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Abstract—Accurate rotation estimation is at the heart of
robot perception tasks such as visual odometry and object pose
estimation. Deep neural networks have provided a new way to
perform these tasks, and the choice of rotation representation is
an important part of network design. In this work, we present a
novel symmetric matrix representation of the 3D rotation group,
SO(3), with two important properties that make it particularly
suitable for learned models: (1) it satisfies a smoothness property
that improves convergence and generalization when regressing
large rotation targets, and (2) it encodes a symmetric Bingham
belief over the space of unit quaternions, permitting the training
of uncertainty-aware models. We empirically validate the benefits
of our formulation by training deep neural rotation regressors
on two data modalities. First, we use synthetic point-cloud data
to show that our representation leads to superior predictive
accuracy over existing representations for arbitrary rotation
targets. Second, we use image data collected onboard ground
and aerial vehicles to demonstrate that our representation is
amenable to an effective out-of-distribution (OOD) rejection
technique that significantly improves the robustness of rotation
estimates to unseen environmental effects and corrupted input
images, without requiring the use of an explicit likelihood loss,
stochastic sampling, or an auxiliary classifier. This capability is
key for safety-critical applications where detecting novel inputs
can prevent catastrophic failure of learned models.

I. INTRODUCTION

Rotation estimation constitutes one of the core challenges in
robotic state estimation. Given the broad interest in applying
deep learning to state estimation tasks involving rotations
[4, 7, 25=27, 30, 34, 36, 39], we consider the suitability of
different rotation representations in this domain. The question
of which rotation parameterization to use for estimation and
control problems has a long history in aerospace engineering
and robotics [9]. In learning, unit quaternions (also known as
Euler parameters) are a popular choice for their numerical
efficiency, lack of singularities, and simple algebraic and
geometric structure. Nevertheless, a standard unit quaternion
parameterization does not satisfy an important continuity prop-
erty that is essential for learning arbitrary rotation targets, as
recently detailed in [41]. To address this deficiency, the authors
of [41] derived two alternative rotation representations that
satisfy this property and lead to better network performance.
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Fig. 1: We represent rotations through a symmetric matrix, A, that
defines a Bingham distribution over unit quaternions. To apply this
representation to deep rotation regression, we present a differentiable
layer parameterized by A and show how we can extract a notion of
uncertainty from the spectrum of A.

Both of these representations, however, are point representa-
tions, and do not quantify network uncertainty—an important
capability in safety-critical applications.

In this work, we introduce a novel representation of SO(3)
based on a symmetric matrix that combines these two impor-
tant properties. Namely, it

1) admits a smooth global section from SO(3) to the
representation space (satisfying the continuity property
identified by the authors of [41]);

2) defines a Bingham distribution over unit quaternions;
and

3) is amenable to a novel out-of-distribution (OOD) detec-
tion method without any additional stochastic sampling,
or auxiliary classifiers.

Figure 1 visually summarizes our approach. Our experiments
use synthetic and real datasets to highlight the key advantages
of our approach. We provide open source Python code' of our
method and experiments. Finally, we note that our representa-
tion can be implemented in only a few lines of code in modern
deep learning libraries such as PyTorch, and has marginal
computational overhead for typical learning pipelines.

ICode available at https://github.com/utiasSTARS/
bingham-rotation-learning.
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II. RELATED WORK

Estimating rotations has a long and rich history in computer
vision and robotics [17, 31, 35]. An in-depth survey of rotation
averaging problem formulations and solution methods that
deal directly with multiple rotation measurements is presented
in [16]. In this section, we briefly survey techniques that
estimate rotations from raw sensor data, with a particular
focus on prior work that incorporates machine learning into
the rotation estimation pipeline. We also review recent work
on differentiable optimization problems and convex relaxation-
based solutions to rotation estimation problems that inspired
our work.

A. Rotation Parameterization

In robotics, it is common to parameterize rotation states
as elements of the matrix Lie group SO(3) [2, 32]. This
approach facilitates the application of Gauss-Newton-based
optimization and a local uncertainty quantification through
small perturbations defined in a tangent space about an op-
erating point in the group. In other state estimation contexts,
applications may eschew full 3 x 3 orthogonal matrices with
positive determinant (i.e., elements of SO(3)) in favour of
lower-dimensional representations with desirable properties
[9]. For example, Euler angles [33] are particularly well-
suited to analyzing small perturbations in the steady-state
flight of conventional aircraft because reaching a singularity
is practically impossible [10]. In contrast, spacecraft control
often requires large-angle maneuvers for which singularity-
free unit quaternions are a popular choice [37].

