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Abstract— There has been a considerable amount of recent
work on high-speed micro-aerial vehicle flight in unknown
and unstructured environments. Generally these approaches
either use active sensing or fly slowly enough to ensure a
safe braking distance with the relatively short sensing range of
passive sensors. The former generally requires carrying large
and heavy LIDARs and the latter only allows flight far away
from the dynamic limits of the vehicle. One of the significant
challenges for high-speed flight is the computational demand of
trajectory planning at sufficiently high rates and length scales
required in outdoor environments. We tackle both problems
in this work by leveraging semantic information derived from
an RGB camera on-board the vehicle. We first describe how
to use semantic information to increase the effective range of
perception on certain environment classes. Second, we present
a sparse representation of the environment that is sufficiently
lightweight for long distance path planning. We show how our
approach outperforms more traditional metric planners which
seek the shortest path, demonstrate the semantic planner’s
capabilities in a set of simulated and excessive real-world
autonomous quadrotor flights in an urban environment.

I. INTRODUCTION

Autonomous navigation of unmanned micro-aerial ve-
hicles (MAVs) in an urban environment is a challenging
problem and an active field of research [1]–[4]. An aerial
vehicle, operating at a low altitude, in an unknown and
unstructured environment has to simultaneously solve several
problems including perception, self-localization, trajectory
planning and control in order to ensure safe motion. Despite
the increased likelihood of collisions resulting from operating
at a low altitude is a requirement for many tasks (e.g. search
and rescue under tree canopy). While most aerial applica-
tions benefit from high-speed navigation (� 10m s−1) by
extending their coverage of the environment (e.g., monitoring
and surveillance), high-speed navigation is essential to others
(e.g., urgent medical goods transportation [5]).

Although there are many reasons to want autonomous,
high-speed navigation on MAVs, it presents many inherent
challenges. First, the size, weight, and power constraints
(SWaP) presented by MAV platforms results in myopic
perception and demands relatively slow flight in order to
ensure safety. The maximum depth perception of stereo
imaging devices mainly depends on the baseline, focal length
and image resolution. Standard stereo cameras that fit on
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Fig. 1. Quadrotor performing high-speed, autonomous navigation mission
in an urban environment as well as the graph representation and the road
center line, learned during a mission on-board of the vehicle and in real-
time. Start- ’S’ and end-location ’E’ are highlighted.

MAVs have a limited perception range of approximately
10m [6], [7]. Stereo cameras with a larger depth percep-
tion are heavier and suffer from a higher minimum depth
perception range, creating difficulties in sensing to close-in
obstacles. Structured light sensors, such as the Asus Xtion
Pro, have similar perception ranges [8], but do not work in
sunlight. LIDARs have significantly longer sensing ranges,
but also much larger SWaP requirements. Second, high-speed
flight requires the ability to plan over much longer trajec-
tories in order to actually use long-range perception. The
computational complexity of trajectory planning typically
grows exponentially with the length of the trajectory, creat-
ing challenges for real-time applications on computationally
limited hardware. Third, high-velocity flight demands that
the mapping process remains fast and efficient as additional
parts of the environment are revealed. Common approaches
for high-speed navigation in urban environments either use
special long range sensors [2] or fly at the safe limit of the
perceptual range. To give an example, a quadrotor with a
weight to thrust ratio of 1.5, flying at a forward velocity of
10m s−1 demands approx. 9m to come to a stop. Both of
these solutions result in the vehicle being unable to exploit
the inherently fast dynamics of an MAV [4] and provide
performance that remains far behind the skills of a trained
human pilot. In this work, we show how semantic infor-
mation in the perception-estimation-planning loop enables
longer perception horizons and therefore enables faster flight.
Furthermore, we demonstrate how semantic information can



be used to build a sparse representation of the environment.
In particular, we will focus on mapping the road network
within an urban environment. We selected this environment
because urban spaces tend to be built of two distinct types,
roads and structures. In this setting, an agent can gain signif-
icant advantage by remaining on the sparsely occupied roads
instead of taking the often shorter route through the interior
of an obstacle rich city block. A simplifying property that
will be exploited in this work is that roads are often flat and
we will provide a sensitivity analysis to show the robustness
of our approach to violations of this assumption. Finally,
note that we are only using roads as an example for the
more general principle of leveraging semantic information
for trajectory planning. Similarly, we could use the classes
of grass or terrain in a forest environment.

