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Abstract— Deep learning approaches to estimating 3D object
pose and geometry present an attractive alternative to online
estimation techniques, which can suffer from significant estima-
tion latency. However, a practical hurdle to training state-of-the-
art deep 3D bounding box estimators is collecting a sufficiently
large dataset of 3D bounding box labels. In this work, we
present a novel framework for weakly supervised volumetric
monocular estimation (VoluMon) that requires annotations in
the image space only, i.e., associated object bounding box
detections and instance segmentation. By approximating object
geometry as ellipsoids, we can exploit the dual form of the
ellipsoid to optimize with respect to bounding box annotations
and the primal form of the ellipsoid to optimize with respect
to a segmented pointcloud. For a simulated dataset with
access to ground-truth, we show monocular object estimation
performance similar to a naive online depth based estimation
approach and after online refinement when depth images are
available, we also approach the performance of a learned
deep 6D pose estimator, which is supervised with projected 3D
bounding box keypoints and assumes known model dimensions.
Finally, we show promising qualitative results generated from
a real-world dataset collected using a stereo pair.

I. INTRODUCTION

We would like to enable low-latency object-level esti-
mation from RGB sensors. As robots venture further into
the real-world, semantic scene understanding is increasingly
important. Object-level estimation, i.e., inferring the pose
and geometry of objects, is relevant for a diverse set of
applications from autonomous navigation to manipulation.
Performing both pose estimation of objects and geometric
reconstruction concurrently without a priori geometric mod-
els or from limited measurements can suffer from perspec-
tive projection ambiguity challenges as well as ambiguities
arising from object self-occlusion.

Online inference methods present flexible solutions for
3D object estimation, but require iterative optimization and
may also assume that several measurements will be aggre-
gated over time, both of which increase the latency from
sensor measurement to estimate. For example, vision-based
simultaneous localization and mapping (vSLAM) approaches
have demonstrated success in fusing multiple object-level
measurements to build object-level maps using a diverse set
of representations including points [1], ellipsoids [2]–[4],
and learned representations [5]. While fusing a number of
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Fig. 1: (Top row) VoluMon predicts the 3D object pose and shape
from a monocular image and bounding box detections (green box)
by approximating objects as ellipsoids (blue mesh). We weakly
supervise learning by exploiting two different forms of 3D ellipsoid
representations. (Middle row) The primal form of the ellipsoid
provides a differentiable algebraic metric to fit to 3D points (green
points) extracted from an instance segmentation annotation and
depth image. (Bottom row) The dual form of the ellipsoid provides
a differentiable geometric metric for VoluMon to compare annotated
bounding boxes from a stereo pair with the projected bounding box
from the ellipsoid estimate. Without requiring an a priori model,
VoluMon can also further refine the estimated ellipsoid parameters
online given a pointcloud.

measurements can benefit the estimation accuracy and aid
with observability issues, the inference process introduces
latency between image registration and estimation. Previ-
ous approaches to single-view estimation used pointcloud
measurements to fit representations such as meshes [6] and
superquadrics [7]. Such approaches may reduce the latency
from measurement to estimate, but still require an online
optimization process.

Deep learning approaches have gained popularity as a
method to exploit offline datasets to reduce latency and
enable single-shot 3D object estimation, but generally require
annotations that are difficult to obtain. Fully supervised
approaches to deep monocular volume estimation [8], [9]
directly regress object parameters, and thus rely on datasets
of images labelled with object positions, orientations, and
sizes, which are difficult to obtain in practice. In contrast
to 2D labelling problems such as bounding boxes or pixel-
wise segmentation, which are annotated purely on the image
plane, annotating the 3D object parameters from 2D image



data often requires interfacing with additional information
beyond the image itself, such as dense 3D pointclouds
[10], detailed geometric models [11], or using pre-trained
3D object detection neural networks [12]. Although modern
object detectors such as [13], [14] have benefited immensely
from large open-sourced datasets with 2D annotations over
diverse classes of objects such as [15], such datasets are
much more difficult to obtain for 3D object estimation tasks.
The relative lack of diverse 3D datasets and the cost of ob-
taining 3D annotations pose practical limitations to extending
supervised approaches to arbitrary classes. Using detailed a
priori models, some modern approaches exploit the ability
to generate annotations from photo-realistic simulation data
[16] or render the object [17]. When assuming known mesh
models, [18] showed that further online optimization given
depth information can greatly increase accuracy. However,
obtaining geometrically detailed a priori models remains a
non-trivial task for arbitrary objects.