B. Learning-based Rotation Estimation

Much recent robotics literature has focused on improving
classical pose estimation with learned models. Learning can
help improve outlier classification [39], guide random sample
consensus [4], and fine-tune robust losses [27]. Further, fusing
learned models of rotation with classical pipelines has been
shown to improve accuracy and robustness of egomotion
estimates [25, 26].

In many vision contexts, differentiable solvers have been
proposed to incorporate learning into bundle adjustment [34],
monocular stereo [7], point cloud registration [36], and fun-
damental matrix estimation [27]. All of these methods rely on
either differentiating a singular value decomposition [27, 36],
or ‘unrolling’ local iterative solvers for a fixed number of
iterations [7, 34]. Furthermore, adding interpretable outputs to
a learned pipeline has been shown to improve generalization
[40] and the paradigm of differentiable pipelines has been
suggested to tackle an array of different robotics tasks [18].

The effectiveness of learning with various SO(3) repre-
sentations is explicitly addressed in [41]. Given a represen-
tation of SO(3), by which we mean a surjective mapping
f X = SO(3), the authors of [41] identified the existence of
a continuous right-inverse of f, g : SO(3) — X, as important
for learning. Intuitively, the existence of such a g ensures
that the training signal remains continuous for regression
tasks, reducing errors on unseen inputs. Similarly, an empirical

comparison of SE(3) representations for learning complex
forward kinematics is conducted in [15]. Although full SE(3)
pose estimation is important in most robotics applications,
we limit our analysis to SO(3) representations as most pose
estimation tasks can be decoupled into rotation and translation
components, and the rotation component of SE(3) constitutes
the main challenge.

C. Learning Rotations with Uncertainty

Common ways to extract uncertainty from neural networks
include approximate variational inference through Monte
Carlo dropout [11] and bootstrap-based uncertainty through
an ensemble of models [20] or with multiple network heads
[24]. In prior work [26], we have proposed a mechanism that
extends these methods to SO(3) targets through differentiable
quaternion averaging and a local notion of uncertainty in the
tangent space of the mean.

Additionally, learned methods can be equipped with novelty
detection mechanisms (often referred to as out-of-distribution
or OOD detection) to help account for epistemic uncertainty.
An autoencoder-based approach to OOD detection was used
on a visual navigation task in [28] to ensure that a safe control
policy was used in novel environments. A similar approach
was applied in [1], where a single variational autoencoder was
used for novelty detection and control policy learning. See [23]
for a recent summary of OOD methods commonly applied to
classification tasks.

Finally, unit quaternions are also important in the broad
body of work related to learning directional statistics [33] that
enable global notions of uncertainty through densities like the
Bingham distribution, which are especially useful in modelling
large-error rotational distributions [13, 14]. Since we demon-
strate that our representation parameterizes a Bingham belief,
it is perhaps most similar to a recently published approach
that uses a Bingham likelihood to learn global uncertainty over
rotations [13]. Our work differs from this approach in several
important aspects: (1) our formulation is more parsimonious; it
requires only a single symmetric matrix with 10 parameters to
encode both the mode and uncertainty of the Bingham belief,
(2) we present analytic gradients for our approach by consid-
ering a generalized QCQP-based optimization over rotations,
(3) we prove that our representation admits a smooth right-
inverse, and (4) we demonstrate that we can extract useful
notions of uncertainty from our parameterization without using
an explicit Bingham likelihood during training, avoiding the
complex computation of the Bingham distribution’s normal-
ization constant.

III. SYMMETRIC MATRICES AND SO(3)

Our rotation representation is defined using the set of real
symmetric 4 X 4 matrices with a simple (i.e., non-repeated)
minimum eigenvalue:

A €SN (A) # X (A), (1)

where )\; are the eigenvalues of A arranged such that \; <
Ag < A3 < Ay, and S” £ {A € R™" : A = AT}. Each such



matrix can be mapped to a unique rotation through a differ-
entiable quadratically-constrained quadratic program (QCQP)
defined in Figure 2 and by Problem 3. This representation
has several advantages in the context of learned models. In
this section, we will (1) show how the matrix A arises as
the data matrix of a parametric QCQP and present its analytic
derivative, (2) show that our representation is continuous (in
the sense of [41]), (3) relate it to the Bingham distribution
over unit quaternions, and (4) discuss an intimate connection
to rotation averaging.

