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Abstract: Consider a task such as pouring liquid from a cup into a container.
Some parameters, such as the location of the pour, are crucial to task success,
while others, such as the length of the pour, can exhibit larger variation. In this
work, we propose a method that differentiates between specified task parameters
and learned manner parameters. We would like to allow a designer to specify a
subset of the parameters while learning the remaining parameters from a set of
demonstrations. This is difficult because the learned parameters need to be inter-
pretable and remain independent of the specified task parameters. To disentangle
the parameter sets, we propose a Task-Conditioned Variational Autoencoder (TC-
VAE) that conditions on the specified task parameters while learning the rest from
demonstrations. We use an adversarial loss function to ensure the learned param-
eters encode no information about the task parameters. We evaluate our method
on pouring demonstrations on a Baxter robot from the MIME dataset. We show
that the TC-VAE can generalize to task instances unseen during training and that
changing the learned parameters does not affect the success of the motion.

Keywords: Learning from Demonstration, Movement Primitives, Variational In-
ference, Representation Learning for Manipulation.

1 Introduction

Consider teaching a robot to perform a class of tasks such as pouring liquid from a cup into a
container. There are many ways it can accomplish this task – for example, it could vary the length
or the maximum angle of the pour. However, it is crucial that no matter how the task is performed,
the pouring location remains the same as the location of the container. Our goal is to learn an
interpretable representation for movement primitives that respects task constraints such as these.

In general, the Movement Primitive framework aims to recover a set of primitives, each represented
by a low-dimensional parameter space, which can be learned given demonstrations of a task. The
parameter space allows the movement primitive to be adapted to new instances of the task and
can either be manually specified a priori [1, 2, 3] or learned from a set of demonstrations [4].
Importantly, to simplify the adaptation to new task instances, the parameters should be interpretable.

Motivated by the pouring example (see Figure 1), we differentiate between specified task (or context
[2, 3]) parameters that determine what task to perform (e.g., the location of the container) and
unspecified, learned manner parameters that describe how that task should be performed (e.g., the
length of the pour). Note that the partitioning of task and manner parameters may differ depending
on the action. Due to the relative importance of the task parameters, we manually specify them
while discovering a set of interpretable manner parameters from data. The manner parameters
should explain the types of variation that can occur independent of the task.

There are two main difficulties in discovering parameters for how a task is performed. The first
is disentangling the task parameters from the learned manner parameters. Varying a learned
manner parameter should not affect aspects of the motion related to the task parameters. For
example, varying the length of the pour should not change the location. The difficulty arises
from the fact that the final action is a complex function of both task and manner parameters.
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Figure 1: Example pouring demonstration from the
MIME dataset annotated with specified task parame-
ters (e.g., the pouring location, g) and manner param-
eters we aim to learn (e.g., maximum pouring angle,
θ, pour start time, t0, and pouring duration, tf − t0).

The second difficulty arises from the fact that we
are learning the manner parameter space from
noisy data. The data may exhibit variation we do
not explicitly wish to control in the learned pa-
rameter space. In order for our learned represen-
tation to be interpretable, the parameters should
be independent of each other.

To address these problems, we propose a Task-
Conditioned Variational Autoencoder (TC-VAE)
to learn a representation for movement primitives
given a set of demonstrations. The TC-VAE is
conditioned on task information such as the lo-
cation of the pouring container. As such, the la-
tent space of the VAE does not need to encode
aspects of the movement related to the task vari-
ables and can learn parameters that are indepen-
dent of them. To enforce the independence be-
tween the specified task parameters and learned
manner parameters, we adversarially train the la-
tent space to minimize the information encoded about task variables [5, 6]. We show that this
adversarial training is important in successfully disentangling the parameter sets.

To evaluate our model, we learn a movement primitive for pouring using the MIME dataset [7]. We
augment the dataset to include the location of each pour. We show that the learned movement can
generalize to task instances unseen during training and that changing the learned manner parameters
does not affect the success of the motion. Finally, we inspect and visualize the learned latent space
to show it captures semantically coherent axes of variation.

