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Abstract—Scheduling algorithms for real-world heterogeneous
multi-robot teams must be able to reason about temporal
uncertainty in the world model in order to create plans that
are tolerant to the risk of unexpected delays. To this end, we
present a novel sampling-based risk-aware approach for solving
Heterogeneous Coalition Scheduling with Temporal Uncertainty
(HCSTU) problems, which does not require any assumptions
regarding the specific underlying cause of the temporal un-
certainty or the specific duration distributions. Our approach
computes a schedule which obeys the temporal constraints of
a small number of heuristically-selected sample scenarios by
solving a Mixed-Integer Linear Program, along with an upper
bound on the schedule execution time. Then, it uses a hypothesis
testing method, the Sequential Probability Ratio Test, to provide
a probabilistic guarantee that the upper bound on the execu-
tion time will be respected for a user-specified risk tolerance.
With extensive experiments, we demonstrate that our approach
empirically respects the risk tolerance, and generates solutions
of comparable or better quality than state-of-the-art approaches
while being an order of magnitude faster to compute on average.
Finally, we demonstrate how robust schedules generated by our
approach can be incorporated as solutions to subproblems within
the broader Simultaneous Task Allocation and Planning with
Spatiotemporal Constraints problem to both guide and expedite
the search for solutions of higher quality and lower risk.

I. INTRODUCTION

Heterogeneous multi-robot systems offer the potential to
solve complex large-scale problems in domains such as agri-
culture [1] for imaging or fertilization, military applications
such as surveillance [2], and disaster recovery [3]. These
problems involve interdependent tasks, require a diverse set
of capabilities, and have spatiotemporal constraints. In the
real world, there are numerous factors that can cause both
durations of tasks and durations of task transitions to be
uncertain (e.g., stale map information, battery levels causing
variance in individual robots’ speeds, unexpected delays).
Without reasoning about possible temporal uncertainty, these
factors can compound through the entire execution of a plan
and result in a plan execution longer than expected.

In this work, we introduce a novel uncertainty-aware
scheduling problem, the Heterogeneous Coalition Scheduling
with Temporal Uncertainty (HCSTU) problem, which explic-
itly considers the uncertainties in the time needed to execute
a task and to transition between tasks. In our setting, we
assume that robots belonging to a heterogeneous team have

Fig. 1: Polypixel, a simulated urban environment used for our
experiments (as seen in [7]), with its graph-based abstraction
superimposed. Vertices show locations where a task has been
assigned to one or more robots of a heterogeneous team. Edges
represent travel paths between two locations.

already been assigned to one or more tasks to be carried
out in different locations of a given map, such as the one
shown in Fig. 1. The goal is to compute a plan in the
form of a partial ordering of the tasks which minimizes
the makespan. Existing approaches that deal with duration
uncertainties typically either solve a determinized version of
the problem or reformulate the problem into a more general
form. However, such reformulations tend to be limited to small
teams (less than 5 robots) and unimodal uncertainty [4], or can
often lead to overly conservative or optimistic solutions [5, 6].

To solve the HCSTU problem, we present a novel sampling-
based risk-aware algorithm named Coalition Scheduling with
Heuristic Sample Selection and Risk Guarantee (CS-HSSRG).
Unlike approaches that either do not provide guarantees on
risk [8, 9] or empirically determine a risk tolerance offset to
use internally to their algorithm [10, 6], our approach allows
users to specify the desired level of risk and ensures that such
level will not be exceeded. Informally, risk is defined as the
probability that the time needed to execute all tasks will exceed
some upper bound computed by the algorithm along with the
partial tasks ordering.

Our approach is agnostic to the specific underlying cause of
the temporal uncertainty and the specific duration distributions.
Instead, we assume access to either a model of uncertainty
or a generator that can generate samples of scenarios of



possible task and task transition durations. The CS-HSSRG
algorithm uses a heuristic function to select a small but
representative set of such scenarios, and subsequently uses a
Mixed-Integer Linear Program (MILP) to compute a schedule
that satisfies the temporal constraints associated with them.
The Sequential Probability Ratio Test [11] is then used to
provide the theoretical guarantee that a user-specified risk
tolerance is met.

In an extensive experimental campaign, we show that the
bound on the risk does not lead to overly conservative
solutions, and that the CS-HSSRG algorithm is extremely
efficient at computing robust plans in problems with up to 15
robots when compared to two state-of-the-art methods [6, 9].
CS-HSSRG is also tested as a component for solving a
class of problems that recently appeared in the literature,
dubbed Simultaneous Task Allocation and Planning with Spa-
tiotemporal Constraints (STAP-STC) problems [12]. These
problems take a holistic view of heterogeneous multi-robot
coordination by simultaneously considering four fundamen-
tally intertwined coordination problems: what (task planning),
who (task allocation), when (scheduling), and how (motion
planning). We show that the use of CS-HSSRG for dealing
with the scheduling part of the problem within the state-
of-the-art multi-agent coordination planner GRSTAPS [12]
results in decisions about what tasks to include in the plan
and what robots to allocate to those tasks that are robust to
temporal uncertainty. The proposed approach is fundamentally
centralized and offline, similarly to many recent works in
the same area [13, 3, 14, 12, 7], and centralization of the
planner is often imposed by operational constraints. However,
our approach is experimentally efficient enough to allow online
replanning phases which may be triggered by different events
such as subteams becoming disconnected. A comparison to
fully decentralized approaches to multi-agent planning under
uncertainty [15] are outside the scope of this paper as those
approaches solve a fundamentally different problem.

II. RELATED WORK

A rich body of work has addressed the multi-robot schedul-
ing problem [16] and the closely related multi-robot task
allocation (MRTA) problem [17, 18]. Our work focuses on
a variant of the multi-robot scheduling problem where robots
can only participate in a single task at a time, but multiple
robots can form coalitions and collectively executable a single
task. As such, our problem falls under the single-task (ST)
robots and multi-robot (MR) tasks categorization from Gerkey
and Mataric’s widely used taxonomy [17] and under the Syn-
chronization and Precedence Constraints (SP) categorization
from Nunes’s extension to the taxonomy [16].

