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Abstract— Although deep neural networks have achieved
state-of-the-art performance for stereo depth estimation, they
can suffer from a significant drop in accuracy when tested
on images from novel domains. Recent work has shown that
self-supervised online adaptation is a promising approach for
closing this performance gap. In this work, we address three
unsolved challenges for online adaptation. First, we propose
a method for detecting novel environments, allowing us to
trigger adaptation and notify downstream systems that depth
predictions are unreliable. We find that the feature similarity
scores from our deep stereo network can be leveraged for out-of-
distribution (OOD) detection, providing the necessary starting
criterion for adaptation. Next, we use online validation to termi-
nate adaptation when it stops improving performance, allowing
us to free up computational resources. Finally, we demon-
strate that existing methods for continuous adaptation cause
catastrophic forgetting of the training domain. By augmenting
adaptation with experience replay, we retain high accuracy in
the training domain while rapidly improving performance in
novel environments. In sum, these three contributions form the
basis of a more robust and efficient deep stereo system that can
recognize and adapt to new environments without forgetting.

I. INTRODUCTION

Many tasks in robotics require dense and accurate 3D
reconstructions of the scene. Depth estimation using passive
stereo cameras is widely used in robotics applications be-
cause of its suitability for indoor and outdoor environments
and affordable hardware cost [1]. Current state-of-the-art
methods for stereo depth estimation use convolutional neural
networks (CNNs) to predict depth from left-right image pairs
[2]. After Mayer et al. [3] introduced the first end-to-end deep
stereo network, deep learning architectures have consistently
outperformed traditional algorithms.

Despite their impressive accuracy in domains with abun-
dant labelled training data, deep stereo networks can suffer
from a drop in accuracy and prediction quality in novel
domains, especially when moving from synthetic training
domains to the real-world [4]–[7]. Although fine-tuning
using a small set of real-world images has led to strong
performance on vision benchmarks such as KITTI [3], [4],
[8], [9], this approach requires access to groundtruth depth
labels, which are typically sparse and difficult to collect [10].

Several works have proposed online adaptation for deep
stereo using self-supervised image reconstruction losses [4]–
[6] to reduce the performance gap in novel domains. These
methods can be classified as continual, “lifelong” learning,
where every incoming image pair is used to perform a
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Fig. 1: The accuracy of a deep stereo network trained in a sunny,
daytime environment deteriorates in the presence of fog, and the
network fails to detect several trees and cars (boxed in red). Existing
continuous adaptation methods, exemplified by MAD [4], improve
performance in the novel environment but cause catastrophic forget-
ting in the training environment. Our method uses experience replay
(ER) to preserve training accuracy during adaptation. We report
the end-point-error (EPE) metric, which is the average disparity
prediction error for an image (lower is better).

gradient descent update to the deep stereo network. Although
the adaptive stereo systems proposed in [4]–[6] lead to rapid
performance improvements in novel domains, three limita-
tions prevent their safe and efficient real-world deployment.

First, the adaptive stereo systems in [4]–[6] do not dif-
ferentiate between nominal inference in familiar environ-
ments and unreliable inference in novel environments; they
are always adapting. It is crucial to know when the deep
stereo network is untrustworthy so that downstream planning
and controls subsystems do not select dangerous actions
in response to erroneous perception [11]. Second, these
approaches are computationally wasteful, as they perform
expensive gradient descent updates even when the model
is adapted to the current domain. Even the extremely fast
MADNet architecture requires 0.26s to perform inference
for a single image pair on an NVIDIA Jetson TX2 [4],
limiting the framerate of online adaptation to well below
4Hz. Clearly, online adaptation cannot continue indefinitely
if real-time perception is required.

Third, we find that existing adaptive stereo systems, ex-
emplified by [4], cause catastrophic forgetting [12], [13]
of the training domain. This is a well-known problem for
lifelong learning systems [14], where the agent “forgets”
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Fig. 2: An overview of our adaptive stereo system, with our
contributions highlighted in red. An out-of-distribution (OOD)
detector triggers adaptation when it encounters a novel image.
During adaptation, we combine a self-supervised adaptation loss
with a supervised experience replay loss, improving accuracy in
the novel domain without forgetting the training domain. Every k
steps, we evaluate the model using an online validation set (OVS) to
check if adaptation has improved performance. If not, we terminate
adaptation and resume fast inference without backpropagation.

a prior task after learning a new one. To the best of our
knowledge, catastrophic forgetting (shown in Fig. 1) has not
been addressed in the context of adaptation for deep stereo.