2 Task-Conditioned Variational Autoencoders

Our goal is to learn a generative model of action trajectories that explicitly differentiates between
specified task parameters and learned manner parameters. We refer to the learned parameters as
manner parameters as they will describe the variation that exists when performing specific tasks.
Each action class (e.g., pouring) will have its own model. The input to this problem are the task
parameters, w. The output is a distribution over trajectories of length T that describe all the ways in
which this task can be performed: p(x|w), where x = {x1, . . . ,xT }. Each xt ∈ Rm represents the
m-dimensional state of the robot at time t (in our case, the end-effector pose).

We begin by describing the probabilistic model we propose to represent actions in Section 2.1 and
the variational inference procedure used to fit it in Section 2.2. To enforce independence between
the task and manner parameters, we augment the training procedure with an adversarial information
objective [6]. This objective ensures no information about the specified task parameters is encoded
into the learned latent space (Section 2.3).

2.1 Probabilistic Model

We propose a latent variable model to represent how a task can be performed. Specifically, we
introduce a set of latent variables, h, to capture the variation that can occur independent of the task,
w ∈ RK where K is the number of task variables. We place a Normal prior on h, p(h) = N (0, I).
x can then be modeled as:

p(x|w) =

∫
p(x|w,h)p(h)dh =

∫ T∏
t=1

p(xt|w,h)p(h)dh. (1)

The trajectory likelihood, p(xt|·) ∼ N (µtθ(·),Σtθ(·)), is a Gaussian distribution parameterized by a
neural network that will be described in the following section.

As mentioned in the introduction, it is important that the learned manner parameters, h, are inter-
pretable. This will permit easy adaptation in downstream tasks. To achieve this goal, we use the
β-VAE objective [8] which we will discuss in more detail in the following section.
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Figure 2: Factor graph of the Task-Conditioned VAE
model. The task parameters, w, are observed and the
latent manner parameters, h, are learned. Both are
combined to produce a trajectory, x.

Figure 3: A Temporal Convolution Network uses
stacked dilated convolutions to map an input se-
quence, x1:T to an output sequence y1:T . We use
a kernel size of 3.

Importantly, we require the specified task parameters, w, and the learned manner parameters, h, to
be independent of each other. That is, when we vary one parameter, it should not change aspects
the trajectory described by the others. To enforce this disentanglement, we adversarially train the
latent space to not carry any information about the task-specific variables. We describe this process
in more detail in Section 2.3. Overall, our model decomposes as (see Figure 2 for a factor graph):

p(x|w) =

∫
p(x|w,h)p(h)dh. (2)

2.2 Variational Inference

Performing inference on the model described by Equation 2 is intractable and we resort to approxi-
mate variational inference [9]. We introduce a variational posterior distribution (or encoder), q(h|x).
We parameterize q(h|·), and the model, p(x|·) (or decoder), by neural networks:

qφ(h|x) = N (µφ (x) ,Σφ (x)) (3)
pθ(x|w,h) = N (µθ(w,h),Σθ(w,h)) (4)

The networks parameterized by θ and φ will be described below. We use Stochastic Variational
Inference1 to minimize a β-VAE ELBO loss function with the Adam optimizer [12]:

LELBO =βDKL(qφ(h|x)︸ ︷︷ ︸
encoder

||p(h))− Eq[log pθ(x|h,w)︸ ︷︷ ︸
decoder

] (5)

Note that this loss function uses a hyper-parameter, β, that trades off between reconstruction er-
ror and independence constraints of the latent variables [8]. The Normal prior helps to encourage
interpretability of the latent variables.

