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Abstract

We deal with the problem of learning probabilistic modelgesfain surfaces from
sparse and noisy elevation measurements. The key idea esnalize this as a
regression problem and to derive a solution based on nansay Gaussian pro-
cesses. We describe how to achieve a sparse approximatibe aiodel, which

makes the model applicable to real-world data sets. The baiefits of our model
are (1) that it does not require a discretization of spadeit édso provides the un-
certainty for its predictions and (3) it adapts its covac@function to the observed
data, allowing more accurate inference of terrain elemaéibpoints that have not
been observed directly.

As a second contribution, we describe how a legged robotpeedi with a laser
range finder can utilize the developed terrain model to ptahexecute a path over
rough terrain. We show how a motion planner can use the lddareain model to
plan a path to a goal location, using a terrain-specific cagtehto accept or reject
candidate footholds.

1 Introduction

Terrain models are used to represent the distribution dhserelevation in an environment. They
are applied in numerous areas, such as weather forecastipglanning, geological surveys,
computer game development and also outdoor robotics. Hpierfocuses on terrain modeling in
robotics applications, in which the task is to statisticalodel a set of noisy elevation samples for
the purpose of planning and executing motion plans. Theaggbr, however, is formulated in a
general form, such that it can be applied in other domainsedis w
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Figure 1: Our quadruped robot is equipped with a laser sensor in order to @ietacal surrounding. By bending its leg joints,
it is able to acquire dense 3D scans of the environment.

As a motivating scenario, consider the situation depiateléig. 1. Our quadruped robot, specifi-
cally the Boston Dynamics LittleDog, is equipped with a laserge finder as its primary sensor.
It faces the task of planning and executing a path over roagiih. In this paper, we assume
that the true terrain elevation is a well-definfedctionof 2D locations. Overhanging structures,
which would violate this assumption, can be dealt with bysidering mixtures of terrain models
or by other means—as will be outlined later in the paper. Awog and representing models of
such terrain is a challenging task. First of all, terrains @efined over a continuous space such
that the space of all models has in principle infinitely mampehsions. Discretizing this space,
for example with a grid representation, can result in modéenormous size and can introduce a
strong bias due to an improper choice of grid resolutionttf@armore, we must rely on the robot’s
noisy sensors to gather information about the world, whetjuires statistical inference in the con-
tinuous and high-dimensional space of the model. The anaiurgise in the range measurements
is comparatively high due to a number of factors includirgribise of the light-weight sensor that
was required, accumulated calibration errors and the fettthe position of the robot cannot be
known perfectly. Standard discretizations do not allowittierence process to take advantage of
correlations between measurements, resulting in a loggaination that leads to noisier terrain
estimates, in turn leading to the selection of staticallgtable and kinematically infeasible con-
figurations of the robot. Finally, we wish to be able to dedhva varying data density, to balance
smooth inference of the terrain against the preservatiogisziontinuities and to make sensible
predictions about unseen parts of the terrain.

To this aim, we developed a novel, probabilistic terrain elod) approach based on a Gaussian



Figure 2: Online visualization of the scanning procedure using the controller applicatiour implemented system. The robot
bends its legs to acquire a 3D scan (left) and learns a probabilistic terga@sséon model (right). The terrain elevations are color
coded, ranging from green/blue (lowest elevation) to pink/red (highest)

process (GP) formulation that adapts its generalizatidratier to local structure in the terrain

and that can be learned efficiently using a decompositioh@ftodel into smaller, overlapping

sub-models. As a result, our model deals with noisy data tatéstcally sound manner, does not
require a discretization of space and provides estimatdgeqiredictive uncertainty so that predic-
tions about unseen locations can be treated more cautioullyther processing. An additional

distinctive advantage of our model is that it also yields stngate of the terrain gradient and its
uncertainty. The terrain gradient is an important featoresélecting stable foothold locations for
the legged robot.

