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Abstract—Robots that use learned perceptual models in the
real world must be able to safely handle cases where they are
forced to make decisions in scenarios that are unlike any of
their training examples. However, state-of-the-art deep learning
methods are known to produce erratic or unsafe predictions when
faced with novel inputs. Furthermore, recent ensemble, bootstrap
and dropout methods for quantifying neural network uncertainty
may not efficiently provide accurate uncertainty estimates when
queried with inputs that are very different from their training
data. Rather than unconditionally trusting the predictions of a
neural network for unpredictable real-world data, we use an
autoencoder to recognize when a query is novel, and revert to
a safe prior behavior. With this capability, we can deploy an
autonomous deep learning system in arbitrary environments,
without concern for whether it has received the appropriate
training. We demonstrate our method with a vision-guided robot
that can leverage its deep neural network to navigate 50% faster
than a safe baseline policy in familiar types of environments,
while reverting to the prior behavior in novel environments so
that it can safely collect additional training data and contin-
ually improve. A video illustrating our approach is available
at: http://groups.csail.mit.edu/rrg/videos/safe visual navigation.

I. INTRODUCTION

In many ways, cameras are ideal sensors for mobile robot
applications since they provide rich contextual information
that is required for many different types of navigation and
decision making problems. They are much smaller, lighter and
cheaper than LIDAR, and work in a wide variety of indoor
and outdoor lighting conditions, unlike most infrared RGBD
sensors. However, cameras pose substantial computational
challenges to extract information in usable forms. For example,
the range of dense, accurate depth information from visual
SLAM may be limited (like RGBD) to only a few meters.
Therefore, it is reasonable to assume that mobile robots will
be able to build geometric maps from images, but that those
maps will be very limited in range. Range limitations, in turn,
restrict the speed at which a robot can travel, and impede its
ability to anticipate more distant structures in the environment.

Nevertheless, camera images contain information about the
context and structure of the world far beyond the limited
range of accurate geometric inference. For instance, if a robot
observes a straight empty hallway ahead, it might reasonably
learn from experience and visual appearance that it can safely
travel at high speed down the hallway, even if it cannot infer
the exact geometry of the entire length of the hallway. If we
can extract this type of appearance-based information by other
means, we can improve navigation performance.

Deep learning has been shown to be well suited to extracting
useful information for navigation from raw sensor data such
as camera images [13, 27]. However, unlike visual SLAM
algorithms that infer geometry using domain-invariant prin-
ciples, neural networks adapt their representation to domain-
specific training datasets. Therefore, they may make unreliable
predictions when queried with inputs far from the distribution
of the training data [4]. Yet, we would still like to deploy
robots using neural networks “in the wild,” where safety is
critical but real-world data will almost certainly differ from
the training dataset, violating the common i.i.d. assumption
in machine learning. Moreover, conventional neural networks
provide no principled measure of how certain they are, or how
well-trained they are to make a given prediction.

Recognizing this limitation, some work has attempted to
quantify uncertainty with Bayesian neural networks [20, 5],
by training ensembles of networks on re-sampled versions of
the training dataset [26, 17, 8, 18], or by using dropout to
train an implicit family of models [9]. While these methods
are equipped to model the variance within the training data,
there has yet to emerge an established technique for reliably
producing appropriate uncertainty estimates for regions of
input space very far from the training data. Recent techniques
appear to be sensitive to particular choices of network archi-
tecture and residual randomness from initialization [10, 25],
and unlike Bayesian techniques such as Gaussian processes,
these methods do not predictably converge to a prior mean
and variance far from the training data. Furthermore, these
methods require tens or hundreds of network evaluations to
approximate the output distribution, compromising runtime
efficiency. Given these limitations, we believe that determining
the trustworthiness of a neural network prediction may be
more effectively addressed as a novelty-detection problem.

In this paper, we demonstrate safe, high-speed visual nav-
igation of an autonomous mobile robot, guided by a neural
network in environments that may or may not resemble the
training environment(s). We use a conventional feedforward
neural network to predict collisions based on images observed
by the robot, and we use an autoencoder to judge whether
those images are similar enough to the training data for
the resulting neural network predictions to be trusted. In
fact, Pomerleau [28] utilized a similar form of novelty detec-
tion when using a neural network to control an autonomous
vehicle, which we extend in several ways. First, if our novelty
detector classifies a planning scenario as novel, we revert to
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a safe prior behavior, which enables our system to operate
autonomously in any environment, regardless of whether it
has received appropriate training. Second, we continuously
collect training data and label it in a self-supervised manner
so that we can periodically re-train our models to improve,
and expand the set of familiar environment types, rather than
needing human demonstrations or manually-designed visual
simulators for training in every environment type.

