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ABSTRACT
The ability to find a video clip that matches a natural lan-
guage description of an event would enable intuitive search
of large databases of surveillance video. We present a mech-
anism for connecting a spatial language query to a video
clip corresponding to the query. The system can retrieve
video clips matching millions of potential queries that de-
scribe complex events in video such as “people walking from
the hallway door, around the island, to the kitchen sink.”
By breaking down the query into a sequence of independent
structured clauses and modeling the meaning of each com-
ponent of the structure separately, we are able to improve on
previous approaches to video retrieval by finding clips that
match much longer and more complex queries using a rich
set of spatial relations such as“down”and“past.” We present
a rigorous analysis of the system’s performance, based on
a large corpus of task-constrained language collected from
fourteen subjects. Using this corpus, we show that the sys-
tem effectively retrieves clips that match natural language
descriptions: 58.3% were ranked in the top two of ten in a
retrieval task. Furthermore, we show that spatial relations
play an important role in the system’s performance.
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Figure 1: Results from the system for the query
“from the couches in the living room to the dining
room table.” The person’s start location is marked
with a green dot; the end location is marked with a
red dot, and their trajectory is marked in white.

1. INTRODUCTION
In the United States alone, there are an estimated 30 mil-

lion surveillance cameras installed, which record four billion
hours of video per week [15]. Analyzing and understand-
ing the content of so much video data by hand is expensive
and time-consuming. To address this problem, many have
developed tools for searching video with natural language
(e.g., [1, 10, 14]). In the ideal case, the user types a natu-
ral language description of the event they wish to find, and
the system finds clips that match the description. Such an
interface would enable natural and flexible queries, enabling
untrained users to find events of interest.

However, open-ended language understanding is a chal-
lenging problem, requiring the ability to sense complex events
in video and map those events to natural language descrip-
tions. To make progress on this problem we focus on spatial
language search of people’s motion trajectories which are
automatically extracted from video recorded by stationary
overhead cameras. The system takes as input a natural lan-
guage query, a database of surveillance video from a partic-
ular environment and the locations of non-moving objects in



the environment. It parses the query into a semantic struc-
ture called a spatial description clause (SDC) [7]. Using a
model for the joint distribution of a natural language query
(represented as a sequence of SDCs) and trajectories, it finds
p(query, track) for each trajectory in the corpus and returns
video clips sorted by this score, performing ranked retrieval.
The system can find video clips that match arbitrary spatial
language queries, such as “People walking down the hall into
the living room,” by leveraging the decomposition of the lan-
guage into SDCs and background knowledge found in large
online databases. Video clips for a sample query returned
by the system are shown in Figure 1.

The contribution of this paper is an approach for retriev-
ing paths corresponding to millions of different natural lan-
guage queries using relatively unconstrained spatial language,
solving a significantly more difficult and complex problem
than previous approaches (e.g., [14]). The system builds on
the model described by Kollar et al. [7] for following nat-
ural language directions. We present extend our previous
work by adding a model for connecting landmark phrases
such as “the couch in the living room” that takes into ac-
count head nouns and modifiers and add additional spatial
relations such as “past” and “down”.

We perform a rigorous evaluation of the system’s perfor-
mance using a corpus of 696 natural language descriptions
collected from fourteen annotators on a dataset of 100 video
clips. Annotators viewed video clips with a person’s location
marked in each clip and typed a natural language descrip-
tion of this activity. Given a natural language query, as seen
in Figure 9, we show that the correct clip will be in the top
two clips of ten 58.3% of the time.

2. RELATED WORK
Our system transforms spatial language queries into a se-

quence of spatial description clauses, which we introduced
in [7]. This work applies the direction understanding model
from our previous work to the problem of video event recog-
nition and retrieval, requiring the ability to work in continu-
ous space with uncertain event boundaries. Furthermore, we
present an analysis of the contribution of spatial relations to
system performance at this task, showing that spatial rela-
tions are more important for this problem than for direction
understanding.