A. Rotations as Solutions to QCQPs

Many optimizations that involve rotations can be written as
the constrained quadratic loss

min  x'Ax 2)
xeR”
subj. to x €C,

where x parameterizes a rotation, C defines a set of appropriate
constraints, and A is a data matrix that encodes error primi-
tives, data association, and uncertainty. For example, consider
the Wahba problem (WP) [35]:

Problem 1 (WP with unit quaternions). Given a set of asso-
ciated vector measurements {u;,v;}X., C R®, find q € S®
that solves
N
min —
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where p £ [pT O] is the homogenization of vector p and
©® refers to the quaternion product.

We can convert Problem 1 to the following Quadratically-
Constrained Quadratic Program (QCQP):

Problem 2 (WP as a QCQP). Find q € R* that solves
: T
A 4
min  q Aq S
subj. to q'q=1,

where the data matrix, A = Zfil A, €SY is the sum of N
terms each given by

1 N N
Ay = (Gl + V2T + 2020002, (00)) . )
where Yy and ). are left and right quaternion product
matrices, respectively (cf. [38]).

Constructing such an A for input data that does not contain
vector correspondences constitutes the primary challenge of
rotation estimation. Consequently, we consider applying the
tools of high capacity data-driven learning to the task of
predicting A for a given input. To this end, we generalize
Problem 2 and consider a parametric symmetric matrix A (0):

min eigenvalue

........................... ’
: T
A(6) min q AB)a | .
—_ —_
subj. to q'q=

implicit function theorem

Fig. 2: A differentiable QCQP layer representing Problem 3. The
layer takes as input a symmetric matrix A defined by the parameters
6. The solution is given by the minimum-eigenspace of A and the
implicit function theorem can be used to derive an analytic gradient.

Problem 3 (Parametric Quaternion QCQP).
q"A(8)q 6)

min
qER?
subj. to q'q=1,

where A(0) € S* defines a quadratic cost function parame-
terized by 6 € R19,

1) Solving Problem 3: Problem 3 is minimized by a pair of
antipodal unit quaternions, =q*, lying in the one-dimensional
minimum-eigenspace of A (@) [17]. Let S} be the subset of
S* with simple minimal eigenvalue A;:

S 2 {A eS": A\ (A) # X (A)} (7

For any A(0) € S}, Problem 3 admits the solution +q*.
Since SO(3) is the quotient space of the unit quaternions
obtained by identifying antipodal points, this represents a
single rotation solution R* € SO(3). Eigendecomposition of a
real symmetric matrix can be implemented efficiently in most
deep learning frameworks (e.g., we use the symeig function
in PyTorch). In practice, we encode A as

01 02 03 04

e, 65 66 6
A(0) = 0 05 Os 0o | 8

04 07 6y 010

with no restrictions on 6 to ensure that A\j(A) # A2(A).
We find that this does not impede training, and note that the
complement of S§\ is a set of measure zero in S*.

2) Differentiating Problem 3 wrt A: The derivative of q*
with respect to @ is guaranteed to exist if A; is simple [21].
Indeed, one can use the implicit function theorem to show that

aq*

et S _ A
dvec(A) ~ & ®(MI-A)", (©))

where (-)T denotes the Moore-Penrose pseudo-inverse, ® is
the Kronecker product, and I refers to the identity matrix.
This gradient is implemented within the symeig function in
PyTorch and can be efficiently implemented in any framework
that allows for batch linear system solves.



B. A Smooth Global Section of SO(3)

Consider the surjective map® f : S§ — SO(3):

f:Ao R (10)
where R* is the rotation matrix corresponding to
+q* = argming' Aq. (11)

qEess

As noted in Section II-B, the authors of [41] identified the
existence of a continuous right-inverse, or section, of f as
important for learning. The authors further used topological
arguments to demonstrate that a continuous representation is
only possible if the dimension of the embedding space is
greater than four. In the case of four-dimensional unit quater-
nions, this discontinuity manifests itself at 180° rotations. For
our ten-dimensional representation, we present a proof that
one such (non-unique) continuous mapping, g : SO(3) — S,
exists and is indeed smooth.