In robotics, scheduling with temporal uncertainty is of-
ten formulated more generally [17, 19, 16] as either an
uncertainty-based variant of a Simple Temporal Problem
(STP) [5] or a Resource Constrained Project Scheduling
Problem (RCPSP) [4]. For the interested reader, a detailed
description of the STP and its uncertain variations can be

found in [20]. Additionally, a detailed description of the
RCPSP and its uncertain variants can be found in [21].

The Resource Constrained Project Scheduling Problem with
Uncertainty (RCPSPU) is an extension to RCPSP that in-
corporates two types of uncertainty: resource uncertainty and
temporal uncertainty. We focus only on the works that consider
temporal uncertainty as we assume that the set of robots (i.e.,
our resources) is known. To tackle this problem, Varakan-
tham et al. [6] present an Sample Average Approximation
(SAA)-based approach dubbed SORU for generating a risk-
aware schedule. SORU uses hard resource constraints and soft
temporal constraints, which sometimes allow it to violate the
temporal constraints in the solution. In contrast, our approach
uses hard temporal constraints to avoid temporal constraint
violations. Song et al. [9] instead use Conditional Value-At-
Risk [22] as part of a branch-and-bound framework to solve
the problem. Due to their demonstrated success, we use these
two methods as two of the baseline for our experiments in
Section V. Some common limitations of these two methods
are that none of them provide a theoretical guarantee, none
of them are demonstrated with more than 5 robots, and both
of them are demonstrated only with uni-modal distributions
for durations. In contrast, our presented approach provides a
theoretical guarantee on its risk tolerance, is demonstrated to
be more efficient even when solving problems with up to 15
robots, and is agnostic to the underlying duration distribution.

III. PROBLEM DESCRIPTION

Consider a heterogeneous team of R robots that must
collectively execute N tasks. Each task can be executed by
one or more robots (i.e. a coalition), but each robot can only
participate in a single task at a time (ST-MR-TA). Let task
durations and robots’ travel times between task locations be
stochastic. The problem is for a centralized planner to compute
a partial ordering of the tasks which minimizes the makespan,
namely, the overall time for the robots to complete all the
tasks. We first formulate this problem assuming deterministic
task duration and robots’ travel times, and then generalise to
the stochastic case.

A. Heterogeneous Coalition Scheduling Problem

In the deterministic version of the problem, a task τi is
defined by a duration di as the amount of time needed to
execute τi for the robots that are assigned to it and an initial
transition ϕi as the minimum amount of time needed for all
of the robots assigned to τi to reach it from their individual
initial configurations.

Tasks are temporally constrained by a set of precedence
constraints P and a set of mutex constraints M. A precedence
constraint (τi ≺ τj) is a temporal relationship between two
tasks τi and τj that requires that the execution of τi concludes
before τj starts. Each precedence constraint τi ≺ τj has a
transition duration ϕij that defines the minimum amount of
time needed for all robots assigned to both τi and τj to travel
from the terminal configuration of τi to the initial configuration



of τj . If there are no robots that are assigned to both τi and
τj then ϕij = 0.

A mutex constraint is created between each pair of tasks
to which the same robot is assigned. A mutex constraint
(τi ↔ τj) between two tasks τi and τj represents the dis-
junction that either τi must conclude before τj starts (τi ≺ τj)
or τj must conclude before τi starts (τj ≺ τi). If a robot is
assigned to two tasks τi and τj where there already exists
a precedence constraint (e.g. τi ≺ τj) then the precedence
constraint supersedes the mutex constraint as there is no
decision to be made on the ordering of the two tasks. As
such, P ∩M = ∅. Each mutex constraint τi ↔ τj has a pair
of transition durations ϕij and ϕji that define the minimum
amount of time needed for all robots assigned to both τi and
τj to travel from the terminal configuration of τi to the initial
configuration of τj and from the terminal configuration of τj
to the initial configuration of τi respectively.

The Heterogeneous Coalition Scheduling (HCS) problem is
fully defined by:

• a set of task durations D = {di | i ∈ I} where I =
{1, . . . , N},

• a set of initial task transitions Φinit = {ϕi | i ∈ I}
• a set of precedence constraints P ⊆ I2,
• a set of mutex constraints M ⊆ I2,
• and a set of task transition durations Φ = {ϕij | (i, j) ∈
P} ∪ {ϕij | (i, j) ∈ M} ∪ {ϕji | (i, j) ∈ M}

The HCS problem requires the selection of a set of task
orderings ρ with one for each mutex constraint that minimizes
the makespan C or total time needed to execute all tasks while
considering the task durations and task transition durations.
The HCS problem can be formulated as the following MILP:

min C (1a)
s.t. C ≥ ci ∀i ∈ I (1b)

sj ≥ ci + ϕij ∀(i, j) ∈ P (1c)
sj ≥ ci + ϕij −M(1− δij) ∀(i, j) ∈ M (1d)
si ≥ cj + ϕji −Mδij ∀(i, j) ∈ M (1e)
si ≥ ϕi ∀i ∈ I (1f)
δij ∈ {0, 1} ∀(i, j) ∈ M (1g)

where si is the start time for the ith task, ci is the completion
time for the ith task (ci = si + di), δij is a boolean indicator
that is 1 when the mutex constraint between the ith and jth

tasks (τi ↔ τj) has been reduced to the precedence constraint
from the ith task to the jth task (τi ≺ τj) and 0 when the
mutex constraint has been reduced to the precedence constraint
from the jth task to the ith task (τj ≺ τi).

In the above MILP, the objective function (1a) and Con-
straints (1b) enforce the minimization of the makespan. Con-
straint (1c) applies the precedence constraints and includes
the time that each robot assigned to both tasks τi and τj
need to transition from τi to τj . Constraints (1d) and (1e)
implement the mutex constraints as big-M constraints (in both
constraints, M is a large positive value): depending on the
value of the mutex indicator variable δij , only one of the

two constraints can be active at any time. This disjunction
makes this a Disjunctive Temporal Problem which is an NP-
Hard problem [23]. Once each of the δij’s is set then the
problem becomes a Linear Program (LP) and can be solved in
polynomial time. Constraints (1f) act to ensure that all robots
assigned to a task can reach it from their individual initial
positions before the task is scheduled to start.

