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Abstract— We propose a hierarchical representation of ob-
jects, where the representation of each object is allowed to
change based on the quality of accumulated measurements.
We initially estimate each object as a 2D bounding box or
a 3D point, encoding only the geometric properties that can
be well-constrained using limited viewpoints. With additional
measurements, we allow each object to become a higher
dimensional 3D volumetric model for improved reconstruction
accuracy and collision-testing. Our Hierarchical Object Map
Estimation (HOME) is robust to deficiencies in viewpoints and
allows planning safe and efficient trajectories around object
obstacles using a monocular camera. We demonstrate the
advantages of our approach on a real-world TUM dataset and
during visual-inertial navigation of a quad-rotor in simulation.

I. INTRODUCTION

We are interested in building compact maps of objects that
can support visual-inertial navigation for vehicles with size,
weight, and power (SWaP) constraints. Using the computa-
tion and the sensors available onboard the vehicles, we aim
to fuse partial observations of the world, accumulated over
time and distance, into a map that is suitable for efficient
volume estimation and collision avoidance.

One way to construct a map that enables efficient collision
avoidance is to represent each object as a single 3D bounding
volume [1]–[4] over the entire object. Often represented as
a 3D cuboid [1], [2] or an ellipsoid [3], [4], a bounding
volume can be optimized [4] in real-time using 2D bounding
box detections [5] from multiple viewpoints. Consisting of
a single part, a 3D bounding volume can be efficiently
collision-tested [6] in comparison to multiple-parts-based
representations [7]–[13], such as point-clouds or voxels, that
must involve testing individual parts of an object.

However, reconstructing single-part models of objects can
be difficult on autonomous vehicles that do not explicitly
orbit objects or maximize information gain [14] to resolve
ambiguities in regions obstructed from vehicles’ viewpoints.
Properties of an entire object, such as the orientation and
the size of an object, can be poorly estimated using partial
observations from limited viewpoints and in turn lead to
inaccurate collision-testing and unsafe planning behavior.
Assuming symmetry in objects [15], leveraging line seg-
ments [1], [16], and fusing in texture information [4] can
improve object estimation, but strong assumptions made in
these approaches limit the applicable set of objects. On the
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Fig. 1: Dynamically feasible vehicle trajectories scored based
on the distance to objects in our hierarchical map (higher
costs shown darker). We enable robust monocular mapping
and collision avoidance by allowing each object model to
change as a function of measurements, e.g., tight cuboids on
well-observed objects and inflated spheres around others.

other hand, foregoing the estimation of some properties and
constructing more abstract object representations such as a
single point-mass [17] can lead to overly conservative and
inefficient navigation based on less information.

The key insight in this work is that the appropriate object
representation to consider for collision-testing varies over
the course of navigation, and should be informed by how
well the properties encoded in each model can be estimated.
We therefore propose building a hierarchical representation
of object models, where each model encodes a different
set of properties, and sequentially build a less abstract
model in the hierarchy based on an empirical degeneracy
metric computed from available measurement viewpoints.
Specifically, we represent each object as a 2D bounding
box, a point in 3D, or an upright bounding ellipsoid, in
order of increasing dimensions where each model encodes
the bearing, the position, or the volume in 3D space. We
sequentially solve for higher fidelity models using estimates
from lower fidelity models to provide good initialization.

Our Hierarchical Object Map Estimation (HOME), which
allows each object model to become more sophisticated over
time, improves efficiency and robustness of visual navigation.
By estimating only the properties that can be constrained
using available viewpoints, ill-conditioned inference prob-
lems are avoided and conservative estimates based on priors
on object class [18] are substituted in place. As a result,
we plan collision-free trajectories independent of available
viewpoints as illustrated in Fig. 1, and improve the ability to
plan efficient trajectories as more measurements are collected
from new viewpoints. On the TUM [19] dataset we evaluate
the reconstruction quality of HOME, and in a Unity simula-
tion filled with object obstacles, we show that our system can
use monocular images to enable efficient and robust collision



avoidance during visual-inertial navigation of a quad-rotor.
In the rest of the paper, we describe online optimization
methods for the object models in the hierarchy, model
switching criteria for changing the degree of abstraction,
a data association scheme that combines appearance-based
cues with geometric information available in each model, and
an efficient collision-testing method for utilizing our map in
a reactive vehicle trajectory planner.

