Toward Robust and Efficient Online Adaptation for Deep Stereo Depth Estimation

Milo Knowles Valentin Peretroukhin W. Nicholas Greene Nicholas Roy

Abstract—Although deep neural networks have achieved state-of-the-art performance for stereo depth estimation, they can suffer from a significant drop in accuracy when tested on images from novel domains. Recent work has shown that self-supervised online adaptation is a promising approach for closing this performance gap. In this work, we address three unsolved challenges for online adaptation. First, we propose a method for detecting novel environments, allowing us to trigger adaptation and notify downstream systems that depth predictions are unreliable. We find that the feature similarity scores from our deep stereo network can be leveraged for out-of-distribution (OOD) detection, providing the necessary starting criterion for adaptation. Next, we use online validation to terminate adaptation when it stops improving performance, allowing us to free up computational resources. Finally, we demonstrate that existing methods for continuous adaptation cause catastrophic forgetting of the training domain. By augmenting adaptation with experience replay, we retain high accuracy in the training domain while rapidly improving performance in novel environments. In sum, these three contributions form the basis of a more robust and efficient deep stereo system that can recognize and adapt to new environments without forgetting.

I. INTRODUCTION

Many tasks in robotics require dense and accurate 3D reconstructions of the scene. Depth estimation using passive stereo cameras is widely used in robotics applications because of its suitability for indoor and outdoor environments and affordable hardware cost [1]. Current state-of-the-art methods for stereo depth estimation use convolutional neural networks (CNNs) to predict depth from left-right image pairs [2]. After Mayer et al. [3] introduced the first end-to-end deep stereo network, deep learning architectures have consistently outperformed traditional algorithms.

Despite their impressive accuracy in domains with abundant labelled training data, deep stereo networks can suffer from a drop in accuracy and prediction quality in novel domains, especially when moving from synthetic training domains to the real-world [4]–[7]. Although fine-tuning using a small set of real-world images has led to strong performance on vision benchmarks such as KITTI [3], [4], [8], [9], this approach requires access to groundtruth depth labels, which are typically sparse and difficult to collect [10].

Several works have proposed online adaptation for deep stereo using self-supervised image reconstruction losses [4]–[6] to reduce the performance gap in novel domains. These methods can be classified as continual, “lifelong” learning, where every incoming image pair is used to perform a gradient descent update to the deep stereo network. Although the adaptive stereo systems proposed in [4]–[6] lead to rapid performance improvements in novel domains, three limitations prevent their safe and efficient real-world deployment.

First, the adaptive stereo systems in [4]–[6] do not differentiate between nominal inference in familiar environments and unreliable inference in novel environments; they are always adapting. It is crucial to know when the deep stereo network is untrustworthy so that downstream planning and controls subsystems do not select dangerous actions in response to erroneous perception [11]. Second, these approaches are computationally wasteful, as they perform expensive gradient descent updates even when the model is adapted to the current domain. Even the extremely fast MADNet architecture requires 0.26s to perform inference for a single image pair on an NVIDIA Jetson TX2 [4], limiting the framerate of online adaptation to well below 4Hz. Clearly, online adaptation cannot continue indefinitely if real-time perception is required.

Third, we find that existing adaptive stereo systems, exemplified by [4], cause catastrophic forgetting [12], [13] of the training domain. This is a well-known problem for lifelong learning systems [14], where the agent “forgets”
We propose a novel feature contrast score for out-of-distribution (OOD) detection, allowing us to trigger adaptation when the deep stereo network has entered a novel environment.

We show that online validation can terminate adaptation when it stops improving performance, allowing our system to avoid lifelong gradient descent updates.

We demonstrate that experience replay (ER) can be used to mitigate forgetting during online adaptation.

Overall, we present a more safe and reliable adaptive stereo system that can detect unfamiliar environments, improve performance in novel domains without forgetting the training set, and avoid the long-term computational burden of adaptation.

II. RELATED WORKS

A. Deep Stereo Networks

Stereo depth estimation, like many other tasks in computer vision and robotics, has been revolutionized by deep learning [2]. After Mayer et al. [3] introduced DispNetC, new architectures have steadily led to improvements in accuracy and inference time on vision benchmarks such as KITTI [15].