The solution to the HCS problem is the set of task orderings
ρ = {δij | (i, j) ∈ M} and the minimized makespan
C. The Heterogeneous Coalition Scheduling problem also
appears as a submodule of the Simultaneous Task Allocation
and Planning with Spatiotemporal Constraints (STAP-STC)
problem introduced in [12].

B. Heterogeneous Coalition Scheduling with Temporal Uncer-
tainty Problem

In the Heterogeneous Coalition Scheduling with Temporal
Uncertainty (HCSTU) problem, differently from its determin-
istic version, each of the task durations di, task transitions
ϕij , and initial task transition ϕi are represented as random
variables instead of constants. We formally define a scenario
q as a tuple q = ⟨Dq, Φq

init, Φ
q⟩, where Dq = {dqi | i ∈ I}

is set of task durations, Φq
init = {ϕqi | i ∈ I} is a set of

initial task transition durations, and Φq = {ϕqij | (i, j) ∈
P} ∪ {ϕqij | (i, j) ∈ M} ∪ {ϕqji | (i, j) ∈ M} is a set of
task transition durations. We also define S as the space of all
possible scenarios q that can sampled from the distribution
over durations given by the underlying stochastic scheduling
problem, q ∼ P (S). An immediate consequence of these
definitions is that, whereas the makespan can be used to
evaluate the quality of a schedule in the deterministic version
of the problem, when temporal uncertainty is involved the
makespan itself becomes a random variable.

Similarly to existing work [10, 6], we formulate a chance-
constrained optimization problem to find a task ordering ρ that
minimizes the α-robust makespan Cα such that

P (Cρ > Cα) ≤ α, (2)

where P (Cρ > Cα) denotes the probability that executing
the task ordering ρ in a random scenario q ∈ S will take
longer than Cα, and α is a risk tolerance parameter provided
by the user. For a given scenario q and fixed task ordering ρ,
the makespan is determined by the MILP (1) by replacing all
δij’s with constants, which reduces the model to an LP.

IV. APPROACH

Directly optimizing Cα subject to (2) would require solving
a chance-constrainted problem with probabilistic task dura-
tions and probabilistic task transition durations that create
joint probabilistic constraints. This is impractical because
(a) the probabilistic constraints are extremely hard to com-
pute, and (b) the feasible region defined by the probabilistic
constraints are not convex, making even checking feasibility
difficult [24, 25]. For this reason, we focus our attention on
sampling-based methods. We first present the Sample Average
Approximation (SAA) representation of the HCSTU problem



along with its limitations. We then present our approach,
Coalition Scheduling with Heuristic Sample Selection and
Risk Guarantee (CS-HSSRG), which builds on elements from
SAA but makes improvements for both efficiency and provides
a theoretical guarantee on the risk tolerance.

A. Sample Average Approximation

The SAA representation of the HCSTU problem is given
by the following MILP:

min Cα (3a)
s.t. Cq ≥ cqi ∀ i ∈ I, q ∈ Q (3b)

sqj ≥ cqi + ϕq
ij ∀ (i, j) ∈ P, q ∈ Q (3c)

sqj ≥ cqi + ϕq
ij −M(1− δij) ∀ (i, j) ∈ M, q ∈ Q (3d)

sqi ≥ cqj + ϕq
ji −Mδij ∀ (i, j) ∈ M, q ∈ Q (3e)

sqi ≥ ϕq
i ∀ i ∈ I, q ∈ Q (3f)

δij ∈ {0, 1} ∀ (i, j) ∈ M (3g)
Cα ≥ Cq −Myq ∀ q ∈ Q (3h)

αQ ≥
Q∑

q=1

yq (3i)

yq ∈ {0, 1} ∀ q ∈ Q (3j)

For SAA, a scenario generator creates Q scenarios by
randomly sampling from P (S). Constraints (3a)-(3g) look
very similar to those in the Deterministic MILP (1), but there
is a set of these equations for each of the Q scenarios where
a superscript of q represents that variable for the qth scenario.
In addition, Q = {1, . . . , Q} and yq is a boolean indicator
variable that denotes whether or not the qth scenario is used
when computing the α-robust makespan Cα. Constraints (3h)-
(3j) model risk tolerance by ignoring at most a fraction α of
the scenarios: thanks to the big-M constraint (3h), whenever
yq is set to 1, Cα does not have Cq as lower bound.

An advantage of this approach is that it does not depend on
the form of the distribution P (S), or even require an explicit
definition of P (S), given a scenario generator. However,
Constraints (3h)-(3j) add another combinatoric factor when
compared with the Deterministic MILP (1), as

(
Q

(1−α)Q

)
com-

binations of scenarios have to be considered when determining
the set of scenarios to ignore. This makes the approach
inefficient for solving complex problems when large numbers
of scenarios are needed to approximate the distributions in the
problem. Also, when a scheduling algorithm is used as part of
a higher level framework such as GRSTAPS it is typically
run numerous times. This means the inefficiency of using
SAA would be exaggerated, reducing the size of problems
that the higher level framework could solve. Finally, there is
no guarantee that the makespan produced by SAA is truly α-
robust as specified in (2), because there is no guarantee that
the Q scenarios are representative.

