Sensor-Based Reactive Execution of Symbolic Rearrangement Plans by
a Legged Mobile Manipulator

Vasileios Vasilopoulos, T. Turner Topping, William Vega-Brown, Nicholas Roy, Daniel E. Koditschek

Abstract— We demonstrate the physical rearrangement of
wheeled stools in a moderately cluttered indoor environment
by a quadrupedal robot that autonomously achieves a user’s
desired configuration. The robot’s behaviors are planned and
executed by a three layer hierarchical architecture consisting
of: an offline symbolic task and motion planner; a reactive
layer that tracks the reference output of the deliberative layer
and avoids unanticipated obstacles sensed online; and a gait
layer that realizes the abstract unicycle commands from the
reactive module through appropriately coordinated joint level
torque feedback loops. This work also extends prior formal
results about the reactive layer to a broad class of nonconvex
obstacles. Our design is verified both by formal proofs as well
as empirical demonstration of various assembly tasks.

I. INTRODUCTION
A. Motivation

In this paper, we apply and extend prior formal results
[1] to solve and empirically demonstrate a geometrically
modest but mechanically challenging instance of the Ware-
houseman’s problem [2]. We recruit the Minitaur quadruped
[3] (see Fig. 1) as a legged “mobipulator” [4] — a mobile
robot that uses only its native, general purpose mechanical
appendages to effect work on itself and the surrounding
environment — in order to re-arrange according to a user’s
command the location of wheeled stools in a known environ-
ment that is sparsely obstructed by unanticipated, immovable
obstacles of unknown general placement and shape. The
integration of deliberative and reactive layers introduced in
[1] guarantees that a unicycle capable of pushing or releasing
such wheeled stools at will must always accomplish its task
so long as the unanticipated objects are all convex and
sufficiently sparsely placed relative to the known floor plan.

Here, we seek to bring a greater degree of realism to
that framework by two different but allied extensions. We
relax the geometric restriction to convex obstacles and prove
that the idealized unicycle will still succeed even when
confronted with nonconvex unanticipated objects at run-time,
so long as they are “moderately curved” and “sufficiently
sparse”. We relax the mechanical assumption of an idealized
gripper by adding an entirely new “gait layer” that translates
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Fig. 1. LIDAR-equipped Minitaur [3] mobipulating [4] two stools using
gaits [6] called out by a deliberative/reactive motion planner [1].

the erstwhile unicycle’s velocity and gripper commands
into a Minitaur joint-level architecture taking the form that
we conjecture meets the requirements of a simple hybrid
dynamical manipulation and self-manipulation system [5].
Although this would insure at least that the hybrid system is
guaranteed to be live and non-blocking [5], we are only in
the early stages of working out the formal relationships of
the legged dynamics to the abstracted unicycle reference.

B. Prior Work

Substantial computational benefits [7] can reward planners
that commit to decisions at a high level of abstraction
[8], learning STRIPS-like symbols [9] or performing an
efficient satisficing search [10]. In contrast, aiming for highly
dynamic implementation in uncertain, unstructured settings,
in [1] we introduced a provably correct architecture for
completing assembly plans in 2D environments based on
the integration of a vector-field reactive controller with a
deliberative planner [11] that uses the angelic semantics
[12] to guarantee hierarchical optimality. While high level
deliberation has previously been coordinated with reactive
planners on hardware-specialized physical systems [13],
[14], harnessing the inherent relationship between mobility
and manipulation [4], as well as the potential for dynamics
to ameliorate kinematic task mismatches [15], can preserve
platform generality and, thereby, its fitness for a greater
diversity of tasks.

C. Contributions and Organization of the Paper

In this paper, we suggest by empirical demonstration the
effectiveness of a hierarchical control structure (depicted in



Fig. 2) for a highly dynamic physical system (illustrated in
Fig. 3). Specifically, we believe this is the first provably
correct deliberative/reactive planner to engage an unmodified
general purpose mobile manipulator in physical rearrange-
ment of its environment. At the same time, targeting more
geometrically realistic environments as well, our new results
offer the first formal extension of the recent online, doubly-
reactive controller family (originated in [16] and extended to
our line tracking application in [17]) to nonconvex obstacles.
We believe that our “length scale” interpretation of prox-
regularity [18] used to distinguish suitably “moderate” non-
convexities will also have independent broad future applica-
bility in these settings.