As a second contribution of this paper, we describe how ttraitemapping approach was im-
plemented on the legged robot depicted in Fig. 1 to enabteautonomously sense and traverse
rough terrain. Specifically, we discuss how the system whlsrated, how our locally adaptive
GP model allows us to select safe foothold locations and fwoplan a path to a goal location.
Figure 2 shows screen shots of our controller applicatiosoime example situations, i.e., during
scan acquisition (left) and terrain adaptation (right). the best of our knowledge, we describe
here the first legged robotics system to autonomously seteseand traverse a terrain surface of
the given complexity.

In the following, we first relate our approach to other workghe literature. In Sec. 3, we formalize
terrain modeling as a nonparametric regression problescribe how to adapt to local terrain
structure and show how to increase the time and space etficifithe approach by factorizing
the model into overlapping submodels. Sec. 4 presents qeriexental evaluation on real and
simulated data and Sec. 5 documents the integration andagiad of the terrain mapper on our
quadruped robot.

2 Related Work

Terrain modeling and map building are central tasks witblyotics and other disciplines. A broad
overview of methods used for modeling terrain data was gmeHRlufentobler (2004). Elevation



maps (or “elevation grids”) have been used as an efficierat skaticture for representing dense
terrain data (Bares et al., 1989; Pfaff and Burgard, 2005;aRetrial., 1999; Hygounenc et al.,
2004). The central idea is to partition the input space intadyatic cells of equal size and to
merge observations falling in the same cell to a single él@vavalue. Grids allow for constant
time access to the elevation data and the time required tateplde cells is linear in the number
of measurements. Extensions to more flexible 3D represensahave been addressed in recent
work (Pfaff and Burgard, 2005). Multi-level surface mapsé€bel et al., 2006) allow for modeling
of both overhanging structures and vertical objects.

The general problem of grid-based approaches is the chbibe oell size as well as how to adapt
the grid resolution locally. Choosing a too large cell sizritis the representable complexity of
the underlying terrain. A small cell size, on the other handy lead to many under-determined
cells where uncertainties are high, or even cells withoytaoservations, for which no prediction
can be made. Consequently, there has also been much workiog géps in grid maps. Dif-
ferent smoothing methods can be applied. Bi-linear and otteans of local interpolation (Rees,
2000; Polidori and Chorowicz, 1993) are often used to pregg®dense and accurate data. Within
robotics, Fiih et al. (2005), who addressed the automated acquisitiohreé-dimensional city
models, applied local interpolation to fill gaps in the acgdidata. Triangle-based interpolation,
e.g. based on Delaunay tessellation (Delone and Novikd@3;1Barber et al., 1996), is similar to
bi-linear interpolation, but can be applied more readilyptints that are not distributed equidis-
tantly.

As sensors for acquiring terrain elevation data, laseredirglers are a popular choice, as they
measure the geometry of the environment directly and atalyrd&weon and Kanade (1992) used
laser sensors to sense terrain elevation and a grid modeiiltbroaps. Geometric reasoning is
used in their approach to model the uncertainty in the grisbét and Hebert (1999) deal with the
problem of aligning multiple scans and discuss how to hareflelution limits. Millimeter-wave
radar was used by Foessel et al. (2001) to learn occupartypgsied terrain models.

Miller (2002) fused the measurements from a laser rangerfimie a calibrated camera mounted
on a helicopter to construct terrain models. Another carbased approach was proposed recently
by Kolter et al. (2009), who equipped a quadruped robot witteaeo-camera system and dealt
with the problem of how to infer a dense elevation map of theate from the sparse stereo-
correspondences. Popular approaches from the compuien Viterature that do not require a
stereo setup are to extract 3D shape from shading (Bors €08l3) or from shadows (Daum and
Dudek, 1998).

An alternative approach to dealing with non-flat terrainhivitrobotics is to assume a parametric
model of terrain types and to learn the parameters of the htoderedict the vehicle dynam-
ics (lagnemma et al., 2004). Brooks and lagnemma (2009) peapt learn classifiers for terrain
types and Wellington et al. (2005) presented a generativéeito infer layers of terrain types
including hidden obstacles.

In parallel work to ours, Hadsell et al. (2009) developed féedint kernel-based approach to
terrain reconstruction for robotics applications, thatleitly takes the constraints induced by the
perceived free space into account. By the time of writing,uteentation of their work was not
available yet.