B. Coalition Scheduling with Heuristic Sample Selection and
Risk Guarantee

Building on the SAA formulation, we now present the
Coalition Scheduling with Heuristic Sample Selection and

Algorithm 1: Coalition Scheduling with Heuristic
Sample Selection and Risk Guarantee

Input: Risk tolerance α, # of scenarios to be used in S-SAA
MILP (5) η, percentage to increment the makespan δ

Output: α-robust makespan Cα, a set of task orderings ρ
1 F ← {A large number of scenario samples}

// Each scenario in F is labeled with a heuristic value
2 L←{label(q) for q ∈ F}
3
H ← The first ⌊(1− α)|F |⌋ scenarios of F sorted

in ascending order of labels in L

4
U ← {η − 1 random scenarios taken from H and

the scenario in H with the largest label}
5
Cα, ρ← Solve S-SAA MILP (5) with the

scenarios in U
6 while true do

// Run the Sequential Probability Ratio Test
7 if sprt(Cα, ρ, α) = success then
8 return Cα, ρ

9 else
10 Cα ← Cα ∗ (1 + δ)

Risk Guarantee (CS-HSSRG) approach. This approach de-
composes the SAA formulation into a heuristic for selecting
samples which are likely to be low-cost (and therefore included
in the alpha-robust makespan calculation), and a simplified
MILP that we call S-SAA. The use of this heuristic removes
one of the combinatoric factors and a set of boolean decision
variables from the MILP that our approach needs to solve.
As a result, this simplified MILP has the same complexity
as the Deterministic MILP (1) and is more efficient to solve
than the SAA MILP (3). Then, we use a hypothesis testing
method, Wald’s Sequential Probability Ratio Test (SPRT) [11],
to enforce that the risk tolerance as defined in (2) is respected
and that the candidate solution is truly α-robust.

The high-level pseudocode for this approach is shown in
Algorithm 1. We first generate a large number of scenarios
F by sampling from P (S) (Line 1). We then label each
scenario in F with a heuristic value that is representative
of the average makespan for that specific scenario across
the difference possible mutex reductions (Line 2). We use a
domain independent heuristic where we compute a weighted
summation of the time needed to execute each of the tasks
and transitions for that specific scenario as shown in Eq. (4)
below, where ψ1-ψ4 are weights:

label(q) = ψ1

∑
i∈I

dqi + ψ2

∑
i∈I

ϕq
i

+ ψ3

∑
(i,j)∈P

ϕij + ψ4

∑
(i,j)∈M

(ϕq
ij + ϕq

ji).
(4)

The weights ψ1-ψ4 in Eq. (4) are necessary because the con-
tributions of the task and transition durations to the makespan
could be in general very different. We then sort the scenarios in
F in ascending order of label, and put the first ⌊(1− α)|F |⌋
scenarios in a separate set called H (Line 3). We select η
scenarios from H (Line 4), where η − 1 of the scenarios
are randomly selected and the final scenario selected is the
scenario with the largest heuristic value in H . Lines 2 -
4 approximate what Constraints (3h)-(3j) do in the Sample
Average Approximation MILP. This allows us to use the
η scenarios in a simplified version of the Sample Average



Approximation MILP (S-SAA MILP) shown below. Unlike
SAA, where increasing Q increases the number of boolean
decision variables, in S-SAA increasing η only adds more
constants and linear constraints. This causes it to have less of
an impact on the efficiency of solving the S-SAA formulation.

min Cα (5a)
s.t. Cα ≥ cqi ∀ i ∈ I, q ∈ Q (5b)

sqj ≥ cqi + ϕq
ij ∀ (i, j) ∈ P, q ∈ Q (5c)

sqj ≥ cqi + ϕq
ij −M(1− δij) ∀ (i, j) ∈ M, q ∈ Q (5d)

sqi ≥ cqj + ϕq
ji −Mδij ∀ (i, j) ∈ M, q ∈ Q (5e)

sqi ≥ ϕq
i ∀ i ∈ I, q ∈ Q (5f)

δij ∈ {0, 1} ∀ (i, j) ∈ M (5g)

The S-SAA MILP (5) selects a set of task orderings ρ
that minimizes the makespan Cα for all η scenarios. Given
a feasible solution of (5), however, there is no theoretical
guarantee that the risk of a real scenario taking longer to
execute than Cα is less than the risk tolerance α, because there
is no guarantee that the η selected scenarios are representative
(as in the SAA approach). As such, it is not known if the
produced makespan is truly α-robust yet.

We use the SPRT [11] to test whether the produced
makespan is actually α-robust. If the test passes, we can
guarantee with high probability that the makespan produced is
α-robust and the solution is returned by the algorithm (Lines
7 and 8). If the test fails, then the makespan is increased (Line
10) and the test is tried again until we have a makespan that
is guaranteed to be α-robust. We choose to use the SPRT
over other possible hypothesis testing algorithms because, as
a sequential hypothesis test, the samples needed to confirm
or reject the hypothesis do not need to be drawn in advance;
instead, they are drawn on-demand until enough evidence to
confirm or reject the hypothesis is collected. Details on the
SPRT and its implementation are given below.

C. Sequential Probability Ratio Test

The Sequential Probability Ratio Test (SPRT) [11] is a
sequential hypothesis test. As such, computations needed to
confirm or reject the hypothesis can be lazily applied to
samples as needed instead of drawing them all in advance. We
consider the binomial case, where a sample can be classified
into two categories: 0 and 1. Let p be the probability that a
sample belongs to category 0. We deal with the problem of
testing the hypothesis that p does not exceed a given value p′

against the alternative hypothesis that p > p′. A SPRT for the
binomial case can be defined by specifying a null hypothesis
H0

def
= p = p0, with p0 < p′, and an alternative hypothesis

H1
def
= p = p1, with p1 > p′. The small interval (p0, p1) is

called the indifference region — the SPRT requires that we
are okay with accepting either hypothesis when the true value
of p is in the indifference region. Define the function f(q):

f(q) =

{
1, the sample q belongs to category 1;
0, otherwise.

