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Unmanned Aircraft Systems (UAS) have the potential to perform many

of the dangerous missions currently flown by manned aircraft. Yet, the

complexity of some tasks, such as air combat, have precluded UAS from

successfully carrying out these missions autonomously. This paper presents

a formulation of a level flight, fixed velocity, one-on-one air combat ma-

neuvering problem and an approximate dynamic programming (ADP) ap-

proach for computing an efficient approximation of the optimal policy. In

the version of the problem formulation considered, the aircraft learning the

optimal policy is given a slight performance advantage. This ADP approach

provides a fast response to a rapidly changing tactical situation, long plan-

ning horizons, and good performance without explicit coding of air combat

tactics. The method’s success is due to extensive feature development,

reward shaping and trajectory sampling. An accompanying fast and effec-

tive rollout based policy extraction method is used to accomplish on-line

implementation. Simulation results are provided that demonstrate the ro-

bustness of the method against an opponent beginning from both offensive
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and defensive situations. Flight results are also presented using micro-UAS

flown at MIT’s Real-time indoor Autonomous Vehicle test ENvironment

(RAVEN).

Nomenclature

x = state vector

xn = nth state vector in X

xposb = blue x coord. in x− y plane

yposb = blue y coord. in x− y plane

X = set of state vector [x1, x2, . . . , xn]T

f(x, u) = state transition function

π(x) = maneuvering policy

π∗(x) = optimal maneuvering policy

πNapprox(x) = approximate maneuvering policy generated directly from JNapprox(x)

π̄Napprox(x) = approximate maneuvering policy generated via rollout from JNapprox(x)

J(x) = future reward value of state x

Jk(x) = kth iteration of J(x)

J∗(x) = optimal value of J(x)

Ĵ(X) = [Ĵ(x1), Ĵ(x2) . . . Ĵ(xn)]T

Japprox(x) = function approximation form of J(x)

JNapprox(x) = function approximation form of Jk(x) after k=N iterations

Ĵ(x) = scalar result of Bellman backup on x

S(xb) = scoring function evaluated for blue

γ = future reward discount factor

u = control or movement action

φ(x) = feature vector of state x

Φ(X) = [φ(x1), φ(x2), . . . , φ(xn)]T

β = function parameters vector

g(x) = goal reward function

gpa(x) = position of advantage goal reward

pt = probability of termination function

T = Bellman backup operator
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I. Introduction

Despite long range radar and missile technology improvements, modern fighter aircraft

(e.g., F/A-22, F-35, and F-15) are still designed for close combat and military pilots are

still trained in air combat basic fighter maneuvering (BFM). Unmanned Aircraft Systems

(UASs) have been successful in replacing manned aircraft in a variety of commercial and

military aerial missions. However, due to the challenging and dynamic nature of air-to-air

combat, these missions are solely accomplished by manned platforms. One approach to

using Unmanned Aircraft (UA) for air combat is to pilot the aircraft remotely, as was first

accomplished by an MQ-1 Predator UAS in 20021. Remote operations has the significant

benefit of removing the pilot from harm’s way. However, a one-to-one pilot-to-aircraft ratio,

which does not fully leverage the strengths of combat UAS. Furthermore, current pilot-vehicle

interface technology leaves a UAS pilot at a great disadvantage to a manned platform in the

BFM arena due to limited situational awareness. It seems clear that if a UAS is ever going

to fulfill the air combat missions performed by these manned aircraft the ability to fly BFM

will be a requirement.

Automating BFM reduces the pilot workload, removes the need to supply the pilot with

complex spatial orientation cues, and reduces bandwidth issues related to time delay and

signal jamming. The pilot is, therefore, allowed additional capacity for supervisory tasks

such as consent to fire and monitoring other airborne vehiclesa.

The purpose of the research is to develop a solution technique for computing near-optimal

UAS BFM decisions. While the proposed solution may require off-line training, it must be

capable of producing decisions in real-time when implemented. To achieve near-optimal

decision making, a long planning horizon must be used. For example, human pilots make

near-term maneuvering decisions within a framework of longer term goals, which is critical

to successful air combat. However, the necessary computations are not possible to perform

on-line using current techniques. Flight maneuver decisions can be planned efficiently by ap-

plying approximate dynamic programming (ADP). The proposed ADP formulation provides

a fast response to a rapidly changing tactical situation, long planning horizons, and good

performance without explicit coding of air combat tactics. A simplified simulated air combat

problem was used which restricts the vehicles to level flight and constant velocity. Addition-

ally, the friendly, or blue, aircraft was given a slight performance advantage in the simulation

to facilitate policy learning; this is a technique commonly used in manned aircraft combat

training. These simulation results showed a significant 18.7% improvement over the current

state of the art for this problem formulation. Additionally, actual micro-UAS flight results

are presented using Real-time indoor Autonomous Vehicle test ENvironment (RAVEN)2,3.

aThe lead author is a former U.S. Air Force F-15C Eagle and MQ-1B Predator UAS pilot with training
and experience in air-to-air and UAS combat missions.
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I.A. Approach Summary

The goal of air combat is to maneuver your aircraft into a position of advantage over the other

aircraft, from either an offensive or defensive starting position, while minimizing risk to your

own aircraft. Achieving this goal requires selecting control actions (e.g., desired roll rate),

given the vehicle dynamics of both aircraft and an assumed adversary strategy. The research

objective is to develop a method that can make maneuvering decisions on-line in real-time,

can incorporate a long planning horizon, has the ability to compute control sequences of

desirable maneuvers without direct expert pilot inputs, and allows switching from pursuit

to evasion roles during an engagement. Dynamic programming4 (DP) is a general purpose

planning technique that has the potential to produce such maneuvering policies. While an

exact DP solution is intractable for a complex game such as air combat, an approximate

solution is capable of producing good results in a finite time. The key contribution of this

paper is to show that real time autonomous air combat with performance comparable to

human decision making is achievable by employing approximate dynamic programming5

(ADP) to air combat. A variety of techniques were applied to accomplish this, including

extensive feature development, trajectory sampling, reward shaping and an improved policy

extraction technique using rollout. Finally, to facilitate real-time operation, a neural net

classifier was utilized to model the adversary aircraft maneuvering policy.

I.B. Literature Review

Air combat has been explored by several researchers in the past. The optimal solution to

a general pursuer-evader game was first defined in Ref. [6], and this seminal work led to

the principle of optimality and dynamic programming4. However, subsequent application of

dynamic programming to air combat has been limited due to computational complexity and

the need for fast computation during aerial combat. For example, Virtanen et al.7 modeled

air combat using an influence diagram, which could be solved using dynamic programming.

Although they demonstrated sensible control choices in real-time, they used a limited plan-

ning horizon to mitigate the computational complexity. Long planning horizons are essential

to making good (non-greedy) maneuver choices during air combat.

