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Abstract— In this paper we consider deploying a network of
static sensors to help an agent navigate in an area. In particular
the agent uses range measurements to the sensors to localize
itself. We wish to place the sensors in order to provide optimal
localization accuracy to the agent.

We begin by considering the problem of placing sensors in
order to optimally localize the agent at a single location. The
Position Error Bound (PEB), a lower bound on the localization
accuracy, is used to measure the quality of sensor configurations.
We then present RELOCATE, an iterative algorithm that places
the sensors so as to minimize the PEB at that point.

When the range measurements are unbiased and have constant
variances, we show that RELOCATE is optimal and efficient.
We then apply RELOCATE to the more complex case where
the variance of the range measurements depends on the sensors
location and where those measurements can be biased.

We finally apply RELOCATE to the case where the PEB must
be minimized not at a single point, but at multiple locations.
We show that, compared to Simulated Annealing, the algorithm
yields better results faster on these more realistic scenarios.
We also show that by optimally placing the sensors, significant
savings in terms of number of sensors used can be achieved.
Finally we illustrate that the PEB is not only a convenient
theoretical lower bound, but that it can actually be closely
approximated by a maximum likelihood estimator.

I. INTRODUCTION

A. Motivation
There has been considerable work devoted to the target

localization problem, where the target position is to be de-
termined from a set of possibly noisy measurements [1]–[4].
We focus in this paper on range-only localization, where the
measurements used to locate the target are range estimates
between the target and a set of stationary sensors. These range
measurements can be obtained via acoustic or electro-magnetic
media (e.g. sonar [5], [6], or radar [1], [7]). We consider a
mission scenario where accurate localization must be enabled
in a specific area. Because the path of the so-called “target”
may be known beforehand, we refer to it instead as an “agent.”
For example we may want to provide a robot with its position
at all times as it moves inside a building. Sensors would then
be deployed to designated locations around the building (e.g.
from the outside using human personnel or airdrops via an
aircraft), in order to provide the necessary indoor coverage.

The effect of the sensors’ geometry on the quality of the
position estimate is well-known. For example the Geometric
Dilution of Precision (GDOP) has been used and studied ex-
tensively, notably by the GPS community, to assess the quality
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of different satellite configurations [8]–[10]. The Information
Inequality [11] is also a popular means of deriving measures
of localization accuracy that combines both the sensors’ ge-
ometry and the statistical properties of the measurements.
The Position Error Bound (PEB) was derived in [12] using
the Information Inequality for an indoor localization system
using Ultra-Wideband (UWB) ranging sensors. Because of its
generality, the PEB will be used in this paper to measure the
quality of sensors configurations.

Although the effect of geometry is well-known, there is
comparatively little work on the optimization of sensor place-
ment in order to optimize the sensor geometry. In this paper
we develop RELOCATE, a coordinate-descent algorithm, and
demonstrate theoretically and through numerical simulations
that this approach is well-suited for the optimal sensor place-
ment problem.

In Section II we define the PEB and present RELOCATE,
the placement algorithm. In Section III we apply RELOCATE
to the single agent location problem where the range measure-
ments are unbiased and have constant (but possibly different)
variances. We introduce the coordinate transform that allows
us to prove key results, in particular that RELOCATE con-
verges to the global minimum efficiently. An algorithm solving
this placement problem has been proposed in [13], but that
method cannot be easily extended beyond that simple case.
Our goal in this section will be to gain confidence in our
algorithm before generalizing it to more complex cases.

In Section IV we adapt our algorithm to deal with the more
realistic case where the range measurements can be biased
and their variance depends on the sensor location, something
not present to our knowledge in the literature. In Section V
we then consider the case where instead of minimizing the
PEB at a single location (which does not have many realistic
applications), the average PEB over multiple agent locations
is to be minimized. We show that our algorithm performs
well on this realistic scenario by comparing its performance
to Simulated Annealing (SA) [14]. We also show that by
carefully planning the sensor placement, fewer sensors are
required to achieve the same accuracy than one-size-fits-all
approaches such as distributing the sensors evenly on the
area boundary. Finally we show that the PEB is not only a
convenient theoretical lower bound, but that it can actually be
closely approximated by a maximum likelihood estimator.

Throughout this paper we restrict ourselves to static sensors
operating in 2D.



B. Related Work

McKay [15] and Hegazy [16] minimize the condition num-
ber of the visibility matrix in order to minimize the impact
of range measurement errors on the position estimate. In
both [15] and [16], three dimensions are considered, although
in [15] the sensors are constrained to lie on the ground. A
Sequential Quadratic Programming method is used to solve the
problem in [15], while in [16] an analytical solution is derived
for 4 sensors. Sinha [17] maximizes the Fisher information
gathered by a group of sensor UAVs, which blends sensor
geometry, survivability, and distance to the target. A Genetic
Algorithm coupled with a gradient descent algorithm is used
to search for the global minimum.