Theorem 1 (Smooth Global Section, SO(3) — S}). Consider
the surjective map f : S5 — SO(3) such that f(A) returns the
rotation matrix defined by the two antipodal unit quaternions
+q* that minimize Problem 3. There exists a smooth and
global mapping, or section, g : SO(3) — S} such that
f(g(R)) = R.

Proof: Recall that the mapping R(-) : S3 — SO(3)
from unit quaternions to rotations is continuous, surjective,
and identifies antipodal unit-quaternions (i.e., sends them to
the same rotation); this shows that SO(3) = RP?® (SO(3)
is diffeomorphic to RP®) as smooth manifolds. Therefore, it
suffices to show that the global section g : RP® — S exists.
Let [q] be an arbitrary element of RP® and define

9(ld)) £I—qq", (12)

where q is one of the two representatives (+£q) of [q] in
S3. Note that g(-) is well-defined over arbitrary elements of
RP?, since selecting either representative leads to the same
output (i.e., g(—q) = g(q)). By construction, g([q]) is the
orthogonal projection operator onto the 3-dimensional orthog-
onal complement of span(q) = span(—q) in R%. Therefore,
Mog([a])} = MI—qq'} ={0,1,1,1}. It follows that g([q])
defines a symmetric matrix with a simple minimum-eigenvalue
(e, g([a)) € S}) and the eigenspace associated with the
minimum eigenvalue of O is precisely span(q) = span(—q).
This in turn implies that:

+q = argming' g ([q]) q, (13)

q€ess
and therefore f (g([q])) = [q] so that g(-) is a global
section of the surjective map f(-). Furthermore, we can see by
inspection that this global section is smooth (i.e., continuous
and differentiable) since we can always represent g(-) locally
using one of the diffeomorphic preimages of RP® in S® as the
smooth function go(q) =1 —qq'. [ ]

2Surjectivity follows from the fact that f admits a global section Theorem 1.

C. A and the Bingham Distribution

We can further show that our representation space, A(6) €
S%, defines a Bingham distribution over unit quaternions.
Consequently, we may regard A as encoding a belief over
rotations which facilitates the training of rotation models with
uncertainty. The Bingham distribution is an antipodally sym-
metric distribution that is derived from a zero-mean Gaussian
in R%*! conditioned to lie on the unit hypersphere, S¢ [3].
For unit quaternions (d = 3), the probability density function
of x ~ BINGHAM (D, A) is

3
p(x;D,A) = N(lA) exp (Z )\gc(diTx)2> (14)

i=1
1

= N{A) exp (xTDADTx),

15)

where x € 5%, N (A) is a normalization constant, and D €
O(4) is an orthogonal matrix formed from the three orthogonal
unit column vectors d; and a fourth mutually orthogonal
unit vector, ds. The matrix of dispersion coefficients, A, is
given by diag (X{C, PUIDL R 0) with Ade < Ade < A < 0
(note that these dispersion coefficients are eigenvalues of the
matrix DADT). Each AY¢ controls the spread of the probability
mass along the direction given by d; (a small magnitude \%
implying a large spread and vice-versa). The mode of the
distribution is given by dg.

Crucially, BINGHAM (D, A) = BINGHAM (D, A + ¢I) for
all ¢ € R [8]. Thus, a careful diagonalization of our represen-
tation, A € Sil\, fully describes BINGHAM (D, A). Namely, to
ensure that the mode of the density is given by the solution of
Problem 3, we set DAD" = — A since the smallest eigenvalue
of A is the largest eigenvalue of —A.

To recover the dispersion coefficients, )\‘fc, we evaluate the
non-zero eigenvalues of —A + X\;I (defining the equivalent
density BINGHAM (D, A + A\1I)) where \; are the eigen-
values of A in ascending order as in Equation (1). Then,
{)\(}07)\3C7)\(?1)C} = {7A4 + )\1, 7)\3 + )\1, 7)\2 + )\1} This
establishes a relation between the eigenvalue gaps of A and
the dispersion of the Bingham density defined by A.