The terrain regression algorithm presented in this pap&t$an the Gaussian process (GP) model
(see, e.g., Rasmussen and Williams (2006) for an overvievaddiional references). Compared
to grid-based representations it has the advantage of sotraisg a fixed discretization of space
and of providing a sound and direct way of estimating prédiaincertainties. The explicit model
of uncertainty that a GP provides has led to their succeagfication in a wide range of other ap-
plications areas such as for developing positioning systesmg cellular networks (Schwaighofer
etal., 2004).

Within robotics, GP models have recently become populaninftance for measurement model-
ing (Brooks et al., 2006) or for model-based failure detec{idlagemann et al., 2007), because
they naturally deal with noisy measurements, unevenlyidiged observations and they fill small
gaps in the data with high confidence while assigning highmediptive uncertainty in sparsely
sampled areas.

This work follows up on Lang et al. (2007), where we propodealfirst GP-based approach to
terrain regression in robotics. This work simplifies andeexls the original approach in several
respects. First, we exchanged the iterative proceduretfimgfiocal lengthscales by an analytic
link function and second, we show how to scale to large daslsedividing the model into a
set of overlapping submodels. We also extend Plagemann @0&I8b) by (1) documenting the
first walk of a quadruped robot over rocky terrain using owavation observations only and (2)
by giving additional technical details about all parts af tppproach—including how to learn the
model from data in Sec. 3.1, a description of our calibragimtedure in Sec. 5.1 and a discussion
of the individual parts in Sec. 4.5.

In a parallel line of research (Plagemann et al., 2008a) revénaestigating how tgointly learn all
parameters in nonstationary Gaussian process models asampip decoupling the optimization of
local lengthscales from the hyperparameter search doiésimbrk. While the joint approach has
been demonstrated to solve a number of relevant regresbiems, including terrain regression
tasks, it is not ready yet to be applied to larger data setsratahe-constrained settings.

Our work builds on the nonstationary covariance functianoiuced by Paciorek and Schervish

(2004), see also the references in there, but several gbpeoaches for specifying nonstationary

regression models can be found in the literature. For icsta®ampson and Guttorp (1992) map a
nonstationary spatial process (not based on GPs) intord gace, in which the problem becomes
approximately stationary. Schmidt and OHagan (2003) ¥aid this idea and used GPs to imple-

ment the mapping. Similar in spirit, Pfingsten et al. (200@)posed to augment the input space
by an additional latent input to tear apart regions of thalirgpace that are separated by abrupt
changes of the function values.

Additional approaches to nonstationary regression haes lieveloped for the task of learn-
ing to control robotic manipulators. Approaches such aallpaveighted projection regression,
LWPR (Vijayakumar and Schaal, 2000; Vijayakumar et al., 300% Bayesian approach by Ting
et al. (2006) and others address similar problems as theagpmpresented in this paper. Fur-
thermore, Kim et al. (2005), see also references in them usxtures of stationary Gaussian
processes with a random (Bayesian) partition model andntigcélguyen-Tuong et al. (2008)

proposed a distance-based measure for partitioning tleesgd@tand producing weighted predic-
tions.



Sparse approximations to GP models, see e.g. Quinonercel@aamtd Rasmussen (2006), provide
a way of making the approach substantially more time andespéficient. Recently, they have
been combined intimately with the mixture of expert applo&aelson and Ghahramani (2007)
using stationary covariance functions. In principle, ssjglrse approximation techniques could be
combined with approaches to nonstationary regressionild &a alternative, efficient nonstation-
ary model—e.g., following Schmidt and OHagan (2003), whqtiee nonstationary process into
a latent space where it becomes approximately stationdrgn $t al. (2005) proposed to group
similar matrix-vector multiplications during GP learniagd inference usingd-trees to speed up
computations.

