
Efficient Trajectory Planning for High Speed Flight in Unknown
Environments

Markus Ryll1, John Ware1, John Carter1 and Nick Roy1

Abstract— There has been considerable recent work in mo-
tion planning for UAVs to enable aggressive, highly dynamic
flight in known environments with motion capture systems.
However, these existing planners have not been shown to enable
the same kind of flight in unknown, outdoor environments. In
this paper we present a receding horizon planning architecture
that enables the fast replanning necessary for reactive obstacle
avoidance by combining three techniques. First, we show how
previous work in computationally efficient, closed-form trajec-
tory generation method can be coupled with spatial partitioning
data structures to reason about the geometry of the environment
in real-time. Second, we show how to maintain safety mar-
gins during fast flight in unknown environments by planning
velocities according to obstacle density. Third, our receding-
horizon, sampling-based motion planner uses minimum-jerk
trajectories and closed-loop tracking to enable smooth, robust,
high-speed flight with the low angular rates necessary for
accurate visual-inertial navigation. We compare against two
state-of-the-art, reactive motion planners in simulation and
benchmark solution quality against an offline global planner.
Finally, we demonstrate our planner over 80 flights with a
combined distance of 22 km of autonomous quadrotor flights
in an urban environment at speeds up to 9.4 ms-1.

I. INTRODUCTION

Although the planning problem for systems with simple
dynamics and known maps is well understood, trajectory
planning for vehicles with non-trivial dynamics in cluttered
and unknown environments is an active field of research.
These systems arise in applications such as autonomous
navigation of ground and aerial vehicles, warehouse and
medical robotics, and mobile manipulators. As of yet, very
few approaches have been able to address this problem
robustly and in real-time for high-speed quadrotor flight.

In this work, we consider the problem of online planning
for a micro aerial vehicle (MAV) in an unknown, cluttered,
and GPS-denied environment using on-board sensing and
computation. Because on-board sensors have a limited sens-
ing horizon, the planner must be able to react sufficiently
quickly to discovered obstacles in order to guarantee safety.
We therefore seek to find a smooth, high-speed, collision-free
and dynamically feasible 3D trajectory within a timeframe
amenable to highly reactive flight.

Online path planning for MAVs is particularly challenging
due to the size, weight, and power constraints inherent
in such platforms. While optimization-based planners (e.g.
[1], [2]) might find optimal solutions (e.g. shortest path,
minimum energy [3]), they suffer from high computational

1CSAIL, Massachusetts Institute of Technology, Cambridge, USA
{ryll,jakeware,jcarter,nickroy}@csail.mit.edu
We thank Brett Lopez and Pete Florence for sharing their planners, which
allowed the conducted comparisons. This work was supported by J-C Lede
and the DARPA FLA program under Contract No. HR0011-15-C-0110.

Fig. 1: Quadrotor performing aggressive flight maneuvers au-
tonomously in urban environment. Hardware and sensors include
an NUC Skull canyon, an Intel RealSense RGB-D camera and a
Flea3 mono camera.

costs, uncertain solve times, and frequently require good ini-
tialization. These properties make them less suitable for the
problem addressed in this work. In contrast, sampling-based
planners (e.g. [4]–[6]) have a predictable execution time, but
the solution quality is limited by the choice of the sampling
measure. Although there are several relevant examples of
sampling based approaches (e.g. [4], [7]), these planners seek
to minimize computational load by relying solely on instan-
taneous sensor measurements. These approaches allow for
high replan rates but the limited sensing horizon of the depth
sensor makes the planner myopic. This can lead to becoming
trapped in local minima and poor situational awareness. As
shown in [7], the varying obstacle densities present in the
type of environments considered here additionally require
the planner to adjust its speed to safely navigate through
heavy clutter. Difficulties arise when the need for aggressive
flight has to be balanced with the requirements of the visual-
inertial state estimation system. It has been shown that vision
systems perform best under relatively smooth camera motion
[8]. Unlike the existing sampling-based motion planners
already mentioned, our planner produces a smooth final
trajectory to support the visual-inertial navigation system.
It has been noted that this allows visual-inertial odometry
systems to increase the number of trackable features between
camera frames and reduce the discontinuities in position and
rotation between state estimator outputs [9]. A further benefit
is that smooth trajectories reduce the energy consumption
compared to lower order trajectories [10].