Others have developed video retrieval systems, using both
linguistic and nonlinguistic interfaces. Tellex and Roy [14]
developed a phrase-based retrieval system; the current work
moves beyond phrases and takes as input one or more entire
sentences as queries. Fleischman et al. [1] built a system
that recognizes events in video recorded in the kitchen. Our
system also uses classifiers to recognize events, but focuses
on events that match natural language descriptions rather
than finding higher level patterns of activity.

More generally, Naphade et al. [10] describe the Large-
Scale Concept Ontology for Multimedia (LSCOM), an effort
to create a taxonomy of concepts that are automatically ex-
tractable from video, that are useful for retrieval, and that
cover a wide variety of semantic phenomena. Retrieval sys-
tems such as the one described by Li et al. [8] automatically
detect these concepts in video and map queries to the con-
cepts in order to find relevant clips. This paper describes a
complementary effort to recognize fine-grained spatial events
in video by finding movement trajectories that match a nat-
ural language description of motion.

Ren et al. [11] review video retrieval methods based on
matching spatio-temporal information. They describe sym-
bolic query languages for video retrieval, trajectory-matching
approaches, and query-by-example systems. Our system
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Figure 2: Data flow for the system.

uses natural language as the query language: users describe
their information need, and the system finds clips that match
that description.

Katz et al. [5] built a natural language interface to a video
corpus which can answer questions about video, such as
“Show me all cars leaving the garage.” Objects are auto-
matically detected and tracked, and the tracks are converted
into an intermediate symbolic structure based on Jackend-
off [4] that corresponds to events detected in the video. Our
work focuses on handling complex spatial descriptions, while
they focus on answering questions about events in the video.
Harada et al. [2] built a system that finds images that match
natural language descriptions such as“a cute one”with color
features; our work focuses on spatial language describing tra-
jectories rather than object or landmark descriptions.

Researchers have developed video retrieval interfaces us-
ing non-linguistic input modalities which are complementary
to linguistic interfaces. Ivanov and Wren [3] describe a user
interface to a surveillance system that visualizes information
from a network of motion sensors. Users can graphically
specify patterns of activation in the sensor network in order
to find events such as people entering through a particu-
lar door. Yoshitaka et al. [16] describe a query-by-example
video retrieval system that allows users to draw an example
object trajectory, including position, size, and velocity, and
finds video clips that match that trajectory. Natural lan-
guage text-based queries complement these interfaces in sev-
eral ways. First, queries expressed as text strings are easily
repeatable; in contrast, it is difficult to draw (or tell someone
else to draw) the exact same path twice in a pen-based sys-
tem. Second, language can succinctly express paths such as
“towards the sink”, which would need to be drawn as many
radial lines to be expressed graphically. The combination
of a pen-based interface and a natural language interface is
more powerful than either interface on its own.

3. GROUNDING NATURAL LANGUAGE
In order to perform video retrieval, the system needs to

compute p(query, clip) for each video clip in our database.
The system takes as input a database of trajectories which
were automatically extracted from surveillance video recorded
in a particular environment, and the locations and geome-
tries of observed objects in the environment, such as couches,
chairs and bedrooms. Dataflow for the system is shown in
Figure 2. Trajectories are represented as a sequence of (x, y)
locations corresponding to a person’s movement through the
environment, as captured by the cameras.

The system also takes as input the locations of landmark
objects in the environment. Although automatic object de-
tection could be used in conjunction with overhead cameras,
we used manual labels to focus on the natural language un-
derstanding component of the system. These explicitly la-
beled landmarks are used to bootstrap resolution of land-
mark phrases that appear in queries, enabling the system to
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Figure 3: SDCs automatically extracted for the sen-
tence “The person walked from the couches in the
living room to the dining room table.” (An annota-
tor created this sentence for the clip shown in Fig-
ure 1.) An SDC consists of a figure F, a verb V, a
spatial relation SR, and a landmark L.

infer the locations of unobserved objects based on directly
observed objects.