In this work, we introduce a novel framework for learned
volumetric monocular estimation (VoluMon) capable of es-
timating the position, orientation, and size of objects, while
requiring only image-space annotations on 2D images at
training time instead of detailed geometric models or 3D
labels. The key insight in this work is that by approximating
object geometry with ellipsoids, we can exploit differentiable
geometric and algebraic relationships between ellipsoids and
2D annotations to enable a weakly supervised learning pro-
cess and significantly lower the annotation burden for deeply
learned methods. VoluMon trains a deep neural network to
predict the 3D size and 6D pose of objects using annotated
bounding boxes, instance segmentations paired with depth
images, or both. The core of our approach requires only a
bounding box detection and single RGB image at inference
time; obtaining an estimate of the pose and size of an
object is simply a feed-forward pass through the network,
rather than an iterative optimization process. However, given
segmented depth information at run-time, the ellipsoid ap-
proximation allows for object pose estimates from VoluMon
to be further refined without a priori geometric models.

We demonstrate the advantages of our approach by explor-
ing several variants of VoluMon depending on the available
sensors and annotations at training time and run time on
subset of the Falling Things Dataset [19]. We show that
using only a monocular sensor at inference time, VoluMon
performs similarly to a naive point-cloud based online el-
lipsoid estimation approach while requiring less than 1%
of the average computation time. Given segmented depth
information to further refine pose estimates at inference time,
for some metrics we approach or surpass the performance
of a deeply learned 6D object pose algorithm that assumes
groundtruth size information. Finally, we present promising
qualitative results on several real-world datasets.

II. PRELIMINARIES

VoluMon approximates 3D objects with ellipsoidal vol-
umes parameterized by the orientation R ∈ SO(3) and
position t ∈ R3 with respect to the sensor viewing the object,

as well as the size d ∈ R3 of the major axes of the ellipsoid
similar to [2]. In particular, we consider two mathematically
convenient forms of the ellipsoidal representation1: the dual
and the primal. The primal ellipsoid in R3 can be expressed
as the set of all 3D points x in homogeneous form satisfying
the implicit algebraic relationship xQxT = 0, where

Q =

[
A −(A)t

−tT (A) −1 + tT (A)t

]
, (1)

A = RD−1RT , and D = (diag(d2 ))2. In contrast, the dual
form of the ellipsoid, defines the infinite set of planes π
tangent to the surface of the ellipsoid, i.e., πQ∗πT = 0,

Q∗ =

[
RDRT − ttT −t

−tT −1

]
. (2)

For the remainder of this document, we refer to the primal
and dual ellipsoids by their governing real symmetric 4x4
matrices, Q and Q∗ respectively.

A strong advantage of approximating objects as ellipsoids,
as opposed to other geometric models such as 3D bounding
boxes, is that both the dual and primal forms provide
differentiable relationships between the object and quantities
obtained from image-space annotations paired with sensor
measurements, suggesting their suitability use in deep learn-
ing frameworks that are optimized via back-progagation. The
dual ellipsoid form allows for the closed-form calculation of
a projected image axis-aligned 2D bounding box induced
by an ellipsoid estimate, therefore providing a differentiable
geometric metric with which to compare bounding box
detections of an object. The primal form of the ellipsoid
provides a differentiable algebraic metric to measure how
well an observed surface point of an object, which can be
obtained from an instance segmentation and depth image,
agrees with an ellipsoid estimate. VoluMon trains a deep
neural network (described in Sec. III) to predict the pa-
rameters qi = (di,Ri, ti) of an ellipsoid approximation
using differentiable measurement functions derived from the
ellipsoid representation (described in Sec. IV).

