
Admissible Abstractions for Near-optimal Task and Motion Planning

William Vega-Brown and Nicholas Roy
Massachusetts Institute of Technology

{wrvb, nickroy}@mit.edu

Abstract
We define an admissibility condition for abstrac-
tions expressed using angelic semantics and show
that these conditions allow us to accelerate plan-
ning while preserving the ability to find the optimal
motion plan. We then derive admissible abstrac-
tions for two motion planning domains with contin-
uous state. We extract upper and lower bounds on
the cost of concrete motion plans using local metric
and topological properties of the problem domain.
These bounds guide the search for a plan while
maintaining performance guarantees. We show that
abstraction can dramatically reduce the complexity
of search relative to a direct motion planner. Using
our abstractions, we find near-optimal motion plans
in planning problems involving 1013 states without
using a separate task planner.

1 Introduction
Consider a problem domain like the one shown in figure 1.
A holonomic two-dimensional agent is tasked with navigat-
ing to a specified goal region as quickly as possible. The
path is blocked by doors that can only opened by pressing the
appropriate switch. Planning the sequence of switches to tog-
gle requires combinatorial search; deciding if a path exists to
each switch requires motion planning. As in many real-world
planning domains, such as object manipulation and naviga-
tion among movable objects, the combinatorial search and
motion planning problems are coupled and cannot be com-
pletely separated.

Practical approaches to solving such problems generally
use abstraction to reason about the properties of groups of
primitive plans simultaneously. For example, the aSyMov
system developed by [Cambon et al., 2009] uses a symbolic
task planner to compute a lower bound on the number of ma-
nipulation operations required to reach a goal state and keeps
track of a set of configurations that could be reached fol-
lowing a given sequence of such operations. [Kaelbling and
Lozano-Pérez, 2011] use a hierarchy to guide high-level de-
cision making, resolving low-level decisions arbitrarily and
trusting in the reversibility of the system to ensure hierarchi-
cal completeness. Though the many approaches present in
the literature vary widely in how they deal with the interac-
tion between geometric planning and combinatorial search,

1

2

3

5

4

Start

Goal

1

2

3

5

4

(a) The door puzzle problem

Start

Goal

13 4

2

5

(b) The optimal solution

Figure 1: The door-switch problem, an example task and motion
planning domain. A two-dimensional robot must navigate from the
start location to a goal location, but the way is obstructed by doors
that can only be opened by toggling a corresponding switch. The
optimal solution to this problem instance is to toggle the switches
in the order (1, 3, 2, 4, 5) and then go to the goal set. Because the
size of the configuration space grows exponentially with the number
of doors, planning is computationally challenging. Abstraction can
render such planning problems tractable.

very few provide any guarantee about the quality of the so-
lutions they return. Even optimizing approaches, such as the
work of [Wolfe et al., 2010], are generally limited to guaran-
tees of hierarchical optimality. In order to be useful, a planner
must generate plans of reasonably low cost, and must do so
reasonably quickly; this often requires substantial design ef-
fort and domain-specific tuning, and the trade-offs involved
are poorly understood.

Angelic semantics [Marthi et al., 2008] provide a way to
describe an abstraction that preserves optimality, ensuring
that the plans returned have a cost within a user-defined fac-
tor of the optimal cost. However, it is unclear precisely what
criteria must be met to define an angelic abstraction in a con-
tinuous domain. In this paper, we describe sufficient condi-
tions under which an abstraction will preserve the ability to
find the optimal motion plan while accelerating planning. We
derive abstractions for two continuous planning domains, and
we show that using these abstractions can dramatically reduce
the complexity of search relative to a direct motion planner.
We find near-optimal motion plans in planning problems in-
volving 1013 states without using a separate task planner.

2 Problem Formulation
We are interested in planning problems involving some un-
derlying continuous configuration space X , such as the posi-
tion of a robot or the configuration of its joints. Our task is to
find a path through free space that starts in a specified state s0
and ends in a goal set Sgoal. This goal set may be specified
implicitly, as the set of all states satisfying some constraint.

A path is a continuous map p : [0, 1] → X . We define a
concatenation operator ◦ for paths.

(p1 ◦ p2)(t) =

{
p1(2t) if t ≤ 1

2

p2(2t− 1) if 1
2 < t ≤ 1

(1)

Let PX (S, S′) be the set of all paths starting in S ⊂ X and
ending in S′ ⊂ X . Let c : X × TX → R>0 be a cost
function, where TX is the tangent space of X . We can define
an associated cost functional C : PX → R≥0.

C[p] =

∫ 1

0

c(p(t), ṗ(t)) dt (2)

For example, the arc length of a path p corresponds to a cost
function c(p, ṗ) = ‖ṗ(t)‖. Because C is additive, C[p1◦p2] =
C[p1] + C[p2]. We define the set-valued optimal cost function
c∗ : 2X × 2X → R≥0 as

c∗(S, S′) = inf{C(p) : p ∈ PX (S, S′)}. (3)

We define the ε-approximate planning problem as the
search for a path p̂ ∈ PX ({s0}, Sg) with cost less than (1+ε)
the optimal cost for any ε ∈ R≥0 ∪ {∞}.

p̂ ∈ {p ∈ PX ({s0}, Sg) : C(p̂) ≤ (1 + ε)c∗(s0, Sg)} (4)

The case where ε = ∞, when we wish to find any feasible
path to the goal set, is the problem of satisficing planning.
The case where ε = 0 is optimal planning.