Other approaches to planning flight maneuvers include limited search, rule-based meth-

ods and nonlinear model predictive control. Austin et al.8,9 suggests using a game theoretic

approach involving a recursive search over discrete maneuver choices to maximize a heuristic

scoring function with a fixed planning horizon. Austin et al.8,9 demonstrate the feasibility of

real-time autonomous combat in simulation. The authors state that the maneuver selection

only guaranteed optimality in the short term, and only with respect to the chosen heuris-

tic scoring function. Even so, the method produced some maneuvering decisions similar to
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those made by experienced human pilots. Burgin and Sidor developed a rule-based Adaptive

Maneuvering Logic Program10, which was successful in simulated air combat against human

adversaries. The authors’ foray into rule-based control generated insight into the complexity

of real-life air combat and an appreciation for algorithm evaluation using skilled human pi-

lots. The rule-based method requires hard coding the preferences of experienced pilots into

a maneuver selection algorithm. The authors noted that while this method was capable of

operating successfully in simulation with human pilot adversaries, it was extremely time con-

suming to improve the tactical performance. They commented on the extreme complexity

of real-life air-to-air combat and the importance of algorithm evaluation with highly-skilled

human pilots. The difficulty with such a rule based approach is the effort and time re-

quired to manually evaluate and adjust the maneuver selection parameters. Of course, the

development process would need to be repeated for application on any vehicle with different

performance characteristics than those originally considered. Finally, Ref. [11,12] presented

a nonlinear, model predictive tracking control that implemented a real-time game theoretic

evasion controller for fixed wing aircraft. The authors formulated the control problem as a

cost optimization with input and state constraints, which was solved using a computation-

ally fast gradient-descent method. The authors commented on the need to encode proven

aircraft maneuvering tactics (from Ref. [13]) into the cost functions because the method, by

itself, did not produce the required behaviors. This need suggests a reliance on some previ-

ous knowledge of the maneuvers required to be successful. Additionally, the demonstrated

algorithm did not have the ability to switch between pursuit and evasion roles.

While the aforementioned approaches achieved some success, the goal is to improve upon

them in terms of real-time implementation, increased planning horizons, and increased opti-

mality without explicitly coding air combat tactics or relying on expert human involvement.

This objective is achieved via approximate dynamic programming (ADP), more specifically

two particular ADP techniques: rollout with an approximate value function representation.

Both have been applied to problems unrelated to air combat. Rollout14 was introduced as a

Monte Carlo policy evaluation technique, and the literature includes subsequent examples of

using rollout to improve upon an existing policy15 or heuristic16. Approximate value function

representation was introduced in Ref.17 as a way to extend the use of dynamic programming

to large state space problems. There are many examples that use dynamic programming

with an approximate value function5,18,19. Combining rollout with an approximate value

function was done in Ref. [20], but the approach taken in this paper combines rollout with

an approximate value function and applies it to air combat.
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II. Approximate Dynamic Programming Method

Given a model of vehicle dynamics and an approximate objective function, dynamic pro-

gramming (DP) provides the means to precisely compute an optimal maneuvering strategy

for the proposed air combat game. The resulting strategy or policy provides the best course

of action given any game state (i.e., the relative positions of two vehicles engaged in combat),

eliminating the need for extensive on-line computation. Dynamic programming is uniquely

suited to the air combat problem and the goals set forth for this research. The resulting

DP policy is fast to evaluate, thus allowing real-time implementation. Additionally, a long

planning horizon can be utilized while computing the maneuvering policy. Furthermore, the

model based dynamic programming formulation allows for computation of actual maneuvers,

which eliminates the requirement to hard-code specific maneuvers as is typically required in

rule-based approaches.

Computing the optimal policy using exact DP is intractable because of the exponential

growth of the state space size with the number of state space variables. Approximate dynamic

programming (ADP)5 can be used to reduce the computations required to produce a solution

to such complex problems. The current section reviews ADP using a pedagogical example

and motivates the need for an approximate solution. The section concludes with a detailed

explanation of how ADP is applied to air combat.

II.A. Dynamic Programming Example

Dynamic programming (DP) was first introduced by Bellman4. An example shortest path

DP problem shown in Figure 1 will be used in this section to define terminology and methods

used in future sections. A robot, represented by the circle in Figure 1(a), is capable of

making a one step move within the 4×4 grid at each time-step, i. The robot is allowed

actions u ∈ {up, down, left, right}. The location of the robot at each timestep is defined

by the [row, column] coordinates in the state vector xi = [rowi, coli]. A state transition

function f(x, u) is defined that computes the next state of the game, given a control action.

The state transition function models the dynamics of movement and enforces the constraints

of the game, that the robot cannot move outside the grid or to the blocked square.

The objective of DP is to determine a movement strategy that results in the shortest

path to the goal from any location. This is accomplished by computing the optimal future

reward value of each state, J∗(x). The goal state for the problem shown in Figure 1 square
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(a) Shortest path problem. (b) J∗ future reward value of each
state for g(4, 4) = 10 and γ = 0.9.

(c) π∗ optimal movement policy.

Figure 1. Example shortest path problem solved using dynamic programming.

(4,4). The reward for success defined by the function g(x):

g(x) =

10, if x = [4, 4]

0, else
(1)

A value function J(x) is defined at each state representing the approximate future reward

value, for starting at that state and applying actions according to a control policy π. The

initial value of J(x) is set to zero, such that J0(x) = 0 for all x. This optimal future reward

function can be computed by repeatedly performing a Bellman backup21 on each state using

Equation 2. The optimal future reward value will be referred to as J∗(x). The Bellman

backup operator, T is defined as:

Jk+1(x) = TJk(x) = max
u

[γJk(f(x, u)) + g(x)] (2)

where γ < 1 is the discount factor applied at each step. The vector x can also be re-

placed by a set of states, X, to accomplish Bellman backup operations on a number of

states simultaneously. Additionally, xn refers to the nth state vector when referring to set of

states X = [x1, x2, . . . , xn]T . After performing multiple Bellman backup operations, Jk(x)

converges to the optimal value J∗(x), see Figure 1(b).

An optimal policy, π∗ can then be computed from J∗(x), where the optimal action at

time-step i is defined as:

ui = π∗(xi) = arg max
u

[g(xi) + γJ∗(f(xi, u))]

The optimal policy π∗ provides the shortest path move from any given state, see Figure 1(c).
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This discrete two dimensional path planning problem has very few states. Unfortunately, the

required number of discrete states for typical real-world problems make exact DP impractical.

II.B. Approximate Dynamic Programming Example

ADP uses a continuous function to approximately represent the future reward over the state-

space5. A continuous function approximator eliminates the need to represent and compute

the future reward for every discrete state. The function approximator requires many fewer

parameters to represent the value function of a high-dimensional state space than would

be required for a table lookup in a discrete representation. By reducing the number of

parameters, the amount of time required to compute the optimal parameter values is also

reduced. For example, the simple shortest path problem in Figure 1 can be redefined with

continuous values for the coordinates (see Figure 2). The components of x can now take any

value between 0 and 4. J(x), which is conceptually a table of values at discrete points, is

replaced by Japprox(x), a continuous function that approximates the future reward of states.

The state transition function f(x, u) is redefined to allow movements from any arbitrary

point using the velocity of the robot, v, and v∆t as an estimate of the distance traveled

after each time-step, ∆t. Japprox(x) is initialized to be 0 at all locations. The state space

is sampled with some manageable number of sample states; 9 were selected as shown in

Figure 2(b). The set of samples states will be used repeatedly in place of the discrete states

used in the DP problem. The set of state samples will be referred to as X. A Bellman

backup operator (T ) is applied to each state sample as in Equation 2. The resulting values

are stored in target vector Ĵk+1(X):

Ĵk+1(X) = TJkapprox(X) (3)

where Ĵk+1(X) refers to the set of values produced by a Bellman backup on X. The target

vector Ĵk+1(X) is used by a linear estimator to produce the future reward function Jk+1
approx(X).

Jk+1
approx is a linear estimation of the values contained in the target vector Ĵk+1(X), and can

be evaluated at any arbitrary state. Jk+1(X) will be used in the next Bellman backup

operation. The linear estimator uses a set of descriptive features to estimate the Ĵk+1(X).

A descriptive feature vector φ(x) is computed for each state in X. φ(x) can contain any

number of features. Typically, more than one is required to produce an accurate function

approximation, and too large of a number can become computationally expensive to handle.