This work attempts to combine many of the best qualities
of optimization and sampling-based planners by using a
hierarchical planning architecture that considers both, the in-
stantaneous and fused history of depth information. Although
not the focus of this work, this planner relies on a coarse
global planner, discussed in greater detail in Sec. III-B, to
provide a local goal along a sparsified optimal path through
the mapped environment. Note that the single source, shortest
path algorithm used in the global planner allows the local
planner to avoid local minima. In order to evaluate the motion

primitives with respect to this local goal, we must first fuse
the available metric depth information into a 3D occupancy
grid and voxel-grid filter the instantaneous depth image. To
perform efficient radius queries, we insert both the fused
map and voxel-grid filtered depth image into separate K-D
trees. Using the quadrotor’s desired state sampled along the
trajectory 50ms in the future (≈ 30ms algorithm completion
time + 20ms safety margin), we generate a set of motion
primitives with different final positions, aiming for a large
spatial coverage over the depth camera’s field of view. The
point 50ms in the future, the concatenation point, is the point
from which we start tracking the next primitive. We rank
the primitives by evaluating them against the K-D trees of
both the instantaneous and fused depth information and the
endpoints’ proximity to the local goal. Finally, we select the
lowest cost candidate primitive and join it with the current
trajectory at the previously selected concatenation point.

Our approach is capable of replanning at a rate of 30Hz,
and to the best of the authors’ knowledge, this is the fastest
update rate for a trajectory planner on a UAV which considers
a map. The planning algorithm presented here has been
demonstrated on a quadrotor (Fig. 1) over 22 km of flights
in unknown, urban environments.

II. DEFINITIONS AND PROBLEM FORMULATION

We now present the problem described in Sec. I formally.
Consider xs(t) ∈ X ⊂ R3n to be a 3D dynamical system
state with its (n − 1) derivatives. Let us further define
X free ⊂ X as kinodynamically feasible regions of the state
space capturing not only the free space P free but constraints
Dfree of the dynamical system, i.e., peak velocity vmax and
constraints in higher derivatives. Note that P free is bounded
in the planning space. Given the dynamical constraints, we
can define the feasible state space as X free = P free ×Dfree.

Let us next discuss the dynamical model of a quadrotor.
As commonly done we will use a 3D rigid body model to
describe the quadrotor. Although more sophisticated mod-
els exist which include aerodynamic effects, a rigid body
model is a sufficient approximation even for high-speed
flights due to the nature of our receding horizon planning
approach. Let us define a world frame FW and quadrotor
bodyframe FR. FR coincides with the center of mass of
the rigid body, resulting in three translational degrees of
freedom p = [p1 p2 p3]

ᵀ ∈ R3 and three rotational degrees
of freedom. The rotational degrees of freedom, with respect
to FR, can be represented by a rotation matrix R∈ R3×3.
We define as control inputs to the system the thrust force
scalar f∈ R and the three body fixed rotational torques
ωωω = [ω1 ω2 ω3]

ᵀ ∈ R3. We can fairly assume that high
bandwidth controllers are able to track well the attitude
commands due to the vehicle’s low inertia. Therefore the full
state of the quadrotor can be described by 9 variables — the
vehicle’s position, velocity and orientation. As commonly
[11] done, the full dynamics of the quadrotor body can now
be expressed as

p̈ = Re3f + g (1)

Ṙ = Rωωω[×] (2)

with p̈ being the translational acceleration of the quadrotor,
g= [0 0 −mg]ᵀ being the gravitational acceleration vector,
e3= [0 0 1]ᵀ aligns the force scalar f with the propeller
orientation and [][×] is the skew-symmetric operator.

The differential flatness property of standard multirotor
systems allows us to construct trajectories [12] by composing
polynomials independently about the three multirotor posi-
tion axes. Let us consider a polynomial

pD(t) =

K∑
k=0

dk
tk

k!
= dK

tK

K!
+ · · ·+ d1t+ d0 ∈ R3 (3)

with D = [d0, . . . ,dK] ∈ R3×(K+1). The desired poly-
nomial trajectory and its derivatives can now be found
as xD(t) = [pD(t)ᵀ, ṗD(t)ᵀ, . . . ,p

(n−1)
D (t)ᵀ]. The desired

trajectory xD(t) as constructed in (3) is dynamically fea-
sible if and only if the actuation limits for the total thrust
0 ≤ fmin ≤ f ≤ fmax in (1) and the magnitude of the
angular velocity ||ωωω|| ≤ ωmax in (2) are not violated. By
concatenating N ∈ Z+ polynomials pD(t), we can find a
trajectory that connects the starting and the goal location. We
then find the shortest path from the start to a goal location
along the minimum cost path, defined by N concatenated
polynomials pD(t), while minimizing the jerk

...
pD(t) along

the trajectories and obeying the kinodynamic and geometric
constraints (xD(t) ∈ X free).