The set PX (X ,X) of all possible paths from all possi-
ble start and goal locations is continuous and topologically
complex. To simplify planning, we assume we have avail-
able a finite set A0 of primitive operators, low-level ac-
tions that can be executed in the real world. The problem
of constructing such a set of operators in continuous mo-
tion planning domains is well studied; in this document,
we will assume the set of operators are given by the edges
in a probabilistic roadmap (PRM*) [Kavraki et al., 1996;
Karaman and Frazzoli, 2011]. That is, we randomly sam-
ple a finite set of configurations Vn ⊂ X , and for each
such configuration v, we define an operator pv . The opera-
tor pv ensures that the robot will end at the state v if exe-
cuted from any state in the open ball of radius rn around v,
where rn ∝ (log n/n)1/d is a radius that increases slowly
with the size of the discretization. Any feasible plan can be
well-approximated by a sequence of these randomly sampled
operators as the number of sampled configurations tends to
infinity. For example, we can show that if A∗0,n is the set
of all paths through a PRM* with n sampled configurations,
then

lim
n→∞

inf{C[p] : p ∈ A∗0,n ∩ PX ({s0}, Sg)} =

inf{C[p] : p ∈ PX ({s0}, Sg)}. (5)

This was proven by [Karaman and Frazzoli, 2011] for the
case where the system is subject to analytic differential con-
straints, and by [Vega-Brown and Roy, 2016] when the sys-
tem has piecewise-analytic differential constraints (as in ob-
ject manipulation problems).

Because the set of primitive operators can grow quite large,
especially in problems with high-dimensional configuration
spaces, a direct search for primitive plans is computationally
intractable. Instead, we will use angelic semantics to encode
bounds on the cost of large groups of plans. We can use these
bounds to plan efficiently while preserving optimality.

3 Angelic Semantics
We define an abstract operator a ⊂ P(X ,X) as a set of
primitive plans. Because the space of plans is infinite, we
define operators implicitly, in terms of constraints on the un-
derlying primitive plans. For example, in a navigation prob-
lem, we might define an operator as any primitive plan that
remains inside a given set of configuration space and ends in
a different set of configuration space.

The concatenation of two operators a1 ◦ a2 is an abstract
plan containing all possible concatenations of primitive plans
in the operators.

a1 ◦ a2 = {p1 ◦ p2 : p1 ∈ a1, p2 ∈ a2, p1(1) = p2(0)} (6)

Concatenations of a well-chosen small set of abstract opera-
tors can express very complicated plans in a compact way.

In order to use these abstract operators for planning, we
need a way to compare abstract plans. We do this using the
valuation of an operator or plan. A valuation V [a] for an op-
erator or plan a is the unique map V [a] : X ×X → R≥0 that
takes a pair of states and gives the lowest cost path between
the pair.

V [a](s1, s2) = inf{C(σ) : σ ∈ a, σ(0) = s1, σ(1) = s2}
(7)

Note that if there are no paths in a linking s1 and s2, then
V [a](s1, s2) = inf ∅ =∞.

Valuations allow us to compare abstract plans without ref-
erence to the primitive plans they contain. Given two abstract
plans p and p′, if we can prove that for any pair of states x, x′,
either V [p](x, x′) < V [p′](x, x′) or V [p′](x, x′) = ∞,
then either there is a solution to our planning problem in p,
or there is no solution in p or p′. Either way, we do not
need to consider any plan in p′; we can prune p′ from our
search space. Under such a condition, we say that p dom-
inates p′ and we write V [p] ≺ V [p′]. Similarly, if either
V [p](x, x′) ≤ V [p′](x, x′) or V [p′](x, x′) = ∞, then we
say that p weakly dominates p′ and we write V [p] � V [p′].

Unfortunately, determining the valuation of an operator is
itself an optimization problem, and one that is not necessarily
any easier than the planning problem we are trying to solve.
The computational advantage comes from reasoning about
bounds on the valuation of an abstract operator. By repre-
senting these bounds symbolically, we will be able to reason
without reference to the underlying states or plans.

We first define bounds on the valuation of an operator over
a set of states.

VL[a](s, s′) = inf{inf{V [a](x, x′) : x′ ∈ s′} : x ∈ s} (8)

VU [a](s, s′) = sup{inf{V [a](x, x′) : x′ ∈ s′} : x ∈ s} (9)

A symbolic valuation bound V̂ [a] can be written as a set of
tuples {(s, s′, l, u)}, where s, s′ are symbolic states and l <
u ∈ R≥0 ∪ {∞}. A bound V̂ [a] is admissible if

∃(s, s′, l, u) ∈ V̂ [a] : l ≤ VL[a](s, s′) (10)

∀(s, s′, l, u) ∈ V̂ [a] : u ≥ VU [a](s, s′). (11)

In words, a bound (s, s′, l, u) is admissible if for any state x
in s there exists a plan p ending in some state x′ in s′ with
cost c = C[p] bounded above by u and below by l. We can
also interpret a symbolic valuation bound V̂ as a bound over
sets of states.

V̂L[a](s, s′) = inf{l : (s0, s1, l, u) ∈ V̂ [a], s ∩ s0 6= ∅,
s′ ∩ s1 6= ∅} (12)

V̂U [a](s, s′) = inf{u : (s0, s1, l, u) ∈ V̂ [a], s ⊆ s0, s
′ ⊆ s1}.

(13)

Note that if V̂ [a] is admissible, then V̂L[a](s, s′) ≤
VL[a](s, s′) and VU [a](s, s′) ≤ V̂U [a](s, s′) for all abstract
state pairs s, s′.