Abel [18], Martinez [19], and Zhang [13] optimize the
sensor placement by minimizing a cost related to the Cramér-
Rao bound (CRB), obtained from the Information Inequality.
The acoustic sensors are constrained to lie on a line segment
in [18], which allows for a simple analytic solution. Martinez
[19] derives an analytic form for the CRB in 2D and 3D for the
case where all the sensors have similar measurement variance.
The classic result is found, namely that the configuration
with minimum CRB is that with all sensors evenly spread
around the agent [20]. The authors then use this result to
dynamically control the sensors in order to track a moving
agent. Finally Zhang [13] considers the optimal placement of
sensors in 2D, where the sensors have different (but constant)
measurement variances. He minimizes the determinant of the
joint covariance matrix, which turns out to be equivalent to
minimizing the CRB. Zhang then obtains the minimum value
of the CRB for this case and proposes an algorithm that
converges to the optimal sensor placement in n-3 steps (where
n is the number of sensors). Zhang’s algorithm, however, does
not generalize beyond the case of constant variances, which
limits its applicability to more realistic scenarios.

Most of these papers are restricted to optimizing the sensor
placement for the localization of a single agent location. A
possible exception is [19] since the agent can move, but in this
case the sensors are mobile and can adaptively rearrange their
configuration. Sheng [21] considers the placement of static
sensors for the localization of an agent along its path, but the
approach is more statistical in nature and assumes that many
sensors can be deployed.

II. PRELIMINARIES AND NOTATIONS

A. Modeling of the Range Measurements

We consider a system of n range sensors. In the literature
these range measurements are typically assumed to be unbi-
ased, normally distributed independent variables with constant
variances [13], [18], [19], but we will use a more general
model for these measurements. In particular, we base our
modeling on results obtained with UWB range sensors [4].
UWB technology potentially provides high ranging accuracy
in cluttered environments [22]–[25] (such as indoor or urban
environments), owing to its inherent fine delay resolution
and ability to penetrate obstacles [26]–[29]. It is therefore
an excellent candidate technology for range measurements,
outdoors and indoors. As described more in depth in [12],

the range measurement r̃k of the kth sensor can be expressed
as

r̃k = dk + bk + εk, (1)

where dk is the true distance between the sensor and the agent,
bk is a positive bias, and εk is a random Gaussian noise.
Although the biases bk can be distributed according to any
type of staircase diagram [12], we assume here that the biases
are uniformly distributed between 0 and βk. This is without
loss of generality, as the algorithm presented in this paper can
easily accommodate more general distributions. The Gaussian
noises εk are independent of bk, with zero-mean and variance
σ2

k. We model their dependence on the distance dk as

σ2
k(dk) = σ2

0kdα
k , (2)

where α ≥ 0 is the path-loss exponent and σ2
0 is the variance

at one meter [24], [28].
The probability density function (pdf) of the unbiased range

measurement rk given the true distance dk is then

fk(rk|dk) =

1
βk

[

Q
(

rk−dk−βk/2
σ(dk)

)

−Q
(

rk−dk+βk/2
σ(dk)

)]

, (3)

where Q(x) = 1√
2π

∫ +∞
x

e−t2/2dt is the Gaussian Q function.
This expression is general in that it allows the range measure-
ment to be biased (as is often the case due to non-line-of-sight
(NLOS) propagation), and the range measurement variance to
vary with the distance. The pdf is plotted on Figure 1 for
dk = 15m and βk = 2m. The expression in (3) can be
easily specialized to the case when there is no bias in the
measurements (βk = 0), so that

fk(rk|dk) =
1√

2πσk(dk)
e
− (rk−dk)2

2σ2
k
(dk) . (4)

If in addition the measurement variance does not depend on
the distance as is commonly assumed, then

fk(rk|dk) =
1√

2πσ0k

e
− (rk−dk)2

2σ2
0k , (5)

and we obtain the model typically assumed in the literature,
i.e., where the measurements are unbiased and normally dis-
tributed with constant variance.

B. The Design Variables θ

We will constrain the sensors to lie on the boundary of a
set (representing for example the exterior walls of a building).
Initially we assume this set to be convex, with the agent in its
interior. In this case the position of the sensor is completely
determined by θk, the angle the agent makes with the kth

sensor, as shown on Figure 2. The design variables to be
optimized are the sensor locations, denoted by the vector
θ = (θ1, . . . , θn). The convexity assumption of the set is
for convenience, and will be relaxed later on in this paper,
when for example sensors can be placed on walls belonging
to different buildings. In that case the angles θk are not
sufficient to unambiguously characterize the sensors positions
and another parametrization should then be used.
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Fig. 1. Probability density function of the error in range measurements
r̃i − di given the true distance di = 15m and βi = 2m.
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Fig. 2. The agent (square) is inside a convex area, and the sensors (circles)
are placed on its boundary. The distance between the agent and sensor k
depends only on θk .