To address these issues, we make three contributions:
• We propose a novel feature contrast score for out-

of-distribution (OOD) detection, allowing us to trigger
adaptation when the deep stereo network has entered a
novel environment.

• We show that online validation can terminate adaptation
when it stops improving performance, allowing our
system to avoid lifelong gradient descent updates.

• We demonstrate that experience replay (ER) can be used
to mitigate forgetting during online adaptation.

Overall, we present a more safe and reliable adaptive
stereo system that can detect unfamiliar environments, im-
prove performance in novel domains without forgetting the
training set, and avoid the long-term computational burden
of adaptation.

II. RELATED WORKS

A. Deep Stereo Networks

Stereo depth estimation, like many other tasks in computer
vision and robotics, has been revolutionized by deep learning
[2]. After Mayer et al. [3] introduced DispNetC, new archi-
tectures have steadily led to improvements in accuracy and
inference time on vision benchmarks such as KITTI [15].

For example, the authors of GC-Net [8] showed that a
cost volume regularization stage allows the network to learn
an appropriate feature matching cost from data, resulting
in better performance than hand-crafted metrics such as

cosine distance or L2 distance. The authors of StereoNet [9]
demonstrated that the spatial dimensions of the cost volume
can be reduced by a factor of 16 or even 32 while achieving
sub-pixel precision. In this paper, we use StereoNet for our
experimental evaluations due to its low memory footprint and
high accuracy on vision benchmarks such as KITTI [15].

B. Online Adaptation for Deep Stereo

Several recent works have demonstrated the effectiveness
of self-supervised image reconstruction loss for online adap-
tation of deep stereo networks [4]–[6]. Tonioni et al. [5] and
Zhang et al. [6] show that gradient-based adaptation can be
accelerated using the meta-learning framework proposed by
Finn et al. [16]. In addition, Tonioni et al. [4] demonstrate
real-time adaptation using modular updates, where only a
subset of the model’s parameters are updated at a time.

An alternative approach is to normalize input data and
features so that they are more similar to the training domain.
For example, Zhang et al. [6] and Mancini et al. [17] propose
regularization techniques based on batch normalization to
compensate for shifts in the low-level image feature distri-
butions. Song et al. [7] propose a color transfer algorithm that
maps novel images into a color space that is consistent with
the training set. Although these methods are not susceptible
to forgetting, they are unable to compensate for high-level
shifts in scene geometry and semantic content [18].

C. Catastrophic Forgetting

The problem of catastrophic forgetting [12], where an
agent loses the ability to perform a previous task after
learning a new one, is a well-known challenge for sequential
learning systems [13], [14], [19], [20], but has been unad-
dressed for deep stereo adaptation.

One solution proposed Kirkpatrick et al. [19] is to selec-
tively slow-down gradient updates for model parameters that
are important for previous tasks. This approach is worth in-
vestigating for stereo depth estimation, but it is possible that
its damping effect could counteract the adaptation process.

In this work, we build off of two methods that mitigate
forgetting by revisiting prior training examples during adap-
tation: experience replay (ER) [21], and rehearsal [22]. In
ER, which is commonly employed in reinforcement learning,
a sliding-window of recent examples is used to train an agent.
Similarly, rehearsal methods simultaneously train a learner
on new and previously-seen examples, ensuring that short-
term learning does not jeopardize performance on prior tasks.

III. PRELIMINARIES

A. Deep Stereo Depth Estimation

In deep stereo depth estimation, a neural networks takes
in a pair of left and right RGB images Il, Ir ∈ Rh×w×3

with height h and width w and predicts a disparity map
D̃ ∈ Rh×w. For rectified stereo pairs, the disparity at
a pixel in the left image is the horizontal offset of the
corresponding 3D scene point projected into the right image.
While disparity and depth are interchangeable, disparity is a



convenient representation for algorithms that estimate depth
by finding pixel correspondences between stereo images [23].

Typically, training is supervised with groundtruth disparity
labels, acquired in simulation or with Lidar. However, self-
supervised training (or indeed, adaptation) using only stereo
image pairs is possible with an image reconstruction loss.
A common choice, which we use in this work, is the self-
supervised loss from Monodepth [10], which combines L1
photometric loss, structural similarity [24] and regularization
terms for disparity smoothness and left-right consistency.