III. TRAJECTORY COMPUTATION AND
SELECTION

In the following we will describe the full trajectory plan-
ning algorithm in detail and how it solves the optimization
problem in Sec. II. The full motion planning algorithm is
composed by five steps:

• Compute a set of minimum-jerk motion primitives
based on a future state along the robot’s current tra-
jectory

• Find a sparsified, global 3D path to the goal location
based on the occupancy grid

• Select a local goal on the global path that serves as the
receding horizon goal for the motion primitives. The
distance of the local goal to the quadrotor depends on
the vehicle’s speed

• Evaluate the motion primitives with respect to dynamic
feasibility, depth image, occupancy grid and distance to
the moving local goal and choose the best based on a
weighted cost function

• Follow the motion primitive with the minimum cost
until a new depth image arrives

All steps of the planning algorithm and their associated
update rates are depicted in Fig. 2 and described in detail in
the following.

A. Minimum-jerk motion primitive set generation

At every planning step, we generate a spatially and dynam-
ically diverse set of motion primitives in X free, by sampling
over yaw-heading, final altitude, and distance from the ve-
hicle such that we uniformly cover the area with the depth

Depth
Sensor

Voxel Grid

K-d Tree

Motion
Primitive

Generation

Global
Path

Distance
Grid

Occupancy
Grid

X

Y Y

ZZ Z Z

Running
Carrot

Motion
Primitive

Evaluation

Cost Grid

Depth Sensor
Rate (30Hz)

Global Path
Rate (2Hz)

*

*

*

*

**

Uses State
Estimation

Grid
sizes

60m

60m

6m

Fig. 2: Planning stack framework. Bright yellow elements are
triggered by the depth image rate. The dark yellow elements are
part of the global path planning and run at 2Hz.

p
3

p
2 p

1
1.5
10

2

2.5

0

3

-10 151050

Fig. 3: Example of valid motion primitives: The minimum-jerk
primitives have been selected with 15 different heading angles, six
different final velocities and three different final altitudes. The final
position of every trajectory is highlighted in black. All displayed
motion primitives are dynamically feasible and collision-free.

camera’s field of view (see Fig. 3)1. Sampling over speeds
naturally occurs by using a constant time across all candidate
trajectories. In order to account for the computation time
associated with trajectory sampling and generation, we select
the motion primitives’ initial state as that of the current
trajectory 50ms in the future. This point in the future is the
concatenation point from which we will start tracking the
next motion primitive. Because we only consider primitives
with a fixed final velocity and acceleration, the full set of
motion primitives is defined by the set of final positions Pf :

Pf = {pf1 . . .pfm} with m = n · o · p
pfi = Rz(ψk)lje1 + hle3 ,

j ∈ {1 . . . n} , k ∈ {1 . . . o} , l ∈ {1 . . . p}
(4)

with L = {l0, . . . , ln} changing the final position and respec-
tively the peak velocity, ψ = {ψ0, . . . , ψo} changing the yaw
heading (represented as an Euler angle), H = {h0, . . . , hp}
changing the altitude and en being the unit vector along the
n-th axis. An illustrative example of sets of minimum-jerk
trajectories along a followed trajectory is displayed in Fig. 3.
For the simulated and real experiments in Sec. IV we used
a set of 270 motion primitives, covering a large spatial and
dynamical space.

The generation of each motion primitive follows the com-
putationally efficient, closed-form solution presented in [13],
[14], based on fifth order polynomials. A motion primitive
is defined by an initial and final state (position, velocity and
acceleration) and is thrice differentiable. Next, the dynamical
feasibility of the trajectory is tested following the approach in
[13]. Infeasible trajectories are not in the set of dynamically
feasible trajectories Dfree.

1Yaw-Euler angles are used to sample the motion primitives, while the
controller internally uses a rotation matrix representation.

B. Planning grids and moving local goal
In order to decouple the local obstacle avoidance from

the global guidance, the planner presented here relies on
a global planner, running in a separate process, to provide
it with a local goal. Note that this local goal acts as the
navigation goal for our receding horizon trajectory planner.
To maintain a sufficiently high spatial resolution within
the flight computer’s computational capabilities, the global
planner maintains two body-centered, 3D voxel grids with
dimensions of 60m × 60m × 6m at a resolution of 0.5m
in all dimensions. The first grid is a probabilistic occupancy
grid [15] containing a fused history of depth sensor mea-
surements. The second grid uses the incremental distance
transform presented in [16] with a short truncation distance
to keep track of the proximity to the nearest obstacle for
every voxel. The global planner runs a breadth-first search
[17] on a weighted sum of the occupancy grid, distance grid,
and a user-specified target altitude, to extract a minimum-
cost path to the voxel nearest to the global goal at 2Hz.
This path is then sparsified and used to generate a local goal
for the trajectory planner with a lookahead distance that is
proportional to the quadrotor’s speed.