C. The Position Error Bound (PEB)

The PEB is a lower bound on the localization accuracy of
any unbiased position estimator, so it is a natural choice to
measure the quality of sensor configurations. In particular we
have

√

Er {(x− x̂)2 + (y − ŷ)2} ≥ PEB (6)

for any estimator (x̂, ŷ) of the true agent’s position (x, y),
where Er denotes the expectation taken over the range mea-
surements r

1. Although the range measurement model de-
scribed above is quite general, it is possible to obtain a closed-
form expression for the PEB. We refer the reader to [12] for

1If R̂ =
p

(x − x̂)2 + (y − ŷ)2 is the distance error between the true
position and an estimated position (x̂, ŷ), then the PEB is a lower bound on
the mean-square error (MSE) of this distance.

a detailed derivation. We obtain

PEB (θ) =

√

∑n
k=1 Ak

∑n
k=1 Akc2

k

∑n
k=1 Aks2

k − (
∑n

k=1 Akcksk)2
,

(7)
where Ak = Ak(θk), ck = cos θk, sk = sin θk, and

Ak(θk) =
1

βkσk(dk)π
√

2

∫ ∞

−∞
h(y, βk, dk)dy, (8)

with

h(y, β, d)=

2

4e
−

„

y+
β

σ(d)
√

2

«2
“

1+ αβ
2d

+
ασ(d)

d
√

2
y

”

−e−y2
“

1+
ασ(d)

d
√

2
y

”

3

5

2

Q(
√

2y)−Q(
√

2y+ β

σ(d) )
.

(9)

The coefficient Ak(θk) is called the importance weight of the
kth sensor. Note that when there is no bias (βk = 0), we have

Ak(θk) =
1

σ2
0kdα

k (θk)
+

α2

2d2
k(θk)

. (10)

If in addition α = 0 and all the standard deviations are
equal, the PEB is simply equal to the GDOP multiplied by the
standard deviation of the range measurements. In that case all
the range measurements are equally weighted (by 1/σ2

0), and
minimizing the PEB is equivalent to minimizing the GDOP.
In fact it is well-known that the minimum GDOP in this case
is obtained when the sensors are placed at the vertices of a
regular polygon centered around the agent [20].

When α or β are non-zero, however, equation (8) implies
that the range measurements from different sensors will not
be equally weighted in the PEB. Some sensors will have large
importance weights due to favorable propagation characteris-
tics between the agent and the sensor, or because they are
close to one another. Others will receive a low weight, for
example if the distance between agent and sensor is large, or
if the propagation environment is harsh (e.g. much clutter).
Minimizing the PEB therefore implies striking the optimal
balance between spatial diversity (captured by the sine and
cosine in (7)) and range measurement quality (captured by
the importance weights). This non-trivial task requires using
an optimization algorithm.

D. Generic Algorithm Description

We now present the RELOCATE algorithm in its generic
form. This algorithm is a coordinate descent algorithm, i.e.,
it minimizes the PEB one coordinate at a time, until conver-
gence. It operates as follows:

RELOCATE

• Randomly initialize θ
1 = {θ1

1, ...θ
1
n}, p = 1;

• Until convergence, do:
1) Select sensor ip for relocation;
2) Find the angle θ∗ip

that minimizes the PEB along
θip

;
3) Set θp+1

ip
= θ∗ip

and θp+1
k = θp

k for all k 6= ip, so

that θ
p+1 =

(

θp
1 , . . . , θ∗ip

, . . . , θp
n

)

;
4) p← p + 1.



Coordinate descent algorithms are efficient as long as the
minimization in step (2) is fast [30], i.e., as long as finding θ∗ip

such that ∂PEB

∂θip
(θ∗ip

) = 0 and ∂2
PEB

∂θ2
ip

(θ∗ip
) ≥ 0 is easy. In the

following section we show that step (2) can in fact be solved
in closed-form when the importance weights are constant.
This result, along with others on convergence and rate of
convergence, will be made possible through the coordinate
transform introduced next.

III. SINGLE AGENT LOCATION AND SENSORS WITH
CONSTANT IMPORTANCE WEIGHTS

Let us consider the case where the importance weights
Ak(θk) do not depend on θk, that is, the weights are inde-
pendent of where the sensors are located. This can be the
case for example if we assume that the variance of the range
measurements is constant (α = 0) and there are no biases
(β = 0), which is the typical assumption in the literature.
From (7) we see that in this case the PEB is the same for
angles modulo π, so we will only consider values of θk

between 0 and π. We also assume without loss of generality
that An ≥ ... ≥ A1.

A. Coordinate Transform
Instead of working directly with the angles θi, we introduce

a set of complex numbers (or vectors) r(θ) and zi(θ) for
i = 1, . . . , n. This representation will be critical in allowing
us to solve step (2) of RELOCATE in closed-form, to prove
the optimal convergence of the algorithm, and to approximate
its expected rate of convergence.

Definition 1 (Coordinate transform):

zi(θ) = e−2jθi

∑

k 6=i

Ake2jθk , ∀ i = 1 . . . n, (11)

r(θ) =

n
∑

k=1

Ake2jθk , (12)

r(θ) = |r(θ)|, (13)

where j denotes the complex number such that j2 = −1.
In particular we will show that if the PEB is minimum at θ̃,
we must have <

{

zi(θ̃)
}

≤ 0 and =
{

zi(θ̃)
}

= 0 for all i, in

other words all the zi(θ̃) must lie on the negative real axis2.

B. General Results on the PEB
The assumption of constant weights leads to two key results

about the PEB. The first result, given in the following lemma,
relates r(θ) to PEB (θ).

Lemma 1: When the importance weights are constant,
minimizing PEB (θ) is equivalent to minimizing r(θ), and
PEB (θ) can be re-written as

PEB (θ) =

√

4
∑n

k=1 Ak

(
∑n

k=1 Ak)2 − r2(θ)
. (14)

Proof: This follows directly from (7) and (12) after a
few elementary algebraic manipulations.

