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Abstract. We present an autonomous system consisting of multiple un-
manned aerial vehicles (UAVs) for search and rescue under the forest
canopy. Our vehicles can be rapidly deployed, can collaboratively ex-
plore expanses of terrain efficiently, and are agile enough to operate in
reasonably thick forests. We demonstrate the ability to carry out GPS-
denied exploration with on-board pose estimation, map inference, and
path planning. In addition, we utilize a place recognition system that is
able to handle perceptual aliasing unique to a forest environment, and
fuse individual areas explored by each vehicle into a globally consistent
map. We perform extensive evaluations in both simulation and real-world
to demonstrate the effectiveness of our proposed system.

1 Motivation

Lost hikers are often within a mile or two of the last point of detection for ex-
tended periods of time, but are undetected for hours at a time because manned
aircraft cannot see through the overhead forest canopy. Small autonomous un-
manned aircraft systems (UAS), or drones, have been frequently proposed for
search and rescue missions under the forest canopy, such as shown in Hampton,
VA in Figure 1. These vehicles can be rapidly deployed, can cover expanses of
terrain quickly and are small enough to operate in reasonably thick forests.

2 Problem Statement

Using drones under the forest canopy presents several challenges. Firstly, GPS
typically cannot penetrate the overhead foliage, which requires the vehicles to use
on-board sensors and a mapping and localization system for state estimation. A
second problem is that these vehicles are typically limited by battery life, which
limits the search speed. Any search activity is accelerated by using multiple
vehicles in parallel, but a multi-vehicle search requires co-ordination between the
vehicles in both data fusion and planning. A third problem is that the search can
be made arbitrarily slow with a poor strategy in terms of where to search next.
Using more intelligent search strategies can dramatically accelerate the process.

In this paper we describe an experimental evaluation of a multi-UAS system
for search and rescue under the forest canopy. We examine the ability of multiple
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vehicles to carry out GPS-denied flight using laser-range finders for position
estimation and map inference, plan trajectories, and fuse individual maps into
a globally consistent model for exploration and search. We evaluate both a map
construction process designed for search and exploration in the forest, and the
corresponding search process itself.

3 Related Work
The problem of place recognition and map fusion under the forest canopy has
received increased attention in recent years. Place recognition is a key component
of any SLAM system and has a rich literature for single robot systems equipped
with stereo or monocular camera [7,18,17], but these approaches typically require
access to multiple images which would be costly to communicate over a network
with limited bandwidth, and the high variability of illumination conditions in a
forest environment creates challenges for purely image-based solutions.

Using laser-range data, Bosse and Zlot [4] developed a keypoint-based nearest
neighbor algorithm for identifying loop closures in forest-type environments, but
primarily using an underactuated 3D laser that would be a substantial challenge
on a flight vehicle. Tipaldi et al. [22] developed fast laser interest region transform
(FLIRT) features for both indoor and outdoor localization. Purely geometric
approaches have been examined, including the Geometric LAndmark RElations
(GLARE) signatures by Himstedt et al. [10] and the rotationally-invariant ex-
tension GLAROT by Kallasi and Rizzini [13]. None of these previous results take
advantage of the strong prior structure present in forest environment.

The problems of search and exploration has been extremely well-studied and
a comprehensive overview of all such work is outside the scope of this paper. The
earliest approaches operated greedily on the nearest “frontier” in the map [23]
or maximized expected coverage [20]. Frontier-based approaches have also been
demonstrated for multi-UAV exploration in an indoor environment [6]. Later
approaches to the exploration problem focused on either greedy [8] or receding
horizon [5] information gain. Most recently, there have been results on exploring
to find hidden objects [1], but primarily in indoor environments. Surprisingly,
the majority of this prior work has not taken into account the dynamics of the
vehicle in planning efficient search strategies.