III. MODEL OVERVIEW

VoluMon trains a model (shown in Fig. 2) to predict
ellipsoid parameters from images It : Ω ∈ N2 → R, where Ω
is the image pixel domain, and bounding boxes B, which are
characterized by the pixel locations of the four corners. Let Φ
be a neural network parameterized by β that takes as input a
set of images I = {Ii}Ki=0 and bounding boxes B = {Bi ∈
Ω2}Ki=0 around the K objects of interest. The network outputs
free parameters φi = [φi,D,φi,R,φi,UV ,φi,Z ] ∈ R10 per
object estimate, where φi,D ∈ R3, φi,R ∈ R4, φi,UV ∈ R2,
and φi,Z ∈ R1 are used to reconstruct respectively the size,
rotation, centroid projection, and depth of the object in the
camera frame. To ensure the prediction of valid ellipsoids,
we formulate an additional function f that maps the outputs
of the model Φ to reasonable q, yielding the relationship

q = f(Φ(I,B;β),B), (3)

1We derive the primal by transforming a scaled ellipsoid via relationships
described in [20]. The definition of the dual can be found in [3].



Fig. 2: VoluMon system diagram. Given an image and bounding box, VoluMon passes the resized contents of the bounding box to the local
patch sub-network, and the resized full image with contents outside of the bounding box set to zero in all channels to the global image
sub-network. Each image and bounding box pair yields one ellipsoid estimate. Both sub-networks utilize MobilenetV2 as a convolutional
feature extractor that feeds into a series of fully connected layers. To improve generalization performance, VoluMon predicts the image
coordinates of the projected object centroid, the allocentric rotation, and shape parameters from the contents in the region of interest
only, while depth of the centroid of the object is predicted using features from the global image. The raw output of the network φ are
reconstructed to q to constrain predictions to reasonable ellipsoids. The subscript notation i is dropped for readability.

where q = {qi}Ki=0, and f takes as input B to constrain the
projection of the centroid estimate to lie within the detected
bounding box in the image frame.

Rather than predict the rotation, shape, and translation of
an object from a single set of shared features, which could be
difficult to generalize to arbitrary object locations, VoluMon
splits the prediction of object properties between two de-
coupled sub-networks. The local patch sub-network predicts
object properties that are independent of where in the image
the bounding box is located and outputs φi,D,φi,R,φi,UV
per object, while the global image sub-network helps to
estimate global pose properties and outputs φi,Z per object.
Finally, the mapping from φ to q developed in the following
sections defines the function f required by Equation 3.

1) Global Image Branch: The global image network
receives the RGB image resized to 224x224 pixels, with all
channels outside the observed bounding box set to zero with
some padding, and predicts the “disparity” of the centroid,
δi. The possible centroid depth is obtained by constraining
the raw outputs such that δi = αδsigmoid(φi,Z), and letting
tz,i = bf/δi, where f, b are set to roughly the focal length
and baseline of the stereo camera, and αδ is the maximum
allowed disparity. This parameterization seeks to abstract
prediction of the centroid depth from camera parameters.

2) Local Patch Branch: The local prediction network
receives the image in the bounding box, resized to 224×224
pixels. To ensure reasonable t and d, the raw outputs of
the network are constrained such that [di,0, di,1, di,2] =
exp(φi,D), and [ui, vi] = sigmoid(φi,UV ), where exp and
sigmoid are applied element-wise. We then formulate the
per-object translation and shape estimates as

ti = [((uiwi+umin,i)−ūi)tz,i/f,
((vihi+vmin,i)−v̄i)tz,i/f, tz,i]

di = αy[di,0, di,0 + di,1, di,0 + di,1 + di,2] + εs,

(4)

where ui, vi are the projected centroid coordinates with
respect to the image bounding box edges. Additionally,
wi, hi, umin,i, vmin,i, ūi, v̄i are the bounding box width,

height, the two coordinates of the lower left corner of the
bounding box, and the image center, respectively. αy is a size
scaling parameter and εs enforces a minimum shape. Rather
than allowing for arbitrary object location, Equation 4 con-
strains the projected centroid to lie within the 2D bounding
box. In an effort to reduce the optimization space due to
the potentially ambiguous relationship between rotation and
shape, Equation 4 also constrains the representation of d to
learn a shape where each axis is of increasing size.

From the local patch, we also predict the rotation Rv

with respect to the object, i.e., the allocentric rotation.
We constrain the raw output of the network such that
[ri,0, ri,1, ri,2, ri,3] =

φi,R

||φi,R||2
, where the left hand vector is

interpreted as Rv in quaternion form. Unlike the egocentric
rotation of the object, previous works in deeply learned
3D bounding box detection [21], [22] have shown that
objects with similar allocentric rotations have similar visual
appearances in the local patch. To recover the egocentric
rotation Ri we use a similar transform as described in [17]
using t and Rv .