IV. USING A WITH DEEP LEARNING

We consider applying our formulation to the learning task
of fitting a set of parameters, 7, such that the deep rotation
regressor R = NN(x;7r) minimizes a training loss £ while
generalizing to unseen data (as depicted in Figure 1).

A. Self-Supervised Learning

In many self-supervised learning applications, one requires
a rotation matrix to transform one set of data onto another.
Our representation admits a differentiable transformation into a
rotation matrix though R* = R(+q*), where R(q) is the unit
quaternion to rotation matrix projection (e.g., Eq. 4 in [41]).
Since our layer solves for a pair of antipodal unit quaternions
(+q* € RP? = SO(3)), and therefore admits a smooth
global section, we can avoid the discontinuity identified in
[41] during back-propagation. In this work, however, we limit



our attention to the supervised rotation regression problem to
directly compare with the continuous representation of [41].

B. Supervised Learning: Rotation Loss Functions

For supervised learning over rotations, there are a number
of possible choices for loss functions that are defined over
SO(3). A survey of different bi-invariant metrics which are
suitable for this task is presented in [16]. For example, four
possible loss functions include,

Lauae (0 ) = dguae (a1, ag.) (16)

Lenord (R, Ryr) = denora (R, Rr)? , (17)

dng (R Rgt) = ddng (R Rgt)2 ) (18)

Lo (D, A, ay) = qgDAD gy + N(A),  (19)
where?

g (9 aty) = i ([l all, o+ all,) . 0

dchord (R7 Rgt) = ||Rgt - R||F, 21

dung (R, Ry) = HLog (RR;) 22)

and Log(-) is defined as in [32]. Since our formulation
fully describes a Bingham density, it is possible to use the
likelihood loss, Lpinguam, to train a Bingham belief (in a
similar manner to [13] who use an alternate 19-parameter
representation). However, the normalization constant N(A)
is a hypergeometric function that is non-trivial to compute.
The authors of [13] evaluate this constant using a fixed-
basis non-linear approximation aided by a precomputed look-
up table. In this work, we opt instead to compare to other
point representations and leave a comparison of different belief
representations to future work. Throughout our experiments,
we use the chordal loss Lpoa Which can be applied to both
rotation matrix and unit quaternion outputs.* However, despite
eschewing a likelihood loss, we can still extract a useful notion
of uncertainty from deep neural network regression using the
eigenvalues of our matrix A. To see why, we present a final
interpretation of our representation specifically catered to the
structure of deep models.

V. A AND ROTATION AVERAGING

We take inspiration from [30] wherein neural-network-
based pose regression is related to an interpolation over a
set of base poses. We further elucidate this connection by
specifically considering rotation regression and relating it to
rotation averaging over a (learned) set of base rotations using
the chordal distance. Since these base rotations must span
the training data, we argue that A can represent a notion
of epistemic uncertainty (i.e., distance to training samples)
without an explicit likelihood loss.

3Note that it is possible to relate all three metrics without converting
between representations—e.g., d3, 4 <R(q)7 R(Qg)) =2d2,(4—d

quat
4The chordal distance has also been shown to be effective for initialization
and optimization in SLAM [5, 29].

qual)

Consider that given N rotation samples expressed as unit
quaternions q;, the rotation average according to the chordal
metric can be computed as [16]:

Z q,9;

where f(-) is defined by’ Equation (10). A weighted averaging
version of this operation is discussed in [22]. Next, consider
a feed-forward neural network that uses our representation by
regressing ten parameters, @ € R0, If such a network has a
final fully-connected layer prior to its output, we can separate
it into two components: (1) the last layer parameterized by the
weight matrix W € R10%N and the bias vector b € R, and
(2) the rest of the network () which transforms the input x
(e.g., an image) into N coefficients given by ;. The output
of such a network is then given by

N
> wini(x)+b

N
=f Z A(w;)vi(x) + A(b)

argmln Z dchord q, qz (23)

qdchord
q€eS3

%

q" = f(A(0(x))) = (24)

(25)

where w; refers to the ¢th column of W and the second
line follows from the linearity of the mapping defined in
Equation (8). In this manner, we can view rotation regression
with our representation as analogous to computing a weighted
chordal average over a set of learned base orientations (pa-
rameterized by the symmetric matrices defined by the column
vectors w; and b). During training the network tunes both the
bases and the weight function ~y(-).%