Section II describes the problem and summarizes our
approach. Section III describes each component of the hi-
erarchical control structure (deliberative, reactive and gait
controller) separately and Section IV presents our formal
results on reactive wall following for nonconvex obstacles.
Section V begins with the description of our hardware infras-
tructure based on ROS and continues with the presentation
of our empirical results for different classes of experiments.
Finally, Section VI concludes with some comments and ideas
for future work.

II. PROBLEM FORMULATION

In this work, Minitaur is assumed to operate in a
closed and compact workspace W C R? whose bound-
ary OW is assumed to be known, and is tasked to move
each of » € N movable disk-shaped objects, centered
at p := (p1,P2,-.-,Pn) € W" with a vector of radii
(ri,72,...,mn) € (Rso)™, from their initial configuration to
a user-specified goal configuration p* := (p},p5,...,p)) €
‘W™ For our hardware implementation, the movable objects
are stools with five caster wheels. We assume that both
the initial configuration and the target configuration of the
objects are known. In addition to the known boundary of the
workspace OW, the workspace is cluttered by an unknown
number of fixed, disjoint, potentially nonconvex obstacles of
unknown position and size, denoted by O := (01, Oq,...).
To simplify the notation, we also define O,, := O U W.

For (reactive) planning purposes, Minitaur is modeled as a
first-order, nonholonomically-constrained, disk-shaped robot,
centered at x € R? with radius € R+ and orientation ¢ €
S1, following our previous work [1]. The model dynamics
are described by

(%,%) = B(¢)uy, (1)

cosy siny 0 ’

0 0 1
straint matrix and ug,, := (v,w) the input vector! consisting
of a linear and an angular command. Similarly to [1], we
adopt the following assumptions to facilitate the proofs of
our formal results, which are not necessary for the existence
of some solution to the problem.

with B(y)) := the differential con-

' Throughout this paper, we will use the ordered set notation (%, *,...)
and the matrix notation [* x .. } T for vectors interchangeably.

Assumption 1 (Obstacle separation) The (potentially non-
convex) obstacles O in the workspace are separated from
each other by clearance® of at least d(O;,0;) > 2(r +
maxy k), i # J, with k an index spanning the set of
movable objects. They are also separated from the boundary
of the (potentially nonconvex) workspace W by at least
d(O;, OW) > 2(r + maxy, i) for all i.

Assumption 2 (Admissible object goals) For any object i €
{1,...,n}, d(pf,Oy) > 1 + 2r.

The robot is assumed to have access to its state® (x, 1) and
to possess a LIDAR for local obstacle avoidance, positioned
at x, with a 360° angular scanning range and a fixed sensing
range R € Ryp. It is also assumed to use a gripper for
moving objects, which can be engaged or disengaged; we
will write g = 1 when the gripper is engaged and g = 0 when
it is disengaged. Of course, Minitaur is only an imperfect
unicycle [20] and does not actually possess a gripper; it has
to successfully coordinate its limbs and walk while following
a path, avoid an obstacle or lock an object in place and
move it to a desired location. Hence, the reactive planner’s
commands (uy,, ¢g) must in turn be translated to appropriate
low-level commands on the robot’s joint level.

The aforementioned description imposes a hierarchical
structure, as shown in Fig. 2. The deliberative planner is en-
dowed with a symbolic command set comprised of three ac-
tions: MOVETOOBJECT(4, P), POSITIONOBJECT(¢, P) and
MOVE(P). Here i is the desired object and P is a piecewise
continuously differentiable path P : [0,1] — W connecting
an initial and a final position, which can be seen as a
“geometric suggester” in the sense of [8] (see [1] for more
details). This command set suggests the following problem
decomposition into the complementary sub-problems:

1) In the deliberative layer, find a symbolic plan, i.e., a
sequence of symbolic actions whose successful imple-
mentation is guaranteed to complete the task.

2) In the reactive layer, implement each of the symbolic
actions by finding appropriate commands (ug.,,g) ac-
cording to the robot’s equations of motion shown in (1),
while avoiding the perceived obstacles (unanticipated by
the deliberative planner) encountered along the way.

3) In the gait layer, use a hybrid dynamical systems frame-
work with simple guard conditions to choose between
constituent gaits, providing a unicycle interface to the
reactive layer, controllable by (uy., g), regardless of the
state of the agent and objects.