IV. WEAKLY SUPERVISED ELLIPSOID PREDICTION

In this work, rather than assuming a dataset of 3D size
and 6D pose annotations, we rely instead on 2D image-
space annotations on RGB and depth images, which we posit
are easier in practice to obtain. We assume in this work
images are obtained from a calibrated stereo pair and that
PL,PR ∈ R3x4 are known and constant projection matrices
from world coordinates to the image plane (i.e., includes both
the intrinsics and extrinsics) for the left and right cameras.
We futher assume a dataset of measurements of K labelled
objects by G = {I,BL,BR,S}. BL and BR are the set
of bounding box observations from the left images I and
right image, respectively. The set of pixel-wise segmentations
S = {Sk}Kk=0 is composed of individual segmentations
Sk : Ω ∈ N2 → {0, 1} that denote whether a pixel in the
left image is associated with the object in question.

3D points expected to lie on the surface of the object can
also be extracted from G, provided accurate depth images.



Assuming a stereo dataset, we assume a pre-processing step
that calculates a depth image from a left and right image
and uses PL and S to return the set of Jk 3D points Xk =
{xk,i}Jkj=0 corresponding to the pixels annotated to be upon
the object k. The respective sets of points for the objects
are then aggregated in X = {Xk}Kk=0. We observe that X
could also in practice come from an arbitrary depth sensor
aligned with the RGB images.

To optimize the parameters of Equation 3, VoluMon
leverages two loss functions given different types of image-
space annotation: a loss LD based on the dual form given
two bounding box measurements of the object from a stereo
pair (described in Sec. IV-A), and a loss LP based on the
primal form given observed points from the surface of the
object from a segmented depth image (described in Sec. IV-
B). Intuitively, VoluMon attempts to learn to predict ellipsoid
parameters that are consistent with observed measurements.
The overall loss function is

β∗ = arg min
β
αPLP (f(Φ(I,BL;β),BL),X )

+ αDLD(f(Φ(I,BL;β),BL),BL,BR)

+ αSLS(f(Φ(I,BL;β),BL))

(5)

where αP , αD, αS ≥ 0 are all hand-tuned weighting terms.
Equation 5 also includes a regularization term LS that
encourages shape predictions of an object to be similar
(described in Sec. IV-C).

A. Bounding Boxes and Dual Ellipsoid Optimization

To develop a loss function to weakly supervise ellipsoid
prediction from bounding boxes, we work with the dual
ellipsoid representation. 2D bounding box detections from
many state-of-the-art object detection pipelines can be inter-
preted as measurements of axis-aligned bounding planes for
objects approximated as 3D ellipsoids, where each edge of
a bounding box detection projects into a plane in 3D space
which constrains the ellipsoid. As in [3], [4], to solve for
the expected bounding box measurements given some Q∗

and camera projection matrix P , we first project the dual
ellipsoid to a dual-conic C on the image plane:

C∗ = PQ∗P T , (6)

Solving for axis aligned bounding boxes that satisfy the
implicit dual conic function in Equation 6 yields

Bumin, Bumax=
1

C∗3,3
[C∗1,3 ±

√
C∗1,3

2 −C∗1,1C
∗
3,3],

Bvmin, Bvmax=
1

C∗3,3
[C∗2,3]±

√
C∗2,3

2 −C∗2,2C
∗
3,3].

(7)

Using Equations 6 and 7, we can form a closed-form,
differentiable measurement model B̂ = h(q,P ) that maps
quadric parameters to an expected 2D bounding box mea-
surement. For any given ground-truth bounding box B and
predicted bounding box B̂, we define the projection error
eb(B, B̂) as the sum of squared differences between the
bounding box centroids and dimensions.

A single bounding box measurement is insufficient to fully
constrain all parameters of the ellipsoid representation. One
approach to partially resolving the measurement ambiguity
is to triangulate the quantity of interest from multiple views.
In this work, we propose using stereo data at training time
to impose projective consistency, as visualized in the bottom
panel of Figure 1. Let Q∗ be defined with respect to the left
camera. The final loss function for using bounding boxes
from a stereo pair to estimate object parameters is then

LD(q,BL,BR) =

1

K

K∑
k=0

[eb(BL,k,h(qk,PL)) + eb(BR,k,h(qk,PR))],
(8)

where we have used the known and constant stereo projection
matrices PL,PR. Although the bounding box label in the
right image is used at train time to calculate the loss for
back-propagation, it is not required at inference time.