For example, the authors of GC-Net [8] showed that a cost volume regularization stage allows the network to learn an appropriate feature matching cost from data, resulting in better performance than hand-crafted metrics such as cosine distance or L_2 distance. The authors of StereoNet [9] demonstrated that the spatial dimensions of the cost volume can be reduced by a factor of 16 or even 32 while achieving sub-pixel precision. In this paper, we use StereoNet for our experimental evaluations due to its low memory footprint and high accuracy on vision benchmarks such as KITTI [15].

B. Online Adaptation for Deep Stereo

Several recent works have demonstrated the effectiveness of self-supervised image reconstruction loss for online adaptation of deep stereo networks [4]–[6]. Tonioni et al. [5] and Zhang et al. [6] show that gradient-based adaptation can be accelerated using the meta-learning framework proposed by Finn et al. [16]. In addition, Tonioni et al. [4] demonstrate real-time adaptation using modular updates, where only a subset of the model’s parameters are updated at a time.

An alternative approach is to normalize input data and features so that they are more similar to the training domain. For example, Zhang et al. [6] and Mancini et al. [17] propose regularization techniques based on batch normalization to compensate for shifts in the low-level image feature distributions. Song et al. [7] propose a color transfer algorithm that maps novel images into a color space that is consistent with the training set. Although these methods are not susceptible to forgetting, they are unable to compensate for high-level shifts in scene geometry and semantic content [18].

C. Catastrophic Forgetting

The problem of catastrophic forgetting [12], where an agent loses the ability to perform a previous task after learning a new one, is a well-known challenge for sequential learning systems [13], [14], [19], [20], but has been unaddressed for deep stereo adaptation.

One solution proposed Kirkpatrick et al. [19] is to selectively slow-down gradient updates for model parameters that are important for previous tasks. This approach is worth investigating for stereo depth estimation, but it is possible that its damping effect could counteract the adaptation process.

In this work, we build off of two methods that mitigate forgetting by revisiting prior training examples during adaptation: experience replay (ER) [21], and rehearsal [22]. In ER, which is commonly employed in reinforcement learning, a sliding-window of recent examples is used to train an agent. Similarly, rehearsal methods simultaneously train a learner on new and previously-seen examples, ensuring that short-term learning does not jeopardize performance on prior tasks.

III. PRELIMINARIES

A. Deep Stereo Depth Estimation

In deep stereo depth estimation, a neural network takes in a pair of left and right RGB images $I_l, I_r \in \mathbb{R}^{h \times w \times 3}$ with height h and width w and predicts a disparity map $D \in \mathbb{R}^{h \times w}$. For rectified stereo pairs, the disparity at a pixel in the left image is the horizontal offset of the corresponding 3D scene point projected into the right image. While disparity and depth are interchangeable, disparity is a
convenient representation for algorithms that estimate depth by finding pixel correspondences between stereo images \[23\].

Typically, training is supervised with groundtruth disparity labels, acquired in simulation or with Lidar. However, self-supervised training (or indeed, adaptation) using only stereo image pairs is possible with an image reconstruction loss. A common choice, which we use in this work, is the self-supervised loss from Monodepth \[10\], which combines L1 photometric loss, structural similarity \[24\] and regularization terms for disparity smoothness and left-right consistency.

B. Online Adaptation Framework

In this paper, we consider the online adaptation framework used in \[4\]–\[6\], where a deep stereo network is trained offline and then adapted to a sequence of images from a new domain via gradient descent. During online adaptation, images arrive one at a time, and a single gradient descent update is applied to the model for each image. Groundtruth disparity labels are unavailable during adaptation, so gradient updates are performed using Monodepth self-supervised loss \[10\].

IV. OUT-OF-DISTRIBUTION (OOD) DETECTION

A. Stereo Depth Estimation as Contrastive Feature Learning

Before the advent of end-to-end deep stereo networks, early efforts to integrate learning into stereo depth estimation used neural networks to learn features and distance metrics from data \[25\]–\[29\]. Many of these works can be categorized as contrastive learning, where a contrastive loss, such as a max-margin (hinge) loss \[26\] or triplet loss \[25\], \[28\], encourages a network to learn a discriminative feature representation from data. The goal is for the learned features to produce low matching costs (or high similarity scores) for corresponding image patches, and high matching costs (low similarity scores) for non-corresponding patches, enabling effective stereo matching. We will show that, although end-to-end stereo networks are not explicitly trained with a contrastive loss, they tend to learn features with similar contrastive properties.