The development and selection of features is discussed in Section III.C. Each feature con-

tained in φ(x) produces a scalar value for a given state. Therefore, with m features the φ(x)

vector will contain m scalar values. Features are selected, which contain information related

to the future reward of a given state. For example, a reasonable feature for the example
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(a) Shortest path problem with
continuous states.

(b) Random samples within the
state space. Four actions are pos-
sible at each step.

(c) J∗approx(x), continuous func-
tion approximation of the future
reward value of all states.

Figure 2. Example shortest path problem solved using approximate dynamic programming. Once found
J∗approx(x) can be used to compute the optimal policy, π∗(x).

problem is the Euclidean distance from the robot to the goal location. The feature sets are

computed for all state samples xi ∈ X and stored in Φ so that:

Φ(X) =
[
φ(x1) φ(x2) . . . φ(xn)

]T
(4)

The new Japprox(x) can now be computed using standard least squares estimation as follows5:

βk+1 = (ΦTΦ)−1ΦT Ĵk+1(X) (5)

Japprox is computed as:

Jk+1
approx(x) ≡ φ(x)βk+1 (6)

where βk+1 are the value function parameters computed in Equation 5. The function Jk+1
approx

can now be used to evaluate the future reward of any state x. The resulting function Jk+1
approx is

a continuous function approximating the Ĵk+1(x) values. An approximation of the true J∗(x)

can be generated through repeated Bellman backup operations. After sufficient iterations,

Ĵk+1(x) will approach J∗(x), this function is refered to as J∗approx(x). Figure 2(c) provides a

visualization of J∗approx(x) for this example problem. The approximate policy π can then be

computed from the resulting J∗approx(x) using Equation 3.

Additional discussion on this function approximation method are in Ref. [5]. Obviously

this method for solving an approximate DP can be extended to problems with much larger

state spaces than in this example. Bellman refers to the “curse of dimensionality”4 as

additional dimensions are added to the state space; large state spaces are typically required

to represent real-world problems such as air combat. The ADP architecture relieves some of

the difficulty associated with this curse in classical DP techniques, and the next section uses
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ADP to solve the air combat game.

III. ADP Applied to Air Combat

In this section ADP is applied to the air combat game. First, the system states, goal,

control inputs and dynamics are described. Next, the control policy learning is discussed

followed by policy extraction methods.

III.A. States, Goal, Control Inputs and Dynamics

The air combat system state x is defined by the position, heading and bank angle

x = [xposb , yposb , ψb, φb, x
pos
r , yposr , ψr, φr]

T (7)

of a blue aircraft (denoted by the b subscript) and a red aircraft (denoted by the red sub-

script). The position variables of the aircraft (xposb , yposb , xposr , and yposr ) have no limits, thus

allowing for flight in any portion of the x–y plane. The aircraft bank angle is limited based

on the maximum capabilities of the actual UAS and the desire to limit the maximum turning

capabilities of the aircraft, see Section IV.A for the actual limits used. The heading variables

are allowed to take any value between ±180◦.

The goal of the blue aircraft is to attain and maintain a position of advantage behind

the red aircraft. The terms Aspect Angle (AA) and Antenna Train Angle (ATA) are used

to quantify this position, see Figure 3. Additionally, Heading Crossing Angle (HCA) (also

depicted in Figure 3) is used later to describe the difference in aircraft headings between

the red and blue aircraft. A specific goal zone (depicted in Figure 4) defines the position of

advantage as the area between 0.1 and 3 m behind the red aircraft. This region was selected

based on the speed and performance of the model aircraft used. A position of advantage

reward function is defined as gpa(x) as shown in Algorithm 1.

A simulation was developed to model micro-UA vehicle dynamics. The dynamics are

captured by the state transition function f(x, ub, ur), see Algorithm 2, which takes both red

and blue control actions (ub and ur) as inputs and simulates flight for a total of 0.25s. This

duration was selected based on computation time and vehicle controllability. The control

actions available to both aircraft are uε{ roll-left , maintain-bank-angle , roll-right } which

is equivalently represented as uε{L, S,R}. Thus, the aircraft executes control action u for

0.25s (∆t = 0.25s). However, the simulation is performed as five, 0.05 second increments

(δt = 0.05s). For each δt, bank angle φ is changed by the roll rate φ̇ given the action such

that φ = φ+ uφ̇δt, subject to the bank angle limits. The turn rate is updated with respect

to the new bank angle: ψ̇ = 9.81
v

tan(φ) (v = 2.5 m/s). The heading is updated with respect
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Figure 3. Aircraft relative geometry showing Aspect Angle (AA), Antenna Train Angle (ATA) and Heading
Crossing Angle (HCA).

Algorithm 1 Goal Reward Function gpa(x)

Input: {x}
R =Euclidean distance between aircraft
if (0.1 m < R < 3.0 m)
& (|AA| < 60◦)
& (|ATA| < 30◦) then
gpa(x) = 1.0

else
gpa(x) = 0.0

end if
Output Reward: (gpa)

to the new turn rate: ψ = ψ + ψ̇δt. Likewise, the position components (xpos , ypos) of each

aircraft are updated given the new heading and fixed velocity v : xpos = xpos + vδt sin(ψ)

and ypos = ypos + v∆t cos(ψ).

The red aircraft maneuvering strategy was based on Ref. [9], which was successful at

producing realistic maneuvers for adversaries. This technique computes a ur(x) at each

state using a limited look-ahead minimax search. The minimax search uses a scoring function

(S(x) from Equation 14 discussed in Section III.E) to determine the score of some future

state. The specific search algorithm used is minimax with alpha–beta pruning as outlined

in Ref. [22]. The recursive minimax algorithm returns the ur that maximizes the scoring

function S(x) at each time-step under the assumption that the blue aircraft will select a

ub that minimizes S(x). The minimax search was performed over a 0.75 s receding search

horizon, thus giving the red aircraft a relatively short look ahead. Nevertheless, the algorithm

manages to produce a πr that was challenging to fly against and allowed the red aircraft to
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Algorithm 2 State Transition function f(xt, ub, ur)

Input: {xt, ub, ur}, where xt = {xpos, ypos}
for 1 : 5 (once per δt = .05s) do

for {red, blue} do
φ = φ+ uφ̇δt , where uε{L, S,R} ) and φ̇ = 40◦/s
φ = max(φ,−φmax) , where φredmax = 18◦ and φbluemax = 23◦

φ = min(φ, φmax)
ψ̇ = 9.81

v
tan(φ) (v = 2.5 m/s)

ψ = ψ + ψ̇δt; xpos = xpos + vδt sin(ψ); ypos = ypos + vδt cos(ψ)
end for

end for
Output: (xt+∆t), where ∆t = 5× δt

act as a good training platform. This will be referred to as the 6-step minimax policy,

because 6 decisions are made; three decisions for blue and three decisions for red at 0.25

s intervals over a 0.75 s time period. The 6-step minimax policy was selected for the red

aircraft due to the fact that some assumption must be made about the adversary’s expected

tactics in order to generate training data. Additionally, in actual air combat, adversaries

almost always exhibit some suboptimal behavior stemming from their training. The policy

selected did a reasonable job of generating realistic maneuvers, but this policy could be

replaced by any representation of the expected red tactics based on available information or

observed behavior.

III.B. Policy Learning

The objective was to learn a maneuvering policy for a specific aircraft for use when engaged in

combat against another specific aircraft. The flight dynamics of both aircraft are known and

defined by the state transition function f(x, ub, ur) (Algorithm 2). An adversary maneuvering

policy must be assumed. In this case the 6-step minimax policy is used to produce control

action ur where ur = πnomr (x). Based on the maneuvering capabilities of both aircraft, a

desired position of advantage has been defined in Algorithm 1.