B. Online Adaptation Framework

In this paper, we consider the online adaptation framework
used in [4]–[6], where a deep stereo network is trained offline
and then adapted to a sequence of images from a new domain
via gradient descent. During online adaptation, images arrive
one at a time, and a single gradient descent update is applied
to the model for each image. Groundtruth disparity labels
are unavailable during adaptation, so gradient updates are
performed using Monodepth self-supervised loss [10].

IV. OUT-OF-DISTRIBUTION (OOD) DETECTION

A. Stereo Depth Estimation as Contrastive Feature Learning

Before the advent of end-to-end deep stereo networks,
early efforts to integrate learning into stereo depth estimation
used neural networks to learn features and distance metrics
from data [25]–[29]. Many of these works can be categorized
as contrastive learning, where a contrastive loss, such as
a max-margin (hinge) loss [26] or triplet loss [25], [28],
encourages a network to learn a discriminative feature rep-
resentation from data. The goal is for the learned features to
produce low matching costs (or high similarity scores) for
corresponding image patches, and high matching costs (low
similarity scores) for non-corresponding patches, enabling
effective stereo matching. We will show that, although end-
to-end stereo networks are not explicitly trained with a
contrastive loss, they tend to learn features with similar
contrastive properties.

In deep stereo architectures, a Siamese feature extraction
network takes in left and right images Il, Ir and outputs
feature maps, Fl, Fr ∈ RhF×wF×dF , where hF , wF and dF
are the height, width, and dimensionality of the map. Each
dF -dimensional feature describes a square p × p patch in
the input image, whose spatial extent p is determined by the
receptive field of the neurons in the feature extractor. After
rectifying stereo pairs as a preprocessing step, matching costs
are evaluated between features along horizontal epipolar
lines, and stored in a cost volume C [23]. Matching costs
may be hand-crafted metrics, such as an L2 norm, or may
be a function that is learned from data [8], [9].

For notational simplicity, we model both the feature
extraction and matching cost as a single function f :
Rp×p×3×Rp×p×3 −→ R that maps a pair of image patches to
a scalar cost. Using f , the cost volume C is formed by eval-
uating f for a reference patch centered at each pixel in the
left image, and candidate patches along a horizontal epipolar
line in the right image [23]. For example, C(u, v, d) stores
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Fig. 3: In each plot, we have selected a sample image and pixel
location, and plotted a “slice” of the cost volume at that location
(i.e, C(u, v)). When the model’s features are well-adapted to the
environment, as is the case for training images, the similarity scores
in the cost volume tend to be peaked near the true disparity. In novel
images, features are poorly-adapted, resulting in a less prominent
peak or a multimodal distribution of similarity scores.

the matching cost between the reference feature Fl(u, v) and
the candidate feature Fr(u, v − d) offset by disparity d.

From the cost volume, a soft-argmin is applied to extract
a disparity map [8]. It is important to note that, although the
entries of C are canonically interpreted as “cost”, some stereo
architectures store a “similarity score“ instead. In this work,
we use the StereoNet architecture [9], which uses similarity
scores (and therefore extracts disparity using a soft-argmax).

Due to occlusion, non-constant brightness, and other fac-
tors, corresponding patches in the left and right images
may not have identical appearance. However, f should pro-
duce high similarity scores between corresponding patches,
despite these perturbations. It is critical to note that the
disparity estimate obtained from the soft-argmax operation
is influenced by the similarity scores between a reference
patch and all candidate patches along the epipolar line.
Thus, disparity estimation induces an implicit contrastive
feature learning objective, where the network (f ) attempts
to maximize the similarity score for corresponding patches,
and minimize the score for all non-corresponding patches.

B. Quantifying Novelty using the Feature Contrast Score

During training, the network learns an f that maximizes
the margin or “contrast” between the similarity scores of
corresponding patches and the scores of non-corresponding
patches. However, f is learned with respect to the distribution
of training images, and may be sub-optimal for images
outside of this distribution. As a result, we hypothesize
that the similarity score contrast will be reduced in novel
environments.

To build intuition, we plot a “slice” of the cost volume at
a sample pixel in a training and novel image in Fig. 3. By
construction, each slice stores the similarity scores between
a reference patch and candidate patches along the epipolar
line. When the network’s features are well-adapted to their
environment (Fig. 3a), similarity scores tend to be “peaked”
at the true disparity. At a particularly bad location in the
novel image (Fig. 3b), the peak is not prominent, leading to
ambiguity about the true disparity value.