Finally we evaluate the motion primitives and select the
one with the lowest cost. We split every primitive in n control
points corresponding to the resolution of the occupancy grid.
We first perform operations that are fast to compute and
directly eliminate primitive candidates. Therefore, we check
if the control points of the primitives are in collision with
the occupancy grid or the depth image. Trajectories that are
in collision are excluded. Second, we add a cost to every
primitive depending on the number of control points outside
or in unknown space of the occupancy grid. Third, we add
a cost, linearly increasing with the distance dgoal between
the local goal and the primitive’s final position. Fourth, for
every control point we add a cost linearly increasing with the
distance dalt to the desired altitude. Last, we add a cost de-
pending on the distance of obstacles to the motion primitive.
Which requires us to find all obstacles in a fixed distance d
to the control points. To do this efficiently we convert the
occupancy grid into a K-D tree and an approximate nearest
neighbor search [18], [19] is used to get the all neighbors
along the n control points within the distance d. In average
we query the K-D tree 1300 times per motion primitive
set generation with an average query time of 0.02ms. The
average time for all queries, including the K-D tree building
time, is 2.4ms while a linear search requires 6.9ms. The
approximate nearest neighbor search is therefore a factor of
3 faster than a conventional linear search. The total cost c
assigned to every primitive is

c =

n∑
i=1

(coutside + cunknown + k1dalt + cprox) + k2dgoal

cprox =

m∑
j=1

k3
v

d2obs

{
k3 = 1, if obstacle in distance d to control point

k3 = 0, otherwise

with ci being the individual costs, kj being individual gains,
m the number of occupied cells in the occupancy grid and

Fig. 4: Example of the concatenated trajectory in a cluttered
environment: Occupancy grid is visualized by blocks and the
concatenated trajectory by the black line. The colored lines are
the single motion primitives, where only the initial part is tracked.
The color coding shows the peak velocity of the primitive.

v the initial velocity of the primitive. Finally, the trajectory
with the lowest cost is selected.

C. Receding planning horizon

To achieve a reactive planner we compute the full set
of motion primitives at every new depth image (e.g., at
30Hz). Only the first 33ms of the selected motion primitive
is tracked. An illustrative example of the single primitives
and the concatenated trajectory is shown in Fig. 4. As we
use the replan state (position, velocity and acceleration) of
the vehicle to compute the new set of motion primitives, the
concatenation point of the trajectories is at least continuous
to the third order of the polynomial.

IV. RESULTS

We present simulated and real experiments. To point
out single, unique features of the planner, we will present
simulated results. In the real flight test section we will
present data from a single, representative flight followed by
a thorough analysis of a large set of conducted flights.

A. Simulation results

We present simulation results for three different experi-
ments. First, we compare the smoothness of the trajectories
generated to those of two other state-of-the-art approaches
to this problem. Second, we compare solution quality to that
of an optimal offline planner. Third, we show results testing
the reactivity and the limits of the maximum velocity. All
simulated experiments have been conducted running the ac-
tual flight stack, including low-level control, perception and
state estimation. The dynamics and the IMU are simulated
using DRAKE [20]. The perception is simulated by using a
high fidelity Unity2 environment.

1) Trajectory smoothness: By using continuous
minimum-jerk trajectories and fast re-planning, we achieve
a higher smoothness of the trajectory compared to other
planners. In the following we compare our planner with the
planners by Lopez et al. [4], a minimum-time, state-space
sampled planner for aggressive maneuvers and Florence et
al. [7], a control-space-sampled motion primitive planner.
Both planners are selected for comparison as they represent
highly reactive planners with frequent re-planning. We
follow the same trajectory with all planners in simulation,

2Game engine by Unity Technologies: https://unity3d.com

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

20 40 60 80 100
0

0.005

0.01

Florence et al.
Lopez et al.
Our planner

Fig. 5: Comparison of the angular rate of our planner versus
Lopez et al. [4]. and Florence et al. [7]. Data are represented in
a likelihood histogram over the roll and pitch frequencies (Fast
Fourier Transform) of an identical mission. It is clearly visible that
our planner utilizes much lower frequencies, being very beneficial
for any VIO system. For better visibility the order of the three
planners is swapped in the zoomed plot.

with an average velocity of 4m s−1, while dodging several
obstacles. The results are presented in Fig. 5.