Given the problem definition, Algorithm 3 learns approximate value function Japprox
b

and the associated blue maneuvering strategy πapprox, which is used to select the blue control

action ub given the game state x:

ub = πapprox(x) ≡ arg max
ub

[g(f(x, ub, π
nom
r (x))) + γJapprox(f(x, ub, π

nom
r (x)))] c (8)

The algorithm works as follows. First, a set of state space samples X are selected (see

bThe iteration counter superscript is left out for notational simplicity.
cNote that the algorithm computes the current reward with respect to the resulting state.
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Figure 4. The blue aircraft is rewarded for maneuvering into the goal zone / position of advantage (shown)
behind the red aircraft.

Section III.D) and the initial parameters of Japprox are set to approximate the scoring function

(defined in Section III.E) at sample points X using least squares regression. The approxi-

mation is iteratively improved by performing a Bellman backup4 at sample points X and

updating the parameters of Japprox based on the new state values. Specifically, for each state

sample and blue control action, we simulate forward one step to find the resulting state

x′ = f(x, ub, π
nom
r ). The action (ub)is found that results in the maximum combined current

and future reward, defined as (Ĵx). Ĵx for all state samples is defined as:

ĴX = max
ub

[γJapprox(X
′) + g(X ′)] (9)

The parameters of Japprox are updated to estimate ĴX via least squares regression. The

estimation is performed with respect to feature vector Φ(X) = [φ(x)∀ x ∈ {X}], resulting

in an updated set of parameters:

β = (ΦTΦ)−1ΦT ĴX (10)

which define

Japprox(x) ≡ φ(x)β (11)

A plot of a portion of a typical Japprox(x) function is shown in Figure 5. Due to the

complex nature of Japprox(x) the plot is only valid for one specific set of aircraft state vari-
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Algorithm 3 Combat Policy Learning

Initialize X: state space samples
Initialize Japprox(x) ≈ S(X)
Initialize N : desired iterations
for k = 1 : N do
X ′ = f(X, ub, π

nom
r (X))

ĴX = max
ub

[γJapprox(X
′) + g(X ′)]

Φ(X) = [φ(x)∀ x ∈ {X}]
β = (ΦTΦ)−1ΦT ĴX
Japprox(x) ≡ φ(x)β

end for
Output: (Japprox(x))

ables. In order to effectively learn a policy, ADP requires an approximation architecture

that estimates the function well. As shown above, a linear architecture is used with re-

spect to feature vector φ(x). The simple linear architecture pushes, to the features, a great

deal the responsibility for accurately representing the value function. The extensive feature

development process is discussed below.

III.C. Feature Development

As described in Section III.B, the approximation architecture used features of the state to

estimate the value function. Human decision making gives some insight to the process. Pilots

use on-board system information (e.g., radar and flight performance instruments) and visual

cues to select maneuvers. Pilot preferences were considered when selecting information to

encode as state features (Table 1). Decisions made during BFM are primarily based on

relative aircraft position and orientationd. Typically pilots consider range between aircraft

(R), aspect angle (AA), antenna train angle (ATA), aspect angle rate (ȦA), and antenna train

angle rate ( ˙ATA) to be the most critical pieces of information during an engagement; these

are briefly described below.

Range (R) is clearly an important tool for assessing the tactical situation. Range coupled

with AA, ATA and HCA provides complete information about the current state. For reference,

a graphical representation of AA is shown in Figure 6. However, the current state change

rate is also relevant. ȦA represents the rotation rate of the red aircraft from the perspective

of the blue aircraft. ȦA incorporates the adversary’s bank angle and turn rate, range and

own-ship velocity into one piece of information. ȦA is typically determined visually by a

human pilot and is used as an initial indication of an impending aggressive maneuver by

the adversary. (See Figure 7 for a graphical representation of ȦA.) ˙ATA is also known as

dThe main exception is when terrain, or other obstacles, become a factor.
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Figure 5. Function approximation from dynamic program (Japprox(x)). Function is used at each time-step by
the policy extraction algorithm (Algorithm 4) to determine best control action. In this graph the heading and
bank angle are fixed for both the red and blue aircraft. The arrow represents the red aircraft location and
orientation. The value of the mesh represents the blue aircraft’s function approximation value across the state
space.

the line-of-sight rate of the red aircraft. From the perspective of the blue aircraft ˙ATA is

the rate in radians per second at which the opposing aircraft tracks across the windscreen.

It incorporates own-ship bank angle and turn rate, range and adversary’s velocity. ˙ATA is

another piece of information which can be determined visually by a pilot and is used to make

critical maneuvering decisions during close-in combat.

The features used to generate the feature vector (φ(x)) were expanded via a second

order polynomial expansion. This produces combinations of features for use by the function

approximator. For example, if three features (A(x), B(x), and C(x)) were selected, the

feature vector would consist of the following components:

φ(x) =
{
A(x), B(x), C(x), A2(x), A(x)B(x), A(x)C(x), B2(x), B(x)C(x), C2(x)

}
(12)

The polynomial expansion successfully produced feature vectors which generated good air

combat performance. However, using a large number of features in this manner proves to be

computationally expensive, making manipulation of Japprox(x) time consuming.

The forward–backward algorithm22 was adapted to search the available features for the

smallest set that could accurately fit a Japprox(x) function to a Ĵ(X) set. The forward-

backward algorithm enables selection of a sequence of features that produce good results,

without evaluating each possibility. The forward-backward search begins with an empty set

of features. It searches each available feature for the one that minimizes the mean squared
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Table 1. Features Considered for Function Approximation

Feature Description Feature Description

xposrel Relative position on X axis ATA+ max(0, ATA)

yposrel Relative position on Y axis ATA− min(0, ATA)

R Euclidean distance between aircraft ˙ATA Antenna Train Angle rate

vc Closure velocity ˙ATAint 10−
∣∣ȦA∣∣

||vrel|| Norm of Relative velocity HCA Heading Crossing Angle

θc Closure Angle |HCA| Abs. Value of HCA

AA Aspect Angle xposb Blue Aircraft x-position

|AA| Abs. Value of Aspect Angle yposb Blue Aircraft y-position

AA+ max(0, AA) φb Blue Aircraft Bank Angle

AA− min(0, AA) ψb Blue Aircraft Heading

ȦA Aspect Angle rate xposr Red Aircraft x-position

ȦAint 10−
∣∣ȦA∣∣ yposr Red Aircraft y-position

ATA Antenna Train Angle φr Red Aircraft Bank Angle

|ATA| Abs. Value of Antenna Train Angle ψr Red Aircraft Heading

error (MSE) of Japprox(x) as compared to Ĵ . Cross validation23 was used to determine

the average MSE of each feature. The feature that minimizes MSE the most is added to

the feature vector. This ‘forward’ process continues until each feature has been added to

the set. The ‘backward’ portion removes features one at a time, also selecting the feature

that minimizes the MSE. The feature vector that produced the absolute minimum MSE

contained 22 different features. A subset of this feature vector with 13 different features was

selected for use in the function approximation. The reduced number of features decreased

the computation time significantly with only a 1.3% increase in MSE over the minimum

found. The features selected were:

{|AA| , R, AA+, ATA−, SA, SR, |HCA| , ȦAint, ˙ATA, ˙ATAint, θc, φr, φb} (13)

The feature vector was expanded to produce the feature vector (φ(x)) which was used in

the combat policy learning algorithm as described in Section III.B. The results of using this

feature vector are shown in Section IV. All of the features are derived from the eight state

(x) components, suggesting that there is a considerable amount of redundant information in

the features. However, the selected features produced function approximations with smaller

error than with simply using the components of the state alone.
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Figure 6. Plot of inter-aircraft geometry feature AA.
The red aircraft is located at location (0,0) with a 0
degree heading, as indicated by the arrow. The plot
represents the aspect angle for various blue aircraft
relative positions. Note the aspect angle ranges from
-π to π.