II. OVERVIEW

For the purpose of collision avoidance, we are interested in
estimating geometric properties of all objects O = {On}Nn=0

using camera images It, where we represent camera images
as scalar functions defined over the pixel domain Ω ∈ N2,
such that It : Ω→ N. We would like to find the maximum
likelihood estimate of all objects Ô conditioned on all 2D
bounding box detections B = {Bb ∈ N4}Bb=0, and camera
poses X = {xt ∈ SE(3)}Tt=0, given discrete object class
[18] labels C = {cb ∈ N}Bb=0. Assuming camera poses are
separately estimated and provided in the form of pseudo-
measurements, every object becomes independent of one
another and the objective function can be written as

Ôn = arg max
On

P (On|B,X ;C), (1)

where the data association of each measurement to an object
is solved in a pre-process described in Section III-C.

Traditional approaches to formulating Equation 1 choose
a single representation for all objects in O. Popular ab-
stractions include 2D bounding boxes B ∈ N4, 3D points
L ∈ R3 and dual-ellipsoids E∗ ∈ E4×4, where the dual-form
E∗ = adjoint(E) of an ellipsoid E belongs to a subset of
4 by 4 symmetric matrices E4×4 defined by

E∗ =

[
RDRT − ttT −t

−tT −1

]
. (2)

A dual-ellipsoid is parametrized by an orientation R ∈
SO(3), a position t ∈ R3, and a diagonal size matrix
D ∈ R3×3 formed with a size vector d ∈ R3, and provides
a minimal representation of 3D bounding volume that can be
conveniently collision-tested. A 2D bounding box [20] and
a 3D point [17], [21] are popular lightweight representations
for tracking an object, and we discuss conservative collision
avoidance for these representations in Section IV.

To enable efficient and robust navigation, we allow the
level of abstraction of each individual object On to vary over
the course of navigation as shown in Fig. 2. We introduce
three indicator variables per object: φbn, φ

l
n, φ

e
n ∈ {0, 1},

which together obey the constraint φbn + φln + φen = 1,∀n ∈
[0, N ]. Depending on the value of the indicator variable,
each object is represented as a 2D bounding box (φbn = 1),
where no optimization over the parameters of the 2D box
is performed, or represented and optimized as a point in 3D
(φln = 1), or as a dual-ellipsoid (φen = 1). This formulation
allows us to expand the posterior in Equation 1 as

P (On|B,X ;C)∝φlnP (Ln|B,X ;C)φenP (E∗n|B,X ;C). (3)

(a) Object Detection (b) Our Representation

Fig. 2: Our hierarchical object representation allows each
object to change its representation based on the available
viewpoints. In this figure, the keyboard, monitor, mouse,
and cup that were detected using YOLO [5] in (a) and
observed from multiple viewpoints are constrained as dual-
ellipsoids and visualized as 3D bounding cuboids in (b) while
previously occluded objects, such as the book, plant, and
teddy bear, are estimated as inflated point objects encoding
only the position of the objects, i.e., the spheres in (b).

The summation constraint over each set of indicator variables
per object ensures that no object is estimated as multiple
representations in Equation 3. Crucially, we do not assume
the values of the indicator values to be static, but instead
objects move up the hierarchy of abstractions based on the
quality of measurements available for estimation.

III. HIERARCHICAL OBJECT MAP ESTIMATION

Selecting the appropriate level of abstraction for each
object enables HOME to estimate only the properties that
can be well-constrained by a given set of viewpoints. In this
section, we describe online optimization methods for the ob-
ject models in the hierarchy, the model switching criteria for
changing the degree of abstraction, a data association scheme
that combines appearance-based cues with geometric infor-
mation available in each model, and an efficient collision-
testing method for the representations in the hierarchy.