2where <{a} and ={a} respectively are the real and imaginary parts of
a, a complex number.
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Fig. 3. Shape of PEB(θip ) when the weights are constant. Note that it has
a unique minimum in [0, π).

r(θ) therefore provides a measure of the distance to optimality,
and so it will be referred to as the error radius. The following
lemma gives a lower bound on the error radius.

Lemma 2: For any θ we have

r(θ) ≥ r∗ = max(0, An −
n−1
∑

k=1

Ak). (15)

Proof: If An ≤
∑n−1

k=1 Ak, then r∗ is 0 and the
relationship holds since the error radius is by definition always
non-negative.

If An >
∑n−1

k=1 Ak, then r(θ) is minimized by having all
the vectors Ake2jθk (k = 1, . . . , n−1) aligned in the opposite
direction to the vector of maximum amplitude Ane2jθn . For
example this can be achieved by setting θn = 0 and θk = π/2
for k = 1, . . . , n− 1, so that r(θ) = An−

∑n−1
k=1 Ak and (15)

again holds.
Therefore, if there exists θ̃ such that r(θ̃) = r∗, θ̃ is a global
minimum of the PEB. In particular, if An >

∑n−1
k=1 Ak, the

global minimum is easily found by setting (for example) θn =
0 and θk = π/2 for k = 1, . . . , n− 1.

Step (2) of RELOCATE involves a 1-dimensional minimiza-
tion of the PEB along θip

(or equivalently a minimization
of the error radius along θip

). A typical shape of the PEB
as a function of θip

is plotted on Figure 3. As indicated
on the figure, the PEB is a smooth function of θip

with a
unique minimum in [0, π). The second key result, stated in
the following lemma, gives the closed-form expression of this
unique minimum.

Lemma 3 (Closed-form solution to step (2) of RELOCATE):
The minimization

θ∗i = arg min
θi∈[0,π)

{r(θ1, . . . , θi, . . . , θn)}

has a unique solution given by

θ∗i =
1

2
arctan

(

∑

k 6=i Ak sin 2θk
∑

k 6=i Ak cos 2θk

)

+ q
π

2
, (16)



where q ∈ {0, 1} such that <{zi(θ1, . . . , θ
∗
i , . . . , θn)} ≤ 0.

Proof: We first write from (12)

r2(θ) = |
∑

k 6=i

Ake2jθk |2 + A2
i + 2Ai

∑

k 6=i

Ak cos(2θk − 2θi).

(17)
The minimum of r(θ1, . . . , θi, . . . , θn) with respect to θi is
the same as that of r2(θ1, . . . , θi, . . . , θn) and is found where
the corresponding first partial derivative is 0 and the second
derivative is non-negative. We first calculate

∂
(

r2(θ)
)

∂θi
= 4Ai

∑

k 6=i

Ak sin(2θk − 2θi) (18)

= 4Ai={zi(θ)} . (19)

This is a sinusoidal function of θi, which is 0 twice in [0, π).
The two roots are given by

θ0
i =

1

2
arctan

(

∑

k 6=i Ak sin 2θk
∑

k 6=i Ak cos 2θk

)

, (20)

θ1
i =

1

2
arctan

(

∑

k 6=i Ak sin 2θk
∑

k 6=i Ak cos 2θk

)

+
π

2
. (21)

By taking the derivative of (18) one more time with respect
to θi we obtain

∂2
(

r2(θ)
)

∂θ2
i

= −8Ai<{zi(θ)} , (22)

which is a sinusoidal function of θi that is non-positive at
either θ0

i or θ1
i (but not both), depending on which one yields

<{zi(θ)} ≤ 0. There is therefore a unique value of θi in
[0, π) for which (18) is 0 and (22) is non-negative, and r(θ)
has a unique minimum along the ith coordinate, obtained at
θ∗i given by (16).

The following corollary follows from this proof.
Corollary 1: If at iteration p RELOCATE selects sensor ip

for relocation, the corresponding zip
is rotated by −2θ∗ip

so
as to lie on the negative real axis, i.e.,

<
{

zip
(θp

1 , . . . , θ∗ip
, . . . , θp

n)
}

≤ 0 and

=
{

zip
(θp

1 , . . . , θ∗ip
, . . . , θp

n)
}

= 0.
We also have the following result.
Corollary 2: The stationary points of the PEB are such that

all zi lie one the real axis. Moreover candidates for minima
are those stationary points for which all zi lie on the negative
real axis.

Proof: At a stationary point θ̃ of the PEB, the gradient of
the PEB with respect to θ is the zero vector. In other words,
all the first partial derivatives ∂PEB

∂θi
(θ̃) = 0. From (19) this

means that =
{

zi(θ̃)
}

= 0 of all i, i.e., all zi lie on the real
axis.

Candidates for minima will also be such that the second
derivatives of the PEB will be positive. From (22) this implies
that in addition <

{

zi(θ̃)
}

≤ 0 of all i, i.e., all zi lie on the
negative real axis.
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Fig. 4. Optimal configuration found by RELOCATE when 5 sensors are to
be placed and Ak = 1.

The following lemma proves that RELOCATE actually
converges to the stationary points that are candidates for
minima.