In deep stereo architectures, a Siamese feature extraction network takes in left and right images \(I_l, I_r\) and outputs feature maps, \(F_l, F_r \in \mathbb{R}^{h_F \times w_F \times d_F}\), where \(h_F, w_F\) and \(d_F\) are the height, width, and dimensionality of the map. Each \(d_F\)-dimensional feature describes a square \(p \times p\) patch in the input image, whose spatial extent \(p\) is determined by the receptive field of the neurons in the feature extractor. After rectifying stereo pairs as a preprocessing step, matching costs are evaluated between features along horizontal epipolar lines, and stored in a cost volume \(C\) \[23\]. Matching costs may be hand-crafted metrics, such as an \(L_2\) norm, or may be a function that is learned from data \[8\], \[9\].

For notational simplicity, we model both the feature extraction and matching cost as a single function \(f: \mathbb{R}^{p \times p \times 3} \times \mathbb{R}^{p \times p \times 3} \rightarrow \mathbb{R}\) that maps a pair of image patches to a scalar cost. Using \(f\), the cost volume \(C\) is formed by evaluating \(f\) for a reference patch centered at each pixel in the left image, and candidate patches along a horizontal epipolar line in the right image \[23\]. For example, \(C(u, v, d)\) stores the matching cost between the reference feature \(F_l(u, v)\) and the candidate feature \(F_r(u, v − d)\) offset by disparity \(d\).

From the cost volume, a soft-argmin is applied to extract a disparity map \[8\]. It is important to note that, although the entries of \(C\) are canonically interpreted as “cost”, some stereo architectures store a “similarity score” instead. In this work, we use the StereoNet architecture \[9\], which uses similarity scores (and therefore extracts disparity using a soft-argmax).

Due to occlusion, non-constant brightness, and other factors, corresponding patches in the left and right images may not have identical appearance. However, \(f\) should produce high similarity scores between corresponding patches, despite these perturbations. It is critical to note that the disparity estimate obtained from the soft-argmax operation is influenced by the similarity scores between a reference patch and all candidate patches along the epipolar line. Thus, disparity estimation induces an implicit contrastive feature learning objective, where the network \((f)\) attempts to maximize the similarity score for corresponding patches, and minimize the score for all non-corresponding patches.

B. Quantifying Novelty using the Feature Contrast Score

During training, the network learns an \(f\) that maximizes the margin or “contrast” between the similarity scores of corresponding patches and the scores of non-corresponding patches. However, \(f\) is learned with respect to the distribution of training images, and may be sub-optimal for images outside of this distribution. As a result, we hypothesize that the similarity score contrast will be reduced in novel environments.

To build intuition, we plot a “slice” of the cost volume at a sample pixel in a training and novel image in Fig. 3. By construction, each slice stores the similarity scores between a reference patch and candidate patches along the epipolar line. When the network’s features are well-adapted to their environment (Fig. 3a), similarity scores tend to be “peaked” at the true disparity. At a particularly bad location in the novel image (Fig. 3b), the peak is not prominent, leading to ambiguity about the true disparity value.

We quantify the feature contrast score \(S_T\) at a pixel
out-of-distribution (OOD) detector. Following the approach of Peretroukhin et al. [35], we compute the empirical distribution of S_T for the training set (offline), and set a threshold T_{ood} to a low percentile of the empirical CDF. We classify an image as novel if $S_T < T_{ood}$. In our experiments, we chose T_{ood} to be the 5^{th} percentile, although this parameter can be tuned to balance precision and recall (see Fig. 5).

V. ONLINE VALIDATION FOR EFFICIENT ADAPTATION

A. Measuring Adaptation Progress

In prior works [4]–[6] we observe that most of the performance gains from adaptation are achieved within a few-hundred images, and diminish over time. Once the model has adapted to a novel domain, further adaptation may cause overfitting and cease to improve accuracy. However, existing adaptation methods such as MADNet [4] will perform gradient descent updates indefinitely, consuming substantial computational resources while bringing marginal benefits.

To avoid overfitting, and to free up resources on mobile computing platforms, we would like to stop adaptation as soon as performance plateaus. Noting that it is standard practice to use a validation loss to detect overfitting during training [36], we extend this paradigm to do online validation using a self-supervised loss. We maintain an online validation set (OVS) using images collected from the novel environment, and periodically re-compute a validation loss to check if adaptation has improved performance. If not, we terminate adaptation and return to fast inference with no gradient descent updates.