(6)

Given the desired type-I and type-II error rates θ1 and β,
prior to the test the following values can be calculated:

λ = log
p1
p0

− log
1− p1
1− p0

(7)

ζ = log
1− p0
1− p1

(8)

γ =
ζ

λ
(9)

l0 = log
β

1− θ
(10)

l1 = log
1− β

θ
(11)

The test is given as follows. At the kth observation, calculate
the two quantities

a0 =
l0
λ

+ kγ (12)

and
a1 =

l1
λ

+ kγ. (13)

Let k⊤ denote the number of observations where f(·) = 1
in the first k samples inspected. For each time a0 and a1 are
calculated, there are three possible outcomes:

1) accept H0 if k⊤ ≤ a0,
2) accept H1 if k⊤ ≥ a1,
3) or more observations are needed if a0 < k⊤ < a1.

The third outcome means that the samples drawn so far do
not provide enough evidence either to accept or reject the null
hypothesis H0. More samples need to be drawn, a0 and a1
need to be recomputed before checking the conditions again.

For our approach, the SPRT is given a risk tolerance
parameter α, a reference makespan Cα that we are testing, and
a set of task orderings ρ. We want to decide whether the risk
that the time needed to execute the task ordering ρ in a random
scenario exceeding Cα is less than α. Let C(q, ρ) denote the
makespan for scenario q when using task ordering ρ, and let
p = P (Cρ > Cα) denote the probability that executing the
task ordering ρ in a random scenario will take longer than
Cα. Therefore, we can set p0 = α − ϵ, p1 = α + ϵ, where ϵ
is a tolerance parameter that defines the indifference region.
Type-I errors occur when Cα is mistakenly rejected as not α-
robust when it truly is, while type-II errors occur when Cα is
mistakenly accepted as α-robust when it truly is not.

Define the Bernoulli random variable ZCα,ρ as follows:

ZCα,ρ ∼ Bernoulli(P (Cρ > Cα)). (14)

We cannot draw samples from ZCα,ρ directly because the
probability P (Cρ > Cα) is unknown. Instead they are drawn
from the nondeterministic function f :

f(Cα, ρ, q) =

{
1, C(q, ρ) > Cα;

0, otherwise.
(15)

1Wald’s paper [11] uses α as the type-I error rate. We use θ to represent
the type-I error rate here due to α being used for the α-robust makespan.



The nondeterminism comes from the task and transition du-
rations being random variables themselves. Function f is
our generative probabilistic model for the random variable
ZCα,ρ. Drawing samples from this probabilistic model requires
drawing sample scenarios from the underlying probabilis-
tic distribution describing the world through the previously
mentioned scenario generator and then processing each one
by computing C(q, ρ). Separate scenarios can be processed
asynchronously and in parallel to increase the speed of running
the test. Furthermore, when Cα is increased and the SPRT is
run again (Algorithm 1 Line 10) then previously computed
C(q, ρ) can be memoized and used again without the need for
recomputation.

Algorithm 2: Testing hyp. Pr(f(Cα, ρ, q) = 1) ≤ α

Input: Reference makespan Cα, a set of task orderings ρ, risk
tolerance α, type-I error rate θ, type-II error rate β,
maximum number of scenarios Qmax

Output: Test result
1 λ, ζ, γ, l0, l1 ← compute using Equations (7)-(11)

// Maximum number of scenarios with makespan > Cα for H0 to
be accepted with Qmax

2 aQmax ←
l0
λ

+Qmaxγ
// Total number of scenarios processed

3 K ← 0
// Number of scenarios whose makespan is > Cα

4 K⊤ ← 0
5 while true do

// # of scenarios and # of scenarios whose makespan is > Cα

since last check
6 k, k⊤ ← f(Cα, ρ)
7 if k = 0 then

// No more scenarios. Increase Cα and run test again.
8 return false

9 K ← K + k
10 K⊤ ← K⊤ + k⊤
11 a0 ← compute using Equation (12) for K scenarios
12 if K⊤ ≤ a0 then

// Accept H0 (Accept Cα)
13 return true

14 a1 ← compute using Equation (13) for K scenarios
15 if K⊤ ≥ a1 then

// Accept H1 (Reject Cα))
16 return false

17 if K⊤ ≥ aQmax then
// Unable to accept H0 even if all remaining scenarios

have a makespan ≤ Cα

18 return false

Algorithm 2 shows the pseudocode of the hypothesis test
described above. Typically, the SPRT implementation either
runs indefinitely before reaching a conclusion or returns a
default value when all sampling resources have been used up.
For our implementation, the user provides a maximum number
of scenarios Qmax to be pre-generated and used by the test. As
the guarantee on type-II error rates is desired, the algorithm
terminates early if there would not be enough evidence to
support accepting H0 even when all remaining scenarios had
a makespan ≤ Cα.

V. EVALUATION

We empirically evaluated our approach using three sets of
experiments in a simulated emergency response domain used

in prior work [26, 27, 28, 29, 12]. Our first experiment exam-
ines the impact of risk tolerance, and consists of an ablation
study to demonstrate that we can vary the risk tolerance and
achieve plans that meet the required risk tolerance. Our second
experiment is a comparison of other scheduling approaches, to
show that we outperform state-of-the-art approaches in terms
of mission success and computation time, even while meeting
the risk tolerance. Our third experiment is to show that our
approach to risk-tolerant planning can be incorporated within
a heterogeneous multi-robot coordination planner, to generate
coordination plans that are robust to temporal uncertainty.

In all three experiments, we use a planning domain com-
posed of a diverse set of robots with different speeds operating
in an urban environment named Polypixel (see Fig. 1). The
robots need to work together to rescue wounded survivors,
deliver medicine to hospitals, put out fires, and rebuild dam-
aged infrastructure. All SPRTs were executed with type-I and
type-II error rates both set to 0.05 and ϵ = 0.01. Also, in
all experiments, we set |F | = 500, Qmax = 500, η = 50
(these values were empirically determined during preliminary
experiments). All approaches ran on a desktop with an AMD
3970X CPU, an A6000 GPU, and 16 GB of RAM.

For the first two experiments, we generated a set of 100
HCSTU problems from this domain by randomly sampling
the number of robots, survivors, fires, and damaged buildings.
Each problem had between 5-15 robots, and 10-30 tasks.
We also randomized the locations of the survivors, fires,
damaged buildings, hospitals, and the robots’ initial location.
The specific set of tasks and the allocation of robots to tasks
were predetermined for each of these problems.