A. Online Optimization for Object Models

Given that every object is independent of one another, we
can solve a separate inference problem for each object based
on the indicator variable. For example, given φen = 1, the
objective function in Eq. 1 for object On can be written as

Ê∗n = arg max
E∗

n

P (E∗n|B,X ;C). (4)

1) 2D Bounding Boxes: Prior to accumulating sufficient
baseline to infer the 3D geometry of an object, we directly
represent each object as a 2D bounding box on the im-
age plane, encoding only the heading of the object. We
do not employ a probabilistic inference process such as
filtering over bounding box measurements [20] but instead
directly update the parameters of the object with the last
associated bounding box measurement. However, we keep
the full history of measurements for use after changing the
representation to a less abstract model that can leverage the
measurements to infer additional geometric properties. We
note that learning-based methods [22], [23] can also track
bounding boxes on 2D image using a pre-trained deep neural
network, but we avoid leveraging the GPU noting that the



object detector [5] alone cannot run in frame-rate on the
compute available on an MAV.

2) Points: Next, we consider point representations, which
are estimated using bounding boxes and poses. We formulate
the conditional probability to be maximized as

P (Ln|B,X ;C) ∝
J∏

j=0

P (Bj |Ln,xtj ) (5)

where all bounding boxes Bj ,∀j ∈ [0, J ] have been as-
sociated to Ln, and xtj is the pose of the camera when
Bj was observed. To solve for the optimal model L∗n of a
point representation, we further abstract each bounding box
measurement Bk into a ray measurement pk ∈ N2 through
the center of the bounding box. The ray measurement model

hray(Ln,xtj ;K) = K(xtj )−1Ln (6)

is used to project the point estimate Ln using the intrin-
sic camera matrix K ∈ R3×3, where dehomogenization
is assumed, and we minimize the ray measurement error
by solving the nonlinear least-squares problem induced by
Equation 5 assuming Gaussian distributions, i.e.,

L∗n = arg max
Ln

P (Ln|B,X ;C)

= arg min
Ln

J∑
j=0

‖hray(Ln,xtj ;K)− pj‖2Σr
.

(7)

As is standard, we re-linearize and solve Eq. 7 using
Levenberg-Marquardt with every new measurement.

3) Dual-Ellipsoids: For the dual-ellipsoid representation,
we maximize the conditional probability

P (E∗n|B,X ;C) ∝P (E∗n; cn, L̃n)

K∏
k=0

P (Bk|E∗n,xtk), (8)

where all bounding boxes Bk,∀k ∈ [0,K] have been
associated to E∗n, and xtk is the pose of the camera when Bk

was observed. P (E∗n; cn, L̃n) is a prior on shape [4] based
on the object class and on position based on the best estimate
of the point model L̃n before the object was promoted to a
dual-ellipsoid. Utilizing the estimate of the point model here
improves the inference for the dual-ellipsoid. We solve for
optimal parameters Ê∗n by solving the nonlinear least-squares

Ê∗n = arg min
E∗

n

{ K∑
k=0

‖hbb(E∗n,xtk ;K)−Bk‖2Σb
+

‖fsp(cn)− fsize(E∗n)‖2Σs
+‖L̃n − fpos(E∗n)‖2Σp

}
,

(9)

where fsp : N → R3 is a function that maps each object
class to an approximate size prior dn, fsize : E → R3

and fpos : E → R3 are projection functions that extract
size or position parameters from a dual-ellipsoid. hbb is the
bounding box measurement model for dual-ellipsoids. As
done in [4], leveraging the dual-ellipse C∗, which is the
projection of a dual-ellipsoid E∗n onto the camera plane, i.e.,

C∗n = K[R|t]E∗n[R|t]TKT , (10)

and the property that the dual-ellipse and all homogeneous
tangent lines lh ∈ R3 to its surface must obey

lThC
∗
nlh = 0, (11)

we compute the bounding box measurement

Bk =hbb(E
∗
n,xtk ;K)=[ûmin, ûmax, v̂min, v̂max]Tk , (12)

ûmin, ûmax =
1

C∗3,3
[C∗1,3 ±

√
C∗1,3

2 −C∗1,1C
∗
3,3],

v̂min, v̂max =
1

C∗3,3
[C∗2,3 ±

√
C∗2,3

2 −C∗2,2C
∗
3,3].