As we will see in sections 4.1 and 4.2, for many domains
we will not need to write down a valuation explicitly. Instead,
we can use domain information to make metric computations
and generate the necessary elements of a valuation procedu-
rally.

By working with symbolic bounds, we can efficiently com-
pute bounds on the cost of plans consisting of sequences of
abstract operators, without reference to a dense discretization
of the underlying space of plans. For example, if we have
bounds on a plan V̂ [a] and an operator V̂ [a′], we can com-
pute a bound V̂ [a ◦ a′].

V̂ [a ◦ a′] ={(s, s′′′, l + l′, u+ u′) : (s, s′, l, u) ∈ V̂ [a],

(s′′, s′′′, l′, u′) ∈ V̂ [a′], s′ ⊆ s′′}∪
{(s, s′′′, l + l′, u) : (s, s′, l, u′) ∈ V̂ [a],

(s′′, s′′′, l′,∞) ∈ V̂ [a′], s′ ∩ s′′ 6= ∅} (14)

If V̂ [a] and V̂ [a′] are admissible, then V̂ [a ◦ a′] is admissible
as well.

4 Admissible Abstractions
We can use angelic semantics to specify an abstraction that
will enable efficient planning. Suppose that p,p′ are ab-
stract plans, with p ⊂ p′. Then V [p′] � V [p], since any
plan in p is also in p′—but because p is a smaller set than
p′, our bounds may tighten. If our bounds allow us to con-
clude that V̂U [p′] ≺ V̂L[p], then we can also conclude that
V [p′ \ p] ≺ V [p′]. We can incrementally construct an in-
creasingly accurate estimate of V [p] by iteratively consider-
ing smaller and smaller subsets of an operator p and pruning
those subsets that cannot contain an optimal plan.

We can make precise the construction of these increasingly
fine subsets by introducing a refinement relation R ⊂ A∗ ×
A∗, where ∗ denotes the Kleene closure. The elements of R
are ordered pairs (p,p′) such that p′ ⊂ p. We can construct
a relation R by defining several simple operations. First, we

define operations BASE : A∗ → A∗, HEAD : A∗ → A,
and EXT : A∗ → A∗ that split a plan into three segments so
that p = BASE(p) ◦ HEAD(p) ◦ EXT(p). Second, we define
a relation R̄ ⊂ A × A∗. Then (p,p′) ∈ R if and only if
p′ = BASE(p) ◦ p′′ ◦ EXT(p) and (HEAD(p),p′′) ∈ R̄.

We can combine these elements into an abstraction over a
problem domain (X , c, s0, Sg). Formally, an abstraction is a
tuple (S,A, R̄, V̂), where
• S is a collection of propositional symbols,
• A is a collection of operators, including a distinguished

top-level operator Act,
• R̄ ⊂ A×A∗ is a refinement relation, and

• V̂ is a symbolic valuation bound.
The valuation bound encodes both the cost and the dynamics
of our problem domain. The refinement relation structures
the space of abstract plans.

Angelic planning algorithms accept an abstraction as an ar-
gument in much the same way that the A* search algorithm
[Hart et al., 1968] accepts a heuristic. This raises an impor-
tant question: under what circumstances will an abstraction
(S,A, R̄, V̂) allow us to find the optimal primitive plan for
a domain (X , c, s0, Sg), and to prove we have done so? We
will generalize the idea of an admissible heuristic to define an
admissible abstraction.

In fact, two properties suffice.
1. For each abstract operator a ∈ A, for each primitive plan
p in a, there is a refinement p of a such that p ∈ p, i.e.,

∀a ∈ A,∀p ∈ a,∃(a,p) ∈ R̄ : p ∈ p. (15)

2. V̂ is admissible, i.e., V̂L[p] � V [p] � V̂U [p] for each
abstract operator p ∈ A.

The first property ensures that we do not “lose track” of any
primitive plans while refining a plan. Plans are only removed
from consideration when they are deliberately pruned. The
second property ensures that if abstract plans p,p′ ∈ P ,
where P is a collection of abstract plans, and V̂U [p] ≺
V̂L[p′], then no optimal plan is in p′ and thus the best plan in
p is also in the set P ′ = P \{p′}. Taken together, these prop-
erties ensure that if P ′ is the result of refining and pruning a
collection of plans P , then for every plan in P there is a plan
that is no worse in P ′. If we start with the set P0 = {Act}, no
sequence of refinement and pruning operations will discard
an optimal solution. This ensures completeness. To construct
planning algorithms, we simply need to choose an order in
which to refine and prune, and keep track of bounds to know
when we can terminate the search.

Not every admissible abstraction is useful for planning.
A good abstraction must be concise: it must be informative
enough to enable us to explore the space of plans quickly. In
general, designing useful abstractions for a given domain is
a complex exercise. In the remainder of this section, we will
provide concrete examples of admissible abstractions for a
pair of simple continuous planning problems.

4.1 An Abstraction for Navigation
A common problem in robotics is navigating to some speci-
fied goal location in a structured environment. Simple heuris-

tics like the Euclidean distance to the goal work well in en-
vironments that are cluttered but largely unstructured, where
the distance is a good proxy for the true cost. In highly struc-
tured environments, however, the Euclidean distance can be
quite a bad proxy for cost. Consider the example in figure 3,
in which the robot starts just on the other side of a wall from
the goal. Using A* with a Euclidean heuristic requires search-
ing almost the entire space.