Lemma 4 (Convergence of RELOCATE): RELOCATE
converges to a stationary point θ̃ =

(

θ̃1, . . . , θ̃n

)

, such that

all zk(θ̃) lie on the negative real axis, or

<
{

zk(θ̃)
}

≤ 0 and =
{

zk(θ̃)
}

= 0 ∀k = 1, . . . , n.

(23)

Proof: Coordinate descent algorithms are guaranteed
to converge to some stationary point if the function to be
minimized is continuously differentiable and if the minimum
in step (2) is uniquely attained [30]. This is the case here as
shown in Lemma 3, so RELOCATE converges to a stationary
point. This stationary point will be such that all θ̃k satisfy
(16) and therefore all zk(θ̃) lie on the negative real axis, or
<
{

zk(θ̃)
}

≤ 0 and =
{

zk(θ̃)
}

= 0 for all k (Corollary 1).

RELOCATE therefore converges to stationary points that are
candidates for minima (Corollary 2). In practice the algorithm
almost always converges to the global minimum. In fact by
adding an additional condition to RELOCATE, it can be shown
that it is guaranteed to converge to the global minimum. This
will not be treated in this paper.

Consider the case where 5 sensors have to be optimally
placed, and where Ak = 1 for all k. RELOCATE yields the
configuration shown on Figure 4. The final PEB is equal to
0.8944m, which is optimal since it is equal to the value of the
PEB when r = 0 in (14). The sensors are evenly distributed
around the agent. Note that any sensor could be moved by π
without changing the PEB value, so other configurations are
optimal as well.

C. Rate of Convergence
It is also possible to show that not only is RELOCATE

guaranteed to find the global minimum, but it is also an
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Fig. 5. Theoretical value of the expected rate of decrease of the error radius
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efficient algorithm. When Ak = 1 for all k, we define the rate
of convergence τp as the ratio between error radii rp+1/rp.
Treating the rate of convergence as a random variable τ , we
can approximate the expected rate of decrease of the error
radius by

E[τ ] '
∫ 1

0

(

2 cos−1 x

π

)n−1

dx, (24)

at each iteration p such that rp � 1. On average RELOCATE
therefore converges linearly.

On Figure 5 this theoretical expected rate is plotted as a
function of n, the number of sensors (dashed curve). It tends
to 0 as n goes to infinity, which means that convergence is
faster when more sensors are present. We also performed 100
runs of RELOCATE for these values of n and computed the
average ratio of decrease, once rp was below 0.1. We see that
as the number of beacons increases, the experimental average
rate matches the theoretical value better.

We can also use the previous result to estimate the average
number of iterations required to reach a certain precision in
PEB. When Ak = 1 ∀k, r∗ = 0 and the minimum value of
the PEB for n sensors is equal to PEB

∗ = 2/
√

n (14). We
can then express the relative error in PEB compared to the
optimum value PEB

∗ as

PEB
p − PEB

∗

PEB
∗ =

1
√

1− (rp/n)2
− 1, (25)

so that it is approximately equal to (rp/n)2/2 for small values
of rp. Let s be the precision required, i.e., the maximum
relative error permitted.

We assume we start the algorithm with a radius of 0.1, so
that r1 � 1. On average we then have rp = τp−1r1. Achiev-
ing precision s will then require 1 + log(10n

√
2s)

logτ iterations
on average (not counting the iterations required to bring the
radius below 0.1). This number is plotted as a function of
the number of sensors for several values of the precision on
Figure 6. We can see that once the error radius goes below
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Fig. 6. Expected number of iterations once the error radius goes below 0.1
as a function of n. We have plotted this for several values of the precision s.

0.1, the algorithm converges in a few iterations even for high
precision requirements. This is even more so as the number
of sensors increases, which tends to speed up convergence.

IV. SINGLE AGENT LOCATION WITH VARYING
IMPORTANCE WEIGHTS

So far the importance weights of the sensors were assumed
constant, no matter where the sensors were. Although it
permitted us to prove that RELOCATE is optimal and effi-
cient, this assumption is unlikely to be realistic in real-world
scenarios. Since the signal-to-noise ratio (SNR) decreases
exponentially with distance, the range measurements will be
more accurate (i.e. have lower variance) if sensors and agent
are close to one another. Likewise if the agent is inside a
building, greater accuracy will be achieved if there is minimal
obstruction between the two (as opposed to when several walls,
machines, or other objects corrupt the signal). The result is
that the importance weights of (8) will depend on the sensors’
locations.

Given RELOCATE’s theoretical guarantees when the impor-
tance weights are constant, we now proceed with confidence
in applying the algorithm to more complex (and realistic) sce-
narios. In the first one, the importance weights are piecewise
constant functions of the angle. The second case is the most
general, where the importance weights are allowed to vary
arbitrarily. Note that in both cases we no longer have any
guarantee of optimality, although in practice we do well.

A. Importance Weights as a Piecewise Constant Function of
the Angle

Consider a scenario where the range measurement variance
does not depend on the distance, but where obstacles, such
as walls, block the line-of-sight (LOS) between the agent and
a sensor at certain angles. At these angles, the sensor will
be NLOS so its range measurements will be biased, which is
modeled by having β > 0 for this sensor [12]. If we have
a map of the area, we can predict what value β will take
depending on the location of the sensor. The corresponding



Fig. 7. An agent is located in the middle of a circular building, which
contains several walls. The importance weights take a finite number of values
(4 in this example, from A1 to A4).

importance weights will then be a piecewise constant function
of the angle. This is illustrated on Figure 7, where the agent
is in the middle of a circular building, which contains several
walls inside. The value of the importance weights on the
building boundary changes depending on what obstructs the
LOS between agent and sensor.

