similarity score. The process of computing a score from a speaker model

and a test speech utterance is usually called a trial. The trials may be classified as target

and non-target trials depending on whether the training and test speech are respectively

generated by the same individual or not. The users attempting to access the system are

referred to as target users when their identity is the same as the claimed one, otherwise

they are called impostors.

Human speech contains numerous discriminative features that can be used to identify

speakers. The objective of automatic speaker verification is to extract, characterize, and

recognize the information about speaker identity. The speech signal is first transformed to

a set of feature vectors in a front-end processing step. The aim of this transformation is

to obtain a new representation that is more compact, less redundant, and more suitable
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for statistical modeling. The output of this stage is typically a sequence of feature vectors

x = {x1, x2, . . . , xL}, where xl is a feature vector indexed at an index l ∈ {1, 2, . . . , L}.

An implicit assumption often used is that x contains speech from only one speaker.

Thus, this task is better termed single speaker verification. The single speaker verification

task can be stated as a basic hypothesis test between two hypotheses:

H0: x is from the hypothesized speaker Q,

H1: x is not from the hypothesized speaker Q.

The optimum test to decide between these two hypotheses is to apply the likelihood ratio

test given by

P (x|H0)

P (x|H1)
=

> β accept H0

< β accept H1

where β is the decision threshold. Since the likelihood is usually very small and may exceed

the maximum precision, it is often to use log likelihood ratio instead.

log
P (x|H0)

P (x|H1)
=

> β accept H0

< β accept H1

The main goal in designing a speaker detection system is to determine techniques to com-

pute values for the two likelihoods, P (x|H0) and P (x|H1).

This chapter will introduce the commonly used speech parametrization techniques and

the statistical modeling to calculate the likelihoods.

� 2.1 Speech Parameterization

Most current speech parameterizations used in speaker verification systems rely on a cep-

stral representation of speech [1]. The extraction and selection of the best parametric

representation of acoustic signals is an important task in the design of any speaker veri-

fication systems [36]. Some of the audio features that have been successfully used in the

field include Mel-frequency cepstral coefficients (MFCC), Linear predictive coding (LPC),

etc. The most popular is MFCC, which is the result of the cosine transform of the real

18



2.1. SPEECH PARAMETERIZATION

logarithm of the short-term energy spectrum expressed on a mel-frequency scale [36]. The

calculation of the MFCC includes the following steps.

A. Mel-frequency warping

The human perception of sound frequency does not follow a linear scale. For each tone

with an actual frequency, f , measured in Hz, a subjective pitch is measured on a scale

called the mel scale, which is a perceptual scale of pitches judged by listeners to be

equal in distance from one another [41]. The mel-frequency scale is a linear frequency

spacing below 1000 Hz and a logarithmic spacing above 1000Hz. As a reference point,

the pitch of a 1000 Hz tone, 40dB above the perceptual hearing threshold, is defined

as 1000 mels. Therefore we can use the following approximate formula to compute

the mel frequency for a given frequency f in Hz.

Mel(f) = 2595× log10(1 +
f

700
) (2.1)

The common approach to approximate the subjective spectrum is to use a filter

bank. The speech signal is first sent to a high-pass filter to compensate the high-

frequency part that was suppressed during the sound production and to amplify the

the importance of high-frequency formants, and then segmented into frames. Each

frame is multiplied with a hamming window in order to keep the continuity of the

boundary. We perform a discrete Fourier transform on each frame and transform them

to the mel-frequency spectrum via the filter bank. The filter bank has a triangular

band pass frequency response, and the center frequency spacing and the bandwidth

are determined by a constant mel-frequency interval. The mel scale filter bank used

in this thesis is a series of 23 triangular band pass filters that have been designed to

approximate the band pass filtering believed to occur in the auditory system. The

log energy within each filter is log mel-frequency spectral coefficient, denoted as Sj,

j = 1, 2, ..., 23.

B. Cepstrum

In the final step, we convert the log mel spectrum back to “time”. The result is called

the Mel Frequency Cepstral Coefficients (MFCC). The cepstral representation of the
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CHAPTER 2. BACKGROUND AND RELATED WORK

speech spectrum provides a good representation of the local spectral properties of the

signal for the given frame analysis. Because the mel-frequency spectral coefficients

(and their logarithms) are real numbers, we can convert them to time-like domain,

called quefrency domain, using the discrete cosine transform (DCT).

Ci =
23∑
j=1

Sj · cos[
π · i
23

(j − 1

2
)] (2.2)

The complete process for the calculation of MFCC is shown in Figure 2.1.

Figure 2.1: Pipeline for MFCC

� 2.2 The GMM-UBM Approach

The next step after obtaining the parametrization representation is the selection of the

likelihood function P (x|H0) and P (x|H1). For notational purposes, we can let H0 be

represented by a probabilistic model λQ that characterizes the hypothesized speaker Q,

and we can use λQ to represent the probabilistic model of the alternative hypothesis H1.

The classical approach is to model each speaker as a probabilistic source with unknown but

fixed probability density function. While the model in λQ is well defined and can usually

be estimated via some enrollment speech from the speaker Q, the model for λQ is less well

defined since it potentially must represent the entire space of possible alternatives to the
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2.2. THE GMM-UBM APPROACH

hypothesized speaker. The approach typically used to tackle the problem of alternative

hypothesis modeling is to pool speech from many non-target speakers and train a single

model known as the Universal Background Model (UBM). The advantage of this approach

is that a single speaker-independent model can be trained once for a particular task and

then used for all hypothesized speakers in the task [9].

The GMM is a generative model used widely in speaker verification to model the feature

distribution. A GMM is composed of a finite mixture of multivariate Gaussian components.

Given a GMM θ consisting of C components, the likelihood of observing an F -dimensional

feature vector x is defined as

P (x|θ) =
C∑
c=1

πcNc(x|µc,Σc) (2.3)

where the mixture weights πc ≥ 0 are constrained by
∑

c πc = 1, and Nc(x|µc,Σc) is a

multivariate Gaussian with F -dimensional mean vector, µc, and F × F covariance matrix,

Σc.

Nc(x|µc, Σc) =
1

(2π)2F |Σc|1/2
exp{−1

2
(x− µc)TΣ−1c (x− µc)} (2.4)

The parameters of the model are denoted as θ = {θ1, θ2, . . . , θC}, where θc = {πc, µc,Σc}.

While the general model form supports full covariance matrices, typically only diagonal

covariance matrices are used. This is because the density modeling of an M -th order full

covariance GMM can generally be equally achieved using a larger-order diagonal covariance

GMM and diagonal covariance GMMs are more computationally efficient than full covari-

ance GMMs [1].

For a sequence of feature vectors x = {x1, x2, . . . , xL}, we assume that each obser-

vation vector is independent of the others. The likelihood of the given utterance x =

{x1, x2, . . . , xL} is the product of the likelihood of each of the L frames. The log likelihood

is computed as

logP (x|θ) =
L∑
t=1

logP (xl|θ) (2.5)

The maximum likelihood (ML) parameters of a model θ can be estimated via the

Expectation-Maximization (EM) algorithm. The equations for the ML parameter updates
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can be found in [8]. The UBM is trained on a selection of speech that is reflective of

the expected alternative speech to be encountered during recognition. It represents the

speaker-independent distribution of features.

For the speaker model, a single GMM can be trained on the speaker’s enrollment data,

however, the amount of speaker-specific data would be much too limited to give a good

representation of the speaker. We may end up modeling the channel characteristics or

other aspects of the data instead. In contrast, the larger abundance of speech data used

to estimate the UBM might be a better starting point for modeling a specific speaker.

Thus we derive the speaker’s model via a maximum a posterior (MAP) adaptation from

the well-trained parameters in the UBM. This provides a tighter coupling between the

speaker’s model and the UBM, which not only produces better performance than separate

(decoupled) models, but also allows for a fast-scoring technique.