4 Technical Approach
Our experimental investigation focuses on two primary areas, feature extraction
for place recognition and map merging, and exploration-based search. We follow
the approach described by Giamou et al. [9], extending to multiple vehicles that
are communicating with a central ground station3. When a new laser scan or
scans are received, features are extracted for place recognition and loop closure.
Once a loop is closed, the merged map can be inspected by the first responders
to plan a route for the rescue personnel.
3 Our experiments assume reliable communication to the ground station, which is

generally not the case for operation in a forest environment. However, this is not a
limiting assumption in that all of the local inference and map construction happen
on-board the vehicle. The loss of the C2 link to the ground station could only delay
potential map merges until the link is recovered.
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4.1 Tree Feature Extraction and Map Merging

A forest is a challenging environment for cooperative SLAM due to strong per-
ceptual aliasing and complex occlusions caused by a dense assembly of visually
similar trees. Before place recognition can occur, we need to extract stable fea-
tures from the laser scans. We first cluster the laser return; each cluster of points
is then regressed to the parameters of a tree trunk circle [x, y, r] using least
squares. We accept a cluster of points as the observation of a tree, if the residual
is less than 0.015, the tree has a radius greater than 0.1m, and the observed laser
returns cover more than 30% of the arc of the tree trunk circle. Following [14],
we correspond a detected tree at time t with a previously detected tree at time
t′ if the centers are within 1m, and the radii of the trees differ less than 10%.

Once the trees are extracted as features {pti} from a scan St, a GLARE
signature [10] is computed, which is essentially a distribution over the pairwise
Euclidean distance ρti,j and angular distance θ+i,j between pairs of known trees.

For every pair of features (pti, p
t
j) their distance and relative angle in the scan

frame (θti,j , ρ
t
i,j) are computed. These are then assigned to bins in a 2D his-

togram (θ+i,j , ρ
t
i,j) ∈ bin(nθ, nρ), where nθ and nρ are a quantization of (θ+, ρti,j).

A Gaussian blur is applied to the histogram of each feature pair, and the GLARE
descriptor is a sum over the 2D histograms for each pair. This histogram con-
struction procedure is not rotationally invariant as it depends on an absolute
orientation. Kallasi and Rizzini [13] extended the GLARE signature to be rota-
tionally invariant in GLAROT. We use this extension for comparison of geomet-
ric signatures between scans.

After receiving laser scans from the flight vehicles, the ground station searches
for loop closures in the entire history of scans. The geometric signatures described
above are used to prune the search space by retaining only the top k = 20
candidate loop closures for each scan St. For each candidate loop closure, we
perform correspondence graph (CG) matching [3] to verify the loop closure and
identify the largest inlier set of correspondences. If the loop closure is accepted,
a relative transformation constraint is computed and added to the global pose-
graph for trajectory estimation. We use iSAM2 [12] as the back-end SLAM
solver. Map merging happens once all UAVs establish a common reference frame
through loop closure.

4.2 Exploration-based Search

Following [19], we formulate the planning problem as a trajectory optimization
problem, where a motion planner selects a trajectory of some length that max-
imizes the probability of finding the target while avoiding observed obstacles.
This approach can be represented formally as

a∗t = argminat∈Aj(bt, at) + h(bt, at), s.t. g(bt, at) = 0,

which is repeatedly re-solved to select the optimal action a∗t as the robot explores
the environment. Here, at is an action to be executed at time t, chosen from
a set A of possible actions. The robot’s belief bt is a partial map built from
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sensor measurements and its current position in that map. To ensure collision-
free motion, we use a collision constraint g(bt, at), which returns 1 if the action
intersects obstacles or unknown regions in the map, and returns 0 otherwise.

We parameterize the action space A as frontiers of the known map (i.e.,
the boundaries between known and unknown space). The total estimated cost of
choosing action at, given bt, is the sum of the action cost j(bt, at) and the heuris-
tic estimate h(bt, at) of the cost remaining beyond the end of at. For exploration-
based search, there is rarely a reason to bias one frontier over another in terms
of future cost beyond at; as a result, we set the heuristic cost h(·) to be the same
for all frontiers and choose the action with the minimum instant cost described
by j(·). Classical approaches design j(·) such that closer frontiers have lower
costs than farther ones, e.g., j(·) returns the distance of the frontier. However,
in practice it is often the case that the closest frontier lies behind the flight ve-
hicle. In these cases, traditional cost functions lead to rapidly changing velocity
and aggressive turning, which negatively impacts the overall search progress and
map quality. On the other hand, purely information-theoretic models of j(·) use
submodularity to bound the loss that comes from greedily choosing the next-
best frontier; the cost of physically redirecting the vehicle to a new frontier is
not submodular. In this paper, we propose a new search objective that better
respects the vehicle dynamics,

j(bt, at) = jθ(bt, at) + λjt(bt, at).