The system retrieves video clips that match a natural
language description using a probabilistic graphical model
that maps between natural language and paths in the en-
vironment [7]. When performing video retrieval, clips are
returned in order according to the joint probability of the
query and the clip. Thus, for each video clip in our database,
we want to compute: p(query, clip). This distribution is
modeled in terms of the fields of a semantic structure ex-
tracted from the query called a spatial description clause
(SDC). An SDC consists of a figure, a verb, a spatial rela-
tion, and a landmark, illustrated in Figure 3. The system ex-
tracts SDCs automatically using a conditional random field
chunker.

To compute the joint distribution of queries and clips, we
first rewrite it in terms of the SDCs extracted from the query,
and represent the person’s movement in the video clip as a
trajectory t consisting of (x, y) locations.

p(query, clip) = p(SDC1 . . . SDCN , t) (1)

Assuming SDCs are independent of each other we have:

p(query, clip) =
Y
i

p(SDCi, t) (2)

We assume the spatial relation and landmark fields of the
SDC are referring to a particular object in the environment.
However, we do not know which one, so we marginalize over
all the possibilities. In general, an SDCi may apply to only
part of a trajectory, especially for longer trajectories. How-
ever, we approximate this alignment problem by assuming
each SDC applies to the entire trajectory.

p(SDC, t) =
X
O

p(SDC, t, o) (3)

We can rewrite the inner term in terms of the fields of the
SDC (figure f , verb v, spatial relation s and landmark l),
and factor it:

p(SDC, t, o) = p(f, v, sr, l, t, o) (4)

= p(f |t, o)p(v|t, o)p(sr|t, o)p(l|t, o)p(t, o) (5)

We assume the fields of the SDC are independent of each
other and depend only on the ground object and the tra-

jectory. p(f |t, o) is treated as uniform, although it could be
learned based on features in the video (e.g., mapping words
like “She” to visual features indicating the gender of the per-
son in the video clip). p(v|t, o) captures how well a particular
verb describes a trajectory. In our corpus, the verb is most
frequently a variation of “go” or “walking” and carries little
semantic information, so we treat it as uniform. The follow-
ing sections describe how the other terms in Equation 5 are
modeled.

3.1 Landmarks
In order to ground landmark objects, we need to estimate

the probability that a landmark noun phrase l such as “the
couches in the living room” could be used to describe a con-
crete object o with a particular geometry and location in the
environment, given a trajectory t. Assuming l is indepen-
dent of t, we want to estimate:

p(l|t, o) = p(l|o)p(o|t)p(t) (6)

We assume a uniform prior on trajectories, p(t). p(o|t) is
a mask based on whether a particular object is visible from
the trajectory. We assume that objects not visible from a
particular trajectory are never used as landmark objects in
a description.

To model p(l|o), we extract and stem nouns, adjectives,
and verbs from the landmark phrase, representing the land-
mark phrase l as a set of words wi.

p(l|o) =p(w1 . . . wM |o) (7)

For example, the words extracted from “the couches in
the living room” are “couch,” “living,” and “room.” We as-
sume that one of the keywords is referring to the physical
landmark object, and the other keywords are descriptors or
reference objects. For “the couches in the living room,” the
grounded keyword is couches; this word directly grounds out
as the object being referred to by the landmark phrase, and
other extracted words are modifiers. However, the system
does not know which keyword is the root and which are mod-
ifiers. To address this problem we represent which keyword
is the root with an assignment variable φ ∈ 1 . . .M which
selects one of the words from the landmark phrase as the
root and marginalize over possible assignments:

p(k1 . . . kM |o) =
X
φ

p(k1 . . . kM , φ|o) (8)