The MAP adaptation is similar to the EM algorithm and it also allows the fast log-

likelihood ratio scoring technique. Given a UBM parameterized by θUBM and training

feature vectors from a speaker x = {x1, x2, . . . , xL}, we first calculate the probabilistic

alignment between each training frame and the UBM mixture components. For UBM

mixture c, we compute

γl(c) = P (c|xl, θUBM) =
πcNc(xl|µc,Σc)∑C
c=1 πcNc(xl|µc,Σc)

(2.6)

and the relevant Baum-Welch statistics for the weight, mean, and covariance parameters

of the UBM are:

Nc(x) =
L∑
l=1

P (c|xl, θUBM) =
L∑
l=1

γl(c) (2.7)

F̄c(x) =
1

Nc(x)

L∑
l=1

γl(c) · xl (2.8)

S̄c(x) =
1

Nc(x)

L∑
l=1

γl(c) · xlx∗l (2.9)
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2.2. THE GMM-UBM APPROACH

The UBM sufficient statistics for mixture c are updated from these sufficient statistics of

the training data to generate adapted parameters as below:

π̂c = β

(
αc
Nc(x)

L
+ (1− αc)πc

)
(2.10)

µ̂c = αcF̄c(x) + (1− αc)µc (2.11)

Σ̂c = αcF̄c(x) + (1− αc)(Σc + µcµ
∗
c)− µ̂cµ̂∗c (2.12)

β is a scale factor computed over all adapted mixture weights to ensure that
∑

c π̂c = 1,

and αc are the data-dependent adaptation coefficients controlling the balance between old

and new estimates of the GMM parameters. The coefficients are defined as

αc =
Nc(x)

Nc(x) + r
(2.13)

where r is a constant relevance factor.

The data-dependent adaptation coefficient allows mixture-dependent adaptation of pa-

rameters. For mixture components with a low probabilistic count Nc(x) of the user data,

αc → 0 will cause the deemphasis of the new parameters and the emphasis of the old

parameters. For mixture components with a high probabilistic count Nc(x), αc → 1 will

cause the use of the new speaker-dependent parameters. The relevance factor controls how

much new data should be observed in a mixture when updating the old parameters with

the new parameters. Thus this approach should be robust to limited training data.

The adaptation of the mean and covariance parameters of the observed Gaussians is

displayed in Figure 2.2. In practice, only the mean vectors µc, c = 1, ..., C, are adapted,

while updated weights and covariance matrices do not significantly affect system perfor-

mance. The selection of the number of Gaussian components depends on the type and the

amount of training data, such as telephone data or microphone data, gender-independent

or gender-dependent.
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Figure 2.2: maximum a posteriori (MAP) adaptation [3] [9]

� 2.3 Data Sets and Evaluations

Our experiments are carried out on the NIST 2008 speaker recognition evaluation (SRE)

dataset [39]. NIST SRE is an ongoing series of evaluations to focus on the core technology

issues in the field of text independent speaker recognition. The systems have to answer

the question, “Did speaker X produce the speech recording Y and to what degree?”. Each

trial requires a decision score to reflect the system’s estimate of the probability that the

test segment contains speech from the target speaker.

Detection system performance is usually characterized in terms of two error measures,

namely miss probability PMiss/Target and false alarm PFalseAlarm/Nontarget. These respectively

correspond to the probability of not detecting the target speaker when present, and the

probability of falsely detecting the target speaker when not present. Different operating

points will generate different PMiss/Target and PFalseAlarm/Nontarget. We care more about the

operating point where the two error rates are equal, and the resulting rate is called equal

error rate (EER). Another formal evaluation measure is the detection cost function (DCF),

defined as a weighted sum of the miss probability and false alarm:

CDet = CMiss×PMiss/Target×PTarget+CFalseAlarm×PFalseAlarm/Nontarget×(1−PTarget) (2.14)
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The parameters are CMiss and CFalseAlarm, the relative cost of detection errors, and PTarget,

the a priori probability of the specified target speaker. The primary evaluation will use

CMiss = 10, CFalseAlarm = 1, and PTarget = 0.01.

In addition to the single number measures of minDCF and EER, more information

can be shown in a graph plotting all the operating points. An individual operating point

corresponds to a score threshold for separating actual decisions of true or false. All possible

system operating points are generated by sweeping over all possible threshold values. NIST

has introduced Decision Error Tradeoff (DET) Curves since the 1996 evaluation [3], where

the two error rates are plotted on the x and y axes on a normal deviate scale on the

receiver operating characteristic (ROC) curve. The DET Curves have been widely used

to represent the detection system performance. The CDet value and EER correspond to a

specific operating point on the DET curve.

� 2.4 Chapter Summary

In this chapter, we have described the speech parameterization to transform a speech

utterance to a sequence of feature vectors for statistical modeling. Our focus was on

the computation of MFCCs, since they are used in subsequent chapters. We have also

presented the GMM-UBM approach, the classical statistical modeling approach for speaker

recognition. The maximum a posterior approach to obtain the speaker model from the

UBM is fully dealt with and the benefit of this adaption is explained. Finally the datasets

and evaluation metric for experiments were introduced.
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Chapter 3

Factor Analysis Based Speaker Verification

The GMM-UBM approach achieved great success, but suffered from data sparsity in MAP

adaptation [9]. Since each Gaussian component is updated independently, some compo-

nents of the UBM were prevented from being adapted, and thus failed to capture the

thorough and complete representation of the speaker’s true model in the presence of lim-

ited speaker training data [6]. It is necessary to correlate or link together the different

Gaussian components of the UBM. The theory of Joint Factor Analysis (JFA) is used to

achieve this goal [25].

This chapter will present a thorough description of the idea and mechanism of Joint Fac-

tor Analysis. A good overview of JFA for speech processing can also be found in [9]. Two

scoring approaches, cosine similarity scoring and probabilistic linear discriminant analysis,

are introduced afterwards.

� 3.1 Joint Factor Analysis

In the JFA framework, a speaker model obtained by adapting from a UBM (parameterized

with C mixture components in a feature space of dimension F ) can also be viewed as

a single supervector of dimension C · F along with a diagonal super-covariance matrix of

dimension CF×CF [7] [9]. The supervector is generated by concatenating the mean vector

of each Gaussian mixture, while the super-covariance matrix is generated by concatenating

the diagonal covariance matrix of each mixture along its diagonal.

The idea behind factor analysis is that a measured high-dimensional vector, i.e. speaker

supervector, may be believed to lie in a lower-dimensional subspace. Another assumption

in JFA is that the speaker- and channel-dependent supervector M for a given utterance

can be broken down into the sum of two supervectors

M = s+ c (3.1)
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where the supervector s depends on the speaker, and the supervector c depends on the

channel. They can be modeled as

s = m+ V y +Dz (3.2)

c = Ux (3.3)

where m is the speaker- and channel-independent supervector interpreted as the initial

UBM supervector. V and U are low-rank matrices that represent the lower dimensional

subspaces in which the speakers and channels lie, known as the eigenvoices and the eigen-

channels, respectively. Lastly, D is a diagonal CF × CF matrix to model the residual

variabilities of the speakers not captured by V . The vectors y, z and x are the speaker-

and session-dependent factors in their respective subspaces, and each is assumed to be a

random variable with a normal distribution N(0, I). The basic idea is displayed in Figure

3.1 and a detailed explanation can be found in [8]. The fact that the three latent variables

y, z, and x are estimated jointly accounts for the terminology Joint Factor Analysis.

Figure 3.1: essentials of Joint Factor Analysis [7] [9]
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The JFA approach represents speaker variabilities, and compensates for channel vari-

abilities better than GMM-UBM approach, while it is complex in both theory and imple-

mentation. A simplified solution, called total variability, was subsequently developed with

superior performance.