(13)

Using the bounding box measurement model, size prior
from the object class, and a position prior from the best esti-
mate of the point model, we compute the measurement error
and apply the Mahalanobis norm to scale the error inversely
proportionally to the square root of the covariance terms Σb,
Σs, and Σp. When a new measurement is associated to an
object, we re-linearize Equation 9 and solve for the optimal
values Ê∗n using Levenberg-Marquardt [24] algorithm.

B. Switching Object Models

As described in [25], we can linearize Equations 9 and 7
into the form

ôn = arg min
on

‖Aon − b‖2Σ, (14)

where A is the measurement Jacobian matrix, on is the
vectorized form of object parameters, and b is the vector of
measurements. The condition number [26] of the linear sys-
tem indicates ill-conditioning if large, and can be determined
by the ratio of the minimum and the maximum eigenvalues
of the squared information matrix ATA. This number can
approximate the quality of the structure of measurement
viewpoints as encoded in the Jacobian matrix A. We set
a minimum threshold on the number, allowing an object to
switch its representation to the next less abstract model only
if the linearized optimization problem for the next model
is well-conditioned. In Section V, we show how to exper-
imentally choose this threshold value and compare against
another degeneracy metric introduced by Zhang et al. [27].
Given the monotonically growing number of viewpoints, we
do not allow an object to switch back to a more abstract
representation; however, switching back may have benefits
in temporarily reducing computation or adding robustness
against noisy object detections.

Due to the potentially high cost of computing the condition
number, we add preconditions to computing it. For the point
model, we require that there is a minimum translation in the
vehicle trajectory to ensure that there is sufficient baseline to
triangulate the position of the object. For the dual-ellipsoid
model, we maintain egocentric spherical bins1 of quantized
viewpoints and check that a minimum number of bins are
filled before computing the condition number. Here, the
requirement on the number of bins serves as a heuristic for
checking the diversity in viewpoints.

1The spherical bins are also used to sparsify measurements based on
viewpoints to improve the computational efficiency of model optimization.



C. Object-level Data Association

Prior to optimization, we associate each bounding box Bb

with an object On, i.e., we solve for the association indices
for 2D box, point, and dual-ellipsoid models first, before
optimizing the models themselves. While it is possible to
jointly optimize the models and the associations [17], for
computational efficiency, we separately solve for the associ-
ations and assume them correct during model optimization.

Inspired by Wojke et al. [20], we combine costs based
on the appearance, object geometry, and semantic class in
a hand-tuned weighted sum to compute the matching cost
between all new detections and the set of known objects.
Unlike existing object-level data association methods that
require an additional dense point-cloud representation [1],
[16] for each object to encode object geometry, learned
image-based descriptors [23] or tracking methods [22] that
poorly deal with occlusions, we leverage estimated geometric
properties available at each hierarchical level and appearance
information we can extract from RGB images.

Specifically, we combine a RGB color histogram descrip-
tor [4], an image-based gradient-based ORB [28] descriptor
of the 2D object detection, a cost for mismatch between
object semantic classes, and a geometric distance between
the projection of a model and the detection. The geometric
distance varies for each object representation, where for the
dual-ellipsoid model, we are able to project the entire 3D
volume into a 2D box to penalize object detections of smaller
sizes. For the point model, we compute the distance between
the projection of the point mass and the centroid of the
bounding box on the image plane and for the bounding
box model, we leverage the distance between the centroids.
Leveraging the estimated position and volume in the dual-
ellipsoid and point models allow tracking through occlusions,
improving on the more abstract bounding box model.