We can plan more efficiently by taking advantage of struc-
ture in the environment. Suppose we have a decomposition
of the environment into a finite set of overlapping regions,
and we know which regions overlap. Then any plan can be
described by the sequence of regions it moves through. We
can use this to define an abstraction. Let S = {Ri}, where
∪iRi = X , and letA = A0 ∪{aij : Ri ∩Rj 6= ∅}∪ {Act},
where p ∈ aij if p(t) ∈ Ri∀t ∈ [0, 1) ∧ p(1) ∈ Rj . Define
the refinement relation as follows.

R̄ =
⋃
ij

{(Act,aij ◦Act)}∪

{(Act,aij) : Rj ∩ Xg 6= ∅}∪
{(aij , a ◦ a) : a(t) ∈ Ri∀t}∪
{(aij , a) : a(t) ∈ Ri∀t, a(1) ∈ Rj}

(16)

In practice, we will not iterate over all possible refinements,
but will instead use spatial indices like k-D trees and R-trees
to find the operators that are valid from a particular state. It is
straightforward to show this satisfies the completeness prop-
erty.

If the cost function is path length, then we can compute
bounds using geometric operations. Executing the action aij
from a state in Rk ∩Ri would incur a cost at least as great as
the set distance inf{‖x− x′‖ : x ∈ Ri ∩Rk, x

′ ∈ Ri ∩Rj}.
If the intersections between sets are small and well-separated,
this lower bound will be an accurate estimate. This has the
effect of heuristically guiding the search towards the next re-
gion, allowing us to perform a search in the (small) space of
abstract plans rather than the (large) space of primitive plans.
The Euclidean heuristic can deal with things like clutter and
unstructured obstacles, while the abstraction can take advan-
tage of structure in the environment.

Note that we have made no reference to the shape of the
regions, nor even to their connectedness. If regions can be
disconnected, abstract operators can have no upper bound,
which can lead the search to be inefficient. If we additionally
require the regions to be convex, then we can use the Haus-
dorff distance between sets as an upper bound. Executing
the action aij from a state in Rk ∩ Ri would incur a cost no
greater than the Hausdorff distance dH(Ri ∩ Rk, Ri ∩ Rj),
where

dH(X,Y) = max(sup
x∈X

inf
y∈Y
‖x− y‖, sup

y∈Y
inf
x∈X
‖x− y‖).

(17)
Convexity is quite a strong requirement. In a cluttered en-

vironment, a convex representation may need to contain many
regions. We can relax the requirement of convexity, and gen-
eralize to costs besides path length, by defining ε-convexity.
A region R is ε-convex if

inf
p∈PR(x,x′)

C[p] ≤ (1 + ε)‖x− x′‖ ∀x, x′ ∈ R. (18)

ε-convex regions are “nearly” convex, because the shortest
path connecting any two points is only a bit longer than a
straight line. For example, a region cluttered with convex
obstacles is π/2-convex for a point robot.

4.2 An Abstraction for the Door Puzzle
The door puzzle introduced in the introduction combines the
motion-planning aspects of navigation with a high-level task
planning problem: the choice of which doors to open and in
which order. Unlike in the navigation problem, the configura-
tion space for the door problem involves discrete components:
X ⊂ R2 × {0, 1}N , where where N is the number of doors.
We use the same region-based abstraction to guide the search
for motion plans, and construct a relaxed representation of
the effects of toggling switches in PDDL by omitting geo-
metric constraints like collision. Using this representation,
we can quickly compute a partial ordering on the sequence
of switches that need to be pressed in order to reach the goal.
For example, in figure 2, the path to the goal is blocked by
six doors. Before we can move towards the goal, we must
move to and press each of the six switches. This leaves us
with the task of computing a lower bound on the cost to reach
and toggle each switch.

We can find such a bound in two steps. First, we construct
a directed graph whose vertices are the possible effects of ex-
ecuting each operator, and whose edges have weights that
lower bound the cost of executing each operator. This re-
duces the problem of finding a lower bound to solving a trav-
elling salesperson problem (TSP). While it is believed that
solving a TSP requires exponential time, we can compute a
lower bound on the cost of the optimal solution by comput-
ing a minimum spanning tree of the directed graph—and this
is a computation that can be done in polynomial time with
standard methods. Although this bound neglects possible in-
teractions between the operators, it is admissible; in fact, it
is an admissible special case of the more general (and inad-
missible) hadd heuristic [Haslum and Geffner, 2000]. We can
use this bound to guide the search for a more detailed motion
plan.

5 Acyclic Approximate Angelic Search
Next, we present the approximate angelic A* search algo-
rithm (AAA*), an algorithm for near-optimal planning using
an admissible abstraction. AAA* is a reformulation and ex-
tension of the angelic hierarchical A* algorithm developed by
[Marthi et al., 2008]. This algorithm is effectively a best-first
forward search over abstract plans. It accepts an abstraction
and a positive weight w ≥ 1, and maintains a queue of plans
to expand. The algorithm repeatedly removes from the queue
the plan with the lowest lower bound on the cost to reach the
goal (lines 8-12). It then constructs a set of child plans by
selecting one operator from the plan and replacing it with its
refinements. Any successor plan that cannot possibly contain
an acceptable solution is pruned, while any plan that could
contain an acceptable solution is added to the priority queue.
The algorithm terminates when we remove a plan from the
queue that is dominated by a previously expanded primitive
plan.