� 3.2 Total Variability Approach

Experiments show that the channel factors in Joint Factor Analysis also contain information

about speakers [8]. Based on this, an approach was proposed that does not distinguish

between speaker variability and channel variability. Given an utterance, the speaker- and

channel-dependent GMM supervector M can be represented as

M = m+ Tw (3.4)

where m is the speaker- and channel-independent supervector (which can be taken to be

the UBM supervector), T is a rectangular matrix of low rank and w is a random vector

having standard normal distribution N(0, I). T defines the new total variability space and

the remaining variabilities not captured by T are accounted for in a diagonal covariance

matrix Σ. In this model, the high-dimensional supervectors lie around m in a relatively

lower-dimensional subspace and w is the speaker- and channel-dependent factor in the to-

tal variability space. The mean of the posterior distribution of w corresponds to a total

factor vector, or an i-vector, which can be seen as a low dimensional speaker verification

feature. The i-vector is short for Intermediate Vector, for the intermediate representation

between an acoustic feature vector and a supervector, or Identity Vector, for its compact

representation of a speaker’s identity [13].

The parameter training in the total variability approach is also based on the EM algo-

rithm [13] [31]. The main difference from learning the eigenvoice V is that each recording

of a given speaker’s set of utterances is regarded as having been produced by a different

speaker in training T , whereas all the utterances of a given speaker are considered to belong

to the same person in training V . The speaker characteristics are not learned explicitly in

the total variability approach, while the latent variable y represents the speaker variability
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in Joint Factor Analysis. A thorough explanation of the key details for estimating T and

extracting w can be found in [9].

From here on we will use the posterior mean of w as a low-dimensional representation

of the utterance. The fixed-length i-vectors can be used as input to standard recognition

algorithms to produce the desired likelihood score [11] [26]. Two scoring approaches are

introduced next: cosine similarity scoring and probabilistic linear discriminant analysis.

� 3.3 Cosine Similarity Scoring

As the only latent variable learned from each utterance, the low-dimensional i-vector is a

full and final representation of a speaker’s and channel’s identity. Thus, total variability

can be used as a front end feature extraction method, and there is no need to calculate

the log-likelihood ratio scoring function like the GMM-UBM and JFA approaches [26].

Recently, cosine similarity scoring has been applied to compare two i-vectors for making a

speaker detection decision [13]. With i-vectors of the target speaker utterance wtarget and

the test speaker utterance wtest in hand, the verification is carried out using the cosine

similarity score as below:

score(wtarget, wtest) =
wttarget · wtest
‖wtarget‖ · ‖wtest‖

R β (3.5)

where β is the decision threshold.

Since the i-vector contains both the speaker and session variabilities, we need to do

session compensation for cosine similarity scoring, which will be explained in detail in

Section 4.1. A more sophisticated approach to directly model session variability within

i-vectors was recently introduced by Kenny [17] [20] as Probabilistic Linear Discriminant

Analysis (PLDA) [18].

� 3.4 Probabilistic Linear Discriminant Analysis

Probabilistic Linear Discriminant Analysis (PLDA) is similar to the JFA approach, but uses

i-vectors rather than GMM supervectors as the basis for factor modeling [18]. Suppose there

are I speakers each of J utterances in the training set. The jth i-vector of the ith speaker
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is denoted by wij. We model data generation by the process

wij = m+ Fsi + Gui,j + εi,j (3.6)

Each utterance is comprised of two parts: the signal component m + Fsi which only

depends on the speaker identity but not on the particular utterance; and the noise compo-

nent Gui,j + εi,j which is different for every utterance of the speaker and represents session

variability. In Equation 3.6, m is the overall mean of all the training utterances. F is the

eigenvoice matrix and G is the eigenchannel matrix. The columns of F and G contain the

basis for the between-speaker subspace and within-speaker subspace, respectively. And si

and ui,j represent the position in the corresponding subspace. The remaining variability

not captured is explained by the residual noise term εi,j following a Gaussian prior with

diagonal covariance Σ. Usually we define Gaussian priors on the latent variables si and ui,j.

Kenny [17] investigated using both Gaussian and heavy-tailed prior distributions for si, ui,j,

and εi,j, but we only investigate the Gaussian priors. This model can also be described in

terms of the following conditional probabilities

P (wij|si,uij, θ) = N(m+ Fsi + Guij,Σ) (3.7)

P (si) = N(0, I) (3.8)

P (ui) = N(0, I) (3.9)

Using this model involves two steps: the training phase to learn the parameters θ =

{m,F,G,Σ}; and the recognition phase to make inferences whether two utterances come

from the same speaker. The latent variable si identifies the speaker. Thus recognition

is conducted to evaluate the likelihood that two utterances are generated from the same

underlying si.
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� 3.4.1 Training

The parameters θ = {m,F,G,Σ} are obtained to maximize the likelihood of the training

dataset. Similar to the problem in the total variability approach, latent variables and

parameters are both unknown and need to be estimated. We can also use the EM algorithm

to estimate the two sets of parameters.

• E-step: Calculate the full posterior distribution over the latent variables si and ui,j,

given the parameter values. We simultaneously estimate the joint probability distri-

bution of all the latent variable si, ui1,...,iJ that pertain to each speaker. First we

combine the generative equations for all of the N utterances as follows


wi1

wi2
...

wiN

 =


m

m
...

m

+


F G F · · · 0

F 0 G · · · 0
...

...
...

. . .
...

F 0 0 · · · G

+



si

ui1

ui2
...

uiN


+


εi1

εi2
...

εiN

 (3.10)

We rename these composite matrices as

wi = m
′
+ Ayi + εi (3.11)

This compound model is rewritten in terms of probabilities

P (wi|yi) = N(Ayi,Σ
′
) (3.12)

P (yi) = N(0, I) (3.13)

where

Σ
′
=


Σ 0 · · · 0

0 Σ · · · 0
...

...
. . .

...

0 0 · · · Σ

 (3.14)
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Applying Bayes’ rule, we obtain the posterior distribution as

P (yi|wi, θ) ∝ P (wi|yi, θ)P (yi) (3.15)

The posterior on the left must be Gaussian since both terms on the right are Gaus-

sians. It can be shown that the first two moments of this Gaussian are

E[yi] = (ATΣ
′−1A + I)−1ATΣ

′−1(wi −m
′
) (3.16)

E[yiy
T
i ] = (ATΣ

′−1A + I)−1 + E[yi]E[yi]
T (3.17)

• M-step: Optimize the point estimates of the parameters θ = {m,F,G,Σ}. We rewrite

Equation 3.6 as

wij = m+
[

F G
] si

uij

+ εij

= m+ B zij + εij (3.18)

The M-step aims to optimize

Q(θt, θt−1) =
∑
i

∑
j

∫
P (zi|wi1, ..., wiJ , θt−1)log [P (wij|zij)P (zi)]dzi (3.19)

where t is the iteration index. We take the derivatives with respect to B and Σ and

equal them to zero to obtain the update rules

m =
1

IJ

∑
ij

wij (3.20)

B =

(∑
i,j

(wij −m)E[zi]
T

)(∑
i,j

E[ziz
T
i ]

)−1
(3.21)

Σ =
1

IJ

∑
i,j

diag
[
(wij −m)(wij −m)T −BE[zi](wij −m)T

]
(3.22)
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The expectation terms E[zi] and E[zi] can be generated from Equation 3.16 and 3.17,

and the equivalence between yi and zi. The updated rules of F and G can be retrieved

from B according to the equivalence from Equation 3.18.