Let us then divide the interval [0, 2π) into L arcs. On arc
Cl = [cl, cl), the importance weight is constant, equal to Al

(obtained from (8)). The generic RELOCATE of Section II-D
can be efficiently adapted to this case. The key is to note that
solving step (2) is again easy. The following lemma states that
the minimum of the PEB along one coordinate is obtained at
one of 2L + 2 points: the two extremities of each arc, at the
angle specified by (16), and at its symmetric with respect to
the agent.

Lemma 5: Let PEB(θip
) be the PEB when all the angles

other than θip
are kept constant. The angle θ∗ip

minimizing
PEB(θip

) in step (2) of RELOCATE is given by

θ∗ip
= arg min{PEB(θ̃ip

),PEB(θ̃ip
+ π), (26)

PEB(c1),PEB(c1), ...,PEB(cL),PEB(cL)},

where θ̃ip
is the angle given by (16).

This result makes step (2) of RELOCATE easy to solve,
so that RELOCATE can again be applied to this problem effi-
ciently. There is no longer any guarantee of global convergence
however, but since the algorithm is fast it can be restarted
several times from different initial conditions, to eliminate
local minima.

Figure 8 illustrates a typical result. In this case the internal
properties of the building result in 6 different importance
weights at the boundary, represented by arcs of different
colors. RELOCATE places 5 sensors on the boundary in
order to optimally localize an agent placed at the center.
Results show that RELOCATE places sensors on arcs with
larger importance weight (sensors 1 through 4 are on the arc
with A6 = 0.87, sensor 5 is on the one with A2 = 0.60),
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Fig. 8. Example of RELOCATE when the importance weights are a piecewise
constant function of the angle. Sensors tend to be placed on arcs with larger
weight, while maintaining some spatial diversity in their placement.

while spreading them in order to get range measurements
from different viewpoints. RELOCATE tries to strike the
optimal balance between spatial diversity (well-distributed
measurement viewpoints) and measurement quality (arcs with
large importance weights). Note that in this particular case all
the sensors are located at the extremities of the arcs.

B. Importance Weights as an Arbitrary Function of the Angle

Consider the same scenario as before, except that now the
range measurement variance increases with the distance to
the agent as in (2). To be general we assume that α and β
can also be arbitrary functions of the sensor location. The
importance weights given by (8) can then be any function
of the angle. This is the most general case for a single agent
location, where the range measurement variance increases with
the distance (possibly with different path-loss exponents), and
where the sensors become NLOS at certain locations so that
β > 0. Unfortunately this also implies that there is no longer
any analytical solution to the minimization of step (2) of
RELOCATE, so it must be solved numerically.

Let us consider a square area as shown on Figure 9,
characterized by β = 0 and α = 0, α = 0.2 and α = 2. The
configurations for 6 sensors obtained through RELOCATE are
shown for the cases where the agent is at the center (a)-(c) and
at the lower left (d)-(f) of the area. When α = 0 the sensors
are scattered all around the agent. Note that by symmetry there
are many sensor configurations that minimize the PEB in this
case. However as α increases they tend to bunch together, so
that when α = 2 the sensors are evenly split into 2 clusters. We
can see here again that RELOCATE strikes the optimal balance
between spatial diversity and range measurement quality in
order to minimize the PEB. The sensors are placed close
to the agent so that they get range measurements of good
quality, while also taking those measurements from different
viewpoints (a minimum of two distinct measurement locations
are necessary to localize the agent in 2D).
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Fig. 9. Configuration of sensors (denoted by circles on the perimeter) given by RELOCATE. The agent (denoted by a square) is placed at the center (figures
(a)-(c)) and at the lower left (figures (d)-(f)). β = 0 and α takes 3 values in each case: 0, 0.2, and 2.

V. MULTIPLE AGENT LOCATIONS

A. Results with Average PEB

So far we have considered placing sensors in order to
minimize the PEB at a single location. However in real
scenarios we will often want to ensure good localization
everywhere in the area, or along a pre-planned path. There
are several possible choices of metrics to capture this accuracy,
but a natural choice adopted here is to minimize the average
PEB over the area or the path. RELOCATE can be applied as
before, except that in step (2) the average PEB is minimized.

To illustrate this we consider the same square area as
before, except that now several agent locations are specified
(denoted by squares on Figure 10). The sensor configurations
given by RELOCATE for different agent locations are also
shown. In Fig. 10(a) the agent locations are evenly distributed
throughout the area, which models the scenario where we want
to ensure good localization everywhere (e.g. there is no pre-
planned path). In this case RELOCATE places the sensors at
regular intervals on the boundary, as intuition would suggest.
Interestingly, results do not depend on the value of α.