Our planner’s angular rate frequencies are significantly
lower. While 90% of the frequencies are below 10Hz these
are only 77% at Lopez’s planner and at 59% at Florence’s
planner.

2) Path quality: To assess the ability of our planner to find
short trajectories, found trajectory we compared it against
RRT* with 250, 1000 and 5000 samples. Although path
length is not a term of the objective function, it is still
operational relevant. A Poisson forest like environment was
used with 100 randomly distributed and oriented cylindrical
obstacles (see Fig. 6 - top). The Poisson forest has a
dimension of 100m by 60m. The starting and stopping
point were each 20m away from the long side of the forest
(distance between start and stop point is 100m). The forest
itself has a density of 12% and therefore includes many
dead ends. Dead ends are challenging for planners as they
represent local minima.

In total we compared our planner in 50 randomly gen-
erated maps against the three RRT* planners. We would
like to point out that the RRT* paths are not dynamically
feasible for multirotor systems but require a smoothing of the
path. However, RRT* serves as a very good comparison of
the found trajectory length. RRT* with 250 samples did not
succeed in finding a feasible path in 34.0% of the trials while
RRT* with 1000 and 5000 samples succeeded in all trials.
Our planner’s path is on average 18.2% shorter as RRT*
1000 and 21.6% shorter as RRT* 250 in the cases where
RRT* found a solution (see Fig. 6 - bottom) but 1.8% longer
than RRT* with 5000 samples. RRT* with 5000 samples is
already close to the optimal solution and therefore serves as
a good baseline for the length evaluation of our planner. The
run time to compute the RRT* paths exceeded our planner by
several magnitudes, therefore RRT* would not be feasible for
real time applications. Due to the lack of publicly available
implementations we could not test our planner against other
planners discussed in Sec. V.

3) Planner reactivity: We evaluated the reactivity of the
planner and compared it with a lower re-planning frequency.
The vehicle was commanded to fly in a straight line while

100

120

140

Fig. 6: Path search through Poisson forest like environment. Top:
Example of randomly generated Poisson forest with trajectory of
our planner (lilac), an RRT* path, based on 250 samples (blue),
an RRT* path, based on 1000 samples (red) and an RRT* path,
based on 5000 samples (orange). Bottom: Mean trajectory length
and standard deviation of 50 randomly generated maps. RRT* with
250 samples failed in 39% of the maps to find a path. We therefore
present the subset of maps where RRT* 250 successfully found a
trajectory in the right three plots.

Fig. 7: Likelihood from zero to one to pass an obstacle, depending
on initial velocity (x-axes) and distance to the obstacle (y-axis) and
re-planning frequency (left 30Hz, center 10Hz, right 3Hz). The
obstacle is a vertical cylinder with 1m diameter.

a vertical cylindrical obstacle (diameter 1m) instantaneously
appeared in front of the vehicle. Different initial velocities
(4-9m s−1) and distances to the obstacle were simulated (4-
10m). The vehicle is supposed to avoid the obstacle. In
total ≈400 trials were conducted for all three re-planning
frequency conditions. The results are presented in Fig. 7.
Intuitively, avoiding the obstacle became harder with in-
creasing velocity or decreasing distance to the obstacle.
It is interesting, however, that the likelihood of a crash
increases with a decreasing control frequency, underlining
the importance of a high re-planning rate. At the nominal
control frequency of 30Hz all obstacles appearing in 9m
distance and at a vehicle velocity 9m s−1 could be avoided.
With a control frequency of 3Hz only 28% of the obstacles
could be avoided.

4) Dynamic velocity planning: To demonstrate the ben-
efits of the dynamic velocity planning of our planner, we
compared our planner against itself with fixed velocities.
Therefore the quadrotor has been commanded to traverse the

Fig. 8: Trajectory length and trajectory time duration for different,
fixed velocities in comparison to our planner. Velocities marked
with a � resulted partially in collisions with obstacles.

Poisson forest of Sec: IV-A.2. We selected motion primitives
with only a fixed length l in (4). Since the trajectory length
is fixed this results in a constant velocity over the full
trajectory — the planner is not able to do dynamic velocity
planning. We conducted the experiment individually for the
trajectory lengths L = {3, 5, 7, 9, 12}[m]. The trajectory
length and durations generated by the planner using these
fixed velocities are presented in Fig. 8.

With an increasing fixed velocity, the time to traverse the
Poisson forest decreases (red bars in Fig. 8) while the tracked
trajectory length increases (blue bars in Fig. 8). Starting from
velocities higher than 3m s−1 an increasing number of trajec-
tories are in collision with obstacles, showing how important
it is for a planner to be able to reduce flight velocity. Our
planner with dynamic velocities found trajectories through
the Poisson forest with a length almost as short as in the
case for 1m s−1 but shorter in time than in the case for
3.8m s−1.