Given the cost between the detections and objects, we use
the Hungarian algorithm to compute an assignment between
the detections in an image and the known objects at each
hierarchical level. Similar to Wojke et al. [20], we compute
the association in a hierarchical order, where we solve for an
optimal assignment between the least abstract dual-ellipsoids
and available object detections first. Matches with a cost
above a hand-tuned threshold are considered incorrect and
detections with no matching objects are attempted again in
the next most abstract point level, then the bounding box
level. If no match is found for an object detection at the
bounding box level, we create a new object as a 2D bounding
box model based on the measurement.

IV. COLLISION-TESTING HIERARCHICAL MAP

We propose a reactive motion planner based on [29],
where we sample a set of dynamically feasible minimum-jerk
trajectories with different heading angles and final velocities.
We assign a cost to each trajectory based on the distance to
the surface of estimated objects, as well as the remaining
distance to a local goal. To compute the distance between a
trajectory and an object, we approximate each object as an
ellipsoid, and compute the distance between sampled points

on the trajectory to the surface of the ellipsoid similar to
[6]. While several distance metrics between an ellipsoid and
a point exist [30], we choose the algebraic distance

ealgebraic = lThElh, (15)

where ealgebraic ∈ R is based on the error in the algebraic
relation [30] between a homogeneous tangent point lh ∈ R4

and the surface of an ellipsoid. We select and follow the
trajectory with the smallest cost and re-plan with every map
update until we reach all sequential goals. In this section, we
discuss approximating each of our models in the hierarchy as
an ellipsoid, and introduce a numerically-stable block matrix
inversion for converting a dual-ellipsoid into an ellipsoid.

A. Dual-Ellipsoid Costs via Block Matrix Inversion

For objects represented as a dual-ellipsoid, we can com-
pute an exact ellipsoid by taking an adjoint of the dual-
ellipsoid [15]. However, numerical matrix inversion can
suffer from efficiency and numerical stability issues [31].
Here, we introduce a block matrix inversion for the dual-
ellipsoid defined in Equation 2 as

(E∗)−1 =

[
(A+BC)−1 (A+BC)−1B
C(A+BC)−1 −1 + C(A+BC)−1B

]
, (16)

where we chose the blocks as A = RDRT − ttT , B = −t,
C = −tT and D = −1. Leveraging the orthogonality of
the rotation matrix, i.e., RT = R−1, and cancelling out
position terms, i.e., (A+BC)−1 = RD−1RT , we obtain a
numerically stable primal-form of the ellipsoid

E =
1∣∣E∗∣∣
[

RD−1RT −(RD−1RT )t

−tT (RD−1RT ) −1+tT (RD−1RT )t

]
, (17)

where the diagonal size matrix D can be trivially inverted.
After every map update, we convert all dual-ellipsoid models
into ellipsoids and compute the distance cost in Equation 15.

B. 3D Points and 2D Bounding Boxes

For point models L, we impose a large safety bound
on each object by inflating around the position estimate
using a conservative maximum size dmax ∈ R. We do
this by leveraging the prior on the object size based on the
object class, which is also used to constrain dual-ellipsoids
in Equation 9, and taking the longest dimension as the
base inflation radius since the orientation of the object is
unknown. Given a potentially large variance in the object
size within the same object class, we further inflate the
maximum radius and construct a conservative sphere with
R = I3×3, Di,i = dmax, and t = L, where I3×3 is an
identity matrix. This sphere can be used in Equation 15, to
serve as a conservative distance cost, before estimating an
accurate 3D model. While we do not attempt to collision-test
objects represented as a 2D bounding box, learning-based
costs [32], [33] exists. Additionally, leveraging the object
size based on the object class, an approximate depth of the
bounding box could be inferred from the size of the 2D
bounding box for a conservative strategy of avoiding moving
towards the heading encoded in nearby bounding boxes.