The primary data structure maintained by our algorithm is
a tree. Each node in the tree represents a plan as the concate-

0503

04

01

02 06

Start Goal

05

03

04

0102

06

(a) Problem

Goal

(b) Lower bound

04 0602

0301 05

Start Goal

(c) Solution

Figure 2: In the problem shown in (a), it is easy to conclude that all N = 6 doors must be opened before the robot can reach the goal.
However, there are N ! = 720 possible orders in which we might press the switches. We can bound the cost of any sequence by solving
a travelling salesperson problem (b, dotted lines), where the edge costs are the minimal distance the robot must travel to move between
switches. Although this is an NP-hard problem, we can compute a lower bound on the cost of a solution in polynomial time by computing a
minimum spanning tree (b, solid red line). This allows the planner to quickly find a near-optimal solution (c).

nation of a predecessor plan p− and an operator a. Nodes
store the following information:

• an abstract operator a,

• the predecessor plan p−,

• the parent plan, from which this plan was refined,

• the base plan BASE(p), which is used in choosing re-
finements, and

• upper and lower bounds on the valuation of the plan rep-
resented by the node.

The root of the tree is a node that contains no operator, prede-
cessor, or base, and whose upper and lower valuation bounds
are zero at the start state and infinite elsewhere.

[Marthi et al., 2008] showed this algorithm will return the
optimal refinement of the top-level operator Act after a fi-
nite number of iterations, provided the lower bound on the
cost of every operator is greater than zero. We provide two
key modifications. First, instead of expanding the plan with
the smallest lower bound, we order the queue with a priority
that is no greater than w times the lower bound on the cost a
plan. This allows us to exchange optimality for approximate
optimality and an accelerated search, in much the same fash-
ion as weighted A* [Pohl, 1970]. Inflating the lower bound
may accelerate search by providing a more accurate estimate
of the true value of an abstract plan. This is especially true
in domains where formulating an abstract plan is difficult: in-
flating our lower bounds can allow us to focus our search on a
single, reasonable abstract plan, rather than considering every
possible abstract plan.

Second, the original formulation of angelic A* required
strictly positive lower bounds on the cost of any operator.
In discrete problems, this is reasonable restriction, but it
presents challenges in continuous problems. For example,
suppose we have a plan consisting of two operators aij ◦ai′j′
from our navigation abstraction. If the destination regions
intersect—if Rj ∩ R′j 6= ∅—then the largest possible lower
bound for the valuation of ai′,j′ is zero. This phenomenon
can lead to a zero-cost cycle: a sequence of operators that can
optimistically returns to a given state with zero cost. Even
positive cost-cycles are problematic, if the lower bound l on
the cost of a cycle is much smaller than the upper bound u:

the algorithm can only prune a plan if it executes the cycle
du/le times. Unfortunately, we cannot simply discard any
abstract plan with a cycle: the optimal plan may leave and re-
turn to an abstract state if the state is non-convex. Typically,
this indicates a poor choice of abstraction, but we can deal
with such edge cases while still avoiding cycles with a minor
modification to the algorithm.

We define an acyclic plan as any plan p that cannot be par-
titioned into two plans p0 ◦ p1 such that V̂L[p0] � V̂L[p]
(algorithm 1, lines 53-58). If when computing the succes-
sors of a plan p, we find the extension pext would create a
deferred plan when propagated on top of BASE(p), we do
not add p ◦ pext to the set of successors. Instead, we add
(BASE(p),pext) to the set of deferred plans (algorithm 1,
line 29). When any descendent of p is expanded, we con-
sider activating any deferred extension of p by propagating
it on top of the descendent plan. If the resulting plan is no
longer acyclic, we add it to the set of successors (line 36).
This ensures that only acyclic plans will ever be added to the
queue of plans without sacrificing completeness.

We state the following theorem without proof; a proof of
this theorem, along with proofs of admissibility for the ab-
stractions presented in section 4, are available in an extended
version of this paper.1

Theorem 1. If the abstractionA is admissible and a feasible
plan exists, then AAA* returns a sequence of primitive op-
erators with cost no greater than w · c∗({xs}, Xg) in finite
time.

Corollary 1. Let cn = C[SEARCH(An)] be a random vari-
able equal to the cost of the path returned by AAA*. If the set
of primitive operators A0,n is asymptotically optimal (equa-
tion 5), then for any ε > 0,

lim
n→∞

Pr (cn < (1 + ε)w · c∗({xs}, Xg)) = 1. (19)

6 Results
We implemented AAA* and the abstractions described in sec-
tions 4.1 and 4.2 in the Python programming language. We

1https://groups.csail.mit.edu/rrg/papers/vega-brown18b.pdf

https://groups.csail.mit.edu/rrg/papers/vega-brown18b.pdf

Algorithm 1 Approximate Angelic A*

1: function SEARCH(abstraction (S,A, R̄, V̂), weight w)
2: root = (∅,∅,∅, {(xs, xs, 0, 0)})
3: p∗ = ∅
4: BOUND(∅) = V̂ [ACT]
5: p0 = PROPAGATE(root, [ACT])
6: Q = {p0}
7: while |Q| > 0 do
8: p = arg min{KEY(p, w) : p ∈ Q}
9: if PRIMITIVE(p∗) and V̂U [p∗] ≺ V̂L[p] then

10: return p∗

11: else
12: Q← Q \ {p}
13: S ← SUCCESSORS(p)
14: for p′ ∈ S do
15: if V̂U [p′](x0, Xg) < V̂U [p∗](x0, Xg) then
16: p∗ ← p′

17: Q← Q ∪ S

18: return ∅
19: function SUCCESSORS(plan node p)
20: . D is a global variable, initially set to ∅.
21: POST(BASE(p)) = {s′ : (s, s′, l, u) ∈ V̂ [BASE(p)]}
22: S = ∅
23: a = OPERATOR(HEAD(p))
24: for p′ : (a,p′) ∈ R̄, ∃s ∈ POST(BASE(p)) : HEAD(p′)∩

s 6= ∅ do
25: pref ← PROPAGATE(BASE(p),p′ ◦ EXT(p))