Recognition Network As we are using variational inference to learn the trajectory model, we need
a family of approximate posterior distributions. We use a recognition network to represent the
posterior distribution of the latent variables as Gaussians with diagonal covariance: qφ(h|x) =
N (µφ(x),Σφ(x)). The recognition network uses a Temporal Convolution Network (TCN) [13]
(see below) to model the trajectory and predict the mean and covariance:

{ot}Tt=1 = TCNrecog(x) (6)

ō =
1

T

T∑
t=1

ot (7)

µφ = MLP (ō) Σφ = diag (exp (MLP (ō))) (8)

Trajectory Decoder We model the trajectory as a function of the latent variables and task pa-
rameters: x ∼ N (µθ(h,w),Σθ(h,w)). First, we encode the task and manner parameters using
two separate 2-layer MLPs. Since we want to output a trajectory, we also input a phase variable

1We implement our model in PyTorch [10] using the Pyro library [11].
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Figure 4: The neural network architecture for the encoder (left) and decoder (right). The encoder predicts the
latent variables for a given trajectory while the decoder takes in task parameters, w, the latent variables, h, and
a time variable, τ , to construct the trajectory.

τ = [τ1, . . . , τT ], where τt = t/T . We concatenate the encoded task and manner variables at each
timestep and use this as input to a TCN. Finally, an MLP predicts the mean and diagonal covariance
[14, 15] of the trajectory at each timestep. See Figure 4 for an architecture diagram.

henc = MLP (h) wenc = MLP (w) (9)

{it}Tt=1 = [henc; wenc; τt] (10)

{ot}Tt=1 = TCN({it}Tt=1) (11)

µtθ = MLP (ot) Σtθ = exp(MLP (ot)) (12)
We found that concatenating the unencoded latent variables, h, to the input of each layer of the
decoder helps to prevent latent variable collapse by increasing the mutual information between the
latent variables and the trajectory [16].

Temporal Convolution Networks In this work, we frequently use Temporal Convolution Networks
(TCNs) [13, 17] to model trajectories. TCNs are neural network architectures that have shown
success in sequence modeling domains such as language modeling and speech synthesis. TCNs
produce an output sequence of length T given an input sequence of the same length by applying
stacked dilated convolutions to the input sequence. The dilation provides an exponentially large
receptive field, and can be tuned based on the scale of patterns we wish to capture in the data. We
use a kernel size of three and a dilation size of two. See Figure 3 for a visualization of a TCN.

2.3 Adversarially Enforcing Independence

Although the model in Equation 2 expresses the independence structure we wish to capture, it is
often difficult to enforce the independence in practice. For example, the encoder may encode in-
formation about the task parameters into h instead of forcing the decoder to use w directly. This is
undesirable, as it means modifying the latent variables would also change the task.

To enforce the independence between w and h, we train the latent space to contain no information
about the task parameters, w. We accomplish this by adversarially training the encoder, φ, with an
auxilliary network, fW (a 3-layer MLP), used to predict w from the latent space h:

min
W

max
φ
Laux = min

W
max
φ

L1(fW (µφ(x)),w) (13)

This objective will encourage the learned latent space to be non-informative about the task param-
eters and force the decoder to use the provided w variables [6]. Jointly optimizing the ELBO and
adversarial losses leads to an alternating optimization problem:

min
θ,φ
LELBO − αLaux min

W
Laux (14)

Note that the max operator of the adversarial loss has been incorporated into the ELBO loss with
a hyperparameter α. It is important to choose α high enough so that no information about w is
encoded in h. In practice, we do this using a validation set.

3 Experiments

Our goal is to show that the Task-Conditioned VAE can learn an interpretable latent space that is
independent of the specified task parameters. We evaluate our method on both a synthetic drawing
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Arc
Drawing

MIME Pouring

Real Aug. Total
Train 8000 124 6652 6776
Val 1000 42 462 504
Test 1000 42 N/A 42

Table 1: Dataset sizes for the arc and pouring domains. Each
entry consists of the (x,w)-tuple. Note that we only augment
the MIME training and validation sets.

Figure 5: Example arcs from the syn-
thetic arc-drawing domain. Each color is
a different example.

domain and a tabletop manipulation domain. We use the synthetic domain as an exposition of our
method while the robotic domain shows the feasibility of the method with real data. This section
describes each dataset (Sections 3.1 and 3.2) and the metrics we use for evaluation (Section 3.3).

3.1 Synthetic Arcs

For the synthetic dataset, we choose an arc-drawing domain where trajectories consist of points
from an arc drawn in the 2d-plane. We choose this domain as it has clear task parameters (the center
of the circle the arc is from) and manner parameters (e.g., circle radius, starting angle, arclength).