The first 50 problem instances simulated the possibilities
of delays which directly caused temporal uncertainty and we
denote this domain as DELAYS. The duration for each task
was modeled as di = d̂i + U[0,300) where d̂i was the deter-
ministic task duration for τi. The durations for transitions were
computed from the length of the map edges the robot/coalition
must traverse and the speed of the robot/coalition (the speed of
a coalition is the speed of the slowest robot in the coalition).
When traversing a map edge each robot/coalition had a 5%
chance of having a U[0,60) delay. Note that the task and
transition durations were multi-modal since we applied delays
to both the task durations and the edge traversal durations.

The second 50 problem instances simulated the possibility
of map edges being blocked in the polypixel environment (e.g
from debris) which made the traversability of the environment
uncertain. This in turn indirectly created temporal uncertainty
as it was unknown what was the best route between two
locations on the map which made the transition durations
uncertain. For each problem, each map edge had a 10% chance
of being blocked. As such the resulting problem represented a
variant of the Canadian Traveler Problem and we denote this
domain as CTP [30]. For these problems, CS-HSSRG used
the optimistic rollout policy from [31] to compute C(q, ρ) for
each scenario q in the SPRT. Similarly to the first 50 problem
instances, the distributions for task and transition durations
were multi-modal.



For the third experiment, we generated a set of 50 STAP-
STC problems from the simulated emergency response do-
main. The problems were randomized similarly to the prob-
lems for the first two experiments, however the specific set of
tasks and allocation of robots to tasks were not predetermined
for these problem instances. The first 25 problem instances
used the same model for unexpected delays as described above
for the DELAYS domain. The second 25 problem instances
used the same model for the possibility of edge blockages as
described above for the CTP domain.

A. Impact of the risk tolerance

The first experiment involved an ablation study to investi-
gate the influence of the risk tolerance α on our approach.
For this experiment, we examine our algorithm with differ-
ent risk tolerance levels (α ∈ {0.1, 0.15, 0.2, 0.25}) on the
100 problem instances described previously. In Table 1, we
present the max proportion of failure max(p̄(Cρ > Cα)) and
average α-robust makespan Cα. For the proportion of failure
p̄(Cρ > Cα), we generated 10,000 random scenarios and then
computed the makespan for each scenario when executed with
the solution task order ρ. The proportion of failure is the
proportion of those scenarios whose makespan is larger than
the solution Cα and approximates the true risk P (Cρ > Cα).
The max proportion of failure max(p̄(Cρ > Cα)) is the
maximum p̄(Cρ > Cα) over the 100 problem instances.

Table 1: Results for different risk levels
DELAYS CTP

α max(p̄(Cρ > Cα)) Cα max(p̄(Cρ > Cα)) Cα

0.1 0.091 3643.33 0.098 4023.63
0.15 0.136 3528.84 0.122 3881.42
0.2 0.154 3303.83 0.188 3710.10
0.25 0.224 3122.35 0.238 3510.83

In Table 1, we observe that as the risk tolerance α increases,
the average α-robust makespan tends to decrease. This makes
sense as the looser risk tolerance allows CS-HSSRG to ignore
more slower scenarios at the expense of the higher risk of
not providing an upper bound. We also observe that the
max proportion of failure max(p̄(Cρ > Cα)) tends to be
close to α, demonstrating that CS-HSSRG does not result in
overly conservative makespans despite providing a theoretical
guarantee on its α-robust makespan.

B. Comparison with other Scheduling Approaches

For our second experiment, we fixed α = 0.1 and bench-
marked our approach on the 100 problems described pre-
viously against two state-of-the-art RCPSPU approaches in
SORU [6] and the Conditional Value-At-Risk Branch-and-
Bound framework from [9] (CVAR-BNB), as well as the solv-
ing the Sample Average Approximation (SAA) formulation
(3) directly. To generalize the problem to the RCPSPU for
SORU and CVAR-BNB, we represented the individual robots
as resources and each task or transition duration is represented
as an activity. Each approach was given a 60s timeout for each
problem instance. If an approach hit the timeout then the best
feasible approach it generated was used.

We compared all four approaches on several metrics includ-
ing the percentage of solutions where a temporal constraint
was violated, the percentage of solutions where p̄(Cρ >
Cα) > α, the percentage of successful solutions (p̄(Cρ >
Cα) ≤ α), the average computation time, the percentage of
the problems where the approach hit the 60s timeout, the
average p̄(Cρ > Cα), and the average Cα. The average Cα

was only computed over problems in which all four approaches
computed solutions with p̄(Cρ > Cα) ≤ α.

1) SAA: As can be seen in Table 2, SAA did not violate
any temporal constraints, but generated solutions that violated
the risk tolerance 40% of the time for the DELAYS problems
and 68% of the time for the CTP problems. It also had an
average proportion of failure p̄(Cρ > Cα) of 0.097 and 0.112
respectively, which were either close or over the desired risk
tolerance. These risk tolerance violations were likely because
SAA does not get to choose representative samples like CS-
HSSRG and additionally does not use statistical testing to
guarantee its “α-robust makespan” is actually α-robust. On the
other hand, CS-HSSRG used its heuristic sample selection and
the SPRT to successfully generate risk tolerant solutions on
100% of the problems for both domains. SAA did on average
compute a smaller Cα than any of the other approaches
including CS-HSSRG. On average for these problems, its
Cα was 90% of the Cα generated by CS-HSSRG. As SAA
frequently violated the risk tolerance, it is likely that when it
doesn’t violate the risk tolerance the Cα generated has a less
conservative risk resulting in the lower average Cα. When
computing a solution, SAA on average took 41.4x the time to
compute solution as CS-HSSRG did. Additionally, it hit the
timeout on 13% of problems in total.