Legged robot locomotion has been studied intensively iptst. Overviews and descriptions of
approaches can be found in Hauser et al. (2008) or SiegwadNlanrbakhsh (2004), among others.
The goal is to build versatile robots that are able to travergeven terrain as robustly, quickly and
easily as humans or animals do. This would enable the deveopof, e.g., autonomous disaster
assistant robots or versatile mobile transportation systeThe two major problems still to be
solved are (a) perception of the surrounding terrain angl@ning and executing appropriate
motion sequences. This paper primarily deals with the gei@e problem (sensing, representing
and reasoning about terrain) and it gives a description wfthe developed algorithms have been
integrated into a complete quadruped system that can plam@cute paths across a perceived
terrain.

3 Terrain Mapping asa Regression Problem

Traversable surfaces can be characterized by a funétidR?* — R, f(x) = z, wherex = (z,y)
indexes a location in the 2D plane andenotes the corresponding terrain elevation in the doacti
opposing the gravity vector. The task in terrain mapping@ isetover the true elevation functigh
from a set of noisy elevation measurements- {x;, z;}_,. In other terms, we wish to model the
relationship between variables and dependent variables This is calledregression analysis
statistics.

The most common approach for solving regression probletasassume a parametric form 6f
e.g., linear, piece-wise linear, or polynomial and to fit legameters to the observed data. In
this paper, we take a different approach and model the depepchonparametrically using the
Gaussian process (GP) model [see, for example, (Rasmuss$gviliams, 2006) or the references
in Sec. 2]. Gaussian processes can be seen as a genenaliatiee Gaussian distribution to
the space of functions. Analogously to the Gaussian digtdh, which defines the distribution
of a finite-dimensional variable in terms of a mean value amb\aariance matrix, a Gaussian
process defines the distribution of an (infinite-dimendipfuanction in terms of a mean function
and a covariance function. The relationship between thentwdels becomes apparent from the
following definition.

In the Gaussian process modehy finite setof samples{z,..., z,} is jointly Gaussian dis-
tributed,

p(zh”'azn‘Xla"wXTL)NN(/"LJK)? (1)
with meanu € R™ and covariance matrik'. p is typically assume@ and K is specified in terms



of a parametric covariance functiérand a global noise variance parametér K;; = k(xi, x;) +
o26;;. Intuitively, the covariance function describes how clgselated several target valuesare
given their corresponding input vectats For the most common choices of covariance functions,
similar input vectorsx; andx; lead to a large covariance valugx;, x;), which in turn leads

to more highly correlated target valuesand z;. Thus, the covariance function can be seen as
defining the smoothness ofw.r.t. tox.

In Bayesian terminology, the covariance functiorepresents the prior knowledge about the target
distribution as it does not depend on the observed targeesal in D. A common choice in
practice is the squared exponential (SE) covariance fomcti

1< Xiq — Xjq)
k(xi,x;) = oF exp <—§;%> ; (2)
whereo; denotes the amplitude (or signal variance) &nt the characteristic lengthscale of di-
mensiond, i.e., thescaleof the dimension. These parameters, along with the globhaén@riance
o2, are known as the hyperparameters of the process and dexss®ee- (o, £, 0,). Intuitively,
the hyperparameters define the smoothness of the functiodslaed by the process as well as the
noise level which leads to the observed function values.

Predictions about unobserved locations can be made aradlytin the Gaussian process model.
Since any set of samples from the process is jointly Gaushsnbuted, the prediction of a new
target value:* at a given locatiorx* can be performed by conditioning the-1-dimensional joint

Gaussian of zy, . . ., z,, z*} on the known target values of the training §et, . . ., z,,}. This yields
a predictive Gaussian distributiat ~ N (n*, v*) defined by
p o= E(z) =k" (K+072LI)71Z, (3)
Vo= V() =k 402 -k (K +021) k, (4)

with K € R™", K;; = k(x;,%;,), k € R", k; = k(x*,%;), k* = k(x*,x*) € R and the training
targetsz € R"™. Note that it is straightforward to predict an entirector of elevation valuegs*
and the corresponding uncertaintiesinstead of scalar valugs® andv*. Details are given, for
example, by Plagemann (2008) or Rasmussen and Williams Y2006