� 3.4.2 Recognition

Given two i-vectors wtarget and wtest, the similarity score can be computed as the logarithm

of the ratio of the of the two hypothesis: H0, both wtarget and wtest belong to the same

speaker (same s), and H1, wtarget and wtest belong to different speakers (different s). This

score can be expressed as

S(wtarget, wtest) = log
P (wtarget, wtest|H0)

P (wtarget|H1)P (wtest|H1)

= log

∫
P (wtarget, wtest|s)P (s)ds∫

P (wtarget|s1)P (s1)ds1
∫
P (wtest|s2)P (s2)ds2

(3.23)

Each item in the denominator can be rewritten as

∫
P (w|s)P (s)ds =

∫
P (w|s,u)P (u)duP (s)ds (3.24)

The numerator can be rewritten as∫
P (wi, wj|s)P (s)ds =

∫ [∫
P (wi|s,ui)P (ui)dui

∫
P (wi|s,uj)P (uj)duj

]
P (s)ds

(3.25)

Note that all the conditional probabilities in Equations 3.24 and 3.25 are defined in Equa-

tions 3.7, 3.8, and 3.9. Thus the log ratio score in Equation 3.23 can be easily calculated. In

fact we decompose the likelihood by writing the joint likelihood of all observed and hidden

variables, and then marginalize over the unknown hidden variables.

� 3.5 Chapter Summary

In this chapter, we explained the factor analysis based speaker verification. We first intro-

duced Joint Factor Analysis (JFA) that can correlate or link together the different Gaussian

components of the UBM. Based on JFA, a simplified solution, called total variability, is
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presented to give the i-vector representation. Cosine similarity scoring and probabilistic

linear discriminant analysis for scoring i-vectors were also introduced.
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Chapter 4

Compensation Techniques

There are many variabilities among different trials, e.g., speaker identity, transmission

channel, utterance length, speaking style, etc. It has been shown that these variations

have a negative impact on the system performance [15]. Thus compensation techniques

are needed to cope with speech variability. Successful compensation techniques have been

proposed at different levels, e.g., at the feature, model, session, or score level [19] [24].

In this chapter, we will talk about the compensation techniques at the session and score

level. Three approaches for session compensation are introduced. Score normalization is

explained as the compensation technique at the score level. We present the motivation of

score normalization and the formulations of three score normalization methods.

� 4.1 Session Compensation

In the i-vector representation, there is no explicit compensation for inter-session variability.

But the low-dimensional representation rewards compensation techniques in the new space,

with the benefit of less expensive computation as well.

� 4.1.1 Linear Discriminant Analysis (LDA)

LDA attempts to define new axes that minimize the within-class variance caused by ses-

sion/channel effects, and to maximize the variance between classes. The LDA optimization

problem can be defined to find direction q that maximizes the Fisher criteria

J(q) =
‖ qtSbq ‖
‖ qtSwq ‖

(4.1)

where Sb and Sw are between-class and within-class covariance matrices:

Sb =
R∑
r=1

(wr − w)(wr − w)t (4.2)
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Sw =
R∑
r=1

1

nr

nr∑
i=1

(wri − wr)(wri − wr)t (4.3)

and wr = (1/nr)
∑nr

i=1w
r
i is the mean of the i-vectors for each speaker, nr is the number

of utterances for each speaker r, w is the speaker population mean vector (the mean of all

the available i-vectors for training), R is the number of speakers. The projection matrix A

is achieved by maximizing the Fisher criteria. It is composed of the top eigenvectors of the

general matrix S−1w Sb [13].

The new cosine kernel between two i-vectors w1 and w2 can be rewritten as

k(w1, w2) =
(Aw1)

t(Aw2)√
(Aw1)t(Aw1)

√
(Aw2)t(Aw2)

(4.4)

� 4.1.2 Within-Class Covariance Normalization (WCCN)

WCCN is used as a channel compensation technique to scale a subspace to attenuate

dimensions of high within-class variance [14]. It is a linear feature projection which aims

to minimize the risk of misclassification of SVM classifiers [16]. The projection matrix B

is obtained such that BBt = W−1, where W is the average of the within-class covariance

matrix of all the impostors

W =
1

R

R∑
r=1

1

nr

nr∑
i=1

(wri − wr)(wri − wr)t (4.5)

In Equation 4.5, wr = (1/nr)
∑nr

i=1w
r
i is the mean of the i-vectors for each speaker, nr is

the number of utterances for each speaker r, w is the speaker population mean vector, R

is the number of speakers. [14] has provided detailed proofs and analysis for deriving the

WCCN projection.

The cosine kernel based on the WCCN matrix is given as follows

k(w1, w2) =
(Bw1)

t(Bw2)√
(Bw1)t(Bw1)

√
(Bw2)t(Bw2)

(4.6)
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� 4.1.3 Nuisance Attribute Projection (NAP)

NAP is a technique to modify the kernel distance between two feature vectors via the

removal of subspaces that cause undesired kernel variability [16]. The projection matrix is

formulated as

P = I −RRt (4.7)

where R is a low-rank rectangular matrix whose columns are the k eigenvectors having the

largest eigenvalues of the within-class covariance matrix [13].

The new cosine kernel can be rewritten as

k(w1, w2) =
(Pw1)

t(Pw2)√
(Pw1)t(Pw1)

√
(Pw2)t(Pw2)

(4.8)

� 4.2 Score Normalization

Variability compensation at the score level is also referred to as score normalization. These

techniques are defined as a transformation to the output scores of a speaker verification

system in order to reduce misalignments in the score ranges due to variations in the condi-

tions of a trial. Score normalization is introduced to make a speaker-independent decision

threshold more robust and effective.

The decision-making process used in speaker verification based on GMM-UBMs com-

pares the likelihood ratio obtained from the claimed speaker model and the UBM model

with a decision threshold. Due to score variability between verification trials, the choice

of decision threshold is an important, and troublesome problem. Score variability mainly

consists of two different sources. One is the different quality of speaker modeling caused by

variation in enrollment data. Another is the possible mismatches and environment changes

among test utterances.

Researchers use z-norm and t-norm to obtain a calibrated score [21]. We assume the

length-normalized target speaker i-vector is w
′
target and the length-normalized test i-vector

is w
′
test.

Z-norm calculates the scores of the target speaker model against a set of impostor speech
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utterances. The mean µznorm and standard deviation σznorm of these scores are estimated

to normalize the target speaker score. Each target speaker has an associated µznorm and

σznorm. The z-normalized score is

scoreznorm(w
′

target, w
′

test) =
score(w

′
target, w

′
test)− µznorm

σznorm
(4.9)

In cosine similarity scoring, µznorm = w
′
target

t · w′ , and σznorm =
√
w

′
target

t · C · w′
target [12].

where w′ is the mean of “impostor” i-vectors, C is the impostor’s covariance matrix, C =

E[(w
′ − w′)(w

′ − w′)t]. Thus the z-normalized score can be rewritten as

scoreznorm(w
′

target, w
′

test) =
w

′
target

t · w′
test − w

′
target

t · w′√
w

′
target

t · C · w′
target

=
w

′
target

t · (w′
test − w

′)√
w

′
target

t · C · w′
target (4.10)

Similarly, t-norm parameters are estimated from scores of each test segment against a

set of impostor speaker models. The mean µtnorm and standard deviation σtnorm of these

scores are used to adjust the target speaker score. Each impostor speaker model has an

associated µtnorm and σtnorm. The t-normalized score is

scoretnorm(w
′

target, w
′

test) =
score(w

′
target, w

′
test)− µtnorm

σtnorm
(4.11)

In cosine similarity scoring, µtnorm = w
′
test

t · w′ , and σtnorm =

√
w

′
test

t · C · w′
test. Thus the

t-normalized score can be rewritten as

scoretnorm(w
′

target, w
′

test) =
(w

′
target − w

′)t · w′
test√

w
′
test

t · C · w′
test

(4.12)

In [12], Dehak proposed a new cosine similarity scoring. This new scoring is given as

below:

score(w
′

target, w
′

test) =
(w

′
target − w

′)t(w
′
test − w

′)√
w

′
target

t · C · w′
target

√
w

′
test

t · C · w′
test

(4.13)
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It can be treated as the combination of z-norm and t-norm score normalization, since

it captures both the variabilities of different speaker models and the mismatches among

different test utterances. This normalization is referred to as “combined norm” in the

following chapters.