Data Generation To generate data, we first sample the center of the circle from a unit-square,
w = (xc, yc). We then sample parameters of the arc such as the radius, the starting angle, and the
arclength. To get a trajectory from the arc, we take (x, y) locations at a fixed interval starting at
one end: x = {(xt, yt)}Tt=1. This is repeated to sample the training, validation and test sets, each
consiting of (w,x) tuples. See example datapoints in Figure 5.

3.2 MIME Pouring Dataset

To evaluate our method on real data with higher dimensional state spaces, we adapt the Multiple
Interactions Made Easy (MIME) [7] dataset to our problem. MIME provides a large-scale dataset of
manipulation demonstrations on the Baxter platform such as pouring, stirring, and stacking, among
others. As our method applies to a single action class where the task-parameters are shared, we focus
on the pouring action but note that the method remains applicable to other action classes where we
can specify a subset of the parameters. We convert each joint-space trajectory to 6-dimensional poses
of the robot’s end-effector. See Figure 1 for a snapshot from one of the pouring demonstrations.

Preprocessing Our method requires data in the form (w,x). As MIME does not include any task-
specific information, we extract w algorithmically. Specifically, we choose w to be the tabletop
location of the pour, (xc, yc), and the location of the source container, (xs, ys). We say the robot
is in a pouring state if the angle between the cup it is holding and the world’s z-axis is greater than
70 degrees. To extract the location of the pour, we simply average the locations where the robot is
in a pouring state. As the MIME dataset has pouring from both arms and allows multiple pours,
we restrict our dataset to focus on left-handed trajectories with a single pour and mirror the right-
handed pours in the xz-plane to augment the amount of data we have. So that we only capture
variation relevant to the pour, we segment each trajectory to only include portions between picking
up the source container and completing the pour.

Data Augmentation Due to the small size of the MIME dataset when limited to the pouring ac-
tion, we programmatically augment the dataset to make training more robust. Specifically, we use
Dynamic Movement Primitives (DMPs) [1] to alter the goal location of trajectories currently in the
training dataset. Note that the augmentation is meant to provide a greater diversity of task parame-
ters which will help the model learn to disentangle these from the learned manner parameters. For
each training trajectory, we fit a DMP and generate new trajectories with between 0-5cm added to
the pouring location. We perturb the weights of the DMP by a small amount to introduce noise
into the trajectories. We also found that randomly rotating and translating the entire trajectory was
a useful form of data augmentation. The number of augmented trajectories can be seen in Table 1.
Note that we augment the validation set so that it has a similar distribution to the training set but do
not augment the test set so that we only evaluate on real data.
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3.3 Evaluation Metrics

To evaluate our model, we need to show that: (1) The learned manner parameters are independent
of the specified task parameters and (2) the latent space interpretably controls axes of variation we
care about. A useful notion to help evaluate (1) are the empirical task-parameters, ŵ. Given any
trajectory, x, we provide functions, ŵ = G(x) that extract what the task parameters must have been
to generate that trajectory. For example, in the pouring domain, Gpour(·) returns the location where
the angle between the z-axis and the cup is greater than 70 degrees. For the arc-drawing domain,
Garc(·) extracts the center of a trajectory representing an arc. We propose the following metrics to
capture these performance criteria:

Task Success For each dataset, we would like to capture whether the trajectories generated by our
model can successfully complete the task specified by the task parameters. To do this, we autoencode
the trajectories in our test set to get x̂, the trajectory that would be generated using the most likely
latent variables according to the learned posterior distribution. We then check if the empirical task-
parameters are within a threshold, λ, of the true task parameters:

SUCCESS(x,w) = I(d(G(x̂),w) < λ) (15)

Robustness Intuitively, the learned manner parameters should not change aspects of the motion
related to the task parameters. To measure if the learned parameters are independent of the task
parameters, for each w in the test set, we sample a set of K learned parameters from the prior. We
then check if the empirical task-parameters are the same as the true parameters for all these samples
(recall µθ(·, ·) is the decoder):

{hk}Kk=1 ∼ p(h) ROBUSTNESS(w) =
1

K

K∑
k=1

SUCCESS(µθ(w,hk),w) (16)

We report the expected success and robustness on the test-set in Table 2 for various thresholds, λ.