A. Dispersion Thresholding (DT) as Epistemic Uncertainty

The positive semi-definite (PSD) matrix va qiqiT is also
called the inertia matrix in the context of Bingham maximum
likelihood estimation because the operation f (7 Ziv qiqiT)
can be used to compute the maximum likelihood estimate of
the mode of a Bingham belief given [NV samples [14]. Although
our symmetric representation A is not necessarily PSD, we
can perform the same canonicalization as in Section II-C,
and interpret A = —A + A1 as the (negative) inertia matrix.
Making the connection to Bingham beliefs, we then use

3
tr (A) = Z AC=3M - — A3 — N\ (26)

as a measure of network uncertainty.” We find empirically that
this works surprisingly well to measure epistemic uncertainty
(i.e., model uncertainty) without any explicit penalty on A

STI}C neggtive on qiqiT is necessary since. f computes the eigenvector
associated with Ap;, whereas the average requires Amax.

®We can make a similar argument for the unit quaternion representation
since the normalization operation fy,(y) =y ”32' ~1 corresponds to the mean

— . N N
Ay = AT8MINGc 53 375" daua(q, a;) = fn (225 Cli)~
"Note that under this interpretation the matrix A does not refer directly to

the Bingham dispersion matrix parameterized by the inertia matrix, but the
two can be related by inverting an implicit equation—see [14].



during training. To remove OOD samples, we compute a
threshold on tr(A) based on quantiles over the training
data (i.e., retaining the lowest qth quantile). We call this
technique dispersion thresholding or DT. Despite the intimate
connection to both rotation averaging and Bingham densities,
further work is required to elucidate why exactly this notion
of uncertainty is present without the use of an uncertainty-
aware loss like Lgnguam- We leave a thorough investigation
for future work, but note that this metric can be related to
the norm HZ;V w;vi(x) + bH which we find empirically to
also work well as an uncertainty metric for other rotation
representations. We conjecture that the ‘basis’ rotations w;, b
must have sufficient spread over the space to cover the training
distribution. During test-time, OOD inputs, Xgop, result in
weights, v;(xoop), which are more likely to ‘average out’
these bases due to the compact nature of SO(3). Conversely,
samples closer to training data are more likely to be nearer to
these learned bases and result in larger |tr (A)].

VI. EXPERIMENTS

We present the results of extensive synthetic and real
experiments to validate the benefits of our representation. In
each case, we compare three® representations of SO(3): (1)
unit quaternions (i.e., a normalized 4-vector, as outlined in
Figure 1), (2) the best-performing continuous six-dimensional
representation, 6D, from [41], and (3) our own symmetric-
matrix representation, A. We report all rotational errors in
degrees based on dyng (-, ).

A. Wahba Problem with Synthetic Data

First, we simulated a dataset where we desired a rotation
from two sets of unit vectors with known correspondence. We
considered the generative model,

v, = Rui +€, € NN (0,0'21) 5 (27)

where u; are sampled from the unit sphere. For each training
and test example, we sampled R as Exp (QZ)) (where we

define the capitalized exponential map as [32]) with ¢ = qbﬁ
and a ~ N (0,1I), ¢ ~ U|0, pmax), and set ¢ = 0.01. We
compared the training and test errors for different learning
rates in selected range using the Adam optimizer. Taking
inspiration from [41], we employed a dynamic training set
and constructed each mini-batch from 100 sampled rotations
with 100 noisy matches, u;, v;, each. We defined an epoch as
five mini-batches. Our neural network structure mimicked the
convolutional structure presented in [41] and we used L hord
to train all models.

Figure 3 displays the results of 25 experimental trials
with different learning rates on synthetic data. For arbitrary
rotation targets, both continuous representations outperform
the discontinuous unit quaternions, corroborating the results
of [41]. Moreover, our symmetric representation achieves the

8We note that regressing 3 x 3 rotation matrices directly would also satisfy
the continuity property of [41] but we chose not to include this as the 6D
representation fared better in the experiments of [41].
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Fig. 3: Angular errors for 25 different trials each with learning rates
sampled from the range {10™* 1073} (log-uniform) and ¢max =
180°. We show {10, 50, 90}™ percentiles at each epoch.
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Fig. 4: Box and whiskers plots for three different settings of Pmax
for three rotation representations applied to synthetic data. The unit
quaternion representation results in large errors as ¢max — 180°.

lowest errors across training and testing. Figure 4 depicts the
performance of each representation on training data restricted
to different maximum angles. As hypothesized in [41], the dis-
continuity of the unit quaternion manifests itself on regression
targets with angles of magnitude near 180 degrees.