� 4.3 Chapter Summary

In this chapter, we introduced three techniques for session compensation. These inters-

ession compensation methods can remove the session variabilities between different trials.

Two score normalization methods, t-norm and z-norm, are introduced, along with the cor-

responding representations in cosine similarity scoring. The new cosine similar scoring

proposed by Dehak [12] is also introduced and will be used in the following experiments.
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Chapter 5

Distance Metric Learning

With i-vectors as low-dimensional representations of speech utterances, a cosine distance

classifier measures the distance between the target user utterance and the test utterance.

Although Cosine Similarity Scoring has proven to be effective in speaker verification, we

would like to explore the hidden structure of the i-vector space. Defining the distance

metric between vectors in a feature space is a crucial problem in machine learning [38]. A

learned metric can significantly improve the performance in classification, clustering and

retrieval tasks [32] [33]. The objective of distance metric learning is to learn a distance

metric that preserves the distance relation among the training data from a given collection

of pairs of similar/dissimilar points [32]. Since the basic speaker verification task is to

determine whether the test utterance and the target utterance are from the same speaker,

a good distance metric can differentiate utterances from different speakers well, and thus

achieve good performance in speaker verification.

In this chapter, we explore two supervised distance metric learning methods. As a

classical distance metric learning algorithm, Neighborhood Component Analysis (NCA) is

first introduced. However, the point estimation of the distance metric and the unreliability

with limited training examples make NCA not as powerful as expected. Thus the Bayesian

framework is presented to estimate a posterior distribution for the distance metric, which

has no requirement on the number of training examples.

� 5.1 Neighborhood Component Analysis

Neighborhood Component Analysis (NCA) [34] learns a distance metric to minimize the av-

erage leave-one-out (LOO) K-nearest-neighbor (KNN) classification error under a stochastic

selection rule. The k nearest neighbor classifier identifies the labeled data points that are

closest to a given test data point, which involves the estimation of a distance metric. Ap-

propriately designed distance metrics can significantly benefit KNN classification accuracy

compared to the standard Euclidean distance. We briefly review the key idea of NCA
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below.

Given a labeled data set consisting of i-vectors w1, w2, ..., wn and corresponding speaker

labels y1, y2, ..., yn, we want to find a distance metric that maximizes the performance

of nearest neighbor classification. Ideally, we would like to optimize the performance on

future test data, but since we do not know the true data distribution, we instead at-

tempt to optimize the leave-one-out (LOO) performance on the training data. In what

follows, we restrict ourselves to learning Mahalanobis (quadratic) distance metrics, which

can always be represented by symmetric positive semi-definite matrices. We estimate

such metrics through their inverse square roots, by learning a linear transformation of

the input space such that KNN performs well in the transformed space. If we denote the

transformation by a matrix B, we are effectively learning a metric Q = BTB such that

d(wi, wj) = (wi − wj)tQ(wi − wj) = (Bwi −Bwj)t(Bwi −Bwj).

The actual LOO classification error of KNN is a discontinuous function of the transfor-

mation B, since an infinitesimal change in B may change the neighbor graph and thus affect

LOO classification performance by a large amount. Instead, we adopt a better behaved

measure of nearest neighbor performance, by introducing a differentiable cost function

based on stochastic (soft) neighbor assignments in the transformed space. In particular,

each utterance wi selects another utterance wj as its neighbor with some probability pij,

and inherits its speaker label from the utterance it selects. We define pij using a softmax

over Euclidean distances in the transformed space:

pij =
exp(− ‖ Bwi −Bwj ‖2)∑
k 6=i exp(− ‖ Bwi −Bwk ‖2)

, pii = 0 (5.1)

The probability for the utterance wi selecting neighbors from the same speaker is pi =∑
j∈Ci pij, where Ci is the set of utterances from the same speaker with i. The projection

matrix B maximizes the expected number of utterances selecting neighbors from the same

speaker:

B = argmaxBf(B) =
∑
i

∑
j∈Ci

pij =
∑
i

pi (5.2)
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A conjugate gradient method is used to obtain the optimal B. Differentiating f with

respect to the projection matrix B generates the gradient as below:

∂f

∂B
= −2B

∑
i

∑
j∈Ci

pij(wijw
T
ij −

∑
k

pijxikx
T
ik)

= 2B
∑
i

(pi
∑
k

pikwikw
T
ik −

∑
j∈Ci

pijwijw
T
ij) (5.3)

� 5.2 Bayesian Distance Metric Learning Framework

NCA provides a point estimation of the distance metric and can be unreliable when the

number of training examples is small. The work in [33] presents a Bayesian framework to

estimate a posterior distribution for the distance metric by applying a prior distribution

on the distance metric.

Given the speaker-label of each utterance, we can form two sets of same-speaker and

different-speaker constraints S and D. The probability of two utterances wi and wj be-

longing to the same speaker or different speakers is defined under a given distance matrix

A:

P (yij|wi, wj, A, α) =
1

1 + exp (yij(||wi − wj||2A − α))
(5.4)

where yi,j =

+1 (wi, wj) ∈ S

−1 (wi, wj) ∈ D
The parameter α is the threshold used to differentiate same-speaker utterances and

different-speaker utterances. Two utterances are more likely to be identified from the same

speaker only when their distance with respect to the distance matrix A is less than α. The

complete likelihood function for all the constraints in S and D is

P (S,D|A,α) =
∏

(i,j)∈S

1

1 + exp(‖ wi − wj ‖2A −α)
×
∏

(i,j)∈D

1

1 + exp(− ‖ wi − wj ‖2A +α)

(5.5)
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We introduce a Wishart prior for the distance metric A and a Gamma prior for the threshold

α as

P (A) =
|A|(v−m−1)/2

ZV (W )
exp

(
−1

2
tr(W−1A)

)
(5.6)

P (α) =
b− 1

Z(b)
exp(−βα) (5.7)

where Zv(W ) and Z(b) are the normalization factors. Plugging the priors into the likelihood

function, we can obtain the posterior distribution as follows

P (A,α|S,D) =
P (A)P (α)P (S,D|A,α)∫

A
P (A)dA

∫∞
0
P (α)P (S,D|A,α)dα

(5.8)

The optimal A and α are obtained to maximize the posterior distribution above. But the

integration over the space of positive semi-definitive matrices makes the estimation compu-

tationally intractable. Thus an efficient algorithm is necessary to compute P (A,α|S,D).

To simplify the computation, the distance metric A is modeled as a parametric form

of the top eigenvectors of the observed data points [33]. Let X = (w1, w2, . . . , wn) denote

all the available utterances, and vl, l = 1, . . . , K be the top K eigenvectors of XXT . If we

assume A =
∑K

l=1 γlvlv
T
l , where γl ≥ 0, l = 1, 2, . . . , K, the likelihood P (yi,j|wi, wj) can be

rewritten as:

P (yij|wi, wj, A, α) =
1

1 + exp
(
yij(
∑K

l=1 γlw
l
i,j − α)

)
= σ(−yi,jγtwi,j) (5.9)

where

wli,j = [(wi − wj)tvl]2

wi,j = (−1, w1
i,j, . . . , w

K
i,j)

γ = (α, γ1, . . . , γK)

σ(z) = 1/(1 + exp(−z))
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Reducing the Wishart and gamma prior in Equation 5.6 and 5.7 into a set of Gaussian

distributions on the parameters γ = (α, γ1, . . . , γK), the prior distribution is expressed as

P (A)P (α) =
K+1∏
i=1

N(γi; γ0, δ
−1)

= N(γ; γ01K+1, δ
−11K+1) (5.10)

Thus, the evidence function is computed as:

P (S,D) =

∫
P (S,D|γ)P (γ)dγ

=

∫ ∏
(i,j)∈S

σ(−γtwi,j)
∏

(i,j)∈D

σ(γtwi,j)N(γ; γ01K+1, δ
−1IK+1)dγ

(5.11)

One problem with the relaxation of the priors is that the combination weights γ are no

longer guaranteed to be non-negative. But this problem is solved empirically by enforcing

the mean of the γ to be non-negative.