We compare our model to Task-Parameterized Gaussian Mixture Models (TP-GMMs) [3] as a base-
line that generalizes to new task parameters but does not offer a means of controlling the remaining
captured variation. More details on the TP-GMM experimental setup can be found in the Appendix.
We further compare our model to ablated versions to analyze the importance of our contributions:
conditioning on task information and the adversarial loss. Specifically, we train a model without
the adversarial loss, TC-VAE (no Laux). We also train a VAE that does not condition on any task
information as a baseline that will have trouble separating task and manner parameters.

4 Results

In this work, we focus on learning a task-independent parameter space for trajectory generation. In
this section, we show: (1) The learned latent space is independent of the task parameters and (2) the
latent variables are interpretable and control semantically meaningful axes of variation.

4.1 Task Disentanglement

We first evaluate if the learned manner parameters are independent of the specified task parameters.
We do this using the ROBUSTNESS score – can the model perform the same task with different
settings of the learned parameters? In Table 2, we can see that the model that includes the adversarial
loss has the highest robustness score across thresholds and datasets. This indicates that varying the
latent space does not affect the success of the task being performed and that our model can properly
disentangle the task parameters from the manner parameters.

Figures 6 and 7 show how the task parameters do not change as we sample new manner parameters.
Specifically, we see how the arc centers do not change across latent variable settings in Figure 6.
In Figure 7, we see that the pouring location remains within a 2cm radius of the specified pouring
location when varying the learned parameters.

Incorporating the adversarial information loss increases the ROBUSTNESS score for each dataset
(see Table 2). The model without this auxiliary training objective fails to perform the main task
more frequently in both domains and with lower thresholds. The intuition behind this performance
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Synthetic Arcs
Model SUCCESS ROBUSTNESS

λ = 0.025 λ = 0.05 λ = 0.1 λ = 0.025 λ = 0.05 λ = 0.1
VAE 0.20 (±0.02) 0.92 (±0.02) 0.99 (±0.01) 0.0003 (±0.01) 0.0048 (±0.01) 0.02 (±0.01)

TC-VAE (no Laux) 0.66 (±0.03) 0.98 (±0.01) 0.99 (±0.01) 0.07 (±0.01) 0.27 (±0.01) 0.39 (±0.01)
TC-VAE 0.50 (±0.03) 0.97 (±0.01) 0.99 (±0.01) 0.43 (±0.01) 0.89 (±0.01) 0.94 (±0.01)

MIME Pouring
Model SUCCESS ROBUSTNESS

λ = 0.01m λ = 0.02m λ = 0.05m λ = 0.01m λ = 0.02m λ = 0.05m
TP-GMM [3] 0.45 (±0.15) 0.68 (±0.14) 0.88 (±0.10) N/A N/A N/A

VAE 0.0 (±0.03) 0.07 (±0.08) 0.31 (±0.14) 0.0 (±0.01) 0.01 (±0.01) 0.04 (±0.02)
TC-VAE (no Laux) 0.29 (±0.14) 0.64 (±0.15) 0.86 (±0.10) 0.25 (±0.06) 0.59 (±0.07) 0.93 (±0.03)

TC-VAE 0.36 (±0.15) 0.81 (±0.12) 0.83 (±0.11) 0.47 (±0.07) 0.80 (±0.05) 1.0 (±0.01)

Table 2: Performance of our full model (TC-VAE) compared to ablated baselines that do not use the adversarial
loss (no Laux) or the task information (VAE). SUCCESS is the fraction of the test set where the model can com-
plete the specified task (within threshold λ). ROBUSTNESS measures if changing the learned parameters affects
task success. TP-GMM does not have manner parameters to calculate robustness. 95% C.I.s in parentheses.