Fig. 10(b)-(c) illustrate a scenario where we only want
to ensure good localization in 2 parts of the building. For

example the agent may know beforehand that it will only
need to inspect 2 rooms inside a building, so good localization
accuracy has to be provided there only. The configurations
given by RELOCATE differ widely depending on α. If α = 2,
the sensors are evenly split between the two clusters of agent
locations, and for each cluster they again strike the optimal
balance between spatial diversity and measurement quality.
For α = 0 however, the measurement quality is uniform
everywhere, so the sensors are more spread out.

Finally in Fig. 10(d)-(e) we consider a path inside the area.
The agent already knows where it will travel, so it desires
to place sensors so as to optimize the localization accuracy
along that path. RELOCATE then concentrates the sensors on
the wall close to the path when α = 2, and spaces them evenly.

Results on the Fort McKenna MOUT Scenario
Let us consider an even more general scenario, where the

agent can travel outside the building boundary. In particular
we use a map of the Military Operations on Urbanized Terrain
(MOUT) site at Fort McKenna to simulate a mission where an
agent traveling through the area has to be accurately localized
at all times, while the sensors can be placed on the exterior
walls of different buildings.
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Fig. 10. Optimal configuration of sensors (denoted by red circles on the perimeter) given by RELOCATE for several agent locations (black squares). When
the agent can be anywhere in the building (a), the sensors are evenly distributed on the building’s boundary, whether α = 0 or 2. The placement varies with
α in the other two cases, when only portions of the building (b)-(c) or a path (d)-(e) must be covered.

In the simulation shown on Figure 11 we assume that range
measurements can only be made by sensors with LOS to
the agent. This simulation can easily accommodate the case
where range measurements can be made through buildings, for
example by penalizing NLOS measurements by a β > 0.

The path of the agent is shown as black squares, and
RELOCATE has to place 8 sensors accordingly. The resulting
sensor placement shown on Fig. 11 indicates that RELOCATE
performed its task well. In particular we note that every agent
location is in view of at least 2 sensors, so that localization
can be ensured at all times. These good results further indicate
that RELOCATE is very flexible to more complex scenarios,
where the average PEB is minimized and where the agent is
not restricted to navigate in the interior of a building.

Note that RELOCATE can also easily deal with a proba-
bilistic map of agent locations. In many scenarios the agent
may not know beforehand where exactly it will go, but it
may have an a priori density map of its future locations. The
area can then be divided into a grid of agent locations, each
assigned with a probability given by the density map. The
expected PEB is then minimized in step (2) of RELOCATE.

B. Benchmarking RELOCATE with Simulated Annealing (SA)
Although there is no longer any guarantee of optimality

or efficiency in the case of multiple agent locations with
varying importance weights, we show in this section that
RELOCATE is still efficient and gives results that are near-
optimal. In particular we compare the performance of RE-
LOCATE to that of Simulated Annealing (SA) [14]. SA is a
stochastic algorithm, so we expect it to avoid local minima
and approach the global minimum. It is also an efficient
heuristic algorithm, and it is particularly well-suited to such
combinatorial optimization problems [31], so we use it to
benchmark RELOCATE. We use the scenario of Fig. 10(d)
to compare the two methods with 9 sensors to be placed. The
average PEB obtained through RELOCATE (PEBRELOCATE)
and SA (PEBSA) are compared over 100 simulation runs.
In Figure 12, we plot the frequency histograms of the ratio
(PEBSA − PEBRELOCATE)/PEBRELOCATE for 3 sets of param-
eters of the SA that result in 3 different running times. The 3
SA parameterizations respectively took 0.22, 0.94, and 6.74 of
the time it took for RELOCATE to complete. Positive values
of the ratio indicate that the SA solution is worse than that of
RELOCATE.

We see that although RELOCATE is a deterministic al-
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Fig. 11. Results of RELOCATE for the MOUT site of Fort McKenna.
8 sensors are placed on the boundary of buildings and can make range
measurements to the agent when it is LOS. Note that every agent location is
in view of at least 2 sensors, ensuring localization at all times.

gorithm, it yields better results than SA most of the time.
For the first two SA parameterizations, RELOCATE produces
solutions that are always better than those of SA (the com-
putational cost of SA and RELOCATE in Fig. 12(b) are
almost similar). Only for longer runs does SA sometimes find
better solutions than RELOCATE (Fig. 12(c)), but this happens
rarely (8% of the time), while the improvement in average PEB
is small (2% at most) and the time to completion is much larger
than RELOCATE (6.74 more expensive computationally).

We proved before that RELOCATE finds the global mini-
mum efficiently for a single agent and constant importance
weights, and this study shows that even in more complex
cases (multiple agent locations, varying weights) RELOCATE
finds solutions very close to the global minimum. In addition,
RELOCATE finds better solutions (indeed solutions within
2% of the minimum given by SA) in less time than SA. We
conclude that RELOCATE remains an efficient algorithm even
for complex, realistic cases.