� 5.3 Variational Approximation

The transformation of the likelihood to a logistic function makes it possible to get a lower

bound of the evidence, thus a variational method [33] [37] is employed to estimate the

posterior distribution for γ. The key idea is to introduce variational distributions for γs

to construct the lower bound for the logarithm of the evidence function. The approximate

estimation for the posterior distribution of γs is obtained by maximizing the variational

distributions with respect to the lower bound. Given the variational distribution φ(γ), the

logarithm of the evidence function is lower bounded by the following expression

logP (S,D) = log

∫
dγ P (γ)

∏
(i,j)∈S

P (+|wi, wj)
∏

(i,j)∈D

P (−|wi, wj)

≥ 〈logP (γ)〉+H(φ(γ)) +
∑

(i,j)∈S

〈logP (+|wi, wj)〉+
∑

(i,j)∈D

〈logP (−|wi, wj)〉

(5.12)
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where 〈·〉 = 〈·〉φγ .

Using the inequality σ(z) ≥ σ(ξ)exp
(
z−ξ
2
− λ(ξ)(z2 − ξ2)

)
where λ(ξ) =

tanh( ξ
2
)

4ξ
, we can

lower bound 〈logP (y|wi, wj)〉 by the following expression

〈logP (y|wi, wj)〉 ≥ logσ(ξi,j) +
−y 〈γ〉T wi,j − ξi,j

2
− λ(ξi,j)

(
tr
(
wi,jw

T
i,j

〈
γγT

〉)
− ξ2i,j

)
(5.13)

Now we obtain a new expression for the lower bound of the evidence function

logP (S,D) ≥ 〈logP (γ)〉+H(φ(γ))

+
∑

(i,j)∈S

(
logσ(ξsi,j)−

〈γ〉T wsi,j + ξsi,j
2

)

+
∑

(i,j)∈D

(
logσ(ξdi,j) +

〈γ〉T wdi,j − ξdi,j
2

)

−
∑

(i,j)∈S

λ(ξsi,j)
(
tr(wsi,j[w

s
i,j]

T
〈
γγT

〉
)− [ξsi,j]

2
)

−
∑

(i,j)∈D

λ(ξdi,j)
(
tr(wdi,j[w

d
i,j]

T
〈
γγT

〉
)− [ξdi,j]

2
)

(5.14)

Variational parameters ξsi,j and ξdi,j are introduced for every pairwise constraint in S and

D, respectively. By maximizing the posterior distribution φ(γ) with respect to the lower

bound of the evidence function, we have φ(γ) ∼ N(γ;µγ,Σγ), where the mean µγ and the

covariance matrix Σγ are computed by the following updated equations

µγ = Σγ

δγ0 − ∑
(i,j)∈S

wsi,j
2

+
∑

(i,j)∈D

wdi,j
2

 (5.15)

Σγ = (δIK + 2ΣS + 2ΣD)−1 (5.16)

In the above, ΣS and ΣD are defined as follows

ΣS =
∑

(i,j)∈S

λ(ξsi,j)w
s
i,j[w

s
i,j]

T (5.17)
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ΣD =
∑

(i,j)∈D

λ(ξdi,j)w
d
i,j[w

d
i,j]

T (5.18)

The variational parameters are estimated as follows

ξsi,j =
√

[µTγw
s
i,j]

2 + [wsi,j]
TΣγwsi,j (5.19)

ξdi,j =
√

[µTγw
d
i,j]

2 + [wdi,j]
TΣγwdi,j (5.20)

Finally we conclude the EM-like iterations to update the combination weights γs:

• E-step: Given the values for the variational parameters ξsi,j and ξdi,j, compute the

mean µγ and the covariance matrix Σγ using Equations 5.15 and 5.16.

• M-step: Recompute the optimal value for ξsi,j and ξdi,j using Equations 5.19 and 5.20

based on the estimated mean µγ and covariance matrix Σγ.

After getting the posterior distribution φ(γ) ∼ N(γ;µγ,Σγ), the key question is how to

compute the conditional probability P (±|wi, wj). Incorporating the full distribution of γ,

we can express P (±|wi, wj) as

P (±|wi, wj) = =

∫
N(γ;µγ,Σγ)

1 + exp(±γTwi,j)
dγ

∝
∫

exp(−l±i,j(γ))dγ
(5.21)

where l±i,j(γ) = log(1 + exp(±γTwi,j)) + 1
2
(γ − µγ)TΣ−1γ (γ − µγ). The above computation

involves an integration requiring significant computation. Thus we employ the Laplacian

approximation to calculate it effectively.

We first approximate the optimal solution l±i,j(γ) by its Taylor expansion around the

optimal point µγ, and then compute the integral using the approximated l±i,j(γ). Since

this involves solving the optimization γ±i,j = arg minγ≥0l
±
i,j(γ) for each data pair, which is

computationally expensive when the number of data pairs is large, we further approximate
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the optimal solution γ±i,j by expanding l±i,j(γ) in the neighborhood of µγ as follows

l±i,j(γ) ≈ log(1 + exp(±µTγwi,j))± p±i,j(γ − µγ)Twi,j +
1

2
(γ − µγ)T (Σ−1γ + q±i,jwi,jw

T
i,j)(γ − µγ)

≈ log(1 + exp(±µTγwi,j))± p±i,j(γ − µγ)Twi,j +
1

2
(γ − µγ)TΣ−1γ (γ − µγ)

(5.22)

where

p±i,j =
exp(±µTγwi,j)

1 + exp(±µTγwi,j)
(5.23)

q±i,j = p±i,j(1− p±i,j) (5.24)

In Equation 5.22, (Σ−1γ +q±i,jwi,jw
T
i,j) is approximated as Σ−1γ because Σ−1γ is a summation

across all the labeled example pairs according to Equation 5.16 and therefore is significantly

more important than the single item q±i,jwi,jw
T
i,j. Thus the approximate solutions for γ±i,j

and l±i,j(γ) are

γ±i,j ≈ max
(
µγ)∓ p±i,jΣγwi,j,0

)
(5.25)

l±i,j(γ) ≈ l±i,j(γ
±
i,j) +

(γ − γ±i,j)TΣ−1γ (γ − γTi,j)
2

(5.26)

The max operator in Equation 5.25 refers to element wise maximization.