Figure 6: Visualization of the learned latent space for two examples from the arc-drawing dataset. Each example
has a fixed task parameter (arc-center). Each row corresponds to changing a specific latent variable between
(-1, 1). The first row, h0, corresponds to the start angle of the arc, while the second row, h1, corresponds to the
arc length. The image on the left of each panel represents a trajectory from the dataset with the same center.

difference is that even with the TC-VAE structure (but not adversarial loss), the model still encodes
information about the task into the latent space. The adversarial loss forces the decoder to rely only
on the provided task parameters when generating a trajectory.

Both TC-VAE models perform as well as the TP-GMM baseline under the SUCCESS metric but have
the added benefit that they have recovered additional parameters that control the remaining variation.
We note that all models generally perform well with respect to the SUCCESS metric, which uses the
most likely parameters of the posterior distribution of a trajectory. However, to achieve our goal
of learning a task-disentangled parameter space, the models must perform well on both SUCCESS
and ROBUSTNESS metrics (note that TP-GMM does not have a method to control the variation
captured by the model and thus does not permit a ROBUSTNESS score). The VAE model does not
perform well on either metric on the MIME dataset. We attribute this to the fact that VAE does not
have access to the task parameters and has trouble extracting them from the noisy data. All models
that have access to the task parameters outperform the VAE baseline that does not, showing the
effectiveness of conditioning.

4.2 Latent Space Visualization

We next analyze the interpretability of the learned manner parameters. We desire parameters that
are interpretable so that the learned parameter space can be easily controlled by a human. In Fig-
ures 6 and 7, we visualize how the trajectory changes while separately varying each of the learned
parameters within the range [−σ, σ] of the prior (while keeping the task parameters constant).

For the arc dataset (Figure 6), we see that the first latent dimension controls the starting angle of the
arc and varying it causes the arc to rotate. The second learned parameter controls the arc length with
a higher value corresponding to longer arcs. Note that in both examples, no matter the setting of the
learned manner parameters, the location of the arc’s center (green dot) remains the same.

For the MIME dataset (Figure 7), to visualize quantities of interest, we plot the angle between the cup
and the z-axis (extracted from the TC-VAE output in 6-dimensional end-effector space) as we vary
the second and fourth latent dimensions. We also draw a pouring threshold line where we consider
the robot to be pouring for any angle above this line (70 degrees). We see that the second latent
dimension controls how early the pouring occurs within each trajectory. Increasing this parameter
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Figure 7: Visualization of the learned manner parameters for the pouring data and a fixed task parameter. Each
plot shows the angle between the cup and the z-axis for the trajectory while varying a single learned parameter
(h2 on the left, and h4 on the right). Each trajectory corresponds to different settings of that learned parameter
in the range (-1, 1). The lines underneath show the corresponding length of the pour for the respective trajectory.
h2 can be seen to control how early the pour occurs and h4 the duration of the pour. The bottom left plots show
the pouring location of each trajectory and a 2cm radius around the specified pouring location.

causes the pour to occur later. The fourth latent dimension varies the the duration of the pour. Note
that the second and fourth latent dimensions are independent of each other. That is, changing h4
does not change the time the pour begins. Additional visualizations can be found in the Appendix.

5 Related Work

There has been much work on developing movement primitives that are easily transferable to new
tasks. Dynamic Movement Primitives (DMPs) [1] can adapt the endpoint of a movement or its du-
ration to those seen outside of training. DMPs have been widely extended to handle visual coupling
[18] and support adaptation via reinforcement learning [19]. Probabilistic Movement Primitives
(ProMPs) [20] and their extensions [2, 21] use a probabilistic representation where modulating the
trajectory is performed by conditioning the trajectory distribution. Latent Manifold Probabilistic
Movement Primitives (LMProMPs) [4] extend this approach to extract low-dimensional control pa-
rameters for the policy. Another framework that focuses on generalizing movement primitives to
new tasks is the Task Parameterized Gaussian Mixture Model (TP-GMM) which parameterizes a
task by specifying task-specific coordinate frames [3, 22, 23]. Although the experiments in this
work use task parameters that can be interpreted in such a way, there is no limitation preventing
us from using more abstract task parameterizations. We follow in this line of work and allow both
specified and learned parameters by ensuring the parameters sets are independent of each other.