Figure 7. Plot shows the aspect angle rate (ȦA) as
perceived by the blue aircraft at various locations,
given red aircraft position (shown) and red aircraft
18 degree bank angle. In certain combat situations
ȦA is a key indication of where the blue aircraft is
located with respect to the red aircraft’s extended
turn circle. The ȦA = 0 rad/s corresponds to the red
aircraft’s current turn circle. Additionally, sudden
changes in ȦA can indicate an impending aggressive
maneuver by the adversary.

III.D. Trajectory Sampling

As in the shortest path problem example, the air combat game state space was sampled to

produce representative states. A higher density sampling produces a better approximation

to the optimal solution than a lower density sampling. The limit on the number of points

selected was based on the computation time. The amount of time required to execute

Bellman backup operations on all points and approximate the results to produce the next

Japprox(x) increases linearly with the number of states chosen. A sample set, X, of 105 points

proved to be a reasonable number to use during development and testing. One DP iteration

using this set required approximately 60 s.

Due to the limit on the number sampled points, it was important to choose samples

wisely. A uniform grid would be unnecessarily fine in areas of little importance and inappro-

priately coarse in more likely states. To ensure that the areas most likely to be seen during

combat were sampled sufficiently, points were selected using trajectory sampling. Areas of

the state space with a higher density sampling would have a higher fidelity function ap-

proximation, Japprox(x), and therefore a policy more closely resembling π∗(x). Red and blue

starting positions were selected from a Gaussian distribution with σ = 7 m. This distribution

was selected based on the speed and turning performance of the aircraft. Ranges beyond
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approximately 20 m result in a high aspect initial merge, so there is little benefit to exploring

larger ranges. The initial aircraft headings and bank angles were selected from a uniform

distribution. A combat simulation was run from this initial state using the 6-step minimax

policy for each aircraft’s actions, see Section III.A for further description of the simulation

and policy. The state of the game was recorded every 0.25 s. The simulation terminated

when the blue aircraft reached the goal zone behind the red aircraft. The simulation was

initialized again at a randomly generated state. This process continued until all 105 points

were generated. Each state, xn, consists of the location and orientation of both aircraft.

Additionally, the red control action, ur(x), at each point is recorded. The precomputed

ur(x) are subsequently used by the ADP to generate a blue policy, πb, which counters the

red maneuvers.

III.E. Reward Shaping

The goal of the blue aircraft is to attain and maintain an offensive position behind the

red aircraft. The function gpa(x), which rewards the blue aircraft each time step it is in

the goal zone, is depicted in Figure 4. By rewarding states in the goal zone, the ADP

should learn a Japprox(x) that will guide the blue aircraft toward the defined position of

advantage. However, the discontinuous nature of gpa(x) made this difficult. Therefore, an

alternative continuous scoring function S was defined. A weighted linear combination of

the two functions gpa(x) and S were used by the ADP to generate a smoother reinforcement

signal. A subset of features was explicitly chosen to generate a smooth function that provided

gradient information for the case when gpa(x) provided only limited information about how

to improve.

The scoring function is an expert developed heuristic, which reasonably captures the

relative merit of every possible state in the adversarial game8,9. The scoring function, S,

considers relative aircraft orientation and range:

S =

([(
1− AA

180◦

)
+
(
1− ATA

180◦

)]
2

)
exp

(− |R−Rd|
180◦k

)
(14)

Each aircraft has its own symmetric representation of the relative position of the other

vehicle. Without loss of generality the following describes the geometry from the perspective

of the blue aircraft. The aspect angle (AA) and antenna train angle (ATA) are defined in

Figure 3. AA and ATA are limited to a maximum magnitude of 180◦ by definition. R and Rd

are the range and desired range in meters between the aircraft, respectively. The constant

k has units of meters/degree and is used to adjust the relative effect of range and angle. A

value of 0.1 was found to be effective for k and 2 m for Rd. The function returns 1.0 for a
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completely offensive position (AA = ATA = 0◦, R = 2 ) and 0.0 for a completely defensive

position (AA = ATA = ±180◦, R = 2 ).

The scoring function (S(x)) in Equation 14 is implemented as the red policy minimax

heuristic. Due to the continuous properties of S(x), it is combined with gpa to create g(x),

used in the ADP learning algorithm.

g(x) = wggpa + (1− wg)S (15)

where weighting value wg ∈ [0, 1] was determined experimentally. The value that produced

the best results was wg = 0.8; this value is used for the results shown in subsequent sections.

The goal function g(x) is used in Bellman backup operation (Equation 16) similar to

Equation 3. The goal function g(xi) is evaluated at xi+1 = f(x, u) for all states in set X.

Ĵk+1(X) ≡ TJkapprox(X) = max
u

[γJk(f(X, u)) + g(f(X, u))] (16)

Thus, the gpa reward component has influence only when the resulting system state is

within the goal zone. However, the S reward component has influence over the entire state-

space and tends to be higher near the goal zone. Thus, S helps to guide the ADP process

in the right direction. Intuitively, one can think of S as a form of reward shaping, providing

intermediate rewards, to help ADP solve sub-problems of the overall air combat problem.

Alternatively, one can think of S as providing a reasonable initial value function, which is

improved via ADP.

III.F. On-line Policy Extraction

By using effective feature selection, sampling and reward shaping, a good value function

(JNapprox(x)) was generated. However, JNapprox(x) is still not a perfect representation of the

true J∗(x). To minimize the effect this difference has on the resulting policy, a policy

extraction method using rollout was employed.

Rollout extracts a policy from JNapprox(x) that more closely approximates the optimal pol-

icy π∗(x) than πNapprox(xi) by selecting each possible ub as the first action in a sequence, then

simulating subsequent actions using πNapprox(xi) for a selected number of rollout stages 5. The

policy resulting from rollout is referred to as π̄Napprox(xi). Algorithm 4 shows the procedure

used to determine π̄Napprox(xi) on-line in both simulation and flight tests.

Rollout produced better control actions in the experiments than a one-step look-ahead

Bellman backup operator. Rollout can be used to magnify the effectiveness of any given

heuristic algorithm24. However, rollout requires more real-time computation because, as

shown in Algorithm 4, the assumed red maneuvering policy must be evaluated multiple
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times during rollout-based policy extraction. For example, a 3-step rollout requires the red

policy to be evaluated 30 times. In generating training data to produce the blue policy,

the red policy was generated by a minimax search, which is relatively time consuming to

compute. In order to accomplish the policy extraction process in real-time, a faster method

was required to determine the assumed red control action. The minimax search was there-

fore replaced during rollout with the probabilistic neural-network classifier available in the

Matlab R© Neural Net Toolbox25. This is similar to a method described in Ref. [26]. The

neural network accepts a set of feature vectors, Φ(X) and a target vector, which in this case is

the corresponding set of red control actions Ur = πnomr (X) (computed using the minimax al-

gorithm). Using the same forward-backward search architecture described in Section III.C,

a forward–backward algorithm was used to search for a feature vector that produced the

highest correct percentage of red policy classification. It is worth noting that by using a

neural network for the red aircraft, the code is now learning both the red and blue aircraft

policies. The critical difference is that the red aircraft uses a much simpler policy and reward

function. In contrast, the blue aircraft uses a more complex policy which requires the use of

approximate dynamic programming.