Contributions: In this work, we seek to demonstrate high-
speed navigation (e.g., from a starting point to one or
multiple goal locations) in a large, initially unknown, urban
environment. This is difficult due to the aforementioned
challenges presented by the perception, planning, and map-
ping problems. To address these challenges, our approach
considers semantic information found in the color camera
image and provides two primary contributions.

• We use semantic information drawn from a segmented
color camera image to increase perception range and
allow for long-distance mapping and planning. Our
experiments will show this assumption to hold well in
urban environments.

• We present an approach based on inference by a deep
neural network to generate traversability networks rep-
resented by a combination of lines, arcs, and clothoids
(as well known as Euler spirals) which outperforms
other state-of-the-art methods and allows for highly
efficient long-distance trajectory mapping and planning.

In Sec. II, we will discuss how our work is motivated
by previous work on the topic. Then, in Sec. III present
the process for generating the graph representation of the
environment. In Sec. IV we will briefly present the software
framework and in Sec. V we discuss thoroughly simulated
and initial real-world results. In the last section we will
discuss current limitations and future work.

II. RELATED WORK
There exists a broad spectrum of techniques for MAV path

planning in unknown, outdoor environments. Most of these
techniques can be placed in one of two groups defined by a
combination of target environment and sensors suite. The
first group is GPS-enabled, high-altitude flight in clutter-
free environments [9], [10] while the second group is GPS-
denied, low-altitude flight in cluttered environments [3],
[4]. Because urban environments introduce errors in GPS
measurements due to multipath and occlusion, the latter
group and the work presented here relies on cameras for
state estimation and perception.

In this setting, the most common approach to mapping
is on-board visual SLAM where the agent geometrically
reconstructs the environment and simultaneously localizes

itself within it [11]. Once a metric map has been built,
it can be used for trajectory planning. Although common,
planning for high-speed flight in these dense metric maps
can be challenging and it is often not clear how best to
select control inputs to satisfy the myriad constraints present
in this problem. Although not alone, the work done in [4]
discusses an approach to navigating cluttered, unknown en-
vironments by reasoning about obstacle proximity in a multi-
tiered planning system to provide a flexible velocity planning
strategy. Other recent efforts to overcome this challenge have
focused on learning direct control policies from raw sensor
measurements to motion primitives or steering angles [12],
[13]. These methods (e.g., [13] used car dashcam video
data as they are widely available) require a large amount of
training data, which is costly and often difficult to acquire,
or use simulated data, which often does not generalize well.

In our work we seek to find a different approach by
learning a representation of the environment that simplifies
the trajectory planning problem with the help of semantic
information. Although some SLAM approaches such as [14],
[15] jointly consider geometric and semantic information
(acquired by an image segmentation deep neural network)
to improve the localization, our approach treats these as
independent components. We first obtain a state estimate
to use during local, geometric map fusion and then use
a segmentation image generated from the color camera to
infer the semantic class of the environment beyond our
depth perception range while also building a lightweight map
representation to enable long-range, efficient planning.