26: if V̂L[pref](xs, Xg) <∞ then
27: if ACYCLIC(pref ,∅) then S ← S ∪ {pref}
28: else
29: D ← D ∪ {(BASE(p), EXT(pref))}
30: pa ← p
31: while BASE(PARENT(pa)) 6= ∅ do
32: pa ← BASE(PARENT(pa))
33: for pext : (pa,pext) ∈ D do
34: pref ← PROPAGATE(BASE(p),pext)

35: if ACYCLIC(pref ,∅) and V̂L[pref] <∞ then
36: S ← S ∪ {pref}
37: return S
38: function PROPAGATE(base node p, list pext)
39: b← p
40: while pext is not empty do
41: a← POP(pext)
42: if a is more primitive than OPERATOR(p) then
43: b← p

44: p← (a,p,b, V̂ [p ◦ a])

45: if V̂ [p] = ∅ then return ∅
46: else if BOUND(pext) ≺ V̂L[p] then return ∅
47: else BOUND(pext)← BOUND(pext) ∪ V̂ [p]

48: return A
49: function KEY(node p, weight w ∈ R≥1)
50: p− ← PREDECESSOR(p)
51: if p = ∅ then return 0

52: else return min(KEY(p−) +w(V̂L[p]− V̂L[p−]), V̂U [p])

53: function ACYCLIC(plan nodes p,p′)
54: p− ← PREDECESSOR(p)
55: if p = ∅ then return true
56: else if p′ = ∅ then
57: return ACYCLIC(p−,∅) ∧ ACYCLIC(p−,p)

58: else return ¬(V̂L[p] � V̂L[p′]) ∧ ACYCLIC(p−,∅)

Start

Goal

(a) A*

Start

Goal

(b) Acyclic Angelic A*

Figure 3: The search trees constructed by (a) A* and (b) AAA*.
Note that the A* search needs to explore almost the entire space,
due to limitations of the Euclidean distance as a heuristic. In con-
trast, when provided with a decomposition of the world into nearly-
convex regions, angelic A* can find a path to the goal while explor-
ing far fewer states. By avoiding plans with cycles, our modified
angelic planning algorithm can explore these states while expanding
far fewer plans.

cost time plans states

A* 33.430 42.119 11807 7948
Angelic A* 33.430 160.256 25770 4758
AAA* (w=1.) 33.430 4.159 706 3068
AAA* (w=2.5) 35.586 0.697 48 1443

Table 1: Quantitative performance on a problem instance in the nav-
igation domain. The discretized state space includes 104 sampled
configurations. We see that abstraction and approximation result
expanding fewer plans and exploring fewer states, yielding a faster
search and optimal or nearly optimal results.

then compared the performance of the planner with the origi-
nal angelic A* search algorithm [Marthi et al., 2008] and with
a search without abstraction using A*.

In the navigation domain, we constructed a random dis-
cretization with 104 states. Examples of the search trees con-
structed by A* and by AAA* are given in figure 3. By us-
ing the abstraction, the algorithm can avoid exploring large
parts of the configuration space. Our quantitative results bear
this out: using abstraction allows us to reduce the number of
states explored by a factor of three and the number of plans
considered by several orders of magnitude.

Using abstraction in the door puzzle domain resulted in
even larger speedups. Even in easy problem instances with
only a few doors, search without abstraction quickly became
infeasible (figure 4). Using abstraction reduced the number
of states explored by orders of magnitude. However, the un-
modified angelic search spent a great deal of time exploring
plans with cycles. By deferring these plans, our algorithms
were able to reduce the number of plans expanded by an order
of magnitude. In fact, only our algorithm was able to solve
problem instances with more than ten doors. We were able
to find 2-optimal plans for instances with up to 32 doors and
104 sampled configurations (corresponding to a discretized
state space with approximately 40 trillion states). Unfortu-
nately, software limitations prevented us from experimenting
on states with more than 32 doors.

102 103 104

Sample count

0

2000

4000

6000

8000

10000
Pl

an
s

ex
pa

nd
ed

AAA* (w=1.)
AAA* (w=2.5)
Angelic A*
A*
WA* (w=2.5)

102 103 104

Sample count

0

2000

4000

6000

St
at

es
 e

xp
lo

re
d

AAA* (w=1.)
AAA* (w=2.5)
Angelic A*
A*
WA* (w=2.5)

Figure 4: Quantitative evaluation on an easy instance of the door
puzzle domain with only two doors. More difficult instances could
not be solved by any algorithm considered except AAA*. The ab-
scissa measures the number of randomly sampled states in the dis-
cretization of the configuration space. The ordinate axes measure
the number plans expanded by each algorithm and the number of
distinct configurations explored during search.

7 Related Work
There is a long history of using abstraction to solve robotic
planning problems [Nilsson, 1984; Lozano-Pérez et al.,
1987]. Many authors [Alami et al., 1990; Siméon et al.,
2004] have employed our underlying approach of searching
for paths through a graph of configurations connected by fea-
sible motion plans. Practical algorithms often overcome the
high computational cost of searching these planning graphs
using clever heuristics. For example, aSyMov [Cambon et al.,
2009] and FFRob [Garrett et al., 2016] both employ the fast-
forward heuristic, augmented with information derived from
the geometric and kinematic computation. Like these ap-
proaches, our work is built atop a heuristically-guided search;
however, angelic semantics allow us to define upper bounds
which can be used to prune away abstract plans, and allow for
admissible hierarchies of arbitrary depth.