B. 3D Points and Primal Ellipsoid Optimization
To specify a loss function for weakly supervised ellipsoid

prediction from segmented depth images, we turn to the
primal ellipsoid representation. An algebraic error metric on
an observed surface point x can be obtained from implicit al-
gebraic definition of a primal ellipsoid. In particular, xQxT

evaluates to strictly less than zero if x is inside the ellipsoid,
strictly greater than zero if x is outside the ellipsoid, and to
zero if and only if the point x lies on the surface of the
ellipsoid. An algebraic error metric follows directly:

es(x, q) = es(x,d,R, t) =
√
d0d1d2(xQxT )2. (9)

Similar to previous work [23], [24] an additional term
involving the product of the axes lengths is added to mitigate
the bias of fitting to larger primitive sizes.

Taking the average of Equation 9 per object over the entire
dataset is then:

LP (q,X ) =

K∑
k=0

Jk∑
j=0

es(xk,j , qk)

JkK
. (10)

The middle panel of Figure 1 visualizes an example of an
ellipsoid estimate and points extracted from a pixel-wise
segmentation paired with a depth image. Segmentations and
depth images are required during only training, not for the
feed-forward pass of the network.

C. Intra-Class Size Consistency Loss
While stereo triangulation provides up to eight bounding

edges, the quality of the triangulation can vary with the
stereo baseline and size of the bounding box detection.
Additionally, although LP relies on depths extracted from
a stereo pair, severely self-occluded views (such as seeing
only the front surface of a box) can introduce significant
shape ambiguity. Therefore, to impose additional structure to
the optimization, we introduce an intra-class size consistency
loss by penalizing the shape variance with constant offset εv:

LS(q) = var({di,0}ki=0) + var({di,1}ki=0)

+ var({di,2}ki=0) + εv,
(11)



where the sets of d can be obtained from q. The size
consistency loss can be useful for object classes that are
expected to have similar dimensional characteristics, such as
mass-produced household objects.

D. Network Training and Post Inference Refinement

VoluMon optimizes network parameters to minimize
Equation 5 via backpropagation using Adam. In practice,
we do not calculate losses over all K objects in the dataset,
but optimize over minibatches. At runtime, we assume an
off-the-shelf object detector such as [14], [25] provides an
initial detection, and prediction is simply a feedfoward pass
through the network.

While VoluMon implicitly learns a regression of object
parameters from measurements, ellipsoid parameters may
also be regressed directly. Given a segmented depth image
providing a measured pointcloud Xk and bounding box Bk

at run-time, the ellipsoid estimate provided by the network
can also be used as an initial estimate for further online
optimization. Let φk again be free parameters for a given
object. We apply Equation 10 to directly update φk via
gradient descent methods, i.e.,

φ∗k = arg min
φk

LP (f(φk,Bk),Xk). (12)

Although initial estimates for φk may be obtained from Xk,
we will show in Sec. V that direct online regression can be
both slow and inaccurate compared to a learned model. Using
VoluMon’s learned model to provide an initial estimate for
the regression (similar in spirit to [18]) can enable faster
and more accurate estimates on some metrics. In this work,
we update only the pose components when using an initial
estimate from VoluMon, keeping φk,D fixed. The ellipsoid
parameters can be reconstructed as q∗k = f(φ∗k,Bk).

V. SIMULATION EXPERIMENTS

We evaluate several variants of VoluMon compared to two
baseline methods. In addition to training on both the bound-
ing box and segmentation annotations (where αD = 1, αP =
1, denoted VoluMon Both), we evaluate the performance of
the network using bounding box annotations only (where
αD = 1, αP = 0, denoted VoluMon Dual Only), and the
network trained using segmented depth images only (where
αD = 0, αP = 1, denoted VoluMon Primal Only). For
training and evaluation, we use ground-truth bounding box
and segmentation annotations as an input to our approach.
We also test a variant of VoluMon Both denoted VoluMon
Both Noisy where the test time input data is obtained from a
FasterRCNN[14] architecture trained on the same train test
spilt. To condition the network for noisy bounding boxes at
run-time, we add random noise to ground-truth bounding box
input to the network during training, and keep the original
bounding box annotation for accurate loss calculation. To
ensure only a single detection per image, we hand-tune for
the minimum probability to accept a detection from the
object detector on the test set and keep the highest probability
detection. We leave further study of the interaction between
object detector and VoluMon for future work. Finally, we test

a variant of VoluMon (denoted VoluMon PostOpt) where the
pose estimate of the VoluMon Primal Only network is further
refined for 50 optimization steps as described in Sec. IV-D.