Expanding the inner term we have:

p(k1 . . . kM , φ|o) = p(k1 . . . kM |φ, o)p(φ|o) (9)

=
Y
i

p(ki|φ, o)p(φ) (10)

The prior on φ is independent of the physical object o and
depends on grammatical features of the landmark phrase; we
treat it as uniform over all the keywords, although a more
informed prior would use parse-based features to identify the
head noun. The likelihood term can be broken down further
depending on the value of φ:

p(ki|φ, o) =


p(ki is o) if φ = i
p(ki can see o) if φ 6= i

(11)

p(ki is o) could be estimated using hypernym/hyponym
features from Wordnet and part of speech information, but
here we test whether ki matches the label for o in the se-
mantic map of any object in the environment; if it does, we
report whether o has that tag. Otherwise, we back off to
co-occurrence statistics learned from tags for over a million
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Figure 4: Histograms showing the most frequent words in the corpus for various parts of speech.

images downloaded from the Flickr website following Kollar
and Roy [6]. For example, using this corpus, the system
can infer which bedroom is “the baby’s bedroom” without
an explicit label, since only that room contains a crib and a
changing table. This model uses visibility information as a
proxy for detailed spatial-semantic models of relations such
as “in front of” and “in.”

3.2 Spatial Relations
To ground spatial relations we need to compute the prob-

ability of a spatial relation sr given a trajectory t and an ob-
ject o in order to model p(sr|t, o) from Equation 5. We train
supervised models using labeled examples of spatial prepo-
sitions, following Tellex and Roy [14]. Each model takes as
input the geometry of a path and a landmark object and out-
puts a probability that the situation can be described using
that spatial relation. Models are trained using a library of
features that capture the semantics of spatial prepositions.

3.2.1 Through
The features for “through” compute a set of axes that the

figures imposes on the landmark by finding the line that
connects the first and last point in the figure, and extending
this line until it intersects the landmark.

• centroidToAxesOrigin The distance between the ori-
gin of the axes and the centroid of the landmark.

• ratioFigureToAxes The ratio of the distance between
the start and end points of the figure and the axes it
imposes on the landmark.

3.2.2 Down
As in “down the hall” or “down the road.”

• standardDeviation: The standard deviation of the
distance between the figure and the ground.

• figureCenterOfMassToAxesOrigin: The distance
between the center of mass of points in the figure and
the axes origin.

• distAlongGroundBtwnAxes: The distance along
the ground between the start and end of the minor
axis.

• eigenAxesRatio: The ratio between the eigenvectors
of the covariance matrix of the ground when repre-
sented as an occupancy grid.

3.2.3 Past
Two of the features for “past” make use of an axes, which

is computed by finding the line segment that minimizes the
distance between the figure and the landmark.

• angleFigureToAxes The angle between the linearized
figure and the line perpendicular to the axes.

• axesLength The length of the axes.

• distFigureEndToGround The distance from the end
of the figure to the closest point on the landmark.

• distFigureEndToGroundCentroid The distance from
the end of the figure to the centroid of the landmark.

• distFigureStartToGround The distance from the
start of the figure to the centroid of the landmark.

• distFigureStartToGroundCentroid The distance
from the start of the figure to the closest point on the
landmark.

3.2.4 To
Features for“to”include distFigureEndToGround, and

distFigureEndToGroundCentroid, and minimumDis-
tanceToGround, the minimum distance between the figure
and the landmark.

3.2.5 Towards
The features for “towards” are the same as those for “to,”

with one addition.

• displacementFromGround The difference in distance
between the end of the figure to the centroid of the
landmark, and the start of the figure to the centroid
of the landmark.

• axesIntersectGround Whether the extension of a
line fit to the points in the figure intersects the land-
mark object.

3.2.6 From
Features for from include displacementFromGround

and axesIntersectGround.