Above, jθ(·) denotes the orientation change from the vehicle’s current heading
of the frontier at. Incorporating orientation change in the cost function discour-
ages the vehicle from excessive turning and hence produces a smoother overall
trajectory. In addition, we include a separate, weighted cost term jt(·) based
on the classical Euclidean distance to the frontier. Intuitively, the user-specified
weight λ encodes a trade-off between the smoothness and overall length of the
trajectory. As we shall see in the experimental evaluations, the proposed objec-
tive function, with a suitably chosen weight, results in a longer but smoother
and more time-efficient trajectory. Lastly, using an objective function based on
orientation change enables online selection of the next-best frontier. Specifically,
the currently selected frontier can be updated, whenever a new candidate with
a significantly higher score is detected. In contrast, a dynamic-agnostic planner
(e.g., with a purely distance-based objective) is less compatible with this ap-
proach, as it might continuously command large change in heading, leading to
potentially unstable and dangerous flight behavior.

5 Results and Experiments

We evaluated the performance of the proposed system in both simulation and
real-world flight tests. Both experiments used the same set of parameters for
frontier exploration (Section 4.2), but a few vehicle-related parameters differed to
compensate for the differences in the simulation and the real world. For example,
the limit on maximum allowed acceleration was set to be much higher in real-
world experiments, in order to compensate for external forces such as the wind
that are not modeled in simulation.
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Fig. 1: Two quadrotors exploring the forest at NASA Langley Research Center. A
video of the flight available at https://groups.csail.mit.edu/rrg/videos/iser2018

5.1 Simulation Setup

We benchmarked our proposed system with the baseline in simulation. Vehicle
dynamics and inertial measurements unit (IMU) readings for a simulated vehicle
were generated using the Drake toolbox [21] and a quadrotor model as described
in [16]. To test the integration with the full stack, we also utilized the Pixhawk
[15] Software-In-The-Loop (SITL) to simulate the motor commands from the
Pixhawk, which were fed back into the Drake dynamics model. We used the
Unity game engine to simulate 2D laser scans in a randomly generated forest
environment at roughly 30 Hz with a 270◦ field of view and 30m range. All
sensor measurements were simulated with low noise. Laserscans and inertial
measurements were passed to a laser-based Extended Kalman Filter (EKF) that
incorporated incremental odometry measurements from iterative closest point
(ICP) on two laser scans with inertial measurements. The vehicle state from
the estimator was then used to build a map, which was used by our proposed
planner. Finally, the simulated setpoints generated by the motion planner were
passed to the Pixhawk SITL.

5.2 Frontier-based Planning Results in Simulation

We evaluated the proposed frontier-based exploration planner (Section 4.2) in
simulation. A single UAV was tasked with covering a 20m × 20m search area
in a randomly generated forest. To benchmark our proposed planner, we also
implemented a baseline planner that greedily selected the closest frontier [23]
without online update. For a comprehensive evaluation, we assigned different
search areas with varying search difficulty (e.g., density of obstacles) to the
vehicle. For each search area, multiple exploration missions were carried out
and average performances are recorded in Table 1. The proposed planner clearly
outperformed the baseline planner in terms of both the total time to complete the
mission and the average speed during flight. Figure 2 shows the trajectory of the
proposed planner (a)-(d) and the baseline planner (e)-(h) in an example search
area. Note that using the proposed planner resulted in a much smoother overall
trajectory compared to the baseline. In addition, the proposed planner is clearly
more time-efficient. At t = 250 sec, the proposed planner nearly completed the

https://groups.csail.mit.edu/rrg/videos/iser2018
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Table 1: Comparison with baseline planner in three different search areas in sim-
ulation. Each planner was evaluated multiple times inside each area andaverage
completion time and flight speed are recorded. In all three cases, the proposed
planner was able to fly faster and cover the area using much shorter amount of
time compared to the baseline planner.

Area Frontier Planner Duration (sec) Average Speed (m/sec)
1 Proposed 313.50 0.84
1 Baseline 504.87 0.69
2 Proposed 340.52 0.82
2 Baseline 448.91 0.71
3 Proposed 302.41 0.80
3 Baseline 477.96 0.72

mission, while there was still a significant portion of the map uncovered by the
baseline planner.