We quantify the feature contrast score SI at a pixel
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Fig. 4: The distribution of feature contrast scores (SI) for training
and novel images. The shorthand “X −→ Y” indicates that the
model was trained in domain X and then tested in a novel domain
Y. SF is the simulated SceneFlow Flying dataset [3], KITTI is
the real-world KITTI Raw dataset [15], and VK is the simulated
Virtual KITTI dataset [34]. The network’s learned features are
less discriminative in the novel domain, leading to a lower SI .
Interestingly, SI remains high for many KITTI images after training
on VK (4c), likely due to the fact that VK is designed to match the
appearance of its real-world counterpart. In each plot, the vertical
dashed line indicates a 5th percentile OOD threshold (Tood).

location (u, v) as follows:

SI(u, v) , Cmax(u, v)− Cmean(u, v) (1)

where Cmax and Cmean are the same quantities depicted in
Fig. 3. Because we do not have access to the groundtruth
disparity value at each pixel, Eq. 1 implicitly assumes that
the maximum similarity score occurs at the true disparity.
Although this is not true for pixels with incorrect disparity
predictions (e.g 3b), we find that the difference between
the maximum and mean still captures the contrast between
corresponding and non-corresponding features.

For convenience, let SI be the average feature contrast
score across all pixels in image I. SI quantifies how
discriminative the deep stereo network’s learned features are
for a particular image. As we hypothesized, the reduced
effectiveness of the learned features in novel environments
leads to a lower SI , which we illustrate in Fig. 4.

An advantage of SI over existing autoencoder-based meth-
ods [30]–[33] is that it does not require an auxiliary network
for OOD detection. SI reuses network computation from
the cost volume, and adds minimal overhead relative to a
single forward pass through the deep stereo network. For
our StereoNet configuration (see Sec. VII-A), computing SI
increases inference time by 1-2%.

C. Triggering Adaptation with Out-of-Distribution Detection

The discrepancy between training and novel SI distribu-
tions in Fig. 4 enables a simple yet effective threshold-based
out-of-distribution (OOD) detector. Following the approach

of Peretroukhin et al. [35], we compute the empirical distri-
bution of SI for the training set (offline), and set a threshold
Tood to a low percentile of the empirical CDF. We classify
an image as novel if SI < Tood. In our experiments, we
chose Tood to be the 5th percentile, although this parameter
can be tuned to balance precision and recall (see Fig. 5). 1

V. ONLINE VALIDATION FOR EFFICIENT ADAPTATION

A. Measuring Adaptation Progress

In prior works [4]–[6] we observe that most of the per-
formance gains from adaptation are achieved within a few-
hundred images, and diminish over time. Once the model
has adapted to a novel domain, further adaptation may cause
overfitting and cease to improve accuracy. However, exist-
ing adaptation methods such as MADNet [4] will perform
gradient descent updates indefinitely, consuming substantial
computational resources while bringing marginal benefits.

To avoid overfitting, and to free up resources on mobile
computing platforms, we would like to stop adaptation as
soon as performance plateaus. Noting that it is standard
practice to use a validation loss to detect overfitting during
training [36], we extend this paradigm to do online vali-
dation using a self-supervised loss. We maintain an online
validation set (OVS) using images collected from the novel
environment, and periodically re-compute a validation loss
to check if adaptation has improved performance. If not,
we terminate adaptation and return to fast inference with
no gradient descent updates.

B. Sampling a Uniform Online Validation Set (OVS)

We would like our online validation set (OVS) to be a
representative, uniform sample of images from the novel
domain. To accomplish this, we use reservoir sampling [37],
which is an online algorithm designed to select a uniform
sample of items from a stream of unknown size. For each
incoming image pair that is classified as novel, the reservoir
sampling algorithm probabilistically chooses to either discard
the pair or replace an item in the OVS. The probability of
replacement is set such that every image pair has an equal
probability of ending up in the OVS.

During online adaptation, our OOD detector (see Sec. IV-
C) produces a stream of image pairs that are classified as
novel. The reservoir sampler will occasionally replace an
item in the OVS with a pair from the stream. To ensure that
the OVS images are “held-out” during adaptation, any image
pair that is added to the OVS is not used to adapt the model.

Eventually, as the deep stereo network adapts, the feature
contrast score (SI) for incoming images will increase above
the threshold Tood, and images will no longer be classified
as novel. At this point, the OVS contains a small, uniform
sample of all novel images seen so far, which we can use to
validate the model’s performance in the novel domain.