In the next section, we will motivate and present the
problem formulation of our robot navigation scenario, which
builds upon our prior work in Richter et al. [29]. Then, we
will describe our method of learning to predict collisions
from camera images, and our approach to novelty detection.
Finally, we will present results including novelty detection and
navigation performance in several domains. Our simulation
results show that our learning method improves performance
significantly, in multiple environment types, while remaining
collision-free in all trials throughout the learning process.
Our experimental results demonstrate the effectiveness of our
approach in a real navigation scenario on a high-speed RC car.

II. VISUAL NAVIGATION PROBLEM FORMULATION

We aim to solve the problem of navigation to a goal location
incurring minimum expected cost in an unknown map. We
define the cost of navigation to be equal to the time spent
en route from start to goal, plus a fixed penalty on any
collisions that may occur along the way. We assume that
we will be building a geometric map online using SLAM
because it is helpful for practical reasons such as measuring
progress toward the goal. But, for the reasons discussed in
Section I, we also assume that our ability to accurately infer
dense environment geometry through our sensors is limited
to 5 m or less, which is characteristic of many monocular,
stereo and RGBD methods. The Microsoft Kinect sensor, for
instance, has an advertised range of only 4 m [1]. Since a short
perceptual horizon limits the available stopping distance of the
robot, the map itself is insufficient for high-speed navigation.
As has been shown previously, using learned models for
image-based guidance can significantly extend the effective
perceptual range and improve navigation performance [13, 34].

Let m denote the true, hidden, stationary map of the
environment, and m̂t be a partial estimate of the map built
from a SLAM process. The map estimate m̂t is computed
from the complete history of geometric sensor measurements
z0, . . . , zT up to time T . The geometric measurements zt may
come from a geometric sensor such as an RGBD camera or
from processing stereo or monocular camera images (or even
from a simulator during training time). We refer to the raw
camera image at time t as it. We consider zt and it to be
separate measurements, although in certain types of visual
SLAM systems, it could be processed to produce a geometric
measurement zt.

Since the map is initially unknown, it is impossible to
meaningfully plan a detailed complete path from the start
location to the goal. Therefore, we adopt a receding-horizon
replanning approach that selects a local action, at, of some

length, that avoids local obstacles that appear in the map
estimate m̂, avoids future collisions in expectation, and makes
progress toward the goal. The optimal action at time t is
chosen according to the following optimization problem:

a∗t =argmin
at∈A

Ja(at) + Jc · p(c|m̂t, it, at) + h(at, m̂t) (1)

s.t. g(m̂t, at) = 0. (2)

In this control law, at ∈ A is a dynamically feasible action,
Ja(at) returns the time duration of action at, and h(at, m̂t)
is a heuristic function that estimates the remaining time to
navigate from the end of action at to the goal. The second
term is an expected collision penalty in which p(c|m̂t, it, at)
is the probability that a collision will inevitably occur beyond
the end of action at, given the current map estimate and image.

Finally, g(m̂t, at) is a collision checking function that
returns 1 if action at intersects an observed obstacle in the
map estimate m̂t, and returns 0 if the action lies entirely within
known free space or unobserved space. Note that a conven-
tional collision-checking routine would also classify actions
intersecting unknown regions of the map as being in collision
as well, in order to formally guarantee safety. However, we
consider potential collisions beyond the mapped regions of
m̂t to be the responsibility of the collision prediction term,
not the constraint. This formulation will allow us to plan
actions whose stopping distance exceeds the available known
free space in cases where we trust the collision prediction—a
topic that we will describe in detail below.

As stated, this receding-horizon control formulation is
straightforward, with one exception: The collision probability
p(c|m̂t, it, at) is an unknown quantity. In a conventional MDP
or POMDP scenario, this probability distribution might be
derived from the distribution over environments given in the
problem definition. However, since we do not know the distri-
bution over the real-world environments in which we hope to
plan, we will approximate the distribution p(c|m̂t, it, at) by
learning a function from data.

In this work, we employ a neural network to predict
collision probability. Therefore, we may be tempted to simply
model the collision probability term in equation (1) as:

p(c|m̂t, it, at) = fc(c|it, at), (3)

where fc(c|it, at) is implemented as a neural network that
takes an image and action as input. Since we would like to
predict collisions based on images, not geometric maps, we
have dropped the dependence on m̂t.