B. Sampling a Uniform Online Validation Set (OVS)

We would like our online validation set (OVS) to be a representative, uniform sample of images from the novel domain. To accomplish this, we use reservoir sampling [37], which is an online algorithm designed to select a uniform sample of items from a stream of unknown size. For each incoming image pair that is classified as novel, the reservoir sampling algorithm probabilistically chooses to either discard the pair or replace an item in the OVS. The probability of replacement is set such that every image pair has an equal probability of ending up in the OVS.

During online adaptation, our OOD detector (see Sec. IV-C) produces a stream of image pairs that are classified as novel. The reservoir sampler will occasionally replace an item in the OVS with a pair from the stream. To ensure that the OVS images are “held-out” during adaptation, any image pair that is added to the OVS is not used to adapt the model.

Eventually, as the deep stereo network adapts, the feature contrast score (S_T) for incoming images will increase above the threshold T_{ood}, and images will no longer be classified as novel. At this point, the OVS contains a small, uniform sample of all novel images seen so far, which we can use to validate the model’s performance in the novel domain.

1To prevent the training images that fall below the OOD threshold T_{ood} in Fig. 4 from causing spurious adaptation, we trigger online adaptation after detecting $W = 5$ consecutive novel images. The parameter W can be increased to reduce the probability of a false start at the expense of a slight delay in adaptation.

C. Triggering Adaptation with Out-of-Distribution Detection

The discrepancy between training and novel S_T distributions in Fig. 4 enables a simple yet effective threshold-based out-of-distribution (OOD) detector. Following the approach
C. Online Validation Loss

Every \(k \) steps, we compute an online validation loss \(L_{\text{ouvs}}^{u} \), which is the average self-supervised loss across all of the images in the OVS. In our implementation, \(L_{\text{ouvs}}^{u} \) is the same Monodepth self-supervised loss \([10]\) that we use for adaptation. \(L_{\text{ouvs}}^{u} \) allows us to track the effect of adaptation on novel domain performance.

Adaptation is terminated when (1) the OVS has not changed since the last online validation and (2) \(L_{\text{ouvs}}^{u} \) has increased. These two criteria indicate that adaptation is no longer improving the model’s performance on a consistent set of images. Once adaptation terminates, it can be triggered again if more “OOD” images are detected at a future time. This may indicate that the novel domain has not been sufficiently explored, and further adaptation is needed.

VI. Mitigating Forgetting via Experience Replay

To mitigate forgetting, we build off of a method from reinforcement learning (RL) called experience replay (ER) \([21]\), where a learner is trained on both new and previous examples to ensure that it does not forget prior tasks. However, our ER method differs from that of most RL applications because we store a fixed sample from the training set, rather than a sliding window of recent examples.

To construct a replay buffer, we uniformly sample \(N_{\text{replay}} \) image pairs from the training set \([\text{Fig. 4}]\). Groundtruth disparity labels are available for these images because they are from a synthetic training set. To incorporate ER into online adaptation, our model predicts disparity for one novel image pair and one sampled pair from the replay buffer. We then adapt the model using a combined loss:

\[
L = L_{\text{adapt}}^{u}(I, I_r, \tilde{D}) + \alpha L_{\text{replay}}^{s}(\tilde{D}_{\text{replay}}, D_{\text{replay}})
\]

where \(\tilde{D} \) is the disparity prediction for the novel image pair \((I, I_r)\), and \(D_{\text{replay}} \) and \(\tilde{D}_{\text{replay}} \) are the predicted and groundtruth disparity for the experience replay image pair. \(L_{\text{adapt}}^{u} \) is the unsupervised loss from Monodepth \([10]\), and \(L_{\text{replay}}^{s} \) is the supervised loss used to train StereoNet \([9]\). We found that \(\alpha = 0.05 \) balanced the adaptation and replay objectives well in our experiments.

We note that this approach is similar to the rehearsal methods proposed by Robins et al. \([22]\), where a neural network is re-trained on sampled prior examples while it is introduced to new ones.

VII. Evaluation

A. Implementation Details

In our experiments, we use the lightweight “16X, single” StereoNet configuration \([9]\), and perform training and adaptation using \(320 \times 960 \) image crops. We train the model using the robust loss function from the original StereoNet paper, and the Adam optimizer \([38]\) with a learning rate of \(10^{-4} \), decaying by a factor of \(\frac{1}{2} \) every 20k steps.