2) SORU: SORU was the only approach that generated
solutions which violated temporal constraints. This is caused
by SORU using soft temporal constraints. It did not have any
risk tolerance violations, which is caused by its extremely
conservative solutions with an average risk of 0.003 and 0.011
respectively for the two domains. This extremely conservative
risk resulted in it having the highest average Cα. The average
Cα generated by SORU was 120% of the Cα generated by CS-
HSSRG. SORU also took the longest of the four approaches
on average and took on average 60.5x as long to compute a
solution as CS-HSSRG. Additionally, it hit the 60s timeout on
73% of all the problems.

3) CVAR-BNB: Similar to SAA, CVAR-BNB did not vio-
late any temporal constraints, but violated the risk tolerance
on some of the problems (28% and 50% respectively). The
risk tolerance violations are likely because CVAR-BNB does
not get to choose representative samples like CS-HSSRG and
additionally does not use statistical testing to guarantee its “α-
robust makespan” is actually α-robust. CVAR-BNB on average
generated Cα that was 97% of the Cα generated by CS-
HSSRG, however on average it took 10.1x as long to compute
its solution. Also, while it was quicker than both SAA and
SORU on average, it did hit the 60s timeout on 2% of the
total problems.



Table 2: Summary of comparison results (α = 0.1)
DELAYS CTP

Ours SAA SORU [6] CVAR-BNB [9] Ours SAA SORU CVAR-BNB

TC Failure (%) 0 0 81 0 0 0 121 0
p̄(Cρ > Cα) > α (%) 0 40 0 28 0 68 0 50
Success (%) 100 60 92 72 100 32 88 50
Avg. p̄(Cρ > Cα) 0.079 ± 0.020 0.097 ± 0.053 0.003 ± 0.009 0.088 ± 0.043 0.071 ± 0.016 0.112 ± 0.029 0.011 ± 0.010 0.096 ± 0.045
Avg. Cα

2 3794.71 ± 1305.60 3376.19 ± 1953.00 4554.90 ± 1436.70 3679.04 ± 2390.73 4365.24 ± 1620.32 4268.57 ± 1800.43 5813.46 ± 2132.32 4316.96 ± 2532.38
Avg Comp. Time (s) 0.822 ± 0.426 34.057 ± 24.288 49.760 ± 17.154 8.313 ± 1.913 1.014 ± 0.34 42.02 ± 19.88 57.64 ± 9.41 10.93 ± 8.31
Timeout (%) 3 0 10 64 2 0 16 82 2

1SORU uses hard resource constraints and soft temporal constraints, which sometimes allow it to violate the temporal constraints.
2Computed using trials for which all four approaches’ p̄(Cρ > Cα) ≤ α
3Upon hitting the 60s timeout, a feasible solution was retrieved if one had been found by the approach.

4) Ours: In comparison to the other three approaches, CS-
HSSRG was the only approach to never have a temporal
constraint violation or a risk tolerance violation and was the
only approach to never hit the 60s timeout. Additionally, it on
average generated Cα that were within 10% of SAA, 3% of
CVAR-BNB, and were 20% faster than SORU.

Furthermore, CS-HSSRG is an order of magnitude faster
than all other approaches (on average 41.4x faster than SAA,
60.5x faster than SORU, and 10.1x faster than CVAR-BNB),
demonstrating that it is significantly more efficient than the
state-of-the-art without sacrificing solution quality.

C. Incorporating CS-HSSRG within Heterogeneous Multi-
agent Coordination

For our third experiment, we demonstrated how CS-
HSSRG’s ability to reason about uncertainty and risk can be
used within a heterogeneous multi-robot coordination planner
to make decisions about what tasks to select and who to
allocate to those tasks. To show the applicability of CS-
HSSRG in this context, we used GRSTAPS [12], which
is a state-of-the-art heterogeneous, multi-robot coordination
planner, and we used CS-HSSRG as the scheduling layer of
GRSTAPS. Specifically, we used CS-HSSRG with α = 0.1 to
compute an α-robust makespan of the schedule, and replaced
the normal makespan in the Normalized Schedule Quality
(NSQ) heuristic and as the path cost for the task planning
layer. We compared this variant of GRSTAPS which we will
called GRSTAPSTU against the original GRSTAPS which
we called GRSTAPSDET . For each problem, GRSTAPSDET

was provided a determinized version of the problem where
di = E[di], ϕij = E[ϕij ], and ϕi = E[ϕi]. Again, the
goal was to show that CS-HSSRG could allow heterogeneous,
multi-robot coordination planning that is robust to temporal
uncertainty.

Table 3: Results for p̄(Cρ > Cα)
DELAYS CTP

DET 0.5275 ± 0.3271 0.7805 ± 0.2175
TU 0.0858 ± 0.0061 0.0864 ± 0.0063

We measured the quality of the solution task orderings
ρ produced by each approach. For each problem instance,
we generated 10,000 random scenarios and then computed
the makespan for each scenario when executed with the
solution task ordering. We then took the average makespan

over the 10,000 scenarios. The average makespans can be
seen in Fig. 2a. In Fig. 2b, we show the sum of the average
makespans and the time needed to compute the solution, since
the latter could take a significant part of the actual mission
duration in a real-world setting. Additionally, we use the
makespans computed for these 10,000 realizations to compute
p̄(Cρ > Cα) which is shown in Table 3.

As can be seen, by reasoning about uncertainty,
GRSTAPSTU was able to create better task orderings that on
average result in better makespans. GRSTAPSDET uses the
expected values of individual distributions while attempting
to create a solution that minimizes makespan, however, it
does not consider anything more about the distribution such
as variance or modality. This can cause it to select tasks,
allocations, and task orderings that have low expected values
for duration, but have a high risk of having large durations.
Due to the large number of decisions it has to make (which
tasks, which robots, which task orderings), there are a lot of
possibilities for the individual risks of a task or transition
taking longer than expected to be realized in a scenario and can
result in high overall risk. This can be seen in Table 3 where
GRSTAPSDET has high average and standard deviation for
the estimate of overall risk p̄(Cρ > Cα). On the other hand
while CS-HSSRG does not directly consider the distributions,
it indirectly considers the distributions through the sampling
and sample selection method and then it directly considers
the risk through the SPRT. As both approaches generated and
expanded similar numbers of search nodes in both the task
planning and task allocation layers of GRSTAPS (less than
0.1% difference on average), it is likely that the improvement
in solution quality is a result of CS-HSSRG providing better
search guidance to both the task planning and task allocation
layers of GRSTAPS. This better guidance results in higher
quality, low risk solutions.