However, as we have noted, neural networks may make er-
ratic predictions when queried with inputs unlike their training
distribution, so we must be able to detect when an input is
novel and revert to a default collision probability estimate that
is known to be safe, though perhaps conservative. To do so,
we introduce a function fn(it), which returns 1 if image it
is novel (i.e., unlike the distribution of training images), and
returns 0 otherwise. We then model the collision probability



distribution as follows:

p(c|m̂t, it, at) =

{
fc(c|it, at) if fn(it) = 0

fp(c|m̂t, at) if fn(it) = 1.
(4)

In this equation, the function fc(c|it, at) is a neural net-
work trained to predict collisions, as in equation (3), and
fp(c|m̂t, at) represents a prior estimate of collision probability
based on the geometric map estimate m̂t that can encourage
safe and sensible behavior when the robot is faced with a
novel-appearing environment for which fc is untrained. A
reasonable prior might be to limit speed such that the robot can
stop within the known free space of map m̂t if need be, and
since our geometric sensing range is limited, this speed may
be rather slow. In completely novel-appearing environments,
the robot will navigate according to the behavior suggested by
the prior fp, whereas in environments of familiar appearance,
the robot will trust its learned collision prediction model fc.

In the next section, we will describe how to represent and
train the function fc(c|it, at) as a feedforward neural network
and how to model the prior collision probability estimate,
fp(c|m̂t, at). Then, we will describe the method we use for
building fn(it) to detect novel images.

III. LEARNING TO PREDICT COLLISIONS

As we have observed in Section I, there are several advan-
tages to predicting collision from images based on training
experience, rather than relying solely on a geometric map.
First, images contain information about the environment that
extends well beyond the range to which detailed geometry can
be reliably inferred. And second, a prediction based on training
data can account for characteristics of the environment that are
not explicitly visible in the image but are implied by the visual
appearance, such as free space around a blind corner. Similar
to our previous work in Richter et al. [29], our objective in
training a model to predict collision probabilities is to capture
these advantages implicitly through training examples. We
approach this problem as a probabilistic binary classification
problem: Given a camera image, and some choice of action,
what is the probability that a future collision is inevitable
beyond the end of the chosen action? Therefore, we must
devise a method for building a training dataset that provides
labeled examples of image-action pairs, with a binary response
indicating whether a collision was inevitable or not.

A. Labeling Data

To produce a labeled training dataset offline, we assume
a collection of raw data of the following form: Draw =
{m̂, (q0, i0), (q1, i1), (q2, i2), . . . , (qN , iN )}, where m̂ is a
(perhaps incomplete) geometric map of an environment as pro-
duced by our SLAM system having traversed the environment,
qi is a robot configuration within that map, ii is an image taken
from configuration qi, and N is the number of data points.

Our strategy for labeling this dataset will be to cycle through
each image-configuration pair, randomly select an action ai
that could have been taken from qi, and use the geometric
map m̂ to determine whether that action would have resulted

(a) “Collision”. (b) “Collision”. (c) “Non-Collision”.

(d) Image for 1(a). (e) Image for 1(b). (f) Image for 1(c).

Fig. 1: Examples of the offline data labeling procedure, with
the associated image for each scenario.

in a collision at some point in the future. By associating ii
and ai with the resulting label, the learned model will be
able to predict (without access to the future measurements that
contributed to map m̂) that next time it encounters a similar
image-action pair, a similar outcome will be likely.

We illustrate several example labeling scenarios in Figure 1.
In Figure 1(a), the robot is in the middle of the hallway, and
the randomly selected action, illustrated in blue, steers toward
the right wall at low speed. To determine whether a collision
is inevitable after executing this action, we test a range of
possible actions that would bring the robot to a stop under
maximum deceleration with a variety of steering strategies. In
Figure 1(a), all of these so-called “emergency-stop” maneuvers
intersect the right wall, and are therefore colored red. Hence,
there exists no feasible action that can avoid collision after
executing the blue action. Figure 1(d) illustrates the robot’s
view from this configuration. This image, paired with the blue
action, would be assigned a label of “collision”.

Figure 1(b) illustrates another scenario in which the robot
is approaching a turn at a high speed, with Figure 1(e)
illustrating the view from this scenario. Again, all emergency-
stop maneuvers are doomed to collide with the far wall,
regardless of steering angle. Hence, in this case it is speed
that makes collision inevitable. However, Figures 1(c) and 1(f)
illustrate a scenario in which the robot is approaching the
corner, this time more slowly and farther from the turn. In this
case, an emergency-stop maneuver is feasible, and is illustrated
in black. This scenario would be labeled “non-collision”.