4. EVALUATION
We evaluate the system’s performance in two ways: we use

a corpus-based dataset of natural language descriptions of
video clip, and we use a much smaller set of hand-designed
queries chosen to represent information needs of potential
users of the system. An example description from the first
corpus is “The woman entered the dining room from the
living room.” An example query from the second corpus is
“People walking into the kitchen.”

There is a tradeoff between the two evaluation strate-
gies. In the first evaluation, we have a task-constrained
corpus that consists of open-ended language collected from
untrained users. We report performance on this corpus us-
ing an off-line evaluation metric, which requires much less



“The person walked from the couches in the living room to the
dining room table.”

“The woman entered the dining room from the living
room.”

“She walks from the hallway into the dining room and stands by
the side of the dining room table that is nearest to the kitchen.”

“The person walked from the couch in the living to the
dining table in the dining room.”

“The person enters the dining room from the living room
and goes to the table near the entrance to the kitchen.”

“She starts in the living room and walks to in front of the desk.”

“The person enters the dining room from the stairway or
living room area. She goes to the long side of the table nearest
to the kitchen doorway.”

“The person walks from the left-bottom side of the din-
ing room table over tot he[sic] shelves.”

Figure 5: Natural language descriptions created by
subjects for the video clip shown in Figure 1. We
gave these descriptions as input to the system in
order to evaluate its performance.
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Figure 6: Results with and without models for the
semantics of spatial relations, on the entire corpus.

annotation effort than traditional information retrieval met-
rics such as average precision, enabling us to quickly assess
the system’s performance on 696 queries in different configu-
rations without performing additional annotation. However
this metric and corpus may not accurately reflect retrieval
performance when the system is faced with queries from real
users. To address this issue we designed the second corpus,
a small set of queries based on information needs of poten-
tial users. The system searched a database of video clips for
matches to these queries, and we report average precision
at this task. This metric more accurately reflects retrieval
performance, but requires much more annotation, making
it impractical to use in our much larger open-ended corpus.
Together, the two methodologies show that the system is
robust to input from untrained users, and that it can suc-
cessfully perform ranked retrieval on realistic queries.

4.1 Task Constrained Corpus
To collect a corpus of natural language descriptions paired

with video clips, annotators were shown a video clip and

all none axesIntersectGround

numInteriorPoints

minimumDistanceToGround

distFigureEndToGround

distFigureEndToGroundCentroid

displacementFromGround

0

1

2

3

4

5

6

A
v
e
ra

g
e
 R

a
n
k

random

Performance for Towards

Figure 7: Results with for “towards,” showing all
features, no features, and each feature individually.
Error bars are 90% confidence intervals.

asked to describe the motion of a person in the clip. Video
was collected from eleven ceiling-mounted cameras and four-
teen microphones were installed in a home as part of an effort
to understand a child’s language acquisition [12]. Sample
frames from the corpus are shown in Figures 1 and 9.

Movement traces, or tracks are generated using a motion-
based tracking algorithm [13]. Pixels representing movement
in each video frame are collected into dense patches, or par-
ticles, with these particles providing probabilistic evidence
for the existence of a person. These particle detections allow
models to be built up over time. By correlating each such
model from frame to frame, we can efficiently and robustly
track the movement of people in a scene.

In order to collect a corpus of natural language descrip-
tions of tracks, a larger database of tracks was sampled to
extract two datasets of fifty tracks. The tracks were created
by sampling 10 random 2.5 second clips, 10 random 5 sec-
ond clips, 10 random 10 second clips, 10 random 20 second
clips, and 10 random 40 second clips from the first five word
births. Clips were constrained to end at least two meters
from where they started, to ensure that the clip contained
at least some motion. (Otherwise, many tracks consisted of
a person sitting at a table or on a couch, and never moving.)
The first dataset allowed clips to overlap in time in order to
collect more than one description from the same person for
the same track at different granularities. The second dataset
had no overlaps in time to collect a more diverse database.
The clips were collected randomly from eight cameras in-
stalled in each room of the main floor of the house, but each
individual clip was from a single camera.