(a) We sample the SHAPENET airplane category and randomly
rotate point clouds to generate our training and test data.
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(b) Mean angular errors for 10 different SHAPENET dataset trials

each with learning rates sampled in the range {107*, 1073} (log-
uniform). We plot {10, 50,90}" percentiles at each epoch.

Fig. 5: A summary of our SHAPENET experiments.
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data. DT thresholding leads to an effective OOD rejection scheme
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(a) Uncorrupted images. (b) Corrupted images.

Fig. 7: Mean rotation errors for three different test sequences from
the KITTI odometry dataset. Since these relative rotation targets
are ‘small’, we see no significant difference in baseline accuracy.
However, our dispersion thresholding technique (Section V-A) can
significantly improve performance, and outperforms an alternative
OOD method based on reconstruction error using an auto-encoder
(AE). See Table I for full statistics.

B. Wahba Problem with SHAPENET

Next, we recreated the experiment from [4]1] on 2,290
airplane point clouds from SHAPENET [6], with 400 held-out
point clouds. During each iteration of training we randomly
selected a single point cloud and transformed it with 10
sampled rotation matrices (Figure 5a). At test time, we applied
100 random rotations to each of the 400 held-out point clouds.
Figure 5b compares the performance of our representation
against that of unit quaternions and the 6D representation, with
results that are similar to the synthetic case in Figure 3.

C. Visual Rotation-Only Egomotion Estimation: KITTI

Third, we used our representation to learn relative rotation
from sequential images from the KITTI odometry dataset
[12]. By correcting or independently estimating rotation, these
learned models have the potential to improve classical visual
odometry pipelines [25]. We note that even in the limit of no
translation, camera rotation can be estimated independently of
translation from a pair of images [19]. To this end, we built a
convolutional neural network that predicted the relative camera
orientation between sequential images recorded on sequences
from the residential and city categories in the dataset. We
selected sequences 00, 02, and 05 for testing and trained three
models with the remaining sequences for each. In accord with
the results in Figure 4, we found that there was little change in
performance across different SO(3) representations since rota-
tion magnitudes of regression targets from KITTI are typically
on the order of one degree. However, we found that our DT
metric acted as a useful measure of epistemic uncertainty. To
further validate this notion, we manually corrupted the KITTI
test images by setting random rectangular regions of pixels
to uniform black. Figure 6¢ displays the growth in magnitude
that is manifest in the DT metric as data becomes less similar
to that seen during training. Figure 6 displays the estimation
error for test sequence 02 with and without corruption. We
stress that these corruptions are only applied to the test data;
as we highlight numerically in Table I, DT is able to reject
corrupted images and other images that are likely to lead to
high test error. Indeed, in all three test sequences, we observed
a nearly constant mean rotation error for our formulation (A
+ DT) with and without data corruption.

1) Auto-Encoder (AE) OOD Method: We compared our
DT thresholding approach with an auto-encoder-based OOD
technique inspired by work in novelty detection in mobile
robotics [I, 28]. For each training set, we trained an auto-
encoder using an L pixel-based reconstruction loss, and then
rejected test-time inputs whose mean pixel reconstruction error
is above the gth percentile in training. Figure 7 and Table I
detail results that demonstrate that our representation paired
with DT performs significantly better than the 6D represen-
tation with an AE-based rejection method. Importantly, we
stress that our notion of uncertainty is embedded within the
representation and does not require the training of an auxiliary
0OO0D classifier.