Our definition of abstract plans is closely related to the no-
tion of “plan skeletons” considered by several authors [Erdo-
gan and Stilman, 2013; de Silva et al., 2013; Lozano-Pérez
and Kaelbling, 2014]. Plan skeletons fix a sequence of oper-
ators but leave continuous parameters undefined. There are
many approaches to determining the feasibility of a given
skeleton; for example, [Toussaint, 2015] uses continuous op-
timization techniques to search for optimal values of the real-
valued variables. [Lozano-Pérez and Kaelbling, 2014] fix a
discretization of the continuous variables then find feasible
values by formulating and solving a constraint satisfaction

problem. [Lagriffoul et al., 2014] use linear programming to
find valid values of the free variables or prove that none exist.
The primary difference between our approach and these plan
skeletons is the choice of formalism. By defining our abstract
operators as implicitly defined sets of primitive motion plans,
we can reason about plans at varying levels of abstraction in
a unified way, which is essential to the generality of our guar-
antees.

Another approach to task and motion planning represents
geometric information in a way amenable to search using
classical AI search techniques. For example, [Dornhege et
al., 2010] model geometric information as predicates that can
be resolved by solving motion planning problems during the
task planning process. More recently, [Ferrer-Mestres et al.,
2017] show that by fixing a discretization, in some domains
all geometric information can be represented compactly in
planning languages more expressive than PDDL, avoiding the
need to make geometric queries during the planning process.
Other authors [Erdem et al., 2011; Srivastava et al., 2013;
Dantam et al., 2016] use the task planner as a partial or ap-
proximate representation of the underlying geometric task,
which can be improved during search. For instance, [Erdem
et al., 2011] use a high-level task planner to find an optimal
task plan, then use a motion planner to attempt to find a kine-
matically feasible primitive solution to that task plan. If no
feasible solution exists, additional kinematic constraints are
extracted from the motion planner and provided to the task
planner, and the process is repeated.

Many authors have devised planning algorithms tailored to
more specific task and motion planning domains. For ex-
ample, the problem of navigation among movable obstacles
has long been of practical interest, and probabilistically com-
plete solutions have been known since 2008 [Stilman and
Kuffner, 2008; Nieuwenhuisen et al., 2008]. Planning for
non-prehensile manipulation has been addressed by [Dogar
and Srinivasa, 2011] and by [Barry et al., 2013]. Our work
could provide a new analytical tool with which to study these
special classes of problems, and perhaps formulate new algo-
rithms with stronger performance guarantees.

8 Conclusions
We have defined conditions on an abstraction that allow us
to accelerate planning while preserving the ability to find
an optimal or near-optimal solution to complex motion plan-
ning problems. We motivate these conditions by deriving two
admissible abstractions and showing they improve the effi-
ciency of search without adversely affecting the quality of
the resulting solutions. We view this work as a proof of con-
cept, demonstrating that a good abstraction can render opti-
mal planning feasible even on large problems. The classical
planning community has developed several powerful families
of admissible heuristics [Haslum and Geffner, 2000]; by re-
formulating these heuristics to employ angelic abstractions,
we may be able to obtain optimal or near-optimal solutions to
practical manipulation planning problems.

Acknowledgements
This research was sponsored by Northrop Grumman and by
the Robotics Collaborative Technology Alliance (RCTA) of
the US Army. Their support is gratefully acknowledged.

References
[Alami et al., 1990] Rachid Alami, Thierry Simeon, and Jean-Paul

Laumond. A geometrical approach to planning manipulation
tasks. the case of discrete placements and grasps. In Proceed-
ings of the International Symposium on Robotics Research, pages
453–463. MIT Press, 1990.

[Barry et al., 2013] Jennifer Barry, Leslie Pack Kaelbling, and
Tomás Lozano-Pérez. A hierarchical approach to manipulation
with diverse actions. In International Conference on Robotics
and Automation, pages 1799–1806. IEEE, 2013.

[Cambon et al., 2009] Stephane Cambon, Rachid Alami, and Fa-
bien Gravot. A hybrid approach to intricate motion, manipula-
tion and task planning. The International Journal of Robotics
Research, 28(1):104–126, 2009.

[Dantam et al., 2016] Neil T Dantam, Zachary K Kingston, Swarat
Chaudhuri, and Lydia E Kavraki. Incremental task and motion
planning: A constraint-based approach. In Robotics: Science
and Systems, pages 1–6, 2016.

[de Silva et al., 2013] Lavindra de Silva, Amit Kumar Pandey,
Mamoun Gharbi, and Rachid Alami. Towards combining
HTN planning and geometric task planning. arXiv preprint
arXiv:1307.1482, 2013.

[Dogar and Srinivasa, 2011] Mehmet Dogar and Siddhartha Srini-
vasa. A framework for push-grasping in clutter. In Robotics:
Science and Systems, volume 1, 2011.

[Dornhege et al., 2010] Christian Dornhege, Patrick Eyerich,
Thomas Keller, Michael Brenner, and Bernhard Nebel. Integrat-
ing task and motion planning using semantic attachments. In
Proceedings of the First AAAI Conference on Bridging the Gap
Between Task and Motion Planning, pages 10–17. AAAI Press,
2010.

[Erdem et al., 2011] Esra Erdem, Kadir Haspalamutgil, Can Palaz,
Volkan Patoglu, and Tansel Uras. Combining high-level causal
reasoning with low-level geometric reasoning and motion plan-
ning for robotic manipulation. In International Conference on
Robotics and Automation. IEEE, 2011.