Additionally, we consider a regression only technique (de-
noted Optimization from scratch), which optimizes Equation
12 without learning for both shape and pose parameters. We
use the average depth of 100 points randomly sampled from
the observed object points as the initial depth, and assume
the projected centroid of the object is in the center of the
bounding box detection. The extents of the segmented point-
cloud with respect to the frame of reference of the camera set
the initial shape parameters, and the initial rotation estimate
is set to identity. If a valid initial size estimate cannot be
obtained, an initial size estimate is set to approximately the
minimum size by setting φD = [−10.0,−10.0,−10.0]. We
consider two variants of the regression only technique with
different numbers of optimization iterations, i.e., (Optimize
from scratch (500 iterations)) and (Optimize from scratch
(50)). Both VoluMon PostOpt and Optimize from scratch
approaches sample 300 points once at run-time for the primal
loss calculation and use a learning rate of 0.05. Finally, we
compare our approach to a deep 6D object pose learning
method [16] (DOPE) that requires the training data to be
annotated with object dimensions and projected 3D bounding
box vertices. DOPE does not require depth images at training
time and the results are not further refined online.

All variants of VoluMon as well as the pure online
optimization approach are implemented in Python using
PyTorch. For VoluMon, we set αS = 100, αy = 10.0, εs =
3.0, αδ = 150, εv = 0.1. We train with a batch size of 50
and a learning rate of 0.00001 for 14000 epochs, resetting
the optimizer state halfway through training. We use open-
source code released by the authors of [16] to train (DOPE)
for 240 epochs, reducing the batch size at train time to 10
to optimize on lower cost GPUs.

We report translational prediction performance by compar-
ing the true centroid of the object to the predicted centroid.
Additionally, given true mesh models, we compare the dis-
tance between the mesh vertices {m0...mM} and points on
the surface of the prediction {p0...pN} [26], i.e.,

ADI =
1

N

N∑
j=0

min
i∈M
||mj − pi||, (13)

where pi are interpolated points from the surface of the pre-
diction for the ellipsoid-based methods, and true mesh model
transformed using the estimated parameters for DOPE. Al-
though this metric is generally used to compare two known
mesh models [18], [26], we apply it to measure surface
fitting performance. Because DOPE is both a detection and
estimation algorithm, we report pass rates where missed
detections are removed entirely from the total number of
samples considered, and pass rates where the missed detec-
tions are penalized (denoted NF). We also report the 3D IOU
with groundtruth 3D bounding boxes.



Fig. 3: The performance of various variants of VoluMon as well as the two baselines are shown for translation error (lower better), ADI
(lower better), and 3D bounding box IOU (higher better). Trained on only 2D annotations, VoluMon Primal Only (blue dashed) performs
similarly to an online optimization approach (black) with respect to translational error without requiring online optimization. After online
optimization (solid blue) VoluMon approaches or surpasses the performance of DOPE (red), a deep 6D pose estimation approach, with
respect to translational error and ADI. All ellipsoid-based methods underperform DOPE in the 3D IOU metric, which is not unexpected,
given that DOPE is a 6D optimization assuming known object dimensions, while the other methods estimate both pose and dimension.

Fig. 4: Qualitative results for selected methods. (a) Ellipsoid estimates visualized as blue meshes. Although VoluMon PostOpt requires
less steps of online optimization compared to Optimize from scratch (500 iterations), the initial pose estimates provided by VoluMon
Primal Only enable VoluMon PostOpt to generate more accurate estimates of the ellipsoids. Potentially due to shape ambiguities, it can
be difficult to estimate the extents of the object; by keeping the size estimate from VoluMon Primal Only, VoluMon PostOpt benefits from
observations over a dataset to estimate size at run-time. (b) Ellipsoid estimates from VoluMon Primal Only visualized as blue bounding
boxes, and the estimates from DOPE visualized as red bounding boxes using the ground-truth object size. VoluMon constrains the projected
centroid of the object to fall within the 2D object bounding box, helping to avoid some failure cases of DOPE, e.g., top row, right column.
Additionally, while VoluMon tends to slightly overestimate the size of the object, many of the estimates appear qualitatively reasonable.