1To prevent the training images that fall below the OOD threshold Tood

in Fig. 4 from causing spurious adaptation, we trigger online adaptation
after detecting W = 5 consecutive novel images. The parameter W can be
increased to reduce the probability of a false start at the expense of a slight
delay in adaptation.



C. Online Validation Loss

Every k steps, we compute an online validation loss Lu
ovs,

which is the average self-supervised loss across all of the
images in the OVS. In our implementation, Lu

ovs is the
same Monodepth self-supervised loss [10] that we use for
adaptation. Lu

ovs allows us to track the effect of adaptation
on novel domain performance.

Adaptation is terminated when (1) the OVS has not
changed since the last online validation and (2) Lu

ovs has
increased. These two criteria indicate that adaptation is no
longer improving the model’s performance on a consistent
set of images. Once adaptation terminates, it can be triggered
again if more “OOD” images are detected at a future time.
This may indicate that the novel domain has not been
sufficiently explored, and further adaptation is needed.

VI. MITIGATING FORGETTING VIA EXPERIENCE REPLAY

To mitigate forgetting, we build off of a method from rein-
forcement learning (RL) called experience replay (ER) [21],
where a learner is trained on both new and previous examples
to ensure that it does not forget prior tasks. However, our ER
method differs from that of most RL applications because
we store a fixed sample from the training set, rather than a
sliding window of recent examples.

To construct a replay buffer, we uniformly sample Nreplay

image pairs from the training set 2. Groundtruth disparity
labels are available for these images because they are from
a synthetic training set. To incorporate ER into online
adaptation, our model predicts disparity for one novel image
pair and one sampled pair from the replay buffer. We then
adapt the model using a combined loss:

L = Lu
adapt(Il, Ir, D̃) + αLs

replay(D̃replay,Dreplay) (2)

where D̃ is the disparity prediction for the novel image
pair (Il, Ir), and D̃replay and Dreplay are the predicted and
groundtruth disparity for the experience replay image pair.
Lu
adapt is the unsupervised loss from Monodepth [10], and
Ls
replay is the supervised loss used to train StereoNet [9].

We found that α = 0.05 balanced the adaptation and replay
objectives well in our experiments.

We note that this approach is similar to the rehearsal
methods proposed by Robins et al. [22], where a neural
network is re-trained on sampled prior examples while it
is introduced to new ones.

VII. EVALUATION

A. Implementation Details

In our experiments, we use the lightweight “16X, single”
StereoNet configuration [9], and perform training and adap-
tation using 320×960 image crops. We train the model using
the robust loss function from the original StereoNet paper,
and the Adam optimizer [38] with a learning rate of 10−4,
decaying by a factor of 1

2 every 20k steps.

2For all experiments in this work, we set Nreplay = 1000.
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Fig. 5: Precision-recall curves for our OOD detector, which are
generated by varying the classification threshold Tood from Sec.
IV-C. We use the same training and novel image sets from Fig. 4.
The detector is effective at discriminating between Virtual KITTI
(VK) and SceneFlow Flying (SF), SF and KITTI Raw (KITTI),
as well as between the sunny “Clone” and the “Fog” and “Rain”
sequences from VK. As in Fig. 4, the visual similarity of VK and
KITTI causes difficulty distinguishing between the two.

B. Online Adaptation Methods

We consider four online adaptation methods, each of
which adds one or more components of our system to a
baseline adaptation procedure:
• MAD: The “FULL” method from MADNet [4] as a

baseline for continuous online adaptation.
• VS: We terminate when online validation loss increases

(see Sec. V). In our implementation, the OVS contains
10 images, and Lu

ovs is recomputed every k = 100 steps.
• ER: We perform gradient descent updates with respect

to the combined loss function in Eq. 2, which includes
an adaptation loss and a replay loss.

• VS + ER: Our full method depicted in Fig. 2.
All methods begin with identical network parameters, and
adapt using Adam with a fixed learning rate of 5× 10−5.

C. Training and Novel Environments

In our experiments, we pre-train StereoNet using either
the SceneFlow Flying [3] or Virtual KITTI “Clone” [34]
datasets, and adapt it to a novel image sequence. We include
two novel sequences from Virtual KITTI (Scene 01 and
Scene 20), as well as the City, Road, and Campus sequences
from KITTI Raw [15]. In addition, we analyze the effect
of novel weather conditions using the Virtual KITTI “Fog”
and “Rain” sequences. These images are identical to their
“Clone” counterparts (nominal, sunny weather), but they
have simulated fog or rain effects applied.