Algorithm 4 Policy Extraction, π̄Napprox(xi)

Input: xi , Initialize: JBest = −∞
for ub = {L, S,R} do

xtemp = f(xi, ub, π
nom
r (xi))

for j = {1 : Nrolls} do

xtemp = f(xtemp, π
N
approx(xtemp), π

nom
r (xtemp)

end for

JCurrent = [γJNapprox(xtemp) + g(xtemp)]

if JCurrent > JBest then

ubest = ub, JBest = JCurrent

end if

end for

Output: ubest

A plot of the classifier performance during the search process is shown in Figure 8. A set

of 5000 states was used to generate the features and associated ur used to train the neural

net. Larger data sets created networks that were slower to evaluate. Likewise, the larger

the number of features selected, the slower the neural net operated. Fortunately, the highest

classification percentage for the neural net was obtained with only five features. Figure 8

shows this point occurred during the forward portion of the search and produced the correct

value for ur 95.2% of the time. The features selected were {AA, R, S, xposrel vrel}.
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Figure 8. A neural-net learned the 6-step minimax
red-policy. The plot shows generalized classification
error versus the number of features, throughout the
forward-backward feature search process.

Figure 9. Plot shows the decrease in policy extraction
time enjoyed via a red policy classifier; replacing the
minimax search during the rollout process.

This neural net used to generate the red policy helped to increase the operating speed

of the blue policy extraction algorithm by an order of magnitude. Figure 9 shows the

improvement of computation time over the use of the minimax function. The neural net

allows for a 4-step rollout to be accomplished in real-time (represented by the horizontal line

at 100). The red-policy neural net classifier mimics the 6-step minimax policy and was used

in the simulation and flight tests discussed in the next section.

IV. Simulation and Flight Tests

The process outlined in Section III generated successful air combat maneuvering policies.

The policies were tested using a computer simulation as well as micro-UAS flight tests.

Subsections IV.A and IV.B describe the simulation and test results. Subsections IV.C

and IV.D describe the flight testbed and results, which demonstrate real-time air combat

maneuvering on a micro-UAS aircraft.

IV.A. Combat Simulation

The policy naming convention is: πkwg, produced after k iterations, using a goal weight value

of wg. Through numerous policy learning calibration experiments, wg=0.8 was chosen as

the goal weighting value and 40 as the number of learning iterations, resulting in policy π40
0.8.

Further discussion and results from the calibration process can be found in Ref. [27].

The policy was tested in air combat using a simulation based on the state transition

function described in Algorithm 2. Both aircraft are restricted to level flight, thus Alat =

g tan(φ) defines the lateral acceleration for a given bank angle where g ≈ 9.81m/s2.

The aircraft were initialized at the specific starting points defined in Table 2. These
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Table 2. Six initial states (referred to as “setups”) used for simulation testing.

xinit Desc. xposb yposb ψb φb xposr yposr ψr φr

1 offensive 0 m −2.5 m 0◦ 0◦ 0 m 0 m 0◦ 0◦

2 1–circle 2.75 m 0 m 0◦ −23◦ 0 m 0 m 0◦ 18◦

3 defensive 0 m 0 m 0◦ 0◦ 0 m −2.5 m 0◦ 0◦

4 high aspect 0 m −4.0 m 0◦ 0◦ 0 m 0 m 180◦ 0◦

5 reversal 0 m 0 m 40◦ 23◦ 0.25 m −0.25 m −45◦ 0◦

6 2–circle 0 m 0.1 m 270◦ −23◦ 0 m −0.1 m 90◦ −18◦

initial conditions are called “setups” in fighter pilot terms, and will be referred to as such

here. The simulation accepts control actions from both aircraft, ur and ub, then advances

the state forward by ∆t = 0.25 s using xt+1 = f(xk, ub, ur) given by Algorithm 2. The

simulation terminates when one aircraft manages to receive the reward gpa = 1.0 for 10

consecutive steps (2.5 s), thus demonstrating the ability to achieve and maintain flight in

the defined position of advantage.

The blue aircraft was given a performance advantage over the red aircraft by having a

larger maximum bank angle. For the blue aircraft φbluemax = 23◦ and for red φredmax = 18◦. A

performance advantage for the student is a common technique used in actual BFM training

to amplify the gains made by making appropriate maneuvering decisions, thus clarifying the

difference between good and bad maneuvers. The performance advantage also facilitates

assessment of a student’s improvement from engagement to engagement. In the simulation,

the intent is to assess the blue aircraft’s performance using various maneuvering policies.

The time required to complete the intercept (TTI) was selected as the primary measure

of the effectiveness of a particular maneuvering policy. It is difficult to assess TTI of a

particular policy if the two aircraft continue to maneuver indefinitely (as would be the

case with equivalent maneuvering policies and equivalent performance). The performance

difference yields shorter engagements, allowing blue policy TTI comparisons.

The six initial states in Table 2 were chosen to evaluate a range of specific maneuvering

tasks. The specific setups were designed to assist in easy evaluation of maneuvering per-

formance. They put the blue aircraft in a range of positions, including offensive, neutral

and defensive situations. For example, Setup #1 is an offensive setup for the blue aircraft.

The blue aircraft was initialized inside the goal zone behind the red aircraft. With the ap-

propriate maneuvering, the blue aircraft can claim victory in 2.5 s, simply by maintaining

the position of advantage for 10 time-steps. If a policy were to fail to accomplish this basic

task, it would be obvious that it was failing to produce reasonable decisions. Setup #3 is

a defensive setup, where the blue aircraft must first maneuver defensively before becoming

neutral, and then offensive, prior to achieving the goal zone.
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Of course, evaluating air combat performance is not simply a matter of either good or

bad performance. To compare the algorithms in a more continuous manner, two metrics

were chosen to represent success level: TTI and probability of termination (pt). TTI was

measured as the elapsed time required to maneuver to and maintain flight within the goal

zone for 2.5 s. A smaller TTI is better than a larger value. Either aircraft has the possibility

of winning each of the setups, however, it is expected that blue should win due to the

performance advantage enjoyed by the blue aircraft (φbluemax > φredmax). The probability of

termination was used as a metric to evaluate the risk exposure (i.e., from adversary weapons).

The value of pt was computed by assigning probabilities for each time-step spent in specified

weapon engagement zones (in front of the adversary).The pt was accumulated over the course

of an engagement to produce a total probability of termination for the entire engagement. A

minimum amount of risk was desirable. The primary goal was to minimize TTI, a secondary

goal was that of minimizing pt total.

A nominal blue aircraft maneuvering strategy (πnomb ) was used as a basis for comparing

the learned policy. As explained in Section III.A, the red aircraft used a minimax search with

the scoring function to produce ur. πnomb was generated using the same technique. While

both aircraft had equivalent strategies, the blue aircraft consistently won the engagements

due to the available performance advantage.

IV.B. Simulation Results

As an example of a maneuver in the air combat game, Figure 10 shows a simulation flown by

an ADP policy. Upon initial setup, the blue aircraft was positioned behind the red aircraft,

who was showing a +40 degree AA. At the initiation of the simulation, the red aircraft began a

maximum performance right turn. The blue aircraft drove ahead then initiated a break turn

which concluded with flight in the goal zone behind the red aircraft. At the termination

of the break turn, the blue aircraft’s flight path was aligned with the red aircraft’s flight

path, thus allowing continued flight in the goal zone, without a flight path overshoot. This

is excellent behavior with respect to traditional BFM techniques. A more greedy behavior

of immediately turning to point a the red aircraft would have resulted in a high aspect pass

and a subsequent longer engagement.