A. Datasets

We test on a subset of the Falling Things Dataset [19],
which provides groundtruth bounding boxes, object pose,
and geometry. We focus on the cracker box object data,
which can be reasonably approximated by an ellipsoid, and
is shown in Figure 4. Our constructed dataset features three
different environment categories (kitchen, kite, and temple)
with four variants in each yielding a total of twelve different
environments with one hundred data points per camera. Each
training sample includes the left RGB image, ground-truth
depth image, groundtruth 2D bounding boxes for the left
and right images, and segmentation images for all images.
Each image contains a single object instance. For VoluMon,
we filter out data points with bounding boxes extending past
the image boundaries, and withhold one environment from
each category kitchen 0, kite 0, temple 0 for the
test set, resulting in 1066 datapoints in Cracker Train and
264 datapoints in Cracker Test. For DOPE, we allow the

network to train on all available data and test on Cracker Test.
While training VoluMon, we use built-in PyTorch functions
for random data augmentation, including adding random
color jitter to the hue and saturation and random erasing.
In practice, we randomly sample 4 points from the extracted
surface points every epoch to calculate the primal loss.

B. Simulation Experimental Results
We show the pass rate metrics for selected variants of

each algorithm in Figure 3, and report area under the curve
(AUC) and timing results in Table I. Qualitative samples are
depicted in Figure 4. The AUC metric is calculated using
a naive rectangular integral approximation. On simulated
data, VoluMon Primal Only and VoluMon Both outperform
VoluMon Dual Only with respect to AUC for translation and
ADI. This matches our intuition that while using only two
bounding box measurements may struggle to overcome shape
and rotation ambiguity for certain objects, as reflected in the
relatively poor ADI performance. However, it is important



Estimated
Parameters

Train Time
Requirements

Inference Time
Requirements Timing Mean/STD (ms) Translation

AUC
ADI
AUC

3D
IOU

Translation
AUC (NF)

ADI
AUC (NF)

3D
IOU (NF)

VoluMon
PostOpt (50 Iterations)

Left bounding box
Left RGB image
Left segmentation

Depth image

Left bounding box
Left segmentation
Left RGB image

Depth image

15/9 for network
341/3 for optimization

+ detection time (variable)
8.49 8.65 0.52

VoluMon
Dual Only

Left bounding box
Right bounding box

Left RGB image
4.26 6.50 0.19

VoluMon
Primal Only

Left bounding box
Left RGB image
Left segmentation

Depth image

6.05 7.42 0.40

VoluMon
Both

Left bounding box
Right bounding box

Left RGB image
Left segmentation

Depth image

5.80 7.60 0.31

VoluMon Both
Noisy

d,R, t Left bounding box
Right bounding box

Left RGB image
Left segmentation

Depth image

Left bounding box
Left RGB Image

15/9 for network
+ detection time (variable)

4.96 7.05 0.28 4.94 7.02 0.27

DOPE R, t
Projected cuboid corners

Bounding box size
RGB image

RGB image 220/12 8.02 8.80 0.65 6.71 7.37 0.55

Optimize from scratch
(500 iterations)

3346/17
+ detection time (variable) 6.03 8.85 0.34

Optimize from scratch
(50 iterations)

d,R, t None

Left bounding box
Left segmentation
Left RGB image

Depth image 341/3
+ detection time (variable) 6.55 8.03 0.29

TABLE I: Performance metrics over the various methods, with best performance bolded and the second best underlined. (NF) indicates
when aggregate metrics consider instances when objects are not detected as failure to pass, where for VoluMon we impose a minimum
detection probability from the auxiliary object detector. Timing results are collected using a GTX 1070Ti. We expect all variants of
VoluMon to have similar run time for a single feed-forward pass of the network, and for the same number of optimization steps to have
similar run times, reporting accordingly. VoluMon and Optimize from scratch timing results do not include detection and segmentation;
the object detector used to generate test time detections for VoluMon Both Noisy requires roughly 200 ms per image, but the speed of the
object detector can vary depending on the architecture. Timing results for DOPE include detection and PnP solving.

to note that VoluMon Dual Only requires only bounding
box annotations from a stereo pair for training and a single
camera at inference time, and yet achieves about 73% the
ADI AUC of the highest performing method in the table.
We additionally observe that training on both the primal and
the dual objectives does not yield noticeable performance
benefits when using groundtruth depth images, motivating
using Primal Only in the post optimization experiments.