The distribution of “collision” and “non-collision” labels
is intended to capture the relationship between the image
observed by the robot, the geometry of the environment, and
the steering and braking capabilities of the robot with respect
to that image and environment geometry. After training on
a dataset constructed in this manner, our learned model of
collision probability will be able to safely guide a robot
through an environment like its training examples.

We also observe that we need not limit ourselves to a single
action and label for a given image, and since real images are
relatively expensive to obtain, it is very beneficial to reuse each



image to produce numerous labeled data points. Therefore, we
pair each image with 50 different actions and their associated
labels, resulting in a 50x increase in the amount of available
data for the collision predictor network to use for training.
We assume that for every image in our dataset, we will have
a sufficiently dense sampling of labeled image-action pairs
associated with that image to train our collision predictor.

B. Neural Network

We model collision probability using a fully connected
feedforward network, with an image and action as input. We
represent this input as a vector concatenating the grayscale
pixel intensities of the image with the x, y-position of the
end point of the action in the robot’s body-fixed coordinate
frame, and the speed at the end of the action. Therefore, our
network input is: x = [i0, i1, i2, . . . , iK , ax, ay, av], where
ik ∈ [0, 1] is the intensity of the kth pixel in image i, and
ax, ay , and av represent the terminal position and speed of
the action respectively. While it is easy to provide a richer
action parameterization, we found no benefit from doing so.

We use three hidden layers (200 nodes per layer) with
sigmoid activation functions, and a softmax output layer for
probabilistic classification of “collision” vs “non-collision”
categories. We train this network using mini-batch stochastic
gradient descent to minimize the negative log likelihood of
the data labels given the network parameters. We do not use
dropout or regularization. While this architecture functioned
well for this work, it will be useful to test larger networks and
convolutional architectures in future work.

C. Prior Estimate of Collision Probability

The prior is designed to encourage safety with a minimum
of domain knowledge or model-specific information. Our
prior predicts that an action carries zero probability of future
collision if there exists enough free space ahead of it to come
to a stop before intersecting an obstacle or unknown space.
If there does not exist enough free space to come to a stop,
we assign probability equal to zero for actions that reduce
speed, and probability equal to one otherwise. While more
sophisticated priors could be designed (or learned), this one
serves our purposes and illustrates that the performance of our
approach does not hinge on carefully hand-crafted functions.

We define the function dfree(m̂t, at), which returns the
length of known free space in map estimate m̂t, along the
ray extending from some robot pose along action at, averaged
over a number of equally-spaced poses along the action. We
also define the function dstop(at), which returns the stopping
distance required by the robot to come to a stop from the
speed at the end of action at. Finally, let v0(at) and vF (at)
be the initial and final speeds along action at, respectively.
With these functions, we define our prior as:

fp(c|m̂t, at) =
0 if dfree(m̂t, at) > dstop(at)

0 if dfree(m̂t, at) < dstop(at) and v0(at) > vF (at)

1 if dfree(m̂t, at) < dstop(at) and v0(at) < vF (at).

(5)

IV. NOVELTY DETECTION

To detect novelty, we adopt an autoencoder-based approach
proposed by Japkowicz et al. [15], and focus on camera images
as the domain of interest, although this general approach
is also applicable to a wide variety of complex domains,
including acoustic signals [22], network server anomalies [33],
data mining [14], document classification [21] and others.
Classification of novel data amounts to a one-class classifi-
cation problem since we assume that we only have access
to the set of images that have been observed and collected
by our system, and no examples of any other “unfamiliar”
images. Therefore, we cannot pose novelty classification as a
conventional binary classification problem.

To classify images as novel, we use a feedforward autoen-
coder with three hidden sigmoid layers and a sigmoid output
layer. The autoencoder is trained using mini-batch stochastic
gradient descent to reconstruct images by minimizing the sum
of squared pixel differences between the input and recon-
structed output. Let ik ∈ [0, 1] denote the intensity value of
the kth pixel of image i. The autoencoder loss function is:

Ln(i, î) =
1

K

K∑
k=1

(ik − îk)2, (6)

where î refers to the output of the autoencoder, i.e., the
reconstructed image. The number of pixels in i and î is K.