III. METHODOLOGY

In this work, we seek to control an MAV at low altitude,
in a cluttered, urban environment, equipped with an RGB-D
camera and IMU, to a goal location in an unknown, urban
environment and focus on two primary technical challenges.
First, given the number of possible vehicle states and map
configurations, solving this trajectory finding problem be-
yond toy examples is hardly viable on large scale maps.
Second, the perceptual range limitation coupled with a desire
for safety limits the vehicle’s top speed. We solve the former
problem by learning and tracking a graph representation of
the environment that simplifies the trajectory planning even
for long range trajectory planning. The latter problem is
addressed by expanding the effective perception range with
the use of a semantic segmentation image from the RGB
camera. To enable both of these capabilities, the computa-
tional complexity of the solution must be lightweight enough
to be computed in real-time on-board, with a sufficient rate,
on a resource constrained MAV. The high-level steps of the
approach are as follows:

First, we use a semantic segmentation network1 to obtain
a segmented image from the current camera image and
the state estimation pipeline described in [16] to obtain a
state estimate. Second, we fuse the latest semantic image

1https://docs.openvinotoolkit.org/latest/_intel_
models_semantic_segmentation_adas_0001_description_
semantic_segmentation_adas_0001.html
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Fig. 2. Overview of the graph network learning pipeline: First, the camera image is segmented into pixelwise semantic labels. Based on the semantic
segmentation, we generate a probabilistic top-view projection of the current camera image. The top-view projection is integrated into a probabilistic map
of the local environment. The center line is computed using Zhang’s image skeletonization method. Finally, the graph-based representation of the center
line is inferred, which is used for trajectory planning. On the right side is a top-view image of the environment with the starting and the goal location
highlighted.
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Fig. 3. Schematic visualization of the ray-casting, probabilistic mapping
(brighter color symbolizes a higher probability to be road), and semantic
labels. When fusing the semantic projections into a semantic map, we give
road labeled pixels positive weights and other labels (Sidewalk, Grass, and
Terrain) negative weights.

into a Bayesian top-view representation of the environment.
In this work, we infer a representation of the surrounding
roads. Third, we transform this top-view representation into
a lightweight graph representation. Fourth, we generate a
trajectory based on the graph representation. An overview
of these steps is depicted in Fig. 2. Each of these steps is
described in detail below.

A. Learning Graph Representation

In this work, we make a flatness assumption that allows us
to place certain environment classes (e.g., roads, sidewalks,
grass, terrain) on a single x-y-plane in the world frame FW

(see Fig. 3)2.
When developing our graph network representation for fast

MAV flight, we sought three key properties:
• Sparsity: A good representation of the underlying road

network strongly sparsifies perceived data (e.g. camera
information). Note that this precludes solutions that rely
on dense metric discretization such as voxel-grids.

• Efficiency: A good representation allows fast, efficient
path planning over long distances.

• Control: A good representation allows control inputs to
be derived directly.

Based on these requirements, we represent the learned
road network as a graph derived from the road’s center-line.
In this graph, each node symbolizes a road intersection and
every edge represents a traversable path connecting those

2Even in case that the road plane is not perfectly flat this approach can
be beneficial as we do not want to track a certain global altitude but an
altitude with respect to the ground plane.
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Fig. 4. a) The black line shows the desired road center-line profile for a
line-arc-line combination. The red and blue lines show the center-line profile
with clothoids between the segments. b) The x and y acceleration profiles
generated by tracking the line-arc profile (dashed) and the line-clothoid-arc
profile (solid). Note that the desired acceleration is not continuous in case of
pure line-arc combinations, while it is continuous for the line-clothoid-arc
combination.

intersections with an associated transport cost. In previous
literature, road center-lines have mainly been modeled by
concatenated line segments [17], [18]. Recently, many other
segment types have been used to model road center-lines.
For a full survey we refer the reader to [19]. A common
approach is to combine line- and arc-segments, e.g. [20].
While combining these two elements seems sufficient for re-
covering the center-line, a line-arc trajectory suffers from an
infinite lateral acceleration at the connection points and fails
to meet our smoothness objective. We therefore represent the
road center-line as a combination of lines and arcs that are
connected with clothoids. This allows for smooth transitions.
Clothoids are a natural choice as they are well known for
their smoothness properties and are often used in the design
of roadways [21]. We follow the work presented in [22] to
compute the clothoids. A typical example of a line-clothoid-
curve segment is depicted in Fig. 4-(a). Fig. 4-(b) compares
the lateral accelerations with and without using clothoids.