ITII. SYSTEM ARCHITECTURE

In this section, we describe the three-layer architecture
used to accomplish the task at hand, shown in Fig. 2. After
a description of the offline deliberative planner, we proceed
with the features of the online reactive module and the new,

2Here the clearance between two sets A and B is defined as d(A, B) :=
inf{|]la—bl|/|a€ A,b € B}

3Since legged state estimation falls beyond the scope of this work,
localization is performed using a Vicon motion capture system [19].
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Fig. 2. A coarse block diagram of the planning and control architecture.
In the deliberative layer, a high-level planner [11] outputs a sequence of
symbolic actions that are realized and executed sequentially using a reactive
controller that issues unicycle velocity (ug,) [1] and abstract gripper (g)
commands (see Section III-B). The low-level gait layer uses the commands
instructed by the reactive planner to call out appropriately parametrized
joint-level feedback controllers (see [6] and Section III-C) for Minitaur.

low-level layer of control (the “gait” layer), used to achieve
on Minitaur the commands instructed by the reactive layer.

A. Deliberative Layer

The deliberative layer finds a feasible path through the
joint configuration space of the robot and anticipated envi-
ronment. It takes as input a metric description of the world,
including object and obstacle geometry, and proceeds in two
stages. First, it discretizes the environment by constructing
a factored random geometric graph [21]. The factored graph
is the product of n + 1 probabilistic roadmaps, one for each
object and one for the robot. Each edge in the factored graph
represents a feasible motion; these motions are either paths
of the robot while the other objects do not move, or paths of
the robot carrying a single object. Paths through this graph
then represent continuous paths through configuration space.

This graph construction is asymptotically optimal; as the
number of vertices in each factor increases, the cost of
the best path through the graph approaches the cost of
the optimal path. In addition, the factored representation
allows us to quickly construct graphs with an exponential
number of vertices. However, the number of graph vertices
is exponential in n. We can search for a near-optimal path
through the graph in a reasonable amount of time using the
angelic hierarchical A* algorithm [11], [12]. This algorithm
interleaves the search over high-level decision, like which
objects to grasp and in which order, and over lower-level
details, like where objects should be placed, by using a
hierarchy of abstract operators, which are implicitly-defined
sets of plans that achieve a specified effect. For example,
the operator MOVETOOBIJECT(i, -) represents any plan that
eventually reaches object i.

We can derive bounds on the cost of any primitive plan
contained in an abstract operator. For example, the cost of
any plan in MOVETOOBJECT(4, -) starting from a position
x is greater than the Euclidean distance from x to object
i. If we find some path from x to object ¢, its cost is an
upper bound on the cost of the best plan from x to object

1. Using these bounds, we can estimate the cost of plans
composed of sequences of abstract operators, allowing us to
prune bad plans early and refine promising plans first. More
importantly, these bounds allow us to prove that a symbolic
plan is feasible before providing it to the reactive layer.

B. Reactive Layer

As shown in Fig. 2, the reactive layer is responsible for
executing the symbolic action sequence, i.e. the output of the
deliberative planner. The reader is referred to Algorithms
3, 4 and 5 of [22] for the reactive implementation of the
MOVETOOBJECT, POSITIONOBJECT and MOVE symbolic
actions. Here, similarly to [1], [22], we decompose the
reactive behavior into two separate modes determined by the
absence or presence of unanticipated obstacles:

1) Anticipated Environment: In the absence of unan-
ticipated obstacles, the robot is in path following mode.
Based on the results of [16], [17], this mode is responsible
for steering the robot along a reference path P given by
the deliberative planner. This is achieved by following the
projected-path goal P(a*) with o determined as*

o := max{a € [0,1] | P(a) € B (x,d(x,0F))} ()

constantly updated as the agent moves along the path. Here
d(x, 0F) denotes the distance of the agent from the boundary
of the free space J, determined as

d(x,09) = ngnpx(e) —r 3)

with px(#) denoting the polar curve® describing the LIDAR
measurements [16].

