
Problem Set : 
Small Alloy Exercises

 Extending Simple Models

1.1 [Easy] A program is needed to assign inmates to cells in a 
prison. The assignment must avoid placing two inmates in the 
same cell if they are members of different gangs.

Here is a suitable template:

module prison

sig Gang {members: set Inmate}
sig Inmate {room: Cell}
sig Cell {}

pred safe () {
 … your constraints here
  }

pred show () {
 … your constraints here
 }
run show

a. Complete the predicate safe characterizing a safe assignment, 
and generate examples of both safe and unsafe assignments 
by running the simulation predicate show, with appropriate 
invocations of safe as its constraint.

b. Write a new predicate called happy, saying that gang mem-
bers only share cells with members of the same gang. Does 
this condition always follow from a safe assignment? By writ-
ing an assertion and a command to check it, find a counter-
example.

c. Add a constraint as a fact that ensures that safety will indeed 
imply happiness. Run the simulation predicate to make sure 



that you haven’t introduced an inconsistency, and check the 
assertion again to make sure it now has no counterexample.

2 Classic Puzzles

2.1 [Easy] A song by Doris Day goes:

Everybody loves my baby but my baby don’t love nobody 
but me

David Gries has pointed out that, from a strictly logical point of 
view, this implies ‘I am my baby’. Check this, by formalizing the 
song as some constraints, and Gries’s inference as an assertion. 
Then modify the constraints to express what Doris Day probably 
meant, and show that the assertion now has a counterexample.

2.2 [Easy] Russell’s Paradox. A popular form of Russell’s para-
dox asks: in a village in which the barber shaves every man who 
doesn’t shave himself, who shaves the barber?

Here’s a statement of the paradox in Alloy:

module russell
sig Man {shaves: set Man}
one sig Barber extends Man {}
fact {
 Barber.shaves = {m: Man | m not in m.shaves}
 }

Explore this paradox in Alloy, as follows:

a. Use the analyzer to show that this model is inconsistent, at 
least for a village of small size.

b. Feminists have noted that the paradox disappears if the ex-
istence of women is acknowledged. Make a new version of 
the model that classifies villagers into men (who need to be 
shaved) and women (who don’t), and show that there is now 
a simple solution.

c. A more drastic solution, noted by Edsger Dijkstra [1], is to 
allow the possibility of there being no barber. Modify the 
original model accordingly, and show that there is now a so-
lution.



d. Finally, try a variant of the original model that allows mul-
tiple barbers, who shave any man who doesn’t shave himself, 
and show there is again a solution.

2.3 [Easy] Halmos’s Handshaking. Here is the famous hand-
shake problem due to the mathematician Paul Halmos, in his own 
telling:

My wife and I were invited to a party recently, a party 
attended by four other couples. Some of the 10 knew 
some of the others and some did not, and some were po-
lite and some were not. As a result, a certain amount of 
handshaking took place in an unpredictable way, subject 
only to two obvious conditions: No one shook his or her 
own hand and no husband shook his wife’s hand. When 
it was all over, I became curious, and I went around 
the party asking each person: “How many hands did 
you shake? And you? And you?” What answers could 
I have received? Conceivably, some people could have 
said None, and others could have given me any num-
ber between 1 and 8 inclusive. That’s right isn’t it? Since 
self-handshakes and spouse-handshakes were ruled out, 
eight is the maximum number of hands that any one of 
the party of 10 could have shaken.

I asked nine people (everybody, including my own wife), 
and each answer could have been any one of the nine 
numbers 0 to 8 inclusive. I was interested to note, and 
I hereby report, that the nine different people gave me 
nine different answers: someone said None, someone said 
One, and so on and, finally, someone said Eight. Next 
morning, I told the story to my colleagues, and I chal-
lenged them, on the basis of the information just given, 
to tell me how many hands my wife shook.

a. Solve the problem by modelling it in Alloy, and using the 
Analyzer to find a solution. Solving for 10 people will take 
longer than solving for 4 or 6, so use a smaller number until 
your confident that your model makes sense. (If you don’t 
want the fun of solving it yourself, you can use the solution in 
the standard Alloy distribution).



b. Might there be another solution, in which Halmos’s wife 
shook a different number of hands? Extend your model to 
allow this to be checked. You might want to refactor it a bit 
so that the two candidate solutions don’t lead to two sets of 
almost identical constraints.

3 Metamodels

The exercises in this section give practice in constructing 
metamodels, which some people find confusing. A metamodel 
is a model like any other, and need not show the qualities of the 
models it captures. For example, a metamodel of state machines 
doesn’t have to be dynamic itself: a state machine is just a structure 
that can be imbued with a dynamic interpretation.

3.1 [Easy] State Machine Definition. A state machine has one 
or more initial states, and a transition relation connecting each 
state to its successors. Construct an Alloy model of a state ma-
chine, and, by adding constraints and having the analyzer solve 
them, generate a variety of examples of machines:

a. A deterministic machine, in which each state has at most one 
successor;

b. A non-deterministic machine, in which some states have 
more than one successor;

c. A machine with unreachable states;

d. A machine without unreachable states;

e. A connected machine in which every state is reachable from 
every other state;

f. A machine with a deadlock: a reachable state that has no suc-
cessors;

g. A machine with a livelock: the possibility of an infinite ex-
ecution in which a state that is always reachable is never 
reached.



4 Small Models

The exercises in this section involve the construction of small 
models in well-defined settings.

4.1 [Hard] Unix file system. In the Unix file system, each file is 
represented by an inode. The inode includes some basic properties 
of the file (permission bits, file type, etc.), and has a sequence of 10 
addresses that point to disk blocks containing the file’s data.

In addition, there are three further indirect addresses. The first in-
volves one extra level of indirection: it points to a block containing 
addresses, rather than data, of blocks which hold the data. The 
second involves two levels of indirection: it points to an address 
block that point to address blocks that point to data blocks. The 
third involves three levels.

All the inodes are stored in an array called the inode table. The in-
dex of a given inode in this array is its inumber. A directory is rep-
resented as a file whose data consists of a list of inumber/filename 
pairs. The root directory is associated with some fixed inumber.

To locate a file, you start at the root directory, and look up the pre-
fix of the file’s pathname. This gives an inumber, which you look 
up in the inode table. The inode obtained is either the file required 
(if no more of the pathname remains), or another directory, for 
which the process is repeated (on the rest of the pathname).

a. Start by building a model of inodes, inumbers and blocks. 
Ignore indirect addressing. Explore some sample structures 
by writing simulation constraints, adding any invariants that 
you discover you omitted.

b. Build a model of pathnames, treating a pathname as list, 
consisting of a name (the first element) and a pathname (the 
rest). Explore some sample pathnames by writing simula-
tion constraints, adding any invariants that you discover you 
omitted.

c. Now you’re going combine the two parts of your model, and 
define a function that models lookup: given a pathname, it 
returns a set of inodes. You’ll want to define lookup recur-
sively, but Alloy functions cannot be recursive. Instead, you 



can declare a relation corresponding to the lookup, which is 
used without recursion in the function, but is itself defined 
by a recursive constraint.

d. Formulate and check two assertions: that each pathname re-
solves to at most one inode, and that no two distinct path-
names resolve to the same inode. Which of these did you 
expect to hold? If your analysis reveals flaws in your model, 
correct them.

e. Finally, add the notion of indirect addressing. Try to do it in a 
modular fashion, with as little disruption as possible to your 
model of name lookup.
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