B. Experimental flight tests
The presented work is a result of the MIT-Draper FLA3-

project. The mechanical hardware includes a quadrotor
Flamewheel DJI frame, for visual-inertial state estimation
an ADIS 16448 IMU and a monocular Point Grey Flea3
camera (640x512 pixel, 30Hz), a D435 Intel RealSense
depth camera (RGB image and depth image: 640x480 pixel,
30Hz) and a quad core Intel NUC Skull Canyon i7 with an
i7-6770HQ CPU as the flight computer. The total weight of
the platform is approximately 3.2 kg allowing a flight time of
6min. The flights were conducted at the Guardian Centers
of Georgia (USA) in an urban-like environment.

1) Discussion of a Single Exemplary Flight: The fully
autonomous mission included six relative defined waypoints
in an unknown urban environment and required the vehicle
to return to the start location (Fig. 9-left). The flight covered
a distance of 720 m and lasted 3 min 39 s. Although
the roads were relatively wide, the waypoints forced the
vehicle to navigate around several buildings, trees, cars, and
smaller obstacles such as streetlights (see way points 3-5
in Fig. 9-top). A particularly challenging segment of the
flight occurred between waypoints 3 and 4, where the vehicle
had to enter and traverse a 2.8 m wide and 9.4 m long
pathway between two buildings (Fig. 9-right). This tight
section of the environment resulted in an average velocity

3DARPA Fast Lightweight Autonomy program:
https://www.darpa.mil/program/fast-lightweight-autonomy

-0

25

50

75

100

50250-25-50-75

0

1

2

3

4

5

6

N

Fig. 9: Flight tests at Guardian Centers. Left: Exemplary flight
trajectory. The ‘S’ marks the starting point and numbers present
the given waypoints. The trajectory color encodes the speed. As
desired, the velocity increases in wide, open spaces, while decreases
in narrow passages and turns. Right top: Visualization of the
Occupancy Grid at entrance of narrow passage, next to waypoint
4. Right bottom: Camera view of the narrow passage.

-75 -74 -73 -72 -71 -70 -69 -68 -67 -66 -65

5

6

7

0

1

2

3

4

5

6

(a) (b) (c)

Fig. 10: Aggressive maneuver resulting from a false negative hole
in the lamppost. Top figure: Trajectory while avoiding a lamppost
obstacle. The vehicle conducts an emergency breaking maneuver
and backs off of the obstacle. The line color indicates the norm
of the velocity. The black dot indicates the approximated position
of the obstacle lamppost. Bottom figures: (a) Camera image while
approaching the lamppost. (b) Depth image, the pole is split into
an upper and a lower part. (c) Path leading to collision.

of 2.4 m/s, but the vehicle achieved a peak velocity of 8 m/s
in more open areas. The average velocity for the whole flight
was 3.2m s−1. Finally, the vehicle performed a particularly
aggressive maneuver shortly before waypoint 3 in order to
dodge a light pole. While much of the light pole was clearly
visible in the depth image (see Fig. 10-(a)), the depth camera
reported a false negative at the flight altitude. This caused the
planned trajectories to pass through the obstacle (see Fig. 10-
(b),(c)) while the vehicle was traveling at 6m s−1. Luckily,
the depth camera detected the obstacle in time for the planner
to perform an emergency stop and back away from the pole
with a peak acceleration of 6m s−2.

2) Discussion on full, 22 km flight data: For this work we
conducted 72 flights with a total length of 22 km and a total
flight duration of 105.5min. During the flights we had two
vehicle crashes, both caused by loading the wrong calibration
files at the ground station, unrelated to the trajectory plan-
ning. We achieved a peak velocity of 8.9m s−1. The longest
covered distance in a single mission was 743.8m while the
longest mission lasted 6.0min. The velocity distribution of

0.08

0.19 0.19

0.16 0.16

0.10 0.09

0.04
0.01

0 2 4 6 8
0

0.05

0.1

0.15

0.2

Fig. 11: Velocity distribution of 72 flights. Velocities below
0.5m s−1 are omitted as they are dominated by the starting and
landing procedure.

all flights is depicted in Fig. 11.

V. RELATED WORK

Although there exist many planning approaches, capable
of flight speeds below 3m s−1, relatively few address high-
speed quadrotor flight. We will now present a short summary
of works on high velocity flight, in unknown environments.