C. Benefit of Using a Placement Algorithm

Figures 10(d)-(e) illustrated how optimal sensor configura-
tions vary with the value of α. In this case as α increases,
sensors tend to gather closer to the path of the agent. A
one-size-fits-all approach which would distribute the sensors
evenly on the boundary (which we call UNIFORM) may
therefore not be a good idea, at least in certain situations. Let
us for example consider the agent path depicted in Fig. 10(e)
with α = 2. We compare three types of placement strategies
along the boundary:

• Placement using RELOCATE
• Uniform placement (UNIFORM)
• Random placement (RANDOM)

For the last two strategies the results are averaged over 100
trials. We plot the average PEB resulting from these three
methods in Figure 13 for different values of the number of
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Fig. 13. Average PEB as a function of the number of sensors for the agent
path depicted in the bottom plot of Figure 10 with α = 2. The average
PEB is obtained for 3 placement strategies: RELOCATE, UNIFORM, and
RANDOM. The 1-σ envelope is indicated in dashed for the last two.

sensors. We see that for a given number of sensors, RELO-
CATE yields an average PEB that is at least twice lower than
that obtained by simply distributing the sensors evenly on the
boundary. This is important in terms of the number of sensors
needed to achieve a certain PEB. For example, to obtain
an average PEB below 2mm, 7 sensors are necessary using
RELOCATE, whereas we need 15 with a uniform distribution,
and 20 with random placement. Results when sensors are
randomly placed are the worst, although not much worse
than UNIFORM. The RELOCATE algorithm will therefore
use significantly fewer sensors to achieve the same accuracy
than a simple, one-size-fits-all approach. This demonstrates the
importance of planning the sensors configuration optimally.

This is even more dramatically illustrated by considering the
Fort McKenna scenario. For different number of sensors, we
calculate the average PEB obtained by randomly placing the
sensors on the perimeter of the buildings, versus placing them
according to RELOCATE. The results are shown on Figure 14,
and it is clear that the random placement is much worse than
RELOCATE, especially when the number of sensors is small.
To better visualize this, on Figure 15 we plot the ratio between
the average PEB obtained by random placement and that by
RELOCATE. We can see that RELOCATE typically beats
random placement by several orders of magnitude.

D. Achievability of the Bound

It is known that the Maximum Likelihood (ML) estimate
converges to the CRB as the SNR tends to 0 [32]. In our
case this means that, when there is no bias, the PEB will be
achievable as the variance σ2 goes to 0. In this section we
illustrate this result on a numerical example.

We consider the scenario depicted in Fig. 10(e), where
the agent locations form a path that elbows alongside the
building, while the sensors are placed either uniformly along
the boundary or close to the agent locations. For each agent
location, given a set of range measurements we calculate
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Fig. 12. Frequency histograms of the relative difference in PEB between the solution given by SA and RELOCATE, with the mean indicated by a dashed
line. The SA respectively took a fraction of 0.22 (a), 0.94 (b), and 6.74 (c) of the time it took for RELOCATE to complete.
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the ML estimate of the agent location by using a non-linear
least-squares (NLLS) method [33]. By repeating this several
times over one agent location, we can compute the Mean
Square Error (MSE) of the position estimate, and compare
it to the PEB at that location. Note that NLLS requires an
initial position estimate, whereas the PEB assumes no a priori
location information. The comparison between MSE and PEB
is therefore not entirely fair, but it is still good because the
initial position estimate given to NLLS is poor.

On Figure 16 we plot the average PEB over the path
(dashed) and the average MSE over the path (solid) as a
function of the number of sensors deployed. We do this
when the beacons are placed uniformly along the boundary
(UNIFORM) and when they are clustered around the agent
locations (RELOCATE). It can be seen that the average MSE
and PEB are very close to one another (within 2% for all test
points). The same was observed for the other configurations.
On close inspection one can notice that the average MSE is
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Fig. 15. Ratio of the average PEB obtained through random placement and
that obtained through RELOCATE, from Fig. 14. RELOCATE beats random
placement by several orders of magnitude, especially for small numbers of
sensors.

sometimes lower than the PEB, which can be explained by the
fact that NLLS requires an initial position estimate, so it has
more “knowledge” than what the PEB accounts for. In any
case we conclude that, at least in some special cases when
the bias is absent, the PEB will be close to achievable, so
its actual value can be used as well. For example, if a certain
localization accuracy is required, the PEB value can be used as
an engineering tool to indicate whether more beacons should
be deployed.

VI. CONCLUSION

Although metrics based on the Information Inequality are
widely used in the literature to measure the quality of sensor
configurations for localization, there have only been a few
papers on how to optimally place the sensors to guarantee good
localization. In this paper we have proposed RELOCATE, an
iterative algorithm that minimizes the Position Error Bound
(PEB). We proved that it efficiently converges to the global
minimum when the range measurements are unbiased and have
constant variances.
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We have also shown that it can easily be extended to more
realistic cases, where the quality of the range measurements
depends on the sensors location. We have also applied RE-
LOCATE to the optimal placement of sensors in order to
minimize the average PEB over multiple agent locations. In all
cases RELOCATE attempts to strike a good balance between
range measurement quality and spatial diversity. Those results
have also shown that the optimal configuration of the sensors
strongly depends on how the environment affects the quality of
the range measurements. A one-size-fits-all placement strategy
is therefore inappropriate, a point we illustrated by showing
that using RELOCATE can significantly reduce the number of
sensors needed to achieve a given accuracy requirement.

We have also shown that RELOCATE converges to solu-
tions that are very close to the global minimum, and that it
achieves these results efficiently when compared to Simulated
Annealing. This algorithm therefore provides an efficient and
flexible solution to the problem of designing sensor networks
used for localization.
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