Much of the recent literature on deep generative modeling has focused on learning disentangled,
interpretable representations [8, 24]. Fader Networks [5] and Adversarial Information Factorization
[6] employ an adversarial loss to learn how to modify image attributes without changing other as-
pects of the image. Our work uses a similar method to modify trajectories. This technique has also
been used in the fairness literature to censor sensitive information from learned representations [25].

Our work is related to the Reinforcement Learning literature that focuses on learning interpretable
policies. Independently Controllable Factors [26] and InfoGAIL [27] both encourage learning
meaningful representations of the environment. Contextual Policy Search [28] uses context vari-
ables to adapt a policy to new tasks. Finally, several efforts have addressed robotic pouring
[29, 30, 31, 32, 33]. Whereas many of these methods focus on precision pouring, we learn an
interpretable movement primitive from demonstrations.

6 Conclusion

In this work, we proposed the Task-Conditioned Variational Autoencoder (TC-VAE) – a generative
model that explicitly differentiates between what task to perform and how that task should be per-
formed. We showed that by utilizing an adversarial information objective, this model can learn a
low dimensional latent-space that is independent of the task and generate trajectories that incorporate
both types of parameters. This enables demonstrations to be modified in coherent ways.
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Appendix

A TC-VAE Hyperparameters

We fit the TC-VAE model to each dataset using 4 latent variables (the VAE baseline uses 10 latent
variables as it needs to encode richer information). The TCN uses 3-stacked convolutions with
kernel size 3, and dilation size 2. β was set to 4 for the arc dataset and 8 for the pouring dataset. The
hyperparameters were chosen using the validation sets.

B TP-GMM

Task Parameterized Gaussian Mixture Models (TP-GMMs) use coordinate frames as task parameters
and fit a GMM to a trajectory represented by the coordinate frames [3]. In the MIME dataset, we
use two coordinate frames given by the location of the pouring container (xc, yc) and the location
of the source container (xs, ys). We assume the same orientation as the world frame and height of
the table for the z axis of each coordinate frame. Before fitting the model, we align the trajectories
using dynamic time warping. We fit the unaugmented training trajectories to a TP-GMM with 25
Gaussians and evaluate the model using Gaussian Mixture Regression to generate trajectories for the
task parameters in the test set. We thank the authors for the code provided in [3].

C Additional Visualizations

Figures 8, 9, and 10 visualize the learned manner parameters for the TC-VAE, TC-VAE (no Laux),
and VAE models respectively. Note the first two models each used h of dimensions 4 (we only
visualize the first 4 dimensions of the VAE model).

Figure 8 shows all dimensions of the learned parameters for the TC-VAE model. While h2, h3,
and h4 correspond to semantically meaningful variations (starting time, maximum pouring angle,
and duration respectively), h1 does not capture much variation relating to the pour angle. Note
that h3 and h4 both capture variation in the maximum pouring angle and thus are not semantically
independent from each other.

All sampled trajectories from the TC-VAE model remain within 2cm of the desired pouring location.
The ablated models are not as robust to changes in the learned manner parameters. For the TC-VAE
(no Laux) model, the pouring locations are often more than 2cm from the desired locations (see the
pouring location plots in Figure 9). In the VAE, most trajectories do not come close to the desired
pouring location as the latent space is forced to encode task-specific information in this model (see
Figure 10).
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Figure 8: Visualization of the learned manner parameters for the TC-VAE model. Each plot shows the angle
between the cup and the z-axis for the trajectory while varying a single learned parameter (h1 on the top left to
h4 on the bottom right). Each trajectory corresponds to different settings of that learned parameter in the range
(-1, 1). The lines underneath show the length of the pour for the respective trajectory. The pouring locations
for each trajectory and a 2cm radius around the desired location are shown in the bottom left of each plot.

Figure 9: Visualization of the learned manner parameters of the TC-VAE (no Laux) model. Notice how the
pouring locations (bottom left plots) are farther from the desired location than in the TC-VAE case.

Figure 10: Visualization of the learned manner parameters of the VAE model. Note that since the VAE encodes
task information in the latent space, most pours are far from the desired location.
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