5.3 Outdoor Flight Setup

Real flight tests were performed in the forest at NASA LaRC, shown in Figure 1.
Each vehicle was a modified DJI F450 carrying a horizontally mounted Hokuyo
UTM-30LX laser rangefinder, a Pixhawk PX4 unit providing inertial measure-
ments and motor commands, a downward-facing LidarLite for altitude mea-
surements, and an Intel NUC computer for on-board computation. The Hokuyo
produced laser measurements at a rate of 40 Hz over an angular field of view
of 270◦ with 0.25◦ angular resolution. The inertial measurements and LidarLite
measurements were processed at 100 Hz. Our software stack included a 2D scan-
matcher and an EKF [2] for state estimation, 3D occupancy mapping using the
Octomap library [11], path planning using A* search in the projected 2D map,
as well as the exploration planner presented in Section 4.2. All of state estima-
tion, mapping, and planning happened online and on-board the vehicles, and
only map merging occurred online on an off-board ground station. Raw laser
scans from each vehicle were communicated via 5.8 GHz WiFi to the ground
station for map merging. In addition, the vehicles were commanded to fly at
1.8 m altitude with a maximum allowed velocity of 2.0 m/s, and a maximum
acceleration of 0.4 m/s2.

5.4 Tree Feature Detection and Place Recognition Results

We evaluated the proposed tree feature detection and place recognition algorithm
(Section 4.1) in a forest dataset collected at Middlesex Fells Reservation, MA [9].
This dataset contained traversals of the same forest trail in opposite directions,
hence including a large number of loop closures. To detect ground truth loop clo-
sures, we estimated the sensor rig’s trajectory using the same 2D scan-matcher
and EKF described in Section 5.3. The 281 m path was divided into two tra-
jectories to simulate a cooperative SLAM scenario; see Figure 6(a). Figure 6(b)
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(a) t = 70 (b) t = 130 (c) t = 180 (d) t = 250

(e) t = 70 (f) t = 130 (g) t = 180 (h) t = 250

Fig. 2: Vehicle trajectories and partial maps in simulation at different time steps
(seconds). (a)-(d) show the proposed planner; (e)-(h) show the baseline planner.
Green rectangle denotes the search area assigned to the vehicle. Colored point
clouds shows the set of all frontiers with colors representing different scores
(magenta to red in decreasing score). Red path shows the trajectory taken by
the vehicle. The trajectory in (a)-(d) is much smoother and more time-efficient
compared to the trajectory in (e)-(h).

shows the resulting precision-recall curves of both the proposed approach and
previous approach that directly clustered FLIRT point clouds without shape fit-
ting to the semantic class of trees. In the forest environment, the performance of
the proposed approach unsurprisingly outperformed the previous work. In our
evaluation, we imposed a stricter criterion when detecting ground truth loop
closures. Specifically, previous work [9] classified a proposed loop closure as a
true positive if the corresponding two poses estimated by EKF are sufficiently
close to each other. This criterion was sufficient for evaluation of place recog-
nition performance which is the main focus of [9]. However, in our application,
the discovered loop closures were eventually used by the back-end SLAM solver
to refine trajectory estimate through pose-graph optimization. Hence, it is im-
portant to ensure that the relative transformations (factors in the pose-graph)
extracted from the loop closures are accurate and do not contain outliers. To
check this, we compared each extracted transformation with the transforma-
tion estimated by EKF. A proposed loop closure was declared a true positive if
and only if the difference between the extracted transformation and the EKF
estimate is sufficiently small in terms of both translation and rotation.
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(a) Vehicle 1 at t=30 (b) Vehicle 1 at t=45

(c) Vehicle 1 at t=90 (d) Vehicle 1 at t=120

(e) Vehicle 2 at t=30 (f) Vehicle 2 at t=45

(g) Vehicle 2 at t=90 (h) Vehicle 2 at t=120

Fig. 3: Camera images from on-board GoPro camera at different time steps (sec-
onds); First two rows show camera images from the first vehicle and the last
two rows show images from the second vehicle. Map merging happens at t = 45.
Frames are approximately aligned with the sensor data shown in Figure 4.
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(a) t = 30 (b) t = 45 (c) t = 90 (d) t = 120

(e) t = 30 (f) t = 45 (g) t = 90 (h) t = 120

Fig. 4: Vehicle trajectories in real flight tests at different time steps (seconds).
(a)-(d) shows the trajectory of the first vehicle and (e)-(h) shows the second
vehicle. Map merging happens off-board on the ground station at t = 45.