\(^2 \)For all experiments in this work, we set \(N_{\text{replay}} = 1000 \).

B. Online Adaptation Methods

We consider four online adaptation methods, each of which adds one or more components of our system to a baseline adaptation procedure:

- **MAD**: The “FULL” method from MADNet \([4]\) as a baseline for continuous online adaptation.
- **VS**: We terminate when online validation loss increases (see Sec. \([\text{V-C}]\)). In our implementation, the OVS contains 10 images, and \(L_{\text{ouvs}}^{u} \) is recomputed every \(k = 100 \) steps.
- **ER**: We perform gradient descent updates with respect to the combined loss function in Eq. \([2]\) which includes an adaptation loss and a replay loss.
- **VS + ER**: Our full method depicted in Fig. \([2]\).

All methods begin with identical network parameters, and adapt using Adam with a fixed learning rate of \(5 \times 10^{-5} \).

C. Training and Novel Environments

In our experiments, we pre-train StereoNet using either the SceneFlow Flying \([3]\) or Virtual KITTI “Clone” \([34]\) datasets, and adapt it to a novel image sequence. We include two novel sequences from Virtual KITTI (Scene 01 and Scene 20), as well as the City, Road, and Campus sequences from KITTI Raw \([15]\). In addition, we analyze the effect of novel weather conditions using the Virtual KITTI “Fog” and “Rain” sequences. These images are identical to their “Clone” counterparts (nominal, sunny weather), but they have simulated fog or rain effects applied.

D. Out-of-Distribution (OOD) Detection

We plot the precision-recall performance of our OOD detector in Fig. \([5]\). The detector achieves high precision at near-perfect recall in three combinations of training and novel environments, detecting visual differences between a simulated and real dataset, two different simulated datasets, and even the same dataset with fog and rain applied.

The detector’s performance is lowest when our model is trained on Virtual KITTI and tested on novel KITTI Raw images. We attribute this to the high degree of visual similarity between these two datasets. The Virtual KITTI dataset was designed to mimic the appearance of KITTI Raw,
leading to less separable feature contrast score distributions in Fig. 4c and thus lower precision. Still, adaptation is likely to be triggered because the majority of images from KITTI are below the classifier threshold.

E. Online Validation

In Fig. 6, we see that the methods with online validation (VS and VS + ER) terminate before the end of the adaptation experiments, switching back to fast online inference without backpropagation. Despite performing fewer gradient descent updates than MAD, the methods with online validation (VS and VS + ER) achieve a comparable reduction in error in the novel domain. This indicates that the additional gradient updates used by MAD do not improve accuracy, and are therefore wasted computation. Online validation provides a principled way to free-up computational resources when they are no longer needed for adaptation.

F. Experience Replay

We illustrate the effect of catastrophic forgetting in Fig. 7. For MAD, adaptation to the novel domain causes EPE to increase dramatically in the original training domain. This poses a safety concern, because the deep stereo network may no longer be reliable in the training domain.

Our full method, VS + ER, improves the novel domain EPE by a comparable margin to MAD, while maintaining the training domain EPE at a relatively constant value. This demonstrates that it is possible to capture the benefits of adaptation without sacrificing performance in prior domains. Interestingly, in Fig. 7c and 7d, VS + ER achieves better adaptation than MAD in the novel domain. We hypothesize that including a supervised replay loss during adaptation adds robustness in domains where photometric loss is misleading, such as the VK “Rain” environment.

VIII. CONCLUSIONS AND FUTURE WORK

In this work, we proposed three improvements for more safe and reliable online adaptation. We demonstrated that the feature contrast score can be used for out-of-distribution (OOD) detection, allowing us to trigger adaptation when the deep stereo network is unreliable. Next, we demonstrated that online validation provides a principled stopping criterion for adaptation, alleviating the long-term computational burden of lifelong learning. Finally, we showed that incorporating experience replay into adaptation can mitigate forgetting and even lead to more effective adaptation in novel environments.

A key limitation of our method is the scalability of the experience replay buffer. After adapting to a novel domain, images from that environment can then be added the replay buffer to mitigate forgetting in the future. However, maintaining a balanced replay buffer that reflects all of the domains encountered thus far is a practical challenge that we do not address in this work. In practice, while our system provides online robustness to unknown environments, we note that it can also be used to collect novel data and edge-cases that are then carefully incorporated into the offline training pipeline [39]. We leave this investigation to future work.