Fraundorfer et al. [21] and Shen et al. [22] were the first
presenting a fully vision-based mapping system for high-
speed MAVs. Daftry et al. [23] performed robust monoc-
ular flights in highly cluttered environments. Richter et
al. [24] demonstrated highly aggressive flights in indoor
environments. Aggressive indoor maneuvers through narrow
gaps have been shown by Falanga et al. [25]. Lopez et
al.’s [4] Triple Integrator Planner computes very fast state
space sampled motion primitives resulting in a very reactive
planner optimized for obstacle avoidance during fast flight.
Mohta et al. [26] present a whole quadrotor framework for
high-speed, aerial navigation including an extensive section
on the onboard VIO system. The approach reached velocities
up to 18m s−1, currently the fastest autonomous flight of a
multi-rotor using vision-based state estimation in clutter-free
environments. This work has been extended in [27]. High
speed velocity flight and obstacle avoidance with a fixed
wing has been presented by Barry et al. [28].

VI. CONCLUSIONS AND FUTURE WORK

We presented a receding horizon trajectory planner for
fast flight in unknown and cluttered environments. Our
approach is capable of reasoning about the geometry of the
environment in real-time while maintaining safety margins
during fast, smooth, and robust flight. We compared against
two state-of-the-art, reactive motion planners in simulation
and benchmarked solution quality against an offline global
planner. We demonstrated our planner’s capabilities over 80
flights with a combined distance of 22 km of autonomous
quadrotor flights in an urban environment at speeds up to
9.4m s−1. As future work, we will seek to further reduce
the vehicle’s planning horizon and exploit all available
information in the local occupancy grid by increasing the
search depth to incorporate sequences of multiple minimum-
jerk trajectories in a single planning step. Furthermore we
plan to make the planner publicly available.

REFERENCES

[1] M. Watterson and V. Kumar, “Safe receding horizon control for
aggressive mav flight with limited range sensing,” in 2015 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
Sept 2015, pp. 3235–3240.

[2] F. Gao, Y. L. William Wu, and S. Shen, “Online safe trajectory
generation for quadrotors using fast marching method and bernstein
basis polynomial,” in 2018 IEEE International Conference on Robotics
and Automation (ICRA), May 2018.

[3] F. Morbidi, D. Bicego, M. Ryll, and A. Franchi, “Energy-efficient
trajectory generation for a hexarotor with dual-tilting propellers,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), May 2018, p. TBD.

[4] B. T. Lopez and J. P. How, “Aggressive 3-d collision avoidance for
high-speed navigation,” in 2017 IEEE International Conference on
Robotics and Automation (ICRA), May 2017, pp. 5759–5765.

[5] S. Liu, N. Atanasov, K. Mohta, and V. Kumar, “Search-based motion
planning for quadrotors using linear quadratic minimum time control,”
in Intelligent Robots and Systems (IROS), 2017 IEEE/RSJ Interna-
tional Conference on. IEEE, 2017, pp. 2872–2879.

[6] S. Liu, K. Mohta, N. Atanasov, and V. Kumar, “Search-based motion
planning for aggressive flight in se(3),” IEEE Robotics and Automation
Letters, vol. 3, no. 3, pp. 2439–2446, July 2018.

[7] P. Florence, J. Carter, and R. Tedrake, “Integrated perception and
control at high speed: Evaluating collision avoidance maneuvers
without maps,” in WAFR 2016, 2016.

[8] T. J. Steiner, R. D. Truax, and K. Frey, “A vision-aided inertial navi-
gation system for agile high-speed flight in unmapped environments:
Distribution statement a: Approved for public release, distribution
unlimited,” in 2017 IEEE Aerospace Conference, March 2017, pp.
1–10.

[9] T. Qin, P. Li, and S. Shen, “Vins-mono: A robust and versatile monoc-
ular visual-inertial state estimator,” IEEE Transactions on Robotics,
vol. 34, no. 4, pp. 1004–1020, 2018.

[10] N. Kreciglowa, K. Karydis, and V. Kumar, “Energy efficiency of
trajectory generation methods for stop-and-go aerial robot navigation,”
in 2017 International Conference on Unmanned Aircraft Systems
(ICUAS), June 2017, pp. 656–662.

[11] T. Lee, M. Leoky, and N. H. McClamroch, “Geometric tracking control
of a quadrotor uav on se (3),” in Decision and Control (CDC), 2010
49th IEEE Conference on. IEEE, 2010, pp. 5420–5425.

[12] D. Mellinger and V. Kumar, “Minimum snap trajectory generation
and control for quadrotors,” in 2011 IEEE International Conference
on Robotics and Automation, May 2011, pp. 2520–2525.