1) Top-view projection and probabilistic map: Given the
vehicle’s estimated attitude R, its uncertainty, and the seman-



tic image, we can generate a probabilistic top-view projection
of the visible road. By assuming flatness, we use a beam
model to estimate the probability distribution of a road pixel
in the 2D top-view projection. By projecting and fusing
other segmentation classes (sidewalk, grass and terrain) into
the top-view image with a negative weight, we are able to
significantly increase the quality of the top-view map. Using
the drone’s position and a binary Bayes filter [23] we fuse
the instantaneous top-view into a sliding-window semantic
map with the drone at its center.

2) Graph network representation: To generate the sparse
segment representation, described at the beginning of this
section, we first threshold and then skeletonize the prob-
abilistic map using an implementation of Zhang’s method
[24]. This gives the center-line of the current probabilistic
map. In a next step, we decompose this center-line map
into the desired graph structure where every intersection
represents a node, and the segments of the graph contain
the road center-line. To accomplish this, we use the scikit
image processing toolbox.

In the next step, we decompose the pixel-based center-
line representation into the sparse line-clothoid-arc represen-
tation. Decomposing curves into sub-elements is an active
field of research. To decompose curves, it is customary to
first detect dominant points [25] and then fit the desired
segment types to those points [26]. The performance of these
algorithms degrades with increasing noise along the curve
and is too slow for a real-time application since finding the
dominant points is computationally expensive. To address
these short-comings, we use a deep neural network (DNN)
to classify the center-line into dominant points, curves, and
line segments. The deep neural network is based on a
lightweight and shallow image segmentation network and its
input is a 64x64 pixel image (see Fig. 5). The DNN was
trained on a set of >250.000 artificially generated curves
with added noise. The segmentation of a single image takes
4.1ms (s = 3.0ms) on an Intel i7-8650U CPU. After
training, the DNN achieves a per-image pixel classification
accuracy of 99.85%. Interestingly the DNN’s true-positive
classification of dominant point achieves an accuracy of
73.13. Additionally, we compared true-positive classification
of dominant points in a one pixel radius around the true
dominant point. Here the DNN achieves an accuracy of
94.75%, and an accuracy of 97.81% in a two pixel radius.
A typical example of the segmentation is shown in Fig. 5.
To compare the accuracy of our approach, we tested the
dominant point detection with the approach presented in [26]
where, with a two pixel radius, an accuracy of only 38.02%
could be achieved. A detailed comparison is shown in Tab. I.

IV. SOFTWARE FRAMEWORK

The presented mapping and planning framework is in-
tegrated into an existing flight stack presented in detail in
[4]. An overview of the flight stack including the semantic
trajectory planning is presented in Fig. 6. We will now
summarize the major components of the original flight stack
[4] (we will use the original flight stack as a baseline in

Input Image Segmented ImageDeep Neural Network

- =

Ground TruthSegmented Image
Additional DPs

Shifted DPs

Fig. 5. We use a Convolutional Neural Network that predicts road
segments consisting of arcs, lines and dominant points from single 64 by
64 pixel black and white frames. In the notation above, we indicate for
each convolution first the kernel’s size, then the number of filters, and
eventually the stride if it is different from 1. Top: Exemplary input image and
segmented output image. Detected dominant points (DPs) are highlighted.
Bottom: A comparison of the segmented image and ground truth. Note that
two additional DPs are found and two DPs are slightly shifted.

TABLE I
TRUE POSITIVE CLASSIFICATION ACCURACY OF DOMINANT POINTS

COMPARING OUR APPROACH AND [26] AT DIFFERENT RADIUS

TOLERANCES.