D. Out-of-Distribution (OOD) Detection

We plot the precision-recall performance of our OOD
detector in Fig. 5. The detector achieves high precision at
near-perfect recall in three combinations of training and
novel environments, detecting visual differences between a
simulated and real dataset, two different simulated datasets,
and even the same dataset with fog and rain applied.

The detector’s performance is lowest when our model
is trained on Virtual KITTI and tested on novel KITTI
Raw images. We attribute this to the high degree of visual
similarity between these two datasets. The Virtual KITTI
dataset was designed to mimic the appearance of KITTI Raw,
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Fig. 6: End-point-error (EPE) in the original training domain and novel adaptation domain after 4000 adaptation steps. None is the pre-
adaptation EPE (equal for all methods). Green markers show the number of gradient updates performed by each method. All four methods
reduce novel domain EPE, although MAD and VS lead to substantially higher EPE in the original training domain after adaptation. Both
ER and VS+ER maintain roughly constant training domain EPE during adaptation, indicating the effectiveness of experience replay.
While VS and VS+ER terminate early, MAD and ER will continue to perform gradient updates indefinitely. Our full method, VS+ER,
performs efficient adaptation without forgetting.

leading to less separable feature contrast score distributions
in Fig. 4c and thus lower precision. Still, adaptation is likely
to be triggered because the majority of images from KITTI
are below the classifier threshold.

E. Online Validation

In Fig. 6, we see that the methods with online validation
(VS and VS + ER) terminate before the end of the adaptation
experiments, switching back to fast online inference without
backpropagation. Despite performing fewer gradient descent
updates than MAD, the methods with online validation (VS
and VS + ER) achieve a comparable reduction in error in
the novel domain. This indicates that the additional gradient
updates used by MAD do not improve accuracy, and are
therefore wasted computation. Online validation provides a
principled way to free-up computational resources when they
are no longer needed for adaptation.

F. Experience Replay

We illustrate the effect of catastrophic forgetting in Fig.
7. For MAD, adaptation to the novel domain causes EPE to
increase dramatically in the original training domain. This
poses a safety concern, because the deep stereo network may
no longer be reliable in the training domain.

Our full method, VS + ER, improves the novel domain
EPE by a comparable margin to MAD, while maintaining
the training domain EPE at a relatively constant value. This
demonstrates that it is possible to capture the benefits of
adaptation without sacrificing performance in prior domains.
Interestingly, in Fig. 7c and 7d, VS + ER achieves better
adaptation than MAD in the novel domain. We hypothesize
that including a supervised replay loss during adaptation adds
robustness in domains where photometric loss is misleading,
such as the VK “Rain” environment.

VIII. CONCLUSIONS AND FUTURE WORK

In this work, we proposed three improvements for more
safe and reliable online adaptation. We demonstrated that
the feature contrast score can be used for out-of-distribution
(OOD) detection, allowing us to trigger adaptation when the
deep stereo network is unreliable. Next, we demonstrated that
online validation provides a principled stopping criterion for
adaptation, alleviating the long-term computational burden

of lifelong learning. Finally, we showed that incorporating
experience replay into adaptation can mitigate forgetting and
even lead to more effective adaptation in novel environments.

A key limitation of our method is the scalability of the
experience replay buffer. After adapting to a novel domain,
images from that environment can then be added the replay
buffer to mitigate forgetting in the future. However, maintain-
ing a balanced replay buffer that reflects all of the domains
encountered thus far is a practical challenge that we do not
address in this work. In practice, while our system provides
online robustness to unknown environments, we note that it
can also be used to collect novel data and edge-cases that are
then carefully incorporated into the offline training pipeline
[39]. We leave this investigation to future work.
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Fig. 7: Training and novel domain EPE during adaptation. Every
1000 steps, we show the average EPE of the model across all
images in the training and novel sequences. For Fig. 7a and Fig.
7b, both the MAD and VS+ER methods lead to a rapid decrease
in novel domain EPE. However, MAD causes training domain EPE
to increase substantially. In Fig. 7c and Fig. 7d, VS+ER prevents
forgetting and maintains a steady training EPE. We note that MAD
causes novel domain EPE to worsen over time in Fig. 7d, likely
due to misleading photometric loss signals from rain drops visually
occluding and obscuring objects. In this case, the supervised replay
loss included in the VS+ER method adds robustness to these effects.
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