Fourteen annotators were recruited from the university
community to view each clip and describe the activity of a
person in the clip. Annotators viewed each clip, with the lo-
cation of the person being tracked marked by a large green
dot on each frame of the clip. They were instructed to de-
scribe the motion of the person in the video so that an-
other annotator could draw their trajectory on a floor plan
of the house. We showed each annotator a floor plan of
the house to familiarize them with the layout and how the
scenes from each camera connected. We did not ask them
to restrict their language in any way, but rather use what-
ever language they felt appropriate to describe the person’s
motion. At times the automatic person tracker made errors.
Annotators were instructed to mark tracks where the auto-
matic person tracker made significant errors. They skipped
on average 6.5/50 tracks, implying the tracker worked fairly
well most of the time.

Sample descriptions from the corpus are shown in Fig-



Figure 8: Results with and without models for each spatial relation, using only descriptions in the dataset
that contained the particular relation. Error bars are 90% confidence intervals.

ure 5. Annotators’ vocabulary was constrained only by the
task. They used full sentences, whatever landmark phrases
they felt were appropriate and were not instructed to use
a particular vocabulary. A histogram of the fifteen most
frequent words for different parts of speech appears in Fig-
ure 4. Annotators used mostly nouns and spatial relations
to specify landmarks with relatively few adjectives.

4.1.1 Results
We report the model’s performance in different configura-

tions to analyze the importance of different spatial relations
to the system’s overall performance. In order to assess the
system’s performance in different configurations, we devel-
oped an evaluation metric based on a ranked retrieval task.
For each natural language description in our corpus, we cre-
ate a dataset of 10 tracks, containing the original track the
annotator saw when creating the description and nine other
random tracks. The system computes p(query, track), us-
ing the description as the query for all ten tracks and sorts
the clips by this score. We report the average rank of the
original clip in this list over all 696 descriptions in our cor-
pus. If the description is treated as a query, the original clip
should have a high rank in this list, since it should match
the query better than the other random clips. A system
that ranks randomly out of ten would have an average rank
of 5.5, marked with a dotted line on the graph. We report
90% confidence intervals in all graphs.

For the first experiment, we compared the system’s per-
formance with and without spatial relations. Without spa-
tial relations, it uses only the landmark field to match the
video clip to the person’s trajectory. The results in Figure 6
indicate that spatial relations significantly improved the per-
formance of the overall system. With spatial relations, 406
(58.3%) of descriptions were ranked one or two; without

spatial relations, only 39.9% were ranked one or two. This
result shows that spatial relations capture an important part
of the semantics of the trajectory descriptions.

Next, Figure 8 shows the performance of the system when
run on only those descriptions in the corpus that contain the
labeled spatial relations. Only spatial relations for which
we have a model, and for which more than 10 examples ap-
peared in the corpus are shown. In almost all cases, the
model of the spatial relation decreases the average rank, im-
proving retrieval performance. Although this result is often
not significant there is a consistent positive effect for spatial
relations; that the overall trend is significant can be seen in
Figure 6.

This automatic evaluation metric does not work perfectly.
For example, our classifier for “down” performs well, as mea-
sured on its cross-validated training set and in the results
presented in Table 1. However, in the corpus, “down” was
almost always used in the context of “down the hallway.”
The overall performance of “down” is poor according to this
metric because there were many examples of people walking
down the hallway in our corpus of video clips; these clips
were ranked higher than the original clip because they also
matched the natural language description.

Next we investigated the contribution of individual fea-
tures in the models for the meanings of spatial prepositions
to the system’s overall performance. We did this comparison
on the subset of descriptions that contained that particular
spatial relation. The results for “towards” are shown in Fig-
ure 7. Here it can be seen that the model using all features
outperforms any model trained with a single individual fea-
tures, showing that information is being fused from multiple
features to form the semantics of the spatial relation.