0 pixel 1 pixel 2 pixel 5 pixel
Our Approach 73.13% 94.75% 97.81% 99.41%

Nguyen et al. [26] 17.89% 18.49% 37.82% 66.94%

Sec. V-A) and explain how the new semantic trajectory
planning is integrated. The data from the depth sensor are
sorted into a k-d tree for efficient data query and at the same
time integrated into an occupancy and a distance grid. We
unify the grids into a cost grid and use Dijkstra’s Shortest
Path First (SPF) algorithm to find a traversable global path
through the cost grid. For computational reasons the grids
are implemented as rolling maps with the quadrotor in the
center and with a size of 60× 60× 6m and a resolution of
0.5m. If the final goal is located outside of the cost grid,
the global path ends on the grid cell, nearest to the global
goal. Additionally, we define a local goal that moves on the
found global path in front of the MAV. The travel speed of
the local goal depends on the clutter of the local environment
and proximity to obstacles. We track the local goal following
a pure pursuit strategy. Finally, with every new depth sensor
measurement, we compute more than 300 minimum jerk
motion primitives, dependent of the current state of the MAV
(different in velocity, final position and height). We assign a
cost to the primitives depending on collision with obstacles,
proximity of primitive’s final position to the local goal and
proximity to obstacles and track the motion primitive with
the smallest cost. Tracking a local goal and more importantly,
being able to locally diverge from the local goal allows to
avoid obstacles that have not been detected by the global
planner, which runs at a lower updated frequency (e.g.,
dynamic obstacles). While the motion primitive generation
is triggered by every new depth sensor measurement (30Hz)
the computation of the global path runs only at 2Hz. The
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Fig. 6. An overview of the planning stack framework. The bright yellow
components consume the depth image and are updated at 30 Hz. The dark
yellow components are part of the global path planning and run at 2Hz.

limited perception range of the depth sensor reduces the
maximum safe velocity of the platform.

Given this baseline motion planner we extend it with the
semantic trajectory planner by offering an alternative global
path while the SPF-algorithm runs in parallel (see Fig. 6).
The semantic trajectory planner is triggered by every new
semantic image and runs at 1Hz (detailed information on
the computational load of the semantic trajectory planner are
summarized in Tab. III). As presented in Sec. III we search
in the graph the trajectory that brings the robot the closest to
the global goal. As long as this trajectory is not significantly
longer than the shortest path we track the trajectory based on
semantic information. The combination of both approaches
makes the framework very powerful as the semantic planners
enables a longer range perception and allows building of
a global map over very long time horizons while the SPF
planner allows approaching goals that are not on streets or
if tracking a road would be a significant detour.

V. EXPERIMENTAL RESULTS

For this work we conducted two different sets of exper-
iments. The first set presents simulated results, that will
highlight certain aspect of the approach while the second set,
real-world experiments from a quadrotor platform controlled
in closed loop, present results of the overall approach and
real-world limitations.

A. Simulation results

The simulations have been conducted in urban environ-
ments with a road network of a total length of 3.8 km.
All simulations leveraged the real flight stack that as well
runs on the actual quadrotor platform, which included low-
level control, perception and state estimation. Both, sensor
simulation and physics were simulated with a high fidelity
Unity3D3 environment (see Fig. 7-b). We conducted four
different simulated experiments. The first one is a single
flight while tracking five waypoints, demonstrating the gen-
eral capabilities with respect to the sole SPF-planner. In
the next two simulated experiments we demonstrate specific
capabilities of our approach.

3Game engine by Unity Technologies: https://unity3d.com
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Fig. 7. A top-view of the urban environment with a total road length
of 3.8 km. Start location (S), waypoints (#), and trajectory paths (black -
shortest path planner, red - our planner) are highlighted. b) Camera image of
the high-fidelity city environment. c) A close-up view of the two trajectories.
Due to the short visibility, the naive planner (black) is forced to repeatedly
dodge the building. Our planner (red) tracks the road smoothly and at a
significantly higher speed.

TABLE II
COMPARING OUR APPROACH AND A SHORTEST PATH PLANNER. WHILE

THE SHORTEST PATH PLANNER FINDS A SHORTER TRAJECTORY, OUR

APPROACH ENABLES FLIGHT WITH A MUCH HIGHER SPEED, RESULTING

IN A SIGNIFICANTLY SHORTER TOTAL TIME.