2) Unanticipated Obstacles: In the presence of unantic-
ipated obstacles, i.e., when d(x,0F) < € with € a desired
tolerance, the robot switches to wall following mode. In
this mode, the robot follows the wall-following goal x,(x)
defined as in [1]

V3

Xp(X) = Xoftset (X) + %nw (x) + aTtw x) @

with Xoffset (X) := X — (px(0m) — 7) 0y (X) an offset point
from the obstacle boundary, 6,, := arg mein px(0) the LI-
DAR angle corresponding to the minimum distance from
the obstacle, n,,(x) := —(cos 0,,,sin §,,) the normal vector
to the boundary of the obstacle at the point of minimum
distance and t,,(x) := (sin ,,, — cos 0,,) the corresponding
tangent vector. Finally, a € {—1, 1} denotes the wall follow-
ing direction (1 for CCW motion and -1 for CW motion). The
robot exits the wall following mode and returns to the path
following mode once it encounters the path again, i.e. when
a* = max{a € [0,1]|P(o) € B(x,d(x,09))} > «af,
with o the saved path index at the beginning of the wall
following mode. Based on the above definitions, we showed
in Theorem 1 of [22] that the wall following law

u(x) = —k(x —xp) )

“Here B(q,t) := {p € W|||p — ql| < t}, i.e. the ball of radius ¢
centered at q.

SWe use an idealized LIDAR model to derive the polar curve px(6), but
in (3) we use the minimum observed LIDAR range.



provides an easy formula for wall following within specified
bounds, even in the absence of obstacle curvature informa-
tion. This allows for fast computation, which is critical in our
legged robot setting. The reader is referred to [1, Equation
(9)] for the choice of wall following direction and to [1,
Theorem 3] for an extension to differential drive robots.

C. Gait Layer

1) Hybrid Dynamical System Structure: The gait layer’s
primary function is to interpret simple unicycle commands
Ur, = (v,w), as well as simple gripper commands by
mapping them into physical joint level robot behaviors and
transitions between them that realize the reactive layer’s
abstracted gripping/releasing unicycle model in the physical
world. This structure naturally lends itself to the hybrid
dynamical systems framework and we conjecture (but defer
the proof to a future paper in progress) that the following
architecture meets the requirements of a formal simple hybrid
dynamical manipulation and self-manipulation system [5].

Let xps € Xpr be the robot pose and joint state and let
g := (9s,9v,9a) € {0,1}3 be a vector representing gripper
state, where g, € {0,1} representing “open” and “closed”
respectively, g, € {0, 1}, representing zero and non-zero
gripper transition velocity, and g, € {0, 1} representing zero
and non-zero gripper command from the reactive layer, with
g arranged as yet another component of the gait layer’s
state. Thus, taking x,,+ = (Xar,8) € Xas x {0,1}3 as the
hybrid state, our hybrid system modes arise from the disjoint
union of the geometric placement indexed by the 4 mutually
exclusive gripper conditions as follows:

My = {xp+ |95 = 0,9, =0} “Walk”

Mur = {xp+1]9s =0,9, =1} “Mount”
Xp+ €

Mp = {xp+|gs =1,9, =0} “Push Walk”

Mp = {xp+|9s =1,9, =1}  “Dismount”

where the guard condition, g, = 1, triggers appropriate resets
so that the hybrid mode system changes in the recurring
sequence: My — Mpr — Mp — Mp — Myy ...

2) Mode Dynamics: A formal representation of the legged
controllers and resulting closed loop dynamics used to realize
the abstracted unicycle grip/release behaviors lies beyond the
scope (and page constraints) of this paper. Instead, we now
provide a brief, informal account of each mode as follows.

a) Walk: Incorporated here as reported in [20], this
behavior is adapted from the still developing insights of [6].
While the kinematic model of the Minitaur platform prevents
it from literal unicycle behavior in quasi-static operation, the
underlying family of controllers overcomes this deficiency by
dynamically exploiting higher-order effects, such as bending
of the limbs and frame, as well as toe-slipping.

b) Mount: The mounting behavior, a physical realiza-
tion of the abstract (gs,g,) = (0,1) state, comprises a
sequential composition that we conjecture can be placed
within the formal framework of [23]. Informally, the behavior
begins by leaping with the front legs, while maintaining
ground contact with the rear, as shown in Fig. 3-2. During
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Fig. 3. Consecutive snapshots of a successful “Mount” onto an object.

this “flight” phase, an attempt to servo to the desired yaw is
made by generating a difference in ground reaction forces in
the stance legs according to the control law:

FLH = _%(kp(wdes - ¢) - kdw)