[13] M. W. Mueller, M. Hehn, and R. D’Andrea, “A computationally
efficient motion primitive for quadrocopter trajectory generation,”
IEEE Transactions on Robotics, vol. 31, no. 6, pp. 1294–1310, Dec
2015.

[14] M. Hehn and R. D’Andrea, “Quadrocopter trajectory generation and
control,” IFAC Proceedings Volumes, vol. 44, no. 1, pp. 1485–1491,
2011.

[15] A. Elfes, “Using occupancy grids for mobile robot perception and
navigation,” Computer, no. 6, pp. 46–57, 1989.

[16] S. Scherer, J. Rehder, S. Achar, H. Cover, A. Chambers, S. Nuske,
and S. Singh, “River mapping from a flying robot: state estimation,
river detection, and obstacle mapping,” Autonomous Robots, vol. 33,
no. 1, pp. 189–214, Aug 2012.

[17] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to algorithms. MIT press, 2009.

[18] J. L. Blanco and P. K. Rai, “nanoflann: a C++ header-only fork of
FLANN, a library for nearest neighbor (NN) wih kd-trees,” https:
//github.com/jlblancoc/nanoflann, 2014.

[19] M. Muja and D. G. Lowe, “Scalable nearest neighbor algorithms for
high dimensional data,” IEEE Transactions on Pattern Analysis &
Machine Intelligence, no. 11, pp. 2227–2240, 2014.

[20] R. Tedrake and the Drake Development Team, “Drake: A planning,
control, and analysis toolbox for nonlinear dynamical systems,” 2016.

[21] F. Fraundorfer, L. Heng, D. Honegger, G. H. Lee, L. Meier, P. Tan-
skanen, and M. Pollefeys, “Vision-based autonomous mapping and
exploration using a quadrotor mav,” in Intelligent Robots and Systems
(IROS), 2012 IEEE/RSJ International Conference on. IEEE, 2012,
pp. 4557–4564.

[22] S. Shen, Y. Mulgaonkar, N. Michael, and V. Kumar, “Vision-based
state estimation and trajectory control towards high-speed flight with
a quadrotor.” in Robotics: Science and Systems, vol. 1. Citeseer, 2013.

[23] S. Daftry, S. Zeng, A. Khan, D. Dey, N. Melik-Barkhudarov, J. A.
Bagnell, and M. Hebert, “Robust monocular flight in cluttered outdoor
environments,” arXiv preprint arXiv:1604.04779, 2016.

[24] C. Richter, A. Bry, and N. Roy, “Polynomial trajectory planning for
aggressive quadrotor flight in dense indoor environments,” in Robotics
Research. Springer, 2016, pp. 649–666.

[25] D. Falanga, E. Mueggler, M. Faessler, and D. Scaramuzza, “Aggres-
sive quadrotor flight through narrow gaps with onboard sensing and
computing using active vision,” in Robotics and Automation (ICRA),
2017 IEEE International Conference on. IEEE, 2017, pp. 5774–5781.

[26] K. Mohta, K. Sun, S. Liu, M. Watterson, B. Pfrommer, J. Svacha,
Y. Mulgaonkar, C. J. Taylor, and V. Kumar, “Experiments in
fast, autonomous, gps-denied quadrotor flight,” arXiv preprint
arXiv:1806.07053, 2018.

[27] K. Mohta, M. Watterson, Y. Mulgaonkar, S. Liu, C. Qu, A. Makineni,
K. Saulnier, K. Sun, A. Zhu, J. Delmerico, K. Karydis, N. Atanasov,
G. Loianno, D. Scaramuzza, K. Daniilidis, C. J. Taylor, and V. Kumar,
“Fast, autonomous flight in gps-denied and cluttered environments,”
Journal of Field Robotics, vol. 35, no. 1, pp. 101–120.

[28] A. J. Barry, P. R. Florence, and R. Tedrake, “High-speed autonomous
obstacle avoidance with pushbroom stereo,” Journal of Field Robotics,
vol. 35, no. 1, pp. 52–68, 2018.

https://github.com/jlblancoc/nanoflann
https://github.com/jlblancoc/nanoflann

	INTRODUCTION
	DEFINITIONS AND PROBLEM FORMULATION
	TRAJECTORY COMPUTATION AND SELECTION
	Minimum-jerk motion primitive set generation
	Planning grids and moving local goal
	Receding planning horizon

	RESULTS
	Simulation results
	Trajectory smoothness
	Path quality
	Planner reactivity
	Dynamic velocity planning

	Experimental flight tests
	Discussion of a Single Exemplary Flight
	Discussion on full, 22km flight data

	RELATED WORK
	CONCLUSIONS AND FUTURE WORK
	References