This novelty detection approach assumes that the autoen-
coder network will learn a compressed representation captur-
ing the essential characteristics of its training dataset such that
it will reconstruct similar inputs with low reconstruction error.
On the other hand, when the autoencoder is presented with a
novel input—that is, an input unlike any of its training data—
we expect the reconstruction error to be large. Therefore, to
classify novel images, we need only to set a threshold and
determine whether the reconstruction error for a given image
falls above or below that threshold.

Similar to Japkowicz et al. [15], we might consider setting
the threshold as some function of the largest reconstruction er-
ror of any single training data point. However, since this value
would depend only on a single outlier, we adopt a method that
we have found to produce more robust and consistent results,
which is to compute the empirical CDF of the distribution of
losses in the training dataset and select some high percentile,
such as the 99th percentile, to be the threshold. To distinguish
between two visually distinct categories of images, usually the
autoencoder will separate their distributions of reconstruction
error clearly, so the exact value of the threshold is not critical.

A. MNIST Examples

To illustrate the basic function of the autoencoder novelty-
detection method, we trained an autoencoder on the MNIST
digit recognition dataset using three hidden sigmoid layers
with 50 nodes per layer. Figures 2(a) and 2(b) show an
example test input drawn from the MNIST dataset, and its
corresponding output, respectively. The reconstruction error
for this example is Ln = 6.9 × 10−3, which falls below



(a) Input. (b) Output. (c) Input. (d) Output.

Fig. 2: (a)-(b) Input and reconstruction (output) for an image
of a ‘5’ digit, drawn from the training dataset. (c)-(d) Input
and reconstruction for an image of a ‘J’ character, drawn from
the notMNIST dataset, exhibiting high reconstruction error,
indicating that this input image is considered novel.
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Fig. 3: Autoencoder loss on a training dataset of simulated
hallway images with novelty threshold (vertical dashed line).

our computed threshold of Ln = 1.5 × 10−2. On the other
hand, Figures 2(c) and 2(d) illustrate an input drawn from the
notMNIST dataset [2] of letters from non-standard fonts, and
its corresponding output, respectively. In this case, it is clear
that the reconstruction does not resemble the input, and that is
reflected in the high reconstruction error of Ln = 3.2× 10−1,
which is well above the threshold for novelty. Rather than
using a discriminative prediction of class membership from a
neural network on this input, we should recognize that we do
not have the necessary training data and instead revert to a
prior such as a uniform distribution over class labels.

B. Robot Navigation Examples

To evaluate this novelty detection approach on a visual
navigation domain, we trained an autoencoder on a set of
simulated camera images from a hallway-type environment
and tested it on simulated images of hallways (the training
distribution) as well as forests of cylindrical obstacles (the
novel test distribution). Again, we used three hidden layers
with sigmoid activations, but since these images are more
complex than MNIST, we increased the hidden layer size to
200 nodes per layer. For computational efficiency, we use very
low resolution 60×44 images in this work, so the input and
output layer have dimension 2640. Figure 3 shows a histogram
of reconstruction errors for images in the hallway training
dataset, along with the PDF of a normal distribution computed
from the sample mean and variance of the reconstruction
errors. The vertical dashed line illustrates the threshold set
at the 99th percentile of the CDF of this distribution.

Figure 4 illustrates two examples of novelty detection.
Figure 4(a) illustrates an input image of a simulated hallway
drawn from the distribution of images used to train the
autoencoder and 4(b) shows the corresponding reconstruction

(a) Input. (b) Output. (c) Input. (d) Output.

Fig. 4: (a) A familiar input image of a simulated hallway,
drawn from the training distribution, and (b) the associated
accurate autoencoder reconstruction. (c) A novel input image
of a simulated “cylinder forest,” not drawn from the training
distribution, and (d) the resulting inaccurate reconstruction.

with a reconstruction error of Ln = 4.5×10−3, which is lower
than the threshold of 6.3× 10−3, resulting in a classification
of “not novel”. On the other hand, Figure 4(c) illustrates
an input image of a simulated forest of cylindrical obstacles
not drawn from the training distribution and 4(d) shows the
corresponding reconstruction, which has a reconstruction error
of Ln = 4.4×10−2, which is much greater than the threshold,
resulting in a classification of this image as “novel”. It is
visually apparent that the reconstruction in Figure 4(b) is much
more accurate than that in Figure 4(d), indicating that the
“cylinder-forest” image does not follow the same encoding
that the autoencoder learned for the hallway images.