Fry = %kp(%les — 1) — katp

where Fp is the ground reaction force on the body gen-
erated by the left hip, and Fry is the analogous force
generated by the right hip. Note that this method does not use
Minitaur’s kinematic configuration as a means of measuring
1, and as such is able to continue to servo to the desired
heading even in the presence of toe slipping or bending in the
body. However, as contact modes are not assured and Vicon
data is not available to the gait layer, the measurement of
1) is obtained by integrating gyroscope data, which for this
short behavior (less than a second) is reasonably accurate. In
this work, we implicitly assume that the mounting behavior
is always successful. Since failures might occur, we intend to
relax this assumption in the future by introducing feedback
in the hybrid mode system presented above.

c) Push-Walk: This behavior attempts to mask the
underlying dynamics of the system consisting of the Minitaur
platform with the front two limbs in various contact modes
with a holonomic (albeit not friction-less) stool, and the rear
two in varying contact modes with the ground. In [1], we
introduced a method for generating virtual commands for
different points of interest in the holonomic robot-object
pair when a gripper is utilized, and translating them to
actual commands for the differential drive robot using simple
kinematic maps. The goal of this behavior is to exploit this
result and use Minitaur’s front legs as a virtual gripper.

The behavior is divided into two components; the fore-aft
push-walk, and the yaw push-walk. The fore-aft push-walk
is simply the previously described walking gait [6], modified
such that the front limbs cannot retract to break contact with
the stool. The yaw push-walk is a bit more dynamic, as the
empirical application of the fore-aft walk in turning situations
proved to have prohibitively small radius of curvature. To
improve upon this, the front legs are allowed to retract as they
would during walking, breaking and re-establishing contact
with the stool on each step. The result is that the Minitaur is
“freed” from the kinematic constraint of being unable to turn
sharply enough in a manner described intuitively in Fig 4,
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Fig. 4. Intuition underlying how intermittent contact (yaw push-walk)

provides larger moments on the system than the moments produced in a
triple stance (fore-aft push-walk). In (1), the presence of both toes on the
stool kinematically constrains it so that any reaction forces generated by
those toes are internal forces of the Minitaur-Stool system, where as in (2a)
and (2b), the stool is free to rotate, allowing the single front toe to generate
a moment on the Minitaur body.

avoiding triple stance (Fig. 4.1) in favor of the more strongly
yawing torques arising from double stance (Fig. 4.2a,b).

d) Dismount: Finally, the (gs,9,) = (1,1) state is
encoded by employing the walking behavior with controller
parameters set as - 1) the height of the walk, or the nominal
length of a stance leg is made nearly maximum, and 2)
a simple open-loop fore-aft trajectory is programmed to
linearly ramp up the speed to a pre-determined backward
rate and then back down to zero.

IV. EXTENSION OF REACTIVE LAYER TO
NONCONVEX OBSTACLES

In this Section, we extend the result of Theorem 1 of [1]
regarding the wall following law (5) to a class of nonconvex
obstacles satisfying specific criteria. We begin with some
notation and basic definitions for nonconvex obstacles.

Definition 1 ([24]) Let X be a Hilbert space and § a closed
set of X. For x € X we denote by Projg(x) the (possibly
empty) set of nearest points of x in 8. When Projg(x) is a

singleton, its single point is called the metric projection and
denoted by IIg(x), i.e., Projg(x) = {IIs(x)}.

Definition 2 ([24]) A vector v € X is said to be a proximal
normal vector of 8§ at x € 8§ whenever there exists t > 0
such that x € Projg(x + ¢tv). The set of such vectors is the
proximal normal cone of § at x, denoted by NP (8;x).

Definition 3 ([24]) Given an extended real r € [0, +00] and
areal @ > 0, we say that a closed set 8 of X is (r,«)-
prox-regular at xo € § if for every x € 8§ N B(xp, «) and
every direction ( € N¥(8;x) N B(0,1), we have that x €
Projg(x + t¢) for every real ¢t € [0,7].

We say that S is r-prox-regular at x¢ € 8 if it is (r, a)-
prox-regular at xo for some a > 0 and we simply say that
8 is prox-regular at x if there exists r € [0, +o00] such that
8 is r-prox-regular at xq. Finally, 8 is prox-regular (resp.
r-prox-regular) if it is prox-regular (resp. r-prox-regular) at
every point x € 8. It is known [24] that § is prox-regular if
and only if there exists a continuous function p : § — [0, 0],
called the prox-regularity function, such that for every x € 8§
and every ¢ € NP (8;x)NB(0, 1) one has x € Projg(x+t()
for every real ¢ € [0, p(x)]. The definition of prox-regularity

itself is relatively abstract, but we attempt to ground it in the
following paragraphs and Fig. 5.