Highly-ranked clips Low-ranked clips

People walking into the kitchen.

People walking from the hallway door, around the island, to the
kitchen sink.

She walks past the fireplace, then stands by the bookshelf.

Figure 9: Clips returned for various queries. High-
scoring examples are shown on the left; low-scoring
examples are shown on the right.

Query Avg. Precision

People coming out of the bathroom. 0.833

People walking into the baby’s 0.917
bedroom.

People walking down the hall. 0.967

People walking around the table. 1.000
in the living room

People walking into the kitchen. 1.000

People walking out of the kitchen. 0.704

People walking from the hallway door, 0.583
around the island, to the kitchen sink.

Mean Average Precision 0.858

Table 1: Average precision for representative
queries.

4.2 Performance on Particular Queries
In order to assess the performance of the end-to-end sys-

tem, we ran it on several representative queries on a dataset
of fifty tracks. Tracks were returned in order according to
p(query, track). We report performance using average pre-
cision, a measure commonly used to report the performance
of ranked retrieval systems [9]. It is computed by averaging
precision at rank r for all r ∈ R, where R is all relevant doc-
uments for a particular query. This metric captures both
precision and recall in a single number and reflects how well
the system is ranking results. The highest possible value in
our corpus is 1, if all relevant documents are ranked before
irrelevant documents; the lowest value is 0.02, if there was
only one relevant document that was returned last. In or-
der compute this metric, we made relevance judgments for
each query: for each of the fifty tracks in our dataset we
annotated whether it matched the query or not. Results are
reported in Table 1.

We chose queries that seemed to reflect particular infor-
mation needs. For example, doctors monitoring the health
of elders are interested in renal failure, and might be con-
cerned with how frequently they use the restroom or how
frequently they enter the kitchen to eat. Social scientists
or interior designers might be curious about how people use
the space and how to lay it out better.

Average precision is generally quite high. These results
indicate that the system is successfully retrieving video clips
from a large dataset of trajectories for representative queries
that are useful for answering real-world questions.

Finally, Figure 9 shows example of high and low-scoring
trajectories returned by the system for various queries. This
concretely shows that the system is correctly making fine
distinctions in the semantics of various queries.

5. CONCLUSION
In this paper we have presented a system that can map

between natural language descriptions of motion and video
clips. The system has been evaluated on a large corpus of
queries, and we have shown that spatial relations contribute



significantly to the system’s overall performance.
In the future, we wish to develop systems that retrieve

clips based on a general natural language description of a
person’s activity. A key challenge lies in developing models
for verbs. In our current corpus, people used words such as
“enters,”“hovers,” and “takes.” Although these could all be
modeled spatially using the feature set we have developed
for spatial relations, this modeling step requires collecting a
separate corpus of positive and negative examples for each
verb. To address this problem, we are developing models
that can learn the meaning of words with less supervision,
using only a corpus of descriptions paired with trajectories.

Moving beyond spatial verbs, when we asked an annota-
tor to describe a person’s general activity rather than move-
ment, she used phrases such as “preparing food,” “clean-
ing up,” and “opening the refrigerator.” As computer vision
and tracking improve, a richer variety of information will
be available to query engines and models of language un-
derstanding need to be developed to exploit it. In order
to handle these types of language, we need to apply richer
models of linguistic structure, and richer probabilistic mod-
els that capture the relationship between plans, goals, and
actions.

Despite these limitations, our evaluation has shown that
the system understands not just a few carefully chosen queries,
but rather can take as input millions of potential trajectory-
based queries and robustly find matching trajectories. We
analyze the system’s performance, measuring the contribu-
tion of different spatial relations to the system’s overall per-
formance, as well as the components of models for various
spatial relations. Our system breaks down a complex spatial
language query into components, models each components,
and then finds video clips in a large corpus corresponding to
the natural language description.
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