V. EXPERIMENTS

We evaluated HOME on a real-world TUM RGB-D [19]
dataset for data association and object reconstruction and in
a Unity simulation for object reconstruction and navigation
efficiency and safety. For the TUM dataset, we detected
YOLO [5] bounding boxes in RGB images and used provided
ground-truth camera poses as pose measurements, and for the
Unity environment, we used ground-truth bounding boxes
and pose measurements from the simulation.

A. Degeneracy Analysis

In the Unity simulation, we first analyzed the reconstruc-
tion accuracy of a single object in relation to the condition
number [26] and Zhang’s inverse degeneracy [27] to em-
pirically determine the model switching criteria described
in Section III-B. We used Intersection-over-Union (IoU)
and Intersection-with-Ground-Truth (IGT) as reconstruction
metrics, where IoU indicated accurate reconstruction of the
estimated volume, and IGT indicated accurate coverage of
the ground-truth volume. IGT was computed as the ratio
between the intersecting volume and the ground-truth vol-
ume, instead of the union in IoU, to prevent penalizing
conservatively estimated volumes that are much larger than
the ground-truth volume but still accurately contain it.

Shown in Fig. 3, during an orbital motion around a car
object, we observed that both the condition number and the
inverse degeneracy metric declined as more measurements
from new viewpoints were collected. The point represen-
tation had both metrics decline much more quickly than
the ellipsoid representation, indicating that the more abstract
representation was better conditioned with less measure-
ments. The point estimate did not significantly change over
the course, where the coverage was consistently high at
85.1% IGT due to the conservative inflation, but the accuracy
of reconstruction was much lower at 15.8% IoU. On the
other hand, for the dual-ellipsoid, coverage started low at
18.6% IGT but increased to 85.4%, while the IoU had a
similar pattern and reached 49.8%. The pattern in which the
reconstruction quality improved in two large steps closely
resembled the steps in the condition number, and based
on the similarity, we chose the condition number over the
inverse degeneracy metric for the switching criteria and
empirically set our threshold at the value after the two steps.

Our hierarchical approach evaluated on the same orbital
trajectory achieved high coverage throughout the orbit much
similar to the point representation, while the IoU continued
to improve similar to the the dual-ellipsoid. At the end of the
orbit, we reached a higher reconstruction accuracy of 62.9%
in IoU and 100.0% in IGT, further improving on the dual-
ellipsoid representation by leveraging better initialization and
position priors from the point representation.

We repeated the analysis for a straight fly-by trajectory
shown in Fig. 3b, and observed that the condition number
for the dual-ellipsoid was significantly higher than during
the orbital motion; reflecting the worse conditioning, the
IGT and IoU metrics were worse at 49.1% and 39.4%,
respectively. However, the more abstract point representation

(a) Orbital Motion (b) Straight Motion

(c) Degeneracy and Reconstruction Quality (Orbital Motion)

(d) Degeneracy and Reconstruction Quality (Straight Motion)

Fig. 3: Comparison of our hierarchical approach against
baseline approaches of using homogeneous point or dual-
ellipsoid representation. We observed that the reconstruction
quality of the homogeneous ellipsoid representation, shown
in (b), was poor compared to an orbital motion, shown in
(a). During straight motion, HOME represented the object
as a point model (thus identical reconstruction results for
point and HOME) and achieved a higher IGT compared
to the dual-ellipsoid, indicating that the object volume was
better covered with lacking viewpoints. However, during
orbital motion, HOME changed its representation to a less
abstract dual-ellipsoid model, achieving a higher IoU than
either methods, while consistently maintaining a high IGT
indicating consistently sufficient obstacle coverage.

was less affected by lacking viewpoints, where the IGT was
79.8% and IoU 14.6%. Leveraging conservative inflation
under lacking viewpoints, HOME stayed as a point model
for the entire duration, performing identically to the point
and achieving a consistently high coverage of the obstacle
at the cost of temporarily foregoing improving accuracy.

