
Problem Set :
Small Alloy Exercises

 Extending Simple Models

1.1 [Easy] A program is needed to assign inmates to cells in a
prison. The assignment must avoid placing two inmates in the
same cell if they are members of different gangs.

Here is a suitable template:

module prison

sig Gang {members: set Inmate}
sig Inmate {room: Cell}
sig Cell {}

pred safe () {
 … your constraints here
 }

pred show () {
 … your constraints here
 }
run show

a. Complete the predicate safe characterizing a safe assignment,
and generate examples of both safe and unsafe assignments
by running the simulation predicate show, with appropriate
invocations of safe as its constraint.

b. Write a new predicate called happy, saying that gang mem-
bers only share cells with members of the same gang. Does
this condition always follow from a safe assignment? By writ-
ing an assertion and a command to check it, find a counter-
example.

c. Add a constraint as a fact that ensures that safety will indeed
imply happiness. Run the simulation predicate to make sure

that you haven’t introduced an inconsistency, and check the
assertion again to make sure it now has no counterexample.

2 Classic Puzzles

2.1 [Easy] A song by Doris Day goes:

Everybody loves my baby but my baby don’t love nobody
but me

David Gries has pointed out that, from a strictly logical point of
view, this implies ‘I am my baby’. Check this, by formalizing the
song as some constraints, and Gries’s inference as an assertion.
Then modify the constraints to express what Doris Day probably
meant, and show that the assertion now has a counterexample.

2.2 [Easy] Russell’s Paradox. A popular form of Russell’s para-
dox asks: in a village in which the barber shaves every man who
doesn’t shave himself, who shaves the barber?

Here’s a statement of the paradox in Alloy:

module russell
sig Man {shaves: set Man}
one sig Barber extends Man {}
fact {
 Barber.shaves = {m: Man | m not in m.shaves}
 }

Explore this paradox in Alloy, as follows:

a. Use the analyzer to show that this model is inconsistent, at
least for a village of small size.

b. Feminists have noted that the paradox disappears if the ex-
istence of women is acknowledged. Make a new version of
the model that classifies villagers into men (who need to be
shaved) and women (who don’t), and show that there is now
a simple solution.

c. A more drastic solution, noted by Edsger Dijkstra [1], is to
allow the possibility of there being no barber. Modify the
original model accordingly, and show that there is now a so-
lution.

d. Finally, try a variant of the original model that allows mul-
tiple barbers, who shave any man who doesn’t shave himself,
and show there is again a solution.

2.3 [Easy] Halmos’s Handshaking. Here is the famous hand-
shake problem due to the mathematician Paul Halmos, in his own
telling:

My wife and I were invited to a party recently, a party
attended by four other couples. Some of the 10 knew
some of the others and some did not, and some were po-
lite and some were not. As a result, a certain amount of
handshaking took place in an unpredictable way, subject
only to two obvious conditions: No one shook his or her
own hand and no husband shook his wife’s hand. When
it was all over, I became curious, and I went around
the party asking each person: “How many hands did
you shake? And you? And you?” What answers could
I have received? Conceivably, some people could have
said None, and others could have given me any num-
ber between 1 and 8 inclusive. That’s right isn’t it? Since
self-handshakes and spouse-handshakes were ruled out,
eight is the maximum number of hands that any one of
the party of 10 could have shaken.

I asked nine people (everybody, including my own wife),
and each answer could have been any one of the nine
numbers 0 to 8 inclusive. I was interested to note, and
I hereby report, that the nine different people gave me
nine different answers: someone said None, someone said
One, and so on and, finally, someone said Eight. Next
morning, I told the story to my colleagues, and I chal-
lenged them, on the basis of the information just given,
to tell me how many hands my wife shook.

a. Solve the problem by modelling it in Alloy, and using the
Analyzer to find a solution. Solving for 10 people will take
longer than solving for 4 or 6, so use a smaller number until
your confident that your model makes sense. (If you don’t
want the fun of solving it yourself, you can use the solution in
the standard Alloy distribution).

b. Might there be another solution, in which Halmos’s wife
shook a different number of hands? Extend your model to
allow this to be checked. You might want to refactor it a bit
so that the two candidate solutions don’t lead to two sets of
almost identical constraints.

3 Metamodels

The exercises in this section give practice in constructing
metamodels, which some people find confusing. A metamodel
is a model like any other, and need not show the qualities of the
models it captures. For example, a metamodel of state machines
doesn’t have to be dynamic itself: a state machine is just a structure
that can be imbued with a dynamic interpretation.

3.1 [Easy] State Machine Definition. A state machine has one
or more initial states, and a transition relation connecting each
state to its successors. Construct an Alloy model of a state ma-
chine, and, by adding constraints and having the analyzer solve
them, generate a variety of examples of machines:

a. A deterministic machine, in which each state has at most one
successor;

b. A non-deterministic machine, in which some states have
more than one successor;

c. A machine with unreachable states;

d. A machine without unreachable states;

e. A connected machine in which every state is reachable from
every other state;

f. A machine with a deadlock: a reachable state that has no suc-
cessors;

g. A machine with a livelock: the possibility of an infinite ex-
ecution in which a state that is always reachable is never
reached.

4 Small Models

The exercises in this section involve the construction of small
models in well-defined settings.

4.1 [Hard] Unix file system. In the Unix file system, each file is
represented by an inode. The inode includes some basic properties
of the file (permission bits, file type, etc.), and has a sequence of 10
addresses that point to disk blocks containing the file’s data.

In addition, there are three further indirect addresses. The first in-
volves one extra level of indirection: it points to a block containing
addresses, rather than data, of blocks which hold the data. The
second involves two levels of indirection: it points to an address
block that point to address blocks that point to data blocks. The
third involves three levels.

All the inodes are stored in an array called the inode table. The in-
dex of a given inode in this array is its inumber. A directory is rep-
resented as a file whose data consists of a list of inumber/filename
pairs. The root directory is associated with some fixed inumber.

To locate a file, you start at the root directory, and look up the pre-
fix of the file’s pathname. This gives an inumber, which you look
up in the inode table. The inode obtained is either the file required
(if no more of the pathname remains), or another directory, for
which the process is repeated (on the rest of the pathname).

a. Start by building a model of inodes, inumbers and blocks.
Ignore indirect addressing. Explore some sample structures
by writing simulation constraints, adding any invariants that
you discover you omitted.

b. Build a model of pathnames, treating a pathname as list,
consisting of a name (the first element) and a pathname (the
rest). Explore some sample pathnames by writing simula-
tion constraints, adding any invariants that you discover you
omitted.

c. Now you’re going combine the two parts of your model, and
define a function that models lookup: given a pathname, it
returns a set of inodes. You’ll want to define lookup recur-
sively, but Alloy functions cannot be recursive. Instead, you

can declare a relation corresponding to the lookup, which is
used without recursion in the function, but is itself defined
by a recursive constraint.

d. Formulate and check two assertions: that each pathname re-
solves to at most one inode, and that no two distinct path-
names resolve to the same inode. Which of these did you
expect to hold? If your analysis reveals flaws in your model,
correct them.

e. Finally, add the notion of indirect addressing. Try to do it in a
modular fashion, with as little disruption as possible to your
model of name lookup.

References
[1] Edsger W. Dijkstra, Where is Russell’s Paradox?, EWD-923A, 22 May,

1985; available online at http://www.cs.utexas.edu/users/EWD.