D. MAV Indoor-Outdoor Dataset

Finally, we applied our representation to the task of training
a relative rotation model on data collected using a Flea3
global-shutter camera mounted on the Micro Aerial Vehicle
depicted in Figure 8a. We considered a dataset in which
the vehicle undergoes dramatic lighting and scene changes
as it transitions from an outdoor to an indoor environment.
We trained a model using outdoor images with ground-
truth rotation targets supplied by an onboard visual-inertial
odometry system (note that since we were primarily interested
in characterizing our dispersion thresholding technique, such
coarse rotation targets sufficed), and an identical network



TABLE I: Relative rotation learning on the KITTI dataset with different representations of SO(3). All training is done on uncorrupted data.
We show that our OOD technique, DT, can dramatically improve rotation accuracy by rejecting inputs that are likely to lead to high error.

Normal Test

Corrupted Test (50%)

Sequence Model Mean Error (°) Kept (%) Mean Error (°) Kept (%) Precision’(%)
quat 0.16 100 0.74 100 —
6D [41] 0.17 100 0.68 100 —

00 (4540 pairs) 6D + auto-encoder (AE)' 0.16 32.0 0.61 19.1 57.4
A (ours) 0.17 100 0.71 100 —
A + DT (Section V-A)? 0.12 69.5 0.12 37.3 99.00
quat 0.16 100 0.64 100 —
6D 0.15 100 0.69 100 —

02 (4660 pairs) 6D + AE! 0.19 154 0.47 9.9 77.83
A 0.16 100 0.72 100 —
A + DT? 0.12 70.1 0.11 34.0 99.50
quat 0.13 100 0.72 100 —
6D 0.11 100 0.76 100 —

05 (2760 pairs) 6D + AE! 0.10 41.6 0.40 27.7 76.05
A 0.12 100 0.72 100 —
A + DT? 0.09 79.1 0.10 39.2 97.41

! Thresholding based on ¢ = 1.0.

@

; Pomt Grey
‘ Flea3 camera .

(a) MAV with a Point Grey Flea3 global shutter camera (IV) in three
environments: outdoor (I), indoor (IT) and transition (III).
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(b) Mean rotation errors for three different test sequences from the
MAV dataset, using a model trained on outdoor data. The auto-
encoder rejection performs well, yet our DT technique is able to
match its performance without requiring a separate model.

Fig. 8: A summary of our MAV experiments.

architecture to that used in the KITTI experiments. Figure 8b
details the performance of our representation against the 6D
representation paired with an auto-encoder OOD rejection
method. We observe that, compared to the KITTI experiment,

2 Thresholding based on g = 0.75.

3% of corrupted images that are rejected.

the AE-based OOD rejection technique fares much better on
this data. We believe this is a result of the way we partitioned
our MAV dataset; images were split into a train/test split using
a random selection, so test samples were recorded very near
(temporally and spatially) to training samples. Nevertheless,
our method, A + DT, performs on par with 6D + AE on all
three test sets, but does not require the training of a separate
classifier.

VII. DISCUSSION AND LIMITATIONS

Rotation representation is an important design criterion for
state estimation and no single representation is optimal in all
contexts; ours is no exception. Importantly, the differentiable
layer which solves Problem 3 incurs some computational cost.
This cost is negligible at test-time but can slow learning
during training when compared to other representations that
require only basic operations like normalization. In practice,
we find that for common convolutional networks, training is
bottlenecked by other parts of the learning pipeline and our
representation adds marginal processing time. For more com-
pact models, however, training time can be increased. Further,
our representation does not include symmetric matrices where
the minimal eigenvalue is non-simple. In this work, we do
not enforce this explicitly; instead, we assume that this will
not happen to within machine precision. In practice, we find
this occurs exceedingly rarely, though explicitly enforcing this
constraint is a direction of future research.

VIII. CONCLUSIONS AND FUTURE WORK

In this work, we presented a novel representation of SO(3)
based on a symmetric matrix A. Our representation space
can be interpreted as a data matrix of a QCQP, as defining a



Bingham belief over unit quaternions, or as parameterizing a
weighted rotation average over a set of base rotations. Further,
we proved that this representation admits a smooth global
section of SO(3) and developed an OOD rejection method
based solely on the eigenvalues of A. Avenues for future work
include combining our representation with a Bingham likeli-
hood loss, and further investigating the connection between
A, epistemic uncertainty, and rotation averaging. Finally, we
are especially interested in leveraging our representation to
improve the reliability and robustness (and ultimately, safety)
of learned perception algorithms in real-world settings.
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