3.1 Locally Adaptive Gaussian Processes

A limitation of the standard GP framework is the assumptibnamstant lengthscalegsover the
whole input space. Intuitively, the lengthscales desctiileearea in which observations strongly
influence one another. For terrain models, one would likes® lacally varying lengthscales to
account for the different situations. For example, in flaiqpd, each terrain elevation is strongly
correlated to the elevations in its neighborhood. Convgrgehigh-variance, “wiggly” terrain and
at discontinuities, the terrain elevations are correlawest very short distances only. To address
this problem ofnonstationarity an extension of the squared exponential (SE) covarianmcsitn
was described by Paciorek and Schervish (2004). It takefothe

B - exp [—(Xi —x;)" (M> 71 i Xj)] P

2

k(xi, ;) =|Ez'|% 317 5
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Figure 3: Left: The parametric functiod(x;) links local terrain characteristics (represented by the “tensor traee”text) to

lengthscales. Right table: Placindhgper-GP(HGP) over the latent lengthscales reduces the prediction error w.mteiggted
averaging(WA) for different levels of omitted data points.

Here, each input locatior is assigned @ocal covariance matrix: and the covariance between
two targetsy; andz; is calculated by averaging between the two local kernelseaitiput locations
x; andx;. In this way, the local characteristics at both locatioriience the modeled covariance
of the corresponding target values. Note the similarityMeein Eqg. (5) and Eq. (2). For the
(stationary) squared exponential covariance functiongn(E), we have constant lengthscalgs
while Eq. (5) allowsvariablelengthscales contained in the matri¢gs

We now face the question of how to adapt the latent variapig$” | to the observed data. The
related problem of adapting smoothing kernels to local ienstgucture has been well studied by
the computer vision community. Although image processilggrthms are typically designed
for dense and uniformly distributed data, we can neveriselise findings from the field to solve
the terrain regression task. Middendorf and Nagel (20023t a technique for iterative kernel
adaptation in the context of optical flow estimation in imagguences. Their approach builds on
the concept of the so calleplay-value structure tensdGST), which captures the local structure of
an image or image sequence by building the locally weightgergroduct of gray-value gradients
in the neighborhood of the given image location. Transladtethe terrain regression task, we
consider theslevation structure tensqEST)

EST(x;) = (V2)i(V2), (6)

as introduced originally by Lang et al. (2007). Here, denotes the locally weighted averaging
operator. This yields a tensor, representable@s a real-valued matrix, which describes how the
terrain elevation changes in the local neighborhood oftlona;. Intuitively, the local kernelg:;

in Eq. (5) should be related to theverseof EST(x;) to favor strong smoothing in flat areas and
little smoothing across strong edges, see also MiddenddriNagel (2002) for a discussion. Lang
et al. (2007) present several iterative algorithms to attegt; in this way. We take a more direct

approach and define

T(x,) = trace( EST(x;) ) = trace((vz)i(vz)f) @)

and

e T(x)T ifa-T(x) T < las
;) = { lmas  ElsE ®)



to get a single scalar representation of the terrain’s lobatacteristics at locatiox;. Thislocal
lengthscale’(x;) is small in high variance terrain and large in flat parf§x;) is bounded by
(... 10 prevent lengthscales from going to infinity in the extrerase of noise-free, flat regions.
The parametet, which defines the proportional relationship between léeadthscales and the
inverse ESTs, is learned in parallel to the search for thes Gierparameters — as described below.
Finally, we set the local kernels; to the isotropic kernels; = ¢?(x;) - | (i.e., a diagonal matrix
with eigenvalueg(x;)). The left diagram in Fig. 3 visualizé$x;) for different parameter settings.

To be able to make elevation predictions at arbitrary locestj we need to evaluate the covariance
function at arbitrary locations and, thus, need to havel lkkeanels at any point in the input space.
We are only able to calculate gradients and kernels directlgre we have sufficient elevation
observations in the local neighborhood. Whereas Lang eR@07) use weighted averaging to
calculate kernels in regions with few or no observations,pnapose to instead put another GP
prior on the local kernels’ parameters. We call thisygper-GP since its predictions are used as
hyperparameters for the GP that models the elevations. dtagion for the hyper-GP as well as