It is also useful to include the definitions of the following
enlargements of the set S, according to [24]

Rs(xg, 7, a) :={x+tv : x € 8N B(x0,),t € [0,r],
v e NP(8;x)n B(0,1)}
Uy (8) :={x € X : Ty € Projg(x) withds(x) < p(y)}

With these definitions, we are led to the following lemma.

Lemma 1 If 8 is p(-)-prox-regular, then the collection of sets
{Rs(x, p(x),a) : x € 8} with a > 0 corresponding to the
prox-regularity condition forms an open cover of U,(.(8).

Proof. Tt is shown in [24] that the extended local sets
Rs(xo,7, ) are open. Now consider a point u € U,.(8).
Then, by definition, there exists a y € 8, a direction
¢ € NP(8;y)n B(0,1) and a real ¢ € [0, p(y)] such that
u = y + t(. This shows that u also belongs in the set
Rs(y, p(y), «) for some o > 0, and concludes the proof. W

In [24, Theorem 2.3], it is also shown that if 8 is (7, «)-
prox-regular at a point xg, then Ilg is well-defined and
locally Lipschitz continuous on the set Rg(xg, r, ). Hence,
using Lemma 1, we arrive at the following result.

Lemma 2 If 8 is p(-)-prox-regular, then Ilg is well-defined
and locally Lipschitz continuous on U,.(8).

In this way, we can formulate the following theorem, that
extends the guarantees of our wall-following control law to
p(+)-prox-regular, nonconvex obstacles.

Theorem 1 In the presence of p(-)-prox-regular, convex®

or nonconvex isolated obstacles O = (O1,0z2,...) in the
workspace satisfying Assumption 1 with minpo, > 7 + €
for each O; and € chosen as in Equation (11) of [22], the
wall following law (5) has no stationary points, leaves the
robot’s free space F positively invariant under its unique
continuously differentiable flow, and steers the robot along
the boundary of a unique obstacle in O in a clockwise or
counterclockwise fashion (according to the selection of a)
with a nonzero rate of progress, while maintaining a distance
of at most (r + €) and no less than (r + §) from it.

Proof. The proof is almost identical to the proof of [22,
Theorem 1]. The only difference here is that the wall
following law is not piecewise continuously differentiable
but just locally Lipschitz. This, however, does not change
its basic properties. The key in the proof is the requirement
that min ppo, > r + € for each O;. Since it is shown in
[22, Proposition 1] that {p eW|§ <d(p,07) < e} is pos-
itively invariant under the flow of the wall following law, we
are guaranteed that the robot will never exit U,.y(8), which
ensures local Lipschitz continuity of the vector field. |

We then include the following definition to provide some
intuition on the abstract definition of prox-regularity.

%Convex bodies are p(+)-prox-regular by construction [24].
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Fig. 5. (a) An example of a nonconvex body that fails to be r-prox-regular;
since 0 < ||x1 —Xol|| < 2r, the existence of a tangent closed ball of radius
r to both xo and x1 violates the r-oval-segment criterion, (b) An example
of an r-prox-regular nonconvex body in R?, satisfying Proposition 1.

Definition 4 ([18]) For any » > 0 and xg,x; € X with
[|x1 — x0|| < 2r, the r-oval segment A, (xg,x1) in X with
endpoints xg,x; is defined as the intersection of all closed
balls with radius r containing xg, X;.

Then it can be shown that a closed set 8 of X is r-prox
regular if and only if for any pair of points xp,x; € 8
with 0 < ||x; — xg|| < 2r, the r-oval segment A,.(xq,X1)
contains a point of § different from xg,x;, or equivalently
8N Ay (xg,%x1) # {X0,%1}. Prox-regularity can, therefore,
be seen as a means of defining an appropriate “length-scale”
for the “nonconvexities” (e.g. valleys or traps) of the obstacle
that do not result in a controller failure. Fig. 5 provides one
example of nonconvex body for which this prox-regularity
criterion fails and one example for which it succeeds. As a
guide, we provide the following sufficient condition, based
on curvature, for prox-regularity in R? without proof.