With the above approximations, the posterior P (±|wi, wj) is computed as

P (±|wi, wj) ∝ exp(−l±i,j(γ±i,j)) =
1

1 + exp(±wTi,jγ±i,j)
exp

(
−

[p±i,j]
2wTi,jΣγwi,j

2

)
(5.27)

In Equation 5.27, both the mean and the covariance matrix of the distribution of γ are

taken into account in the estimation of the posterior distribution. Lastly P (±|wi, wj) are

normalized to ensure P (+|wi, wj) + P (−|wi, wj) = 1. The probability of identifying the

target and test utterance from the same speaker P (+|wtarget, wtest) is the output score of

this approach.
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� 5.4 Chapter Summary

In this chapter, we described the Bayesian distance metric learning framework. A classical

distance metric learning algorithm, Neighborhood Component Analysis (NCA), is first

introduced. Since NCA can only model the distance between data points in the Euclidean

space, it is unable to characterize the data points lying in a complicated space. Different

from the point estimation in NCA, we aim to obtain a posterior distribution for the distance

metric. The calculation of the posterior distribution involves the integration over the space

of semi-definitive matrices, which is computationally intractable. We approximate the

distance metric as a parametric form of the top eigenvector of the observed data points

and express the likelihood as a logistic function. Applying a set of Gaussian distributions

on the parameters, we can obtain a lower bound of the evidence, thus a variational method

is employed to estimate the posterior distribution of the parameters. The probability of

identifying the target and test utterance from the same speaker is the output score of this

approach.
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Chapter 6

Experimental Results

This chapter will present experimental results on the female part of the NIST 2008 SRE

dataset. The parameter selection is performed first to obtain the best reduced dimension in

LDA. Then the comparison between cosine similarity scoring and Bayesian distance metric

learning is presented with a detailed analysis. Finally, the results with limited training

data, and with short-duration data are introduced.

� 6.1 Experimental Set-up

Experiments are performed on the female part of the NIST 2008 SRE (speaker recognition

evaluation) dataset [39]. The NIST 2008 SRE released 13 different speaker detection tests

defined by the duration and type of the training and test data. It includes six training

conditions and four test conditions. We present results on the short2-short3 and 10sec-10sec

conditions. In the short2-short3 condition (also called “core condition”), the training and

test data are telephone conversational excerpts of approximately five minutes duration. In

the 10sec-10sec condition, the training and test data are telephone conversational excerpts

of approximately 10 seconds duration. The dataset for i-vector training contains 1,830

speakers and 21,382 utterances [40]. It is also used for LDA and NCA training, and as the

impostor set in the score normalization step. A 600-dimension i-vector is extracted from

each utterance. The Equal Error Rate (EER) and the minimum Detection Cost Function

(minDCF) are used as metrics for evaluation.

Section 6.2, 6.3, and 6.4 describe evaluations on the short2-short3 condition, while

section 6.5 describe evaluations on the 10sec-10sec condition.

� 6.2 Parameter Selection

This section first presents the results obtained with linear discriminant analysis (LDA)

applied to the i-vectors in order to compensate for channel effects. Figure 6.1 shows the

results using different LDA dimensions and different score normalization techniques. From
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the figure, we can see that score normalization improves the minDCF significantly. The

“combinednorm” performs better than both znorm and tnorm. Furthermore, the appli-

cation of LDA to rotate space for minimizing the within-speaker variance improves the

performance for all normalization methods. The best results are obtained by reducing the

dimensionality to 200.
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Figure 6.1: minDCF on the female part of the core condition of the NIST 2008 SRE based
on LDA technique for dimensionality reduction with different score normalization methods.

� 6.3 Results Comparison

In this section, we compare cosine similarity scoring and Bayesian distance metric learning

on the short2-short3 condition of the NIST 2008 SRE dataset. The Bayesian distance

metric learning algorithm is referred to as “Bayes dml”, cosine score after the combined

score normalization described in Section 4.2 as “Cosine Score combined norm”, and PLDA
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with Gaussian priors as GPLDA. In Bayes dml, we construct the similar- and different-

speaker set as follows: all possible i-vector pairs from the same speaker form the constraint

S; cosine scoring is applied to all possible i-vector pairs from different speakers, and those

with the highest scores are selected to form the constraint D as these pairs are the most

discriminative ones for a distance metric to distinguish. Since the number of all possible

different-speaker pairs is extremely large, we select twice the number of similar-speaker pairs

from the set of all possible different-speaker pairs to form D. Pilot experiments showed that

a larger different-speaker constraint set (four or eight times the number of similar-speaker

pairs) did not improve the performance but required much more computation, while a

smaller different-speaker constraint set (the same size as the similar-speaker constraint set)

hurt performance. The comparison is shown in Table 6.1.

Table 6.1: Comparison of cosine score, Bayes dml and GPLDA w/o score normalization
on the female part of the core condition of the NIST 2008 SRE.

EER minDCF
LDA200+Cosine Score 2.542% 0.0144

LDA200+Cosine Score combined norm 1.791% 0.0098
LDA200+Bayes dml 2.163% 0.0108

LDA200+Bayes dml+znorm 2.163% 0.0108
LDA200+Bayes dml+tnorm 2.163% 0.0108

GPLDA 3.02% 0.0157

From the table, we can see that Cosine Score combined norm with LDA200 achieves

the best result and GPLDA performs the worst. However, Bayes dml performs better than

cosine score without score normalization. Compared with the state-of-the-art performance

from Cosine Score combined norm, the gap with Bayes dml is quite small. Furthermore,

there is almost no benefit to be derived from score normalization in Bayes dml.

The differences can be found clearly from the histograms of target scores and non-

target scores from Cosine Score and Bayes dml, which are shown in Figure 6.2 and Figure

6.3, respectively. The target scores represent the scores of test utterances from the target

speaker, and the non-target scores represent the score of test utterances not from the target

speaker. The score distributions from Bayes dml are much more concentrated than those

from cosine score, and the target and non-target scores are better separated as well. This
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comparison can explain why Bayes dml outperforms Cosine Score in Table 6.1. As a result,

there is no need to do score normalization in Bayes dml, which makes it a more ideal model.
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Figure 6.2: Comparison of score histograms from Cosine Score (blue: non-target scores,
red: target scores).
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Figure 6.3: Comparison of score histograms from Bayes dml (blue: non-target scores, red:
target scores).
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With a basic understanding of the difference between Cosine Score combined norm and

Bayes dml, we compare their performances with different combinations of preprocessing

techniques. The preprocessing techniques include LDA and NCA, which are applied before

the scoring models. The results are shown in Table 6.2.

Table 6.2: Comparison of Cosine Score combined norm and Bayes dml with different pre-
processing techniques on the female part of the core condition of the NIST 2008 SRE.

Cosine Score combined norm EER minDCF

LDA200 1.791% 0.0098
LDA200+NCA150+LDA150 50.478% 0.1000

LDA200+NCA200 2.542% 0.0139
LDA200+NCA200+LDA100 2.018% 0.0099
LDA200+NCA200+LDA200 1.781% 0.0097
LDA600+NCA200+LDA200 42.074% 0.0099

NCA200+LDA200 4.673% 0.0287

Bayes dml EER minDCF

LDA200 2.163% 0.0108
LDA200+NCA150+LDA150 41.479% 0.1000

LDA200+NCA200 3.031% 0.0178
LDA200+NCA200+LDA100 1.777% 0.0096
LDA200+NCA200+LDA200 1.815% 0.0101
LDA600+NCA200+LDA200 42.854% 0.1000

NCA200+LDA200 3.553% 0.0183

This table can give us some understanding of how NCA and LDA work in representing

the hidden structure in the total variability space. The worst performance appears in

the second and sixth rows.In these two cases, the dimension of NCA is different from the

dimension of the previous LDA. That is to say, NCA plays a role of reducing dimensions,

and it seriously affects the results. In the fourth row, NCA200 following LDA200 only

makes a rotation and LDA100 afterwards reduces the dimension of feature space further,

which does not hurt the performance too much. The results in the seventh row are almost

in the same level with other rows except the second and fourth row, although there is

a dimension reduction of NCA200 on the 600-dimension i-vectors. The reason may be

that this dimension reduction is conducted in the original total variability space, while the

dimension reductions in the second and fourth row are performed in the reduced feature
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space after LDA. The improvements in the fourth and fifth row compared to the third

row show that the LDA projection corrects the feature space directions learned from NCA.

Thus we can conclude that NCA does not play an effective role in dimensionality reduction.