Complete engagement drawings are shown in Figures 11 and 12 from selected setups

during simulation testing. The plots were drawn every 3 s during combat simulation and

show 4 s history trails of both the red and blue aircraft. Side by side comparison of the

simulations enables the reader to see some of the subtle differences in maneuvering from the

π40
0.8 policy that result in considerable improvements.

The π40
0.8 policy does better than the πnomb policy. In Figure 11(a) one can see that the red

aircraft chose to reverse the turn to the left at approximately 5 s into engagement, while in
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Figure 10. ADP policy simulation results demonstrating effective performance in a perch BFM setup. The
numbers along each trajectory represent time in seconds.

(a) Policy π40
0.8 (b) Policy πnom

b

Figure 11. Simulation results from Setup 2 demonstrating the improvement of Policy π40
0.8 over Policy πnom

b . The
red aircraft chose to reverse the turn to the left at approximately 5 s into engagement, while in Figure 11(b)
the red aircraft continued to the right. There is no noticeable difference in the first frame (through 4 s),
however, close inspection of the lines at 5 s shows a small difference. In the last frame (through 10 s), π40

0.8
took advantage of the red aircraft’s decision to reverse and quickly wins.

Figure 11(b) the red aircraft continued to the right. There is no noticeable difference in the

first frame (through 4 s), however, close inspection of the lines at 5 s shows a small difference.

In the last frame (through 10 s), π40
0.8 took advantage of the red aircraft’s decision to reverse

and quickly won. Note that these simulations are deterministic, therefore any deviation on

the part of red is due to some difference in the blue maneuvering. The red aircraft πnomr

policy is reacting to something that π40
0.8 did different from πnomb . In essence π40

0.8 was capable

of “faking-out” red by presenting a maneuver that appeared attractive to red, but blue was

capable of exploiting in the long term. The π40
0.8 policy was trained against the red policy

and learned based on the decisions observed. The ability to learn how to elicit a response

from the adversary that is advantageous to yourself is a very powerful tool. Note that in

this case the red policy was generated using a neural network mimicking a minimax search,

and the ADP was successful in learning a policy to exploit it. However, any technique could

be used to model the adversary behavior based on available information of red maneuvering
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(a) Policy π40
0.8 (b) Policy πnom

b

Figure 12. Simulation results from Setup 4 demonstrating the improvement of Policy π40
0.8 over Policy πnom

b . In
the first frame (1 s) the π40

0.8 policy made a small check turn to the left, then immediately initiated a right-hand
lead-turn. This allowed the red aircraft to have a slight advantage at the initial merge while forcing a 2-circle
fight which allowed blue to make the most of the turning rate advantage. The small advantage given to red
is quickly regained in the following frame. At 4 s, it is clear that π40

0.8 was extremely offensive, while the πnom
b

was practically neutral. In the last frame at 7 s, π40
0.8 was seconds from winning, while πnom

b still has a long
way to go to complete the engagement.

tactics.

Setup #4 in Figure 12, demonstrates learning behavior very similar to that in setup #2.

In the first frame (1 s) the π40
0.8 policy made a small check turn to the left, then immediately

initiated a right-hand lead-turn. This allowed the red aircraft to have a slight advantage at

the initial merge while forcing a 2-circle fighte which allowed blue to make the most of the

turning rate advantage. The small advantage given to red is quickly regained in the following

frame. At 4 s, it is clear that π40
0.8 was extremely offensive, while the πnomb was practically

neutral. In the last frame at 7 s, π40
0.8 was seconds from winning, while πnomb still has a long

way to go to complete the engagement. The ADP learning process was able to learn that

a near-term suboptimal maneuver could force behavior from the red adversary which would

have a large benefit in the long-term.

The performance of the π40
0.8 policy as compared to the baseline blue policy, πnomb , is shown

in Figure 13. In Figure 13(a) the average TTI per engagement and accumulated probability

of termination (pt) is shown for both the π40
0.8 (left column in each figure) and πnomb . The

π40
0.8 policy was approximately 18.7% faster in achieving the position of advantage and did so

with a 12.7% decrease in pt. Figure 13(b) and 13(c) show the results of the individual setups.

Setup #5 (reversal) is the one engagement where the πnomb policy managed a shorter TTI.

The difference was small, approximately 1 s, and the improvements in the other setups are

comparatively large. π40
0.8 accumulated an equal or lower pt than πnomb for all setups.

The π40
0.8 policy was tested against policies other than the πnomr policy that it was trained

against. This demonstrates the ability to maneuver successfully against an adversary that

does not do what is expected, which is an important attribute of any combat system. The

eA 2-circle fight occurs when the aircraft are flying on separate turn circles as in Figure 12(a) at 4 s. For
comparison, an example of a 1-circle fight can be seen in Figure 12(b) at 4 s.
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(a) Compare overall performance. (b) TTI of each setup. (c) pt of each setup.

Figure 13. Simulation performance of best maneuvering policy (π40
0.8) evaluated with a 3-step rollout using the

neural net classifier for red maneuvering policy evaluation. This represents a large improvement of performance
over the minimax baseline πnom

b policy.

Table 3. Blue maneuvering policies were tested against various red policies. Blue policy π40
0.8 was trained

against a 6-step minimax red maneuvering policy (πnom
r ). Here the π40

0.8 shows it is still more effective in
combat than πnom

b against policies other than the one it was trained on.

Average TTI (s) Accumulated pt

Policy πnomr π10mm
r πPPr πRr πLr πnomr π10mm

r πPPr πRr πLr
πnomb 14.21 29.54 16.46 15.86 15.04 0.233 0.204 0.233 0.085 0.073

π40
b 11.54 25.63 13.75 12.50 9.79 0.203 0.173 0.204 0.061 0.085

% Improv. 18.7 13.2 16.5 21.3 33.1 12.7 15.2 12.7 27.6 -15.9

results appear promising. Table 3 presents the performance of π40
0.8 and πnomb policies in

combat versus five different red policies. The policies were πnomr (which was used in training),

a 10-step minimax search (π10mm
r ), a pure-pursuit policy (πPPr ), a left turning policy (πLr )

and a right turning policy (πRr ). For example, note the considerable additional average time

required against π10mm
r , as compared to πnomr . The additional look ahead of the 10-step

minimax policy creates ur maneuvering decisions that are much more difficult to counter

than the policy used to train π40
0.8. The average TTI and accumulated pt vary between the

adversarial policies, but π40
0.8 still manages to complete the intercept in less time than the

minimax policy (πnomb ) in each case and (in all but one case) with less risk.

IV.C. Flight Testbed

Section IV.B demonstrated the efficiency of the DP method in a simulated environment,

and the results showed that the DP method was able to learn an improved blue policy.

Furthermore, use of the red policy classifier allowed for execution of that policy in real-time.

This section completes the results by demonstrating the policy using flight tests on a real

micro-UA in RAVEN.
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Figure 14. Flight path of micro-UA in left hand cir-
cular orbit. This stable platform was used as a target
aircraft during flight tests.

Figure 15. Above: Micro-UAS designed for Real-
time indoor Autonomous Vehicle test Environment
(RAVEN). Below: Micro-UAs engaged in Basic
Fighter Maneuvering (BFM) during flight test.

Following successful testing in simulation, the next step was to implement the combat

planner using actual UAs flying in RAVEN. In order to accomplish this task, the aircraft

themselves had to be designed, built and flight tested. Subsequently, a PID flight con-

troller was designed and tested27 and a trajectory follower algorithm was implemented28,29

to achieve autonomous flight. Finally, the combat planner software was integrated into

RAVEN to complete actual air combat experiments (see Refs. [3,27] for details).