C. Comments on Autoencoder-Based Novelty Detection

The feedforward autoencoder method works well for highly
structured data like MNIST digits and robot navigation envi-
ronments, where we have many similar examples that lie on
a fairly low-dimensional manifold of images. However, this
method might not be expected to work well for highly varied
datasets of unique images like CIFAR-10. Such datasets may
require larger convolutional autoencoders, or other techniques
to capture the true structure of the data rather than learn-
ing a trivial pixel-copy representation. As an alternative to
autoencoder-based novelty detection, we might also consider
kernel density estimation [4], or density estimation in a feature
space learned with a large CNN, as in the content-based
image retrieval application proposed by Krizhevsky et al. [16].
However, non-parametric methods would be very computa-
tionally expensive since they would require querying a high-
dimensional dataset for each prediction.

We also note that our autoencoder is not guaranteed to
become familiar with images of a certain appearance at the
same rate as the collision predictor network. An image may
be classified as ”not novel” while the collision predictor is still
insufficiently trained for that image. We have tried to prevent
this type of failure by matching the size and architecture of the
hidden layers of the two networks and have not experienced
these types of failures. However, we could also merge the two
networks so that they learn a single feature representation both
for prediction and novelty classification [28].

While the autoencoder approach has been effective and
efficient for our purposes, we believe that novelty detection
and uncertainty estimation for neural networks are still open
problems, and that other methods may be useful as well.



V. RESULTS

We tested our approach both in simulation and in experi-
ments using a small autonomous RC car. In both cases, we
initialized the system with an empty dataset and a randomly
initialized collision prediction network and autoencoder. We
initialized the autoencoder threshold to zero so that all images
would at first appear novel. We then repeatedly deployed the
robot to drive to a specified goal location, collecting images
during each run, labeling them, and re-training the collision
predictor and autoencoder networks with each addition of data
to the growing dataset. Video of our results is available at: http:
//groups.csail.mit.edu/rrg/videos/safe visual navigation.

In all simulation trials, we used a 110◦ field-of-view camera
model and a 5 m range for geometric sensing. In our experi-
mental trials, we used two different sensor configurations. In
one configuration, we used monocular visual-inertial odometry
(VIO) based on GTSAM for state estimation, and an Xtion
RGBD camera for depth estimation. In the other configuration,
we used a Hokuyo UTM-30LX planar LIDAR to perform
scan-matching for state estimation, and for geometric percep-
tion (artificially limited to a 110◦ field-of-view and 5 m range).
In both experimental configurations, we used a Point Grey
Chameleon camera with a 110◦ horizontal field-of-view as
input to our collision-prediction and novelty-detection models.

While this work is targeted at camera-only perception, the
drift and error in VIO prevented us from achieving maximum
performance and reliability in the LIDAR-free configuration.
Therefore, we used the LIDAR to test the merits of our
approach under the idealized circumstances of highly accurate
state estimation. We emphasize that in all tests, regardless of
the sensor used for state estimation and mapping, collision
prediction was performed only on camera images, combined
with the action description, as described above.

A. Visualizing Neural Network Predictions

Figure 5 shows the predictions of collision probability on
one real camera image from an experimental run and two
simulated images. In each case, the networks were trained
with a large dataset of relevant images, so novelty is not a
factor. The graph below each image illustrates the collision
probability as a function of the steering direction of the action
(i.e., atan2(ay, ax)), shown on the horizontal axis, and the
speed at the end of the action, indicated by color. Speeds vary
from 1 m/s (blue) to 10 m/s (red), illustrating that faster actions
carry a greater probability of resulting in future collision.

Figure 5(a) illustrates a view roughly aligned with the axis
of a real hallway, and therefore the learned model assigns
low probability of collision to actions aligned with that axis.
Figure 5(b) illustrates the robot in a right-hand turn in a
simulated hallway, so the probability model assigns lowest
probability of collision to actions that bear 25◦ to the right.
Finally, Figure 5(c) illustrates the robot in a simulated forest
of obstacles. Since there is a long gap between obstacles down
the center of the image, the predicted collision probability is
lowest at this point, but rises sharply for turns to the right,
due to an obstacle in the right foreground of the image.
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(b) Simulated hallway.
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(c) Simulated forest.

Fig. 5: Illustration of predicted collision probabilities. Each
image is illustrated with the learned collision probability
model below it, with the horizontal axis representing action
direction and color representing speed, from 1 m/s to 10 m/s.