B. Reconstruction under Orbital Motion

We tested HOME on the real-world TUM RGB-D dataset,
shown in Fig. 4, and in a simulated outdoor parking lot of
cars, shown in Fig. 5a, to evaluate the object reconstruction
quality in comparison to the baseline approaches of homoge-
neous dual-ellipsoid and point models. Given that no ground-
truth labels of object volume exist on the real-world TUM
dataset, we manually associated YOLO [5] bounding boxes



(a) Reconstructed Map (b) Projection in Image

Fig. 4: Online reconstruction of HOME, shown in (a), on a
TUM sequence and a projection of the map in a representa-
tive image (b) for qualitative analysis of the reconstruction.
Pseudo-ground-truth shown in grey.

TUM Orbital (Sim) Autonomous (Sim)

IGT
(%)

IoU
(%)

IGT
(%)

IoU
(%)

IGT
(%)

IoU
(%)

Point 91.5 6.1 99.9 6.1 96.1 5.1
Ellipsoid 60.4 47.6 34.5 34.5 37.8 28.9

Hierarchical 77.6 49.2 80.0 54.7 83.1 33.7

TABLE I: Reconstruction accuracy for TUM, an orbital
trajectory in simulation and autonomous flight in simulation.

to observed objects and used the ground-truth associations to
batch optimize pseudo-ground-truth object volumes. Summa-
rized in Table I, HOME achieved consistently high coverage
of ground-truth objects in all situations, while improving the
reconstruction accuracy when more diverse viewpoints were
available. These results closely resembled the reconstruction
results on orbiting the single car object.

C. Visual Navigation using Hierarchical Map

To show the advantages of HOME during visual navigation
of a quad-rotor around object-based obstacles, we navigated
to two goal-points on each side of the simulated parking
lot in Fig. 5a in two round-trips. We simulated the quad-
rotor described in [29] along with RGB images of an Intel
Realsense camera, and tested our reactive trajectory planner
while varying the object maps used in collision-testing.
Shown in Fig. 5, planning with our map resulted in taking
a shorter path of 397.3m compared to 432.8m of using
a homogeneous point map, as planning in the point map
resulted in unnecessarily long routes around conservatively
inflated volumes. Compared to the similar length 397.7m
trajectory taken on the homogeneous ellipsoid map, HOME
planned safer2 trajectories of 0.0% near-collision compared
to 3.4% of dual-ellipsoid model, due to our consistently high
coverage of the object obstacles and the better reconstruction
accuracy of our approach. While the point model also had
0.0% near-collision, HOME achieved higher efficiency by
improving object models over the course of navigation.

VI. RELATED WORKS

Scene Graphs: 3D Scene graphs [34]–[36] are examples
of constructing hierarchical map representations that can
potentially improve vision-based navigation. Rosinol et al.

2We measured safety as the percent of vehicle poses that had a high
collision cost in Eq. 15 to the ground-truth object volumes.

(a) Simulated parking lot in Unity

(b) Point (c) Ellipsoid (d) Hierarchical

Fig. 5: Trajectories of autonomous flights based on different
map representations. Qualitatively, our approach (d) builds
maps with more accurate object estimates with regards
to IoU, while also plans trajectories that are not overly
conservative as in (b) or dangerously close to objects in (c).

[34] represents the map as a layered directed graph where
nodes represent spatial concepts such as objects, people, and
rooms, and edges represent their spatio-temporal relations.
Leveraging the 3D geometry and semantics of a scene
at different levels of abstraction could potentially support
complex planning but unlike our approach entities do not
change their representation to improve map estimation.

Learned Object Representations: State-of-the-art object
mapping approaches [37]–[40] learn the shape encoding of
objects to predict accurate models of objects. In particular,
FroDO [40] infers learned shape codes and per-frame poses
in a similar hierarchical coarse-to-fine order. While our
hierarchical framework can be extended to include higher
fidelity learned models, for the purpose of collision avoid-
ance, simple geometric models are better suited.