The best performance for Cosine Score combined norm is achieved with

LDA200+NCA200+LDA200, and the best performance for Bayes dml is achieved with

LDA200+NCA200+LDA100. Bayes dml outperforms Cosine Score combined norm, and is

also the best reported result on the short2-short3 condition of the NIST 2008 SRE female

data. If we only do NCA projection, the results get worse. This is because the NCA

matrix is obtained under the best nearest neighbor classification criterion without taking

into consideration the clustering of i-vectors from the same speaker and the separation

of i-vectors from different speakers. While LDA can achieve this goal by optimizing the

Fisher criteria, generally NCA followed by LDA can project the data into a space in which

i-vectors from the same speaker are closer, and i-vectors from different speakers are better

separated.

Table 6.3 makes a comparison of Bayes dml and the state-of-the-art performance. We

select results presented in the literature that used the same test set, i.e. the female part

of the core condition of the NIST 2008 SRE. It can be shown that Bayes dml outperforms

i-vector based SVM and GPLDA.

Table 6.3: Comparison of results from other literatures on the female part of the core
condition of the NIST 2008 SRE.

approach EER minDCF
i-vector Bayes dml+LDA200+NCA200+LDA100 1.78% 0.0096

i-vector SVM+LDA200+WCCN [13] 3.68% 0.0140
GPLDA [29] 3.13% 0.0168

� 6.4 Results on Limited Training Data

In this section, we show the advantage of Bayes dml when the number of training utterances

for each speaker is very limited. We select three utterances from each training speaker to

build a made-up training set. The test set is the same as before. The best preprocessing

techniques from Section 6.3 are evaluated, with the results shown in Table 6.4.
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We can see that Bayes dml generally achieves a better EER, which means that a lower

false alarm and a lower miss probability can be achieved at the same time in Bayes dml.

The best performance of Bayes dml is better than that of Cosine Score combined norm.

Even with only 3 utterances from each speaker, we can still get rich information from same-

speaker and different-speaker i-vector pairs, whereas data sparsity can cause LDA unable

to fully capture the speaker variability.

Table 6.4: Comparison of Cosine Score combined norm and Bayes dml on the female part
of the core condition of NIST 2008 SRE with limited training data (the number of training
utterances for each speaker is 3).

Cosine Score combined norm EER minDCF

LDA200 4.181% 0.0210
LDA200+NCA200+LDA200 3.930% 0.0210
LDA200+NCA200+LDA100 4.664% 0.0260

Bayes dml EER minDCF

LDA200 4.514% 0.0237
LDA200+NCA200+LDA200 4.190% 0.0261
LDA200+NCA200+LDA100 3.751% 0.0208

� 6.5 Results on Short Duration Data

Robust speaker verification on short duration utterances remains a key problem since many

real applications often have access to only short duration speech data [27]. Recent studies

focused on JFA have shown that performance degrades significantly in very short utterances

[22] [23]. This section will present the advantage of the Bayesian distance metric learning

framework for short utterances.

Table 6.5 compares Cosine combined norm and Bayes dml on the female part of the

10sec-10sec condition of the 2008 NIST SRE, along with some results from the literature.

Bayes dml following LDA200+NCA200+LDA100 achieves the best performance in both

EER and minDCF. Although Kenny [17] has shown the superiority of heavy-tailed PLDA

over Gaussian PLDA, heavy-tailed PLDA is not as effective as Bayes dml.
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Table 6.5: Comparison of Cosine Score combined norm and Bayes dml on the female part
of the 10sec-10sec condition of NIST 2008 SRE.

Cosine Score combined norm EER minDCF

LDA200 11.31% 0.0532
LDA200+NCA200+LDA200 10.73% 0.0534
LDA200+NCA200+LDA100 10.87% 0.0532

Bayes dml EER minDCF

LDA200 10.42% 0.0567
LDA200+NCA200+LDA200 10.08% 0.0515
LDA200+NCA200+LDA100 9.955% 0.0509

GPLDA [29] 16.40% 0.0705
heavy-tailed PLDA [17] 10.9% 0.053

� 6.6 Chapter Summary

In this chapter, we have shown some experimental results on the female part of the NIST

2008 SRE dataset. Bayes dml achieved comparable performance with cosine scoring, while

Bayes dml is robust to score normalization. This is because the score distributions from

Bayes dml are much more concentrated than those from cosine scoring, and the target

scores and non-target score are better separated as well. Under some specific preprocessing

technique, Bayes dml outperformed cosine scoring. With limited training data and for

short utterance data, Bayes dml obtained better performance than cosine scoring. This

advantage is particularly important for realistic speaker verification systems, as it can be

difficult to collect plenty of samples from every speaker in many industrial applications,

although possible to collect samples from a large number of different speakers.
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Chapter 7

Conclusion and Future Work

� 7.1 Summary and Contributions

In this thesis, we have proposed a Bayesian distance metric learning framework using i-

vectors for speaker verification. This methodology was shown to be comparable to the

state-of-the-art technique on a standard task. In Chapter 2, we described the speech pa-

rameterization to transform a speech utterance to a sequence of MFCC feature vectors for

statistical modeling. We also presented the GMM-UBM approach, the classical statistical

modeling approach for speaker recognition. In Chapter 3, we explained factor-analysis-

based speaker verification. We introduced Joint Factor Analysis that jointly processes the

different Gaussian components of the UBM. A simplified solution, called total variability, is

presented that gives rise to the i-vector representation. Cosine similarity scoring and proba-

bilistic linear discriminant analysis are used for scoring the i-vectors. Chapter 4 introduced

the compensation techniques at the session and score level, since the i-vector representation

contains many variable factors and there is no compensation for inter-session variability,

compensation techniques are necessary to reduce the variation.

The main contributions of this thesis are detailed in Chapter 5. We proposed the

Bayesian distance metric learning framework (Bayes dml) for speaker verification. In con-

trast to the point estimation used in classical distance metric learning algorithms like Neigh-

borhood Component Analysis, with Bayes dml we aim to obtain a posterior distribution for

the distance metric. The calculation of the posterior distribution involves the integration

over the space of semi-definitive matrices, which is computationally intractable. We ap-

proximate the distance metric as a parametric form of the top eigenvector of the observed

data points, and express the likelihood as a logistic function. Applying a set of Gaus-

sian distributions on the parameters, we can obtain a lower bound of the evidence, thus

a variational method is employed to estimate the posterior distribution of the parameters.

The probability of identifying the target and test utterance from the same speaker is the
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output score of this approach. The experimental results detailed in Chapter 6 showed that

Bayes dml achieved comparable performance with cosine scoring, while Bayes dml is robust

to score normalization. With limited training data and for short utterance data, Bayes dml

obtained better performance than cosine scoring. These properties make Bayes dml a very

promising technique for speaker verification in real applications.

� 7.2 Future Direction

The Bayesian distance metric learning method has shown superior performance, either in

the robustness to score normalization or in short-duration utterances. We suggest several

key ways in which the framework may be improved.

In the derivation of the Bayesian distance metric learning framework, we used the

approximation of the distance metric rather than the direct estimation, because the calcu-

lation of the posterior distribution involves the integration over the space of semi-definitive

matrices. The ultimate goal is to estimate the distance metric that can represent the char-

acteristics of data points, thus there is no need to do channel compensation any more.

Since the cosine distance measure has very competitive performance, and distance met-

ric learning uses Euclidean distance in the space projected by A
1
2 , we would like to explore

incorporating the cosine distance measurement into the distance metric learning frame-

work.

The performance of speaker verification in arbitrary durations has become a critical

issue in the NIST evaluation protocol since 2012. We have shown some results on short-

duration utterances in this thesis, but it is still worthwhile to see how the framework works

for utterances of different durations.
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