[Erdogan and Stilman, 2013] Can Erdogan and Mike Stilman.
Planning in constraint space: Automated design of functional
structures. In International Conference on Robotics and Automa-
tion (ICRA), pages 1807–1812. IEEE, 2013.

[Ferrer-Mestres et al., 2017] Jonathan Ferrer-Mestres, Guillem
Francès, and Hector Geffner. Combined task and motion plan-
ning as classical AI planning. arXiv preprint arXiv:1706.06927,
2017.

[Garrett et al., 2016] Caelan Reed Garrett, Tomas Lozano-Perez,
and Leslie Pack Kaelbling. Ffrob: Leveraging symbolic plan-
ning for efficient task and motion planning. The International
Journal of Robotics Research, page 0278364917739114, 2016.

[Hart et al., 1968] Peter E Hart, Nils J Nilsson, and Bertram
Raphael. A formal basis for the heuristic determination of min-
imum cost paths. IEEE Transactions on Systems Science and
Cybernetics, 4(2):100–107, 1968.

[Haslum and Geffner, 2000] Patrik Haslum and Héctor Geffner.
Admissible heuristics for optimal planning. In Proceedings of
the International Conference on Artificial Intelligence Planning
Systems (AIPS), pages 140–149, 2000.

[Kaelbling and Lozano-Pérez, 2011] Leslie Pack Kaelbling and
Tomás Lozano-Pérez. Hierarchical task and motion planning in
the now. In International Conference on Robotics and Automa-
tion, pages 1470–1477. IEEE, 2011.

[Karaman and Frazzoli, 2011] Sertac Karaman and Emilio Fraz-
zoli. Sampling-based algorithms for optimal motion planning.
The International Journal of Robotics Research, 30(7):846–894,
2011.

[Kavraki et al., 1996] Lydia E Kavraki, Petr Svestka, J-C Latombe,
and Mark H Overmars. Probabilistic roadmaps for path planning
in high-dimensional configuration spaces. IEEE Transactions on
Robotics and Automation, 12(4):566–580, 1996.

[Lagriffoul et al., 2014] Fabien Lagriffoul, Dimitar Dimitrov,
Julien Bidot, Alessandro Saffiotti, and Lars Karlsson. Efficiently
combining task and motion planning using geometric constraints.
The International Journal of Robotics Research, 2014.

[Lozano-Pérez and Kaelbling, 2014] Tomás Lozano-Pérez and
Leslie Pack Kaelbling. A constraint-based method for solving
sequential manipulation planning problems. In International
Conference on Intelligent Robots and Systems, pages 3684–3691.
IEEE, 2014.

[Lozano-Pérez et al., 1987] Tomás Lozano-Pérez, Joseph Jones,
Emmanuel Mazer, Patrick O’Donnell, W. Eric L. Grimson, Pierre
Tournassoud, and Alain Lanusse. Handey: A robot system that
recognizes, plans, and manipulates. In International Conference
on Robotics and Automation, volume 4, pages 843–849. IEEE,
1987.

[Marthi et al., 2008] Bhaskara Marthi, Stuart Russell, and Jason
Wolfe. Angelic hierarchical planning: Optimal and online al-
gorithms. In International Conference on Automated Planning
and Scheduling, pages 222–231, 2008.

[Nieuwenhuisen et al., 2008] Dennis Nieuwenhuisen, A Frank
van der Stappen, and Mark H Overmars. An effective frame-
work for path planning amidst movable obstacles. In Algorithmic
Foundation of Robotics VII, pages 87–102. Springer, 2008.

[Nilsson, 1984] Nils J Nilsson. Shakey the robot. Technical report,
DTIC Document, 1984.

[Pohl, 1970] Ira Pohl. Heuristic search viewed as path finding in a
graph. Artificial intelligence, 1(3-4):193–204, 1970.

[Siméon et al., 2004] Thierry Siméon, Jean-Paul Laumond, Juan
Cortés, and Anis Sahbani. Manipulation planning with prob-
abilistic roadmaps. The International Journal of Robotics Re-
search, 23(7-8):729–746, 2004.

[Srivastava et al., 2013] Siddharth Srivastava, Lorenzo Riano, Stu-
art Russell, and Pieter Abbeel. Using classical planners for tasks
with continuous operators in robotics. In International Confer-
ence on Automated Planning and Scheduling, pages 27–35, 2013.

[Stilman and Kuffner, 2008] Mike Stilman and James Kuffner.
Planning among movable obstacles with artificial constraints.
The International Journal of Robotics Research, 27(11-
12):1295–1307, 2008.

[Toussaint, 2015] Marc Toussaint. Logic-geometric programming:
An optimization-based approach to combined task and motion
planning. In International Joint Conference on Artificial Intelli-
gence, 2015.

[Vega-Brown and Roy, 2016] William Vega-Brown and Nicholas
Roy. Asymptotically optimal planning under piecewise-analytic
constraints. In Workshop on the Algorithmic Foundations of
Robotics, 2016.

[Wolfe et al., 2010] Jason Wolfe, Bhaskara Marthi, and Stuart Rus-
sell. Combined task and motion planning for mobile manipula-
tion. In International Conference on Automated Planning and
Scheduling, pages 254–258, 2010.

	Introduction
	Problem Formulation
	Angelic Semantics
	Admissible Abstractions
	An Abstraction for Navigation
	An Abstraction for the Door Puzzle

	Acyclic Approximate Angelic Search
	Results
	Related Work
	Conclusions