VI. CONCLUSION

In this paper, we introduced a novel sampling-based
risk-aware multi-robot scheduling algorithm named Coalition
Scheduling with Heuristic Sample Selection and Risk Guaran-
tee (CS-HSSRG). We showed how CS-HSSRG could solve for
multi-robot schedules with guarantees of probability of com-
pletion in the presence of temporal uncertainties, providing
significant performance gains for these problems relative to
existing methods without making any assumptions about the



(a) Average makespan when using the solution task ordering ρ.
(b) Sum of the average makespan when using the solution task
ordering ρ and computation time.

Fig. 2: The blue (red) markers are problem instances where GRSTAPSTU did better (worse) than GRSTAPSDET . Each
successive dashed colored line is the result from GRSTAPSDET being 10% worse than the result from GRSTAPSTU .

underlying uncertainty distribution. Additionally, we showed
that our approach could be incorporated in a multi-robot
coordination system to provide overall multi-robot plans that
are robust to temporal uncertainty.

Nevertheless, our approach does have some limitations that
must still be addressed: the user must determine the number
of scenarios to be used in the S-SAA MILP η and the
maximum number of scenarios used by the SPRT Qmax.
As mentioned earlier, increasing η or Qmax increases the
quality of the solution and the likelihood that the risk tolerance
can be achieved when the SPRT is run for the first time
in Algorithm 1. However, increasing these parameters also
increases the computation time needed to solve the problem.
In our experiments, we empirically determined η and Qmax

through some preliminary experiments, measuring the number
of SPRT failures. Future work may focus on fast learning-
based methods able to automatically select the scenarios to be
used in the S-SAA MILP, varying η based on the confidence
of the prediction.

ACKNOWLEDGMENTS

This material is based upon work supported under the
DCIST CRA by the Army Research Laboratory under Co-
operative Agreement Number W911NF-17-2-0181.

REFERENCES

[1] J. Liu and R. K. Williams, “Coupled temporal and spatial
environment monitoring for multi-agent teams in preci-
sion farming,” IEEE Conference on Control Technology
and Applications, pp. 273–278, 2020.

[2] C. J. McCook and J. M. Esposito, “Flocking for hetero-
geneous robot swarms: A military convoy scenario,” in
Proceedings of the Annual Southeastern Symposium on
System Theory, 2007, pp. 26–31.

[3] G. Neville, A. Messing, H. Ravichandar, S. Hutchinson,
and S. Chernova, “An Interleaved Approach to Trait-
Based Task Allocation and Scheduling,” in Proc. IROS,
2021.

[4] J. Blazewicz, J. K. Lenstra, and A. H. Kan, “Scheduling
subject to resource constraints: classification and com-
plexity,” Discrete Applied Mathematics, vol. 5, no. 1, pp.
11–24, 1983.

[5] R. Dechter, I. Meiri, and J. Pearl, “Temporal constraint
networks,” Artificial Intelligence, vol. 49, pp. 61–95,
1991.

[6] P. Varakantham, N. Fu, and H. C. Lau, “A proactive sam-
pling approach to project scheduling under uncertainty,”
in Proc. AAAI, 2016, pp. 3195–3201.

[7] J. Banfi, A. Messing, C. Kroninger, E. Stump,
S. Hutchinson, and N. Roy, “Hierarchical Planning
for Heterogeneous Multi-Robot Routing Problems via
Learned Subteam Performance,” IEEE Robotics and Au-
tomation Letters, vol. 7, no. 2, pp. 4464–4471, 2022.

[8] P. Lamas and E. Demeulemeester, “A purely proactive
scheduling procedure for the resource-constrained project
scheduling problem with stochastic activity durations,”
Journal of Scheduling, vol. 19, no. 4, pp. 409–428, 2016.

[9] W. Song, D. Kang, J. Zhang, and H. Xi, “Risk-aware
proactive scheduling via conditional value-at-risk,” in
Proc. AAAI, 2018.

[10] N. Fu, P. Varakantham, and H. C. Lau, “Robust partial
order schedules for RCPSP/max with durational uncer-
tainty,” in Proc. ICAPS, 2016, pp. 124–130.

[11] A. Wald, “Sequential Tests of Statistical Hypotheses,”
The Annals of Mathematical Statistics, vol. 16, no. 2,
pp. 117–186, 1945.

[12] A. Messing, G. Neville, S. Chernova, S. Hutchinson,
and H. Ravichandar, “GRSTAPS: Graphically Recursive
Simultaneous Task Allocation, Planning, and Schedul-



ing,” International Journal of Robotics Research, vol. 41,
no. 2, pp. 232–256, 2022.

[13] E. Bischoff, F. Meyer, J. Inga, and S. Hohmann, “Multi-
Robot Task Allocation and Scheduling Considering Co-
operative Tasks and Precedence Constraints,” in IEEE
International Conference on Systems, Man and Cyber-
netics, 2020.

[14] D. Matos, P. Costa, J. Lima, and A. Valente, “Multiple
Mobile Robots Scheduling Based on Simulated Anneal-
ing Algorithm,” in International Conference on Opti-
mization, Learning Algorithms and Applications, 2021.

[15] C. Amato, “Decision-making under uncertainty in multi-
agent and multi-robot systems: Planning and learning,”
in Proc. IJCAI, 2018, pp. 5662–5666.

[16] E. Nunes, M. Manner, H. Mitiche, and M. Gini, “A
taxonomy for task allocation problems with temporal and
ordering constraints,” Robotics and Autonomous Systems,
vol. 90, 2017.

[17] B. P. Gerkey and M. J. Matarić, “A formal analysis
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