Fig. 5: The merged map resulting from collaborative exploration of the NASA
LaRC forest by two vehicles. As the vehicles (paths shown in red and yellow)
explore the center area of the forest, they establish inter-trajectory loop closures
which enables the local maps to be merged. The resulting joint map is represented
as a voxel grid with an altitude-based colormap for occupied cells (blue to green
in increasing altitude), grey for unoccupied cells, and dark grey for unvisited
cells (none in this figure).
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(a) Two trajectories after loop closure
(b) Precision-Recall curve

Fig. 6: Performance of the Tree features vs. clustered FLIRT features on the
Middlesex forest dataset.

Table 2: Flight durations and average speeds for flight tests at NASA LaRC.

Duration (sec) Average Speed (m/sec)
Vehicle 1 122.89 2.66
Vehicle 2 135.25 2.65

5.5 Real World Planning and Map Merging Results
The vehicles were started at different locations, with unknown relative positions.
The mission was specified by non-overlapping search bounds of size 17m×20m for
each vehicle. Each vehicle was tasked with observing the entire search region. The
map was initially unknown; as the vehicles individually completed the coverage
task, they established inter-trajectory loop closures based on similar tree features
observed during flight. The individual maps from both vehicles were then merged
realtime on the ground station. Figure 5 shows the final map that resulted from
the example mission. The progress of planners throughout the flight is shown in
Figure 4 and roughly aligned on-board camera images are shown in Figure 3;
mission duration and average speeds are reported in Table 2. Note that due to
measurement noise, the calculated average speeds were higher than the maximum
allowed speed (2.0 m/s) even after applying a low-pass filter to the raw velocities.
Since the proposed planner preferred frontiers with smaller orientation change,
we observed that the flight behavior exhibited bias towards a natural spiral
pattern.

6 Main Experimental Insights

While one-step greedy frontier selection is computationally convenient, one of
the goals in the search and rescue domain is to efficiently search the forest
environment. We observed that choosing the nearest frontier in heavily occluded
environments such as forests led to myopic and inefficient planning, especially if
a new frontier can only be selected once the current frontier has been explored.
Often times, the nearest frontier was located close to the previous frontier, which



Multi-UAS Search and Rescue 11

led to the vehicle flying a short distance, then stopping to select the next frontier
to visit. An example of such inefficiencies is shown in Figure 2(e)-(h), where the
dynamics-agnostic planner frequently stopped when performing search in the
simulated forest, and covered the search window in a longer time than necessary.

A naive improvement to the frequent stopping problem could be solved by
constantly re-planning, instead of requiring that the vehicle reach the intended
frontier. However, constantly re-planning using only distance in the cost function
may cause the vehicle to continuously command large changes in heading, which
generally leads to flights that are less smooth. For slower quadrotor flight, this
may be acceptable, but for time sensitive tasks such as search and rescue, we
would like the vehicle to keep up search speed when possible. Additionally, limits
on vehicle acceleration, coupled with the myopic planner results in the vehicle
flying short, slower trajectories, as the trajectory to the next best (i.e. closest)
frontier is short and does not allow the vehicle to pick up speed.

While we keep the computational tractability of one-step greedy frontier
selection, our approach encodes the behavior of a longer-horizon, dynamics-aware
planner by putting a heuristic cost on the deviation of a frontier from the vehicle’s
current heading vector. For example, in the real forest flights shown in Figure
4, the first vehicle first visited the top-right corner of the search window first,
favoring the direction of the vehicle velocity, before heading to the bottom section
in a naturally occurring spiral pattern.

While the new planner demonstrates a desirable emergent search behavior,
we observe that the bias to follow the current velocity vector sometimes results
in the vehicle flying past a small patch of unobserved space, and having to return
later in the mission (as in Figure 4, where the second vehicle misses the tear-
dropped shaped section of unknown space). A further sophisticated approach
may involve a clustering approach to encourage the planner to visit small patches
of unobserved space. We leave this for future work.
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