Total
Distance

Total
Time

Mean
Speed

Max.
Speed

Our Approach 764.3 m 173.9 s 4.20 m s−1 5.01 m s−1

Ryll et al. [4] 681.4 m 530.5 s 1.22 m s−1 2.23 m s−1

1) Single Flight: For this experiment, the MAV navigated
to five waypoints in the initially unknown urban environment
and then returned to the start location. The waypoints were
defined with respect to the start position and the resulting
flight paths are depicted on an top-view image of the
environment in Fig. 7-a.

The tracked trajectory of the semantic trajectory planner
is highlighted in red and the SPF-planner [4] is highlighted
in black. A comparison between the two approaches is
presented in Tab. II. First and most obvious, we can see
that our approach is able to track roads. As expected, we
can see from Tab. II that the SPF-planner finds a path that
is approximately 10% shorter. Our approach finds a longer
path due to a detour taken between waypoint 3 and 4. This
detour was taken because the road map had not yet been
fully built and the shorter path was not yet known to the
planner. Despite the longer path, our approach outperforms
the shortest-path planner by achieving a higher average and
maximum speed. Thanks to the higher velocity, our approach
needed only one third of the time to successfully complete
the mission.

2) Graph Representation and Graph Search: In this ex-
periment we want to demonstrate the benefits of representing
the data in a graph structure over representation in common
voxel grid representation. We assumed full knowledge of the
environment and compared the pure path search time for
SPF-algorithm and RRT* (Rapidly-exploring random tree*)
in the voxel grid representation with the search in the learned
graph representation. The RRT*-algorithm was stopped as
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Fig. 8. A comparison of the trajectory search time in a geometric voxel-
grid representation with Dijkstra’s Shortest Path First (SPF) algorithm (red),
RRT* (blue) and our sparse graph representation (green) over increasing
map sizes. SPF stopped as soon as a feasible path is found.The trajectory
search in the graph is significanlty faster than the other two grid searches.

soon as any feasible trajectory was found. We randomly
picked 1000 locations in the city environment and compared
the search time at different map sizes (see Fig. 8). The
graph search is generally faster by two or three orders of
magnitudes than the other two approaches. More important,
it becomes obvious that the search in the voxel grid with both
SPF and RRT* becomes infeasible in real-time for larger
maps. For the largest representation (1000m by 1000m),
a query needed an average of 75.52 s with SPF and 1.11 s
with RRT* while the same search in the graph representation
only needed 47 µs. The results were computed on the flight
computer equipped with an i7-8650U CPU. We would like to
emphasize that our planner, unlike the voxel-based planners,
returns a smooth path that can be directly tracked by a
quadrotor.

3) Benefit of Map Learning: In this last simulated exper-
iment we want to demonstrate the map inferring capabilities
and how the general task benefits from our approach. As
presented in the first simulated experiment (see Sec. V-A.1)
we saw that the overall trajectory length of our approach
was longer, compared to the baseline (SPF) planner, mainly
due to the detour taken. Both approaches seek a shortest
path in their own representation of the environment. For
this experiment, we randomly placed 40 waypoints in the
city environment and had the drone autonomously navigate
to them, allowing our approach to fully disclose the map
over time and to infer the full graph network representation
of the environment. As shown in the previous experiment,
a voxel grid representation of the complete environment
cannot be used for trajectory planning as the computational
demand is too high for the real-time trajectory planning. We
then compared our planner with the SPF-planner that uses
a local (60m by 60m) sliding-window map. The results
while tracking 100 randomly placed waypoints, depicted in
Fig. 9. Fig. 9-a) show the mean traveled distance between
waypoints. Once the semantic planner built a sufficiently rich
map, it competes with the shortest path planner regarding the
found trajectory length. Fig. 9-b) depicts the time needed
between waypoints. Here, the benefits of following semantic
planning become obvious. Thanks to the clutter free environ-
ment higher speeds are possible, resulting in shorter flight
times between waypoints.