B. Simulation Results

We tested our system in simulation with a run through each
of eight random hallway-type environments followed by eight
random “cylinder-forest”-type environments, re-training after
each run. Examples of both environment types are shown
in Figure 6. Each run contributed about 1250 images to
the dataset, so that after 16 trials, the system had collected
20000 images in total. For reporting performance statistics, we
performed 10 separate testing runs for each amount of training
data. All simulated training and testing trials were completed
without collision, demonstrating the safety of our approach.

Figure 7 illustrates the performance of our simulated system
as a function of the number of training images observed. The
first eight data points (blue) represent hallway environments,
while the second eight (red) represent “cylinder-forest” en-
vironments. As the system gained more training data from
hallway-type environments, it began to trust the learned model
of collision probability on a greater fraction of observed
images, resulting in faster average speed of navigation. As the
novelty fraction decreased monotonically, the average speed
of navigation increased. In total, the average speed increased
42% from 4.90 m/s to 6.97 m/s in the hallway environments.

After completing trials in the hallway environments, we
tested our system in “cylinder-forest” environments, carrying
over the complete dataset and trained models from the final
hallway test. Initially, all images were again classified as novel
since the forest environment type is visually distinct from the
hallway type. However, as our system accumulated images
from the forest environments, the same pattern emerged:
Monotonic decrease in novelty with corresponding increase in
speed. In forest environments, the speed increased 50% from
5.84 m/s to 8.80 m/s. The reason forest navigation was faster
than hallway navigation, both before and after training, is that
there is on average more free space ahead of the robot in forest
environments and no sharp turns are required.

C. Experimental Results using LIDAR

We performed a total of 80 experimental trials using a small
autonomous RC car in much the same way that we performed
our simulation trials, except that instead of re-training after
each run, we instead re-trained after every 10 runs through the

http://groups.csail.mit.edu/rrg/videos/safe_visual_navigation
http://groups.csail.mit.edu/rrg/videos/safe_visual_navigation


(a) Simulated hallway map.

(b) Simulated forest map.

Fig. 6: Maps of hallway (top) and “cylinder-forest” (bottom)
environments built by range-limited SLAM during navigation.
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Fig. 7: Simulation results. Perceived novelty of images en-
countered online, and average navigation speed, as a function
of the number of training images. Blue indicates hallway en-
vironments and red indicates “cylinder-forest” environments.

environment since the experimental environment was smaller
and yielded fewer images per run. A generated map of the
experimental environment is shown in Figure 8(a) and an
image from this environment is shown in Figure 10(a).

We observed essentially the same qualitative results in our
experiments as we did in simulation. As the system collected
more training images, the fraction of images considered novel
decreased, resulting in a corresponding increase in speed of
navigation, as illustrated in Figure 9. We observed an average
speed increase of 25%, from 3.38 m/s to 4.24 m/s. However,
since the experimental environment was small compared to the
simulation environment, a substantial portion of the navigation
time was spent accelerating from the start and decelerating at
the goal. Therefore, we also provide the average maximum
speeds observed for each amount of training data, where there
was a much more substantial improvement of 55%, from 3.79
m/s to 5.90 m/s. This improvement in maximum speed implies
that if the experimental environment were larger, we would
observe a greater improvement in average speed as well.

Figure 11 illustrates the autoencoder reconstruction error for
three categories of data after training on nearly 9000 training
images from numerous runs through the experimental environ-
ment depicted in Figure 8(a) and 10(a). The blue histogram
and PDF indicates the reconstruction error of the training
images, from which the threshold (dashed line) was computed.
The red histogram and PDF represents the reconstruction
error of approximately 1000 images collected during testing
runs in the same environment, but not used for training the
autoencoder. While the reconstruction error of these images is
not as low as the training images, most fall below the novelty
threshold. Finally, the black histogram and PDF illustrate the

(a) LIDAR-mapped hallway environment for training and testing.

(b) Xtion-mapped novel environment used for LIDAR-free testing.

Fig. 8: Maps of experimental environments.
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Fig. 9: Experimental results for 80 experimental trials. Each
data point represents the average over 10 trials with a given
model between re-training episodes.

reconstruction error of a truly novel environment—a well-lit
lab area with obstacles (Figures 8(b) and 10(b)). Visually, this
environment is quite different from the training environment,
and that is reflected in the much greater reconstruction error,
with all images falling above the novelty threshold.