For the air combat flight tests, the red aircraft was commanded to take off and fly in a

continuous left hand circle, maintaining approximately φmax = 18◦ while tracking a circular

trajectory. The blue aircraft then took off and was required to maneuver to the position

of advantage behind the red aircraft. This simple form of air combat is used in the initial

phase of training for human pilots. While the target aircraft maintains a constant turn, the

student pilot is required to achieve a position of advantage using pursuit curves and basic

maneuvers such as high and low yo-yos13. Using this simple exercise for evaluation, the flight

tests demonstrated that the blue aircraft was capable of making good maneuvering decisions

and achieving and maintaining an offensive stance. A photograph of the micro-UAs engaged

in combat can be seen in Figure 15 in MIT’s RAVEN.

The π40
0.8 policy was tested using micro-UA aircraft. The policy extraction algorithm
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(a) Flight Trajectory. (b) Simulated Trajectory.

Figure 16. Flight and simulation results comparison. The simulation was started at the same initial state as
this particular flight sample to compare actual flight with the simulation used to train the blue policy. Lines
are labeled with time in seconds since the beginning of the engagement. The blue aircraft flight line shows the
maneuvering decision being executed at 0.25 s increments.

(Algorithm 4) was run on a desktop computer linked with the RAVEN vehicle controllers.

State data was received from RAVEN, processed using the Matlab R© code used for simulation

testing. The blue control action (ub) was then sent directly to the vehicle controllers, where

the PID controllers generated the vehicle commands.

In order to generate technically interesting results in RAVEN, flight tests used an ex-

tended perch setup (similar to Setup #1 in Table 2). In the perch setup, blue is positioned

behind red where red has already entered a banked turn. To keep the fight within the re-

stricted flight environment, the red aircraft followed a (left-hand) circular trajectory with

no additional evasive maneuvers. The circle represented the maximum performance turn al-

lowed in the simulation. This procedure was necessary to avoid the walls and other obstacles

in RAVEN. However, a hard left turn is exactly the evasive maneuver performed by red in

simulation starting from Setup #1. Thus, the flight tests demonstrated realistic behavior.

Effective maneuvering from the perch setup requires lead pursuit to decrease range. In

the extended perch, blue is positioned further behind red than Setup #1, which therefore

requires additional lead pursuit maneuvers as well as real-world corrections.

IV.D. Flight Results

The aircraft designed to fly in RAVEN do an excellent job of following a prescribed trajectory

when flown alone (see Figure 14). However, the light weight aircraft used (see Figure 15) are
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Figure 17. Test flight #7 using policy π40
0.8 against a left turning red aircraft. The red and blue numbers along

the respective flight numbers represent seconds. The black letters L, S, and R represent the current blue
maneuver selection, which are left, straight, or right, respectively.

sensitive to disturbances created by other aircraft. Figure 16 demonstrates these deviations

and the associated corrections. For example, in the simulated trajectory (Figure 16(b)), red

makes a perfect left hand turn. Yet, in the actual flight test (Figure 16(a)) red experiences

turbulence caused by blue’s presence, resulting in an imperfect circle. After the disturbance,

red corrects in order to track the prescribed circle, and thus sometimes exceeds the bank

limit imposed in the simulation.

Figure 17 demonstrates a fight started from the extended perch setup. The blue aircraft’s

actions can be tracked by the {L, S,R} labels plotted at 0.2 s intervals along the blue flight

path. In the first flight, blue aggressively pulls lead pursuit in the first frame (7.1 s). Blue

eased to accommodate red’s elongated turbulence induced turn in the second frame (10.1 s),

then continued lead pursuit in the third frame (13.1 s). By 14 s, blue had attained the goal

zone position and maintained it until a disturbance sets the aircraft off course. Blue quickly

recovered and reattained the goal zone positions.

The flight results validate the efficacy of the air combat strategy as well as the flight

controller in practice. Blue demonstrated correct strategy and red’s flight controller demon-

strated correct flight path corrections. Overall the flight tests were a success.
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V. Conclusions

The purpose of this research was to develop a method which enables an autonomous UAS

to successfully fly air combat. Several objectives were set to fill gaps found in the current

state of the art. These objectives include real-time decision making (demonstrated on the

RAVEN platform) using a long planning horizon (achieved via off-line ADP policy learning

and on-line rollout). This flexible method is capable of producing maneuvering decisions for

an aircraft which is positioned in defensive, neutral, or offensive situations in a simplified

combat game in which the blue aircraft had a slight performance advantage. This capability

is achieved while reducing expert human involvement. Human involvement is limited to

setting high level goals and identifying air combat geometry features.

In addition to meeting the above objectives, the ADP approach achieved an overall TTI

improvement of 18.7% over the minimax policy on the simplified air combat game. The

simulations show intuitive examples of subtle strategy refinements, which lead to improved

performance. In addition, the computed maneuvering policy performs well against an ad-

versary that is different than the used d training. Overall, the contribution is a method

which handles this simplified air-combat problem and could be extended to a more complex

air-combat or other similar problem. The ADP method combined extensive feature devel-

opment, trajectory sampling, and reward shaping. Furthermore, a novel (adversary policy

classifier) method was developed for real-time rollout based policy extraction.

The overall process was validated on a simplified air-combat game in the horizontal plane

with fixed velocity. This is a decidedly simplified setting, however, ADP is appropriate for

even more complex (high-dimensional) problems that require long planning horizons. While

the maneuvering policy computed and evaluated in this research was tested against a variety

of adversary policies, it could not be evaluated against an equal or more capable red bandit.

This is due to the limitations placed on the red aircraft when generating the sample states in

Section III.D. These states were chosen to represent the full range of expected states. Thus,

the approximated policy is only valid within those limits. Simulation against a more capable

bandit would require a new policy to be computed. This would require generation of a new

set of sample states including the higher limits and then performing the rest of the procedure

described to produce a new maneuvering policy. This is specifically a limitation of the 2-D

combat game used in this research. A properly formulated 3-D game could allow a full range

of roll, pitch, yaw, altitude, and velocity for each aircraft. In such a formulation, a policy

generated for combat against an aircraft with specific flight characteristics (e.g. maximum

thrust, maximum G) should be capable of providing maneuvering solutions in combat against

a variety of different aircraft and maneuvering policies. Future research could investigate

the success a given policy may have against various adversaries.
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The logical next step for future work would be to extend the problem to 3-D maneu-

vering with less restrictive vehicle dynamics (e.g. variable velocity, non-level flight). A 3-D

formulation would certainly increase the number of state variables and the number of con-

trol actions. Fortunately, a good approximation architecture should be able to compactly

represent the associated higher dimensional value function. Furthermore, the rollout based

policy extraction operation scales linearly with the number of control actions. Consequently,

the method should be extensible to this larger problem, however, careful selection of sample

states and efficient programming would be required to generate the policy in a reasonable

amount of time and extract the maneuvering actions in real-time.

Beyond an extension to 3-D maneuvering, it is possible that the concepts presented in this

paper could be scaled to full-size, real-world combat aircraft. Certainly, the vehicle dynamics

for a modern fighter aircraft is much more complex than the flight models used. Additionally,

the complex flight control systems and aircraft features, such as thrust vectoring, increase the

number of possible control actions. These differences lead to a larger state space and more

complex maneuvering policies for both red and blue aircraft. Potentially, an Approximate

Dynamic Programming formulation similar to the one presented here could be a candidate

for solving such a complex problem.
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