4) Robustness to non-flat surfaces: As discussed in
Sec. III-A.1 the projection of the semantic classes assumes
local flatness. To test the robustness to this simplification we
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Fig. 9. A comparison of the naive planner (shortest path) against our ap-
proach. For this representation 100 trials have been averaged. Our approach
infers the road map over time and reaches comparable distances as the
naive planner while reaching the waypoints significantly faster. a) Traveled
distance between waypoints. b) Average time between two waypoints.

20 40 60 80
-20

0

20

40

20 40 60 80
-20

0

20

40

20 40 60 80
-20

0

20

40

20 40 60 80
-20

0

20

40

20 40 60 80
-20

0

20

40

20 40 60 80
-20

0

20

40

-3  

-2.6

-2.3

-1.9

-1.5

-1.1

-0.8

-0.4

0   

Fig. 10. Comparing road centerline estimation (red-blue) with ground
truth (green) on a non-flat ground while tracking road. The right part of
the map (altitude indicated by background color) declines with 5◦. The
black ’x’ indicates the MAV position. Far distant projections are estimated
incorrectly. While approaching initially incorrectly estimated segments, the
position is corrected, with subsequent measurements over time. The altitude
is indicated in gray.

simulated an uneven surface and compared the estimation of
the road centerline with the ground truth. The results are
depicted in Fig. 10. While the initial part of the road is
flat, the road tilts downwards by 5◦ as soon as the curve
element starts. By simple geometric reasoning it is clear that
the centerline distance will be underestimated if the road
tilts downwards and overestimated if the tilting is positive.
Additionally the error becomes larger with an increasing
distance to the road. As the MAV is tracking the road, the
position of the curve in the road is initially underestimated.
As the MAV approaches the curve in the road the error is
corrected. A very similar scenario is tested in Sec. V-B.2 on
the actual platform with similar results.

B. Real flight results

In this section, we present two experiments of fully au-
tonomous flights in an urban environment. The experiments
have been conducted on a custom quadrotor MAV platform
equipped with an D435i Intel RealSense depth camera (RGB
image and depth image: 640 by 480 pixel, 30 Hz), and a
quad-core Intel NUC flight computer with an i7-8650U CPU.



TABLE III
COMPUTATIONAL UTILIZATION ON THE INTEL NUC (I7-8650U CPU)

DURING REAL WORLD EXPERIMENTS. SEMANTIC SEGMENTATION

DOMINATES THE COMPUTATIONAL LOAD OF THE ALGORITHM.

Mean Value Standard deviation
Semantic segmentation 794.1ms 120.4ms

Skeletonization 72.3ms 16.1ms
Dominant point detection 4.1ms 3.0ms

Graph search �1ms �1ms
Total 903.8ms 148.7ms

The Intel D435i was equipped with an infra-red projector,
which was disabled for our use — making it a passive
sensor. The total weight of the platform is approximately
1.48 kg (excluding battery) allowing a flight time of 6min.
The computational utilization of the flight experiments on
the Intel NUC flight computer are summarized in Tab. III.
On the basis of the results of the first experiment we will
discuss the precision of the map building process in a real-
world environment. The second results will demonstrate
the benefits with respect to mission time. To stress the
semantic planner the experiments have been conducted in
an environment that is clearly not flat but with a significant
change of terrain elevation. We recommend the reader to
watch the attached video to fully appreciate the experiments.
Finally, we would like to remind the reader that in this work
we described our approach on the example of mapping roads,
which is handy in an urban environment, but this approach
can be easily extended to different environments and goals,
for example the much more general class of free space.