Proposition 1 A closed, compact, simply-connected body
8 C R? is r-prox-regular if any tangent closed ball of radius
r at its boundary 08 has only one common point with 8.

In the future, we would like to use the formal guarantees
of Theorem 1, whose assumptions are mere sufficient condi-
tions, to extend the application of doubly-reactive planners
[16] to nonconvex obstacles in Hilbert spaces.

V. EXPERIMENTAL RESULTS

In this Section, we begin with a brief description of the
hardware and software setup and continue with a description
of the experiments run and our empirical results.

A. Setup

1) ROS Infrastructure: For the hardware and software
experimental setup, we use a system structure similar to
that presented in [20]. A custom ROS node on the Rasp-
berry Pi receives uy, and the desired mode of operation
(“Walk”, “Mount”, “Push-Walk”, “Dismount”) as ROS mes-
sages from the desktop computer and forwards them to the
Minitaur mainboard (microcontroller implementing the gait
layer functionalities) at 100Hz over a 115.2 Kbps USART
connection. The Raspberry Pi acts as the ROS Master that
resolves networking for the rest of the ROS nodes: a dedi-
cated ROS node is activated as soon as the system boots and
subscribes to the ug, ROS topic (using the Twist message
type), as well as an additional one capable of defining the
desired behavior. A final ROS node running on the Raspberry

Pi, taken from [25], forwards LIDAR measurements (using
the LaserScan message type) to the desktop computer.
The pose information, consisting of the horizontal plane
coordinates of the robot and all the objects and the orienta-
tion of the robot, is extracted from a Vicon Motion Capture
System [19] at 100 Hz, using a set of motion capture cameras
positioned around a 20m x 6m arena. The desktop computer
receives the online data from Vicon using the ROS package
mocap-vicon [26] and forwards it to the desktop computer
running ROS. The reactive layer runs at approximately 30Hz,
which is more than enough for the robot to recover if any
obstacle is detected, and the gait controller runs at 1KHz.
2) LIDAR Measurement Handling: The LIDAR measure-
ments are pre-processed by the desktop computer before
being used by the reactive planner. First of all, follow-
ing the requirements of [16], range measurements greater
than the limit R are set to R. All measurements are
projected on the horizontal plane using the robot pitch
angle measurement provided by the motion capture sys-
tem. Finally, when the reactive layer executes a symbolic
action MOVETOOBJECT(i, P) or POSITIONOBJECT (7, P), it
is critical to recognize the points of the LIDAR pointcloud
associated with the object ¢ and not use them for the
calculation of the local freespace [1], since ¢ should not be an
obstacle. Hence, we look for points of the LIDAR pointcloud
that are “close-enough” (within a dopjece tolerance) of the
object 7 position and set the associated ranges to infinity.
Unfortunately, this results in the object blocking the robot’s
line of sight during POSITIONOBJECT (7, P), meaning part of
the workspace (that may or may not contain an obstacle) is
completely invisible to the robot. However, as shown in the
following experimental datasets and in the video, this was
not an important issue that prohibited experimental success.
3) Experimental Parameters: For the experiments re-
ported in this paper, we use a wall following offset e = 65cm,
an object detection threshold dopjec: = 60cm, an angular
precision of 12° for successful alignment with each of the
objects, a linear gain k; = 0.8, an angular gain k, = 0.01
and a maximum allowable LIDAR range of R = 3m. The
stool-objects and the robot are treated as disks of radius
r = r; = 0.2m and we discretize the paths provided by
the deliberative layer with a resolution of lcm. Finally, the
0 values (precision tolerances for landing zones [22]) used
for the MOVETOOBIJECT, POSITIONOBJECT and MOVE
symbolic actions are 20cm, 40cm and 45cm respectively.