Our results also show that a single forward pass through
the network of VoluMon Primal Only achieves a higher 3D
IOU AUC score as compared to Optimize from scratch (500
iterations), despite taking less than 1% of the time, not
including detection time. Although all network-only Volu-
Mon variants underperform the pure optimization methods
in terms of ADI, the ADI metrics can fail to capture certain
types of shape estimation errors as suggested by the 3D
IOU results. As seen in Fig. 3, the translation performance
of VoluMon Primal Only and Optimize from scratch (500)
are also relatively similar. After applying the same number
of further post optimization, VoluMon PostOpt outperforms
Optimize from scratch (500 iterations) on translation AUC by
over 40% and on 3D IOU AUC by over 50%, indicating that
the estimates from VoluMon can be useful initial estimates
for downstream algorithms.

Assuming that pointcloud data is available, VoluMon
PostOpt outperforms DOPE with respect to translation AUC,
and approaches the ADI performance with an ADI AUC that
is 98% of DOPE’s. Although one of the contributions of [16]
is to use large quantities of simulation data, the performance
on our much smaller datasets still enables an approximately
60% pass rate for both the 2 centimeter threshold for trans-
lation and ADI. By leveraging the ellipsoid representation

and object consistency properties, VoluMon does not require
3D annotations or a priori geometric models, and can still
be further refined online if additional computation time
and segmented depth information is available. We observe
that VoluMon PostOpt requires more computation time than
DOPE; future work includes direct integration into an object
detection framework to reduce computation.

VI. REAL-WORLD EXPERIMENTS

To test the performance of VoluMon on real-world objects,
we collected additional real-world datasets for four objects
(a mug, a toy bus, an orange, and a bowl) using a ZED Mini
stereo sensor. An initial set of annotations was generated
using Mask RCNN pre-trained on COCO, with inaccurate
annotations removed in a manual post-processing step. The
physical objects are the same between the training and test
set. One network per object was trained using bounding box
annotations only on approximately 500 images per object,
with a batch size of 25, and a learning rate of 0.0001 for
the mug, orange, and bus, and 0.00001 for the bowl. We set
a maximum centroid disparity of 300, a minimum size of 3
cm and a size scaling factor of 10 cm. As seen in Figure
5, without requiring detailed 3D models or 3D annotations,
for some objects VoluMon produces qualitatively reasonable
pose and size approximations on withheld evaluation data.
We observed greater optimization instability on real data,
and report results from the stable regimes of training. No-
tably, we also found that in practice, using the bounding
box annotations only on real data generally outperformed
other VoluMon variants, and enabled the most reasonable
performance for the majority of objects investigated. This
may be due to the noisier nature of the stereo pointcloud,
seen in Figure 6c.



Fig. 5: Qualitative results from the MIT Desk Dataset. The first
and second columns show projected conics (pink) and bounding
boxes (blue) for the left and right images respectively; the second
column visualizes the primal ellipsoid (blue mesh). While in this
case bounding boxes from both the left and right sensor are used at
train time, VoluMon predicts object geometry and pose using only
the left image and bounding box input at run-time.

Fig. 6: To collect image space annotations on the real-world
datasets, we leverage a pretrained network to annotate bounding
boxes (a) and object segmentations (b) to use with the estimated
pointcloud (c), reducing by-hand annotation burden.

VII. CONCLUSIONS

We have presented VoluMon, a novel method for weakly
supervised monocular object estimation. VoluMon leverages
the primal and dual forms of the ellipsoid representation
in addition to intra-class size properties to train a neural
network to predict the parameters of a bounding ellipsoidal
volume for an object. In addition to reducing computation
time, potential future areas of investigation further include
studies of performance on more diverse objects.
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