1) Experiment 1: Long distant exploration: The quadro-
tor’s task was to autonomously fly to two given waypoints
(see Fig. 11) specified with respect to the take-off location
and then return to the goal location. The take-off location was
on a street while both waypoints (P1(80m, 40m), P2(-5m,
78m)) where close but not on the street, requiring the vehicle
to leave streets during the mission. A top-view image of
the experiment, the mapped road center-line and the actually
tracked trajectory are depicted in Fig. 11. The total trajectory
length from take-off to landing was 375m. The overall
quality of the road center-line is good with locally worse
results (e.g., in the upper left corner and near the starting
location). The decrease of mapping quality is originated
by incorrect classifications during semantic segmentation
(see Fig. 12. Here we saw two effects causing erroneous
segmentation results. First, the experiments were conducted
in winter, where vegetation is reduced and less colorful,
causing vegetation to be classified as road. Second, most
of-the-shelf segmentation pipelines are trained with dash-
cam videos. As soon as the video stream significantly differs
from standard dash-cam videos (e.g., quadrotor not centered
on road, extreme attitude angles) the segmentation quality
drops.

Two key points can be drawn from this experiment. First,
let us compare the perception ranges (see last plot in Fig.
11). In our experience, the Intel RealSense D435i depth
camera provided the best and most reliable depth perception
of up to 10m in outdoor environments. While the semantic
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Fig. 11. Experiment 1 - Long distant exploration: Map: The vehicle took
off at starting location ‘S’ and was commanded to fly fully autonomously
towards waypoints ‘1’ and ‘2’ and to return to the starting location. The
detected center-line of the road is highlighted in orange, while the quadrotor
position is printed in cyan. Plot 1: Position of the quadrotor along the
trajectory. Plot 3: Perception range of semantic planner and depth camera.

segmentation planner pipeline integrated road pixels of up to
a distance of 45m it required multiple measurements until
newly seen areas appeared in the planning graph. We now
compared the perception range of the depth camera with the
range of the planning graph while flying into unknown space.
Our approach provided a mean perception range of 25.3m
and a max range of 35.7m during the experiment, an average
perception increase of a factor of 2.5. Second, our approach
was able to generate a sparse planning graph representation
of the environment. The final learned graph representation
consists of 26 nodes and 26 edges, allowing for an highly
efficient trajectory search (in avg. 8.2 elements per edge).

2) Experiment 2 - Out and back: In the second experiment
we used the same start and goal location as in Experiment 1
(see Fig. 11) but only tracked waypoint 1 and returned
afterwards. The goal of the experiment was to demonstrate
that leveraging the learned graph allows a quicker completion
of the task. The results are summarized in Fig. 13, where
the exploration phase (flight through unknown space) is
highlighted in yellow and the exploitation phase (flight
through known space) is highlighted in green. From the first
plot in Fig. 13 it becomes obvious that the length of the
trajectory during exploration is longer than on the way back
(130.3m vs. 118.12m). The second plot depicts that the
vehicle’s velocity is increased during the return (1.28m s−1

vs. 1.58m s−1). Thanks to leveraging the semantic graph
planning the mission time during exploitation is decreased
by 29% (103 s vs 72.9 s).
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Fig. 12. Semantic segmentation quality during flight. In the top row
semantic segmentation quality is high - Roads are well detected (lila). In
the bottom row the semantic segmentation quality of roads is worse, large
parts of the grass are segmented as road.
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Fig. 13. Experiment 2: Exploration phase (flight into unknown space) is
highlighted in yellow and exploitation phase (returning to start location) is
highlighted in green. Top: Position of quadrotor during mission. Bottom:
Component wise and norm of velocity during mission. The mean velocity
is higher during exploitation than during exploration.

VI. CONCLUSION AND FUTURE WORK

In this paper, we demonstrated how to use semantic infor-
mation to improve the perception-estimation-planning loop
for high speed MAV flight in urban environment. Specif-
ically, we used semantic information to extend perception
range and demonstrated how to learn a sparse representation
of an environment in order to plan long distance trajectories.
We presented both simulated and real-world results which
showed how our approach outperforms standard, shortest-
path planners. Additionally we aim to show how the al-
gorithm works in other environments beyond the city and
road environment. Furthermore, we aim to avoid the flatness
constraint, which works well in city environments but might
cause problems in less structured environments.
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