Learned Bounding Volumes: In addition to the
optimization-based [1]–[4], [15], [16] approaches discussed
in Sec I, there are learning-based approaches [41]–[43] that
predict 3D bounding volumes. However, similar to learned
representations, these approaches are limited to the classes of
objects found in games and photo-realistic simulations where
ground-truth labels of 3D volumes are easier to obtain.

VII. CONCLUSIONS

We have presented HOME, a hierarchical object-based
mapping system that allows each object model to become
more sophisticated over time, and demonstrated the advan-
tages of changing abstraction during visual navigation. We
showed that our system plans safe trajectories unaffected by
viewpoints and improve to plan efficient trajectories when
we better observe the obstacles in the environment.
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[7] J. Engel, T. Schöps, and D. Cremers, “LSD-SLAM:
Large-scale direct monocular SLAM,” in Proc. ECCV,
Springer, 2014.

[8] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos,
“ORB-SLAM: A versatile and accurate monocular
SLAM system,” T-RO, 2015.

[9] T. Whelan, R. F. Salas-Moreno, B. Glocker, A. J.
Davison, and S. Leutenegger, “ElasticFusion: Real-
time dense SLAM and light source estimation,” IJRR,
2016.

[10] H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, and
J. Nieto, “Voxblox: Incremental 3d euclidean signed
distance fields for on-board mav planning,” in Proc.
IROS, 2017.

[11] J. McCormac, R. Clark, M. Bloesch, A. Davison, and
S. Leutenegger, “Fusion++: Volumetric object-level
SLAM,” in Proc. 3DV, 2018.

[12] M. Runz, M. Buffier, and L. Agapito, “Maskfusion:
Real-time recognition, tracking and reconstruction of
multiple moving objects,” in Proc. ISMAR, IEEE,
2018.

[13] A. Rosinol, M. Abate, Y. Chang, and L. Carlone,
“Kimera: An open-source library for real-time metric-
semantic localization and mapping,” arXiv preprint
arXiv:1910.02490, 2019.

[14] V. Indelman, L. Carlone, and F. Dellaert, “Planning
in the continuous domain: A generalized belief space
approach for autonomous navigation in unknown en-
vironments,” IJRR, vol. 34, no. 7,

[15] Z. Liao, W. Wang, X. Qi, X. Zhang, L. Xue, J. Jiao,
and R. Wei, “Object-oriented SLAM using quadrics
and symmetry properties for indoor environments,”
arXiv preprint arXiv:2004.05303, 2020.

[16] Y. Wu, Y. Zhang, D. Zhu, Y. Feng, S. Coleman,
and D. Kerr, “EAO-SLAM: Monocular semi-dense
object slam based on ensemble data association,”
arXiv preprint arXiv:2004.12730, 2020.

[17] S. L. Bowman, N. Atanasov, K. Daniilidis, and G. J.
Pappas, “Probabilistic data association for semantic
slam,” in Proc. ICRA, IEEE, 2017.

[18] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona,
D. Ramanan, P. Dollár, and C. L. Zitnick, “Microsoft
COCO: Common objects in context,” in Proc. ECCV,
2014.

[19] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and
D. Cremers, “A benchmark for the evaluation of RGB-
D SLAM systems,” in Proc. IROS, 2012.

[20] N. Wojke, A. Bewley, and D. Paulus, “Simple online
and realtime tracking with a deep association metric,”
in Proc. ICIP, 2017.

[21] K. Doherty, D. Fourie, and J. Leonard, “Multimodal
semantic SLAM with probabilistic data association,”
in Proc. ICRA, 2019.

[22] L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi,
and P. H. Torr, “Fully-convolutional Siamese networks
for object tracking,” in Proc. ECCV, 2016.

[23] M. Kristan, A. Leonardis, J. Matas, M. Felsberg,
R. Pflugfelder, L. Cehovin Zajc, T. Vojir, G. Hager,
A. Lukezic, A. Eldesokey, et al., “The visual object
tracking vot2017 challenge results,” in Proc. ICCV
Workshop, 2017.
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