D. Experimental Results using Monocular VIO and RGBD

We performed experiments on our autonomous RC car using
a LIDAR-free sensor configuration in order to demonstrate
steps toward a completely vision-based learning and naviga-
tion pipeline. However, as noted previously, inaccuracies in the
monocular VIO state estimate made this sensor configuration
unsuitable for demonstrating the entire training and testing
procedure. Nevertheless, we were able to test the LIDAR-free
sensor configuration in both environments depicted in Fig-
ures 8 and 10 using the collision-prediction and autoencoder
models previously trained with the other sensor configuration.

In the hallway training environment, we achieved a mean

(a) Familiar Environment. (b) Novel Environment.

Fig. 10: Images from (a) the hallway in which training took
place, and (b) a novel environment not used in training.
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Fig. 11: Histogram of autoencoder loss for experimental data.

speed of 3.26 m/s and a top speed over 5.03 m/s. This
result significantly exceeds the maximum speeds achieved
when driving in this environment under the prior estimate of
collision probability before performing any learning. On the
other hand, in the novel environment, for which our model was
untrained, the novelty detector correctly identified every image
as being unfamiliar. In the novel environment, we achieved a
mean speed of 2.49 m/s and a maximum speed of 3.17 m/s.

We emphasize that these results represent an improvement
of 31% in mean speed and 59% in maximum speed after
learning, for monocular vision-based navigation using a neural
network. Naturally, the robot navigated more slowly in the
novel environment than it did in the familiar one, but our
method enables the robot to navigate in novel environments
safely, potentially gathering data and re-training, whereas that
would not be feasible without novelty-detection.
E. Autoencoder Validation

To characterize the performance of our autoencoder novelty
detection approach on a wider variety of real environments, we
tested it on 16 visually distinct hallways at MIT. We collected
approximately 5000 images from each hallway and trained
autoencoders on the images from between 1 and 13 different
hallways, while testing on three other hallways reserved for
testing. We then repeated this process for ten different permu-
tations of which hallways were used for training and which
were used for testing. The results are shown in Figure 12,
with each colored line representing a particular permutation,
and the black line indicating the average.

These results show that after training on only a single
hallway, the three test hallways were considered to be novel,
indicating that a single hallway does not contain enough
variation to capture the characteristics of hallways in general.
However, after training on 13 hallways, our models classified
90.6% of test hallway images as “not novel”, while correctly
classifying 91.5% of test images from an outdoor courtyard
and 94% of test images from a parking garage as “novel”.
These results show that the autoencoder method of novelty
detection is able to meaningfully generalize to a family of
images with common structure, rather than merely memorizing
or overfitting to a particular training dataset. See Richter [30]
for additional validation examples and discussion.

VI. RELATED WORK

There has been substantial work applying neural network
learning to image-based navigation. For instance, the DARPA
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Fig. 12: Perceived novelty of unseen testing hallways as a
function of the number of hallways used for training. Four
example hallways are pictured in the upper right.

LAGR program featured long-range terrain classification using
a neural network, in an similar role to our collision prediction
approach [13]. Barnes et al. [3] and Oliveira et al. [24] provide
more recent examples of deep learning used to segment
image pixels into drivable routes, which can then be used for
planning. While we focus on supervised learning of collision
probability, there are many other ways to map between images
and actions, including end-to-end neural networks [6, 19],
affordance-based representations [7], reinforcement learning
using either simulated or real images [23, 31], and classifi-
cation of paths from manually collected data [11]. While it
would be impossible to survey the vast literature on visual
navigation here, we note that these examples and many others
do not explicitly address uncertainty about the learned model.

In our prior work, we considered model uncertainty in
collision prediction, but focused on features of geometric
maps, rather than images and neural networks [29]. Grimmett
et al. [12] suggest that if a classification error is to be made
in robotic decision making, it should be made with high
reported uncertainty so that the robot can avoid consequences
of a wrong decision. Sofman et al. [32] use online novelty
detection in this way, to avoid scenarios for which their robot
is untrained. In contrast, our use of novelty detection allows
the robot to proceed safely under the prior, gather its own
training data, and continually improve.

VII. CONCLUSION

In this work, we have demonstrated a safe, self-supervised
method of learning a visual collision prediction model online.
We have shown that by using an autoencoder as a measure
of uncertainty in our collision prediction network, we can
transition intelligently between the high performance of the
learned model and the safe, conservative performance of a
simple prior, depending on whether the system has been
trained on the relevant data. In future work, it will be valuable
to train and test on a much wider variety of environments,
using large convolutional network architectures, to scale up
our approach and examine the generalization of our models.
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