B. Task #1 - Single Object Positioning

In Fig. 6, we document the ability of the reactive layer’s
abstract unicycle control outputs (Section III-B) to drive the
gait layer’s hybrid self-manipulation dynamics (Section III-
C) to follow the paths and manipulation directives given
by the deliberative layer (Section III-A). Starting from an
initial position, the robot has to move to an object, mount
it, push it to a desired location, dismount from it and then
move to a predefined location. In order to validate the
performance of the wall following law, presented in Section
IV, a similar experiment is repeated, with the robot having to
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Fig. 6. Task #1 - No Obstacles (Section V-B): Vicon data showing the robot
successfully following paths provided by the deliberative layer (dotted line
segments): the robot has to approach (and then mount) the object (action
MOVETOOBJECT), push the object inside a desired landing area (action
POSITIONOBJECT) and (first dismount) then retire to move to a predefined
position (action MOVE), while following the reference paths (dotted lines).
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Fig. 7. Task #1 - Unanticipated Obstacle (Section V-B): The reactive layer
allows for successful task completions even in the presence of nonconvex
obstacles, that have not been accounted for by the deliberative layer. The
red dashed line represents the original (blocked by the obstacle) path given
by the deliberative planner, associated with the action MOVETOOBJECT.

avoid a nonconvex obstacle blocking its path to the object. As
shown in Fig. 7 and in the accompanying video, the task is
successfully completed, using the wall following algorithm.

C. Task #2 - Swapping Object Positions

The second task is more demanding for the deliberative
planner, since the robot has to successfully swap the positions
of two objects and then move to a “nest” location. As
expected, the deliberative planner outputs a plan which
includes an intermediate position for one of the objects.
Using the reactive layer, the robot completes this task, as
shown in Fig. 8 and in the video. Notice how the robot

11 MOVETOOBJECT(2)] 2 PosITioNOBIECT(2)
Object 2 Object 1 '
2 Robot - gpject 2 _@ @
o RO landing area o
1, Object1 Robor 27 ® O
st landing area landing area :

13 MOVETOOBJECT(1)] 4 POSIT;E)NOBJECT(I)

T
Ser L) Wall following

L/

(] R;fer‘e\nc

for object

PosITIONOBJECT(2)

MoVETOOBJECT(2)] .
5 16
Reference path

ZECR (P ARORRRC g X
§ MOVE| ., Final
! 7 Wall following 8

‘@ :l (@

® ® o

Fig. 8. Task #2 (Section V-C): Vicon data showing Minitaur swapping the
positions of two objects. The dashed lines represent the reference paths for
the robot or for the objects, provided by the deliberative layer. Non-filled
and filled circles depict the start and end positions for each action execution.
Any discrepancies of the final trajectories with the reference paths are caused
by the controller’s reactive nature and do not affect task completion.

switches to wall following when necessary and avoids any
obstacles that block its path. The gait layer successfully
executes the commands provided by the reactive layer.

D. Task #3 - Object Blocking the Position of Another Object

Finally, in the third set of experiments, we explore a
similar task where the robot has to move an object in a
location occupied by another object. We demonstrate sev-
eral successful trials in the accompanying video, but here
we focus on a special case where the online execution is
incommoded by the presence of an obstacle and terrain
irregularities, shown in Fig. 9. The robot also has to face
other unfortunate events, such as network delays and getting
the wheels of the stool stuck in the platform’s step, but
eventually completes the task. This illustrates the role of the
reactive layer whose “persistence” can handle changes in the
environment not predicted beforehand. It also highlights the
value of legged over wheeled locomotion when “mobipu-
lation” in unstructured environments with rough terrain is
needed. We hope to report more on that in the future.

VI. CONCLUSION AND FUTURE WORK

The proxy scenarios of rearrangement tasks with stools
documented in this paper verify that our three-layer control
architecture is capable of completing challenging tasks for
a dynamic platform in an effective way. Future work will
address the problem of closely integrating the reactive and
deliberative planners, while maintaining provable properties.
Also, we hope to analyze the dynamic behaviors employed
here in earnest, make them more robust, and develop new
behaviors to improve the effectiveness of the gait layer.
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Task #3 (Section V-D): Consecutive snapshots from a successful completion of a task where the robot must move an object that blocks the

desired location of another object, highlighting the robustness of the approach. Apart from the presence of a convex obstacle (depicted in black) and terrain
irregularities in the form of a 4cm-tall platform (depicted by a solid black line), the robot loses track of its pose estimation due to unfortunate network
delays while executing MOVETOOBJECT(1). However, with the successful coordination of the reactive and the gait layer, it manages to find the reference
path again once it reconnects. Also, as shown in the accompanying video (and discernible from the relatively large oscillations of the robot’s path in frame
4), although the wheels of the stool get caught by the platform during POSITIONOBJECT(1), the persistence of the reactive layer allows for successful
task completion while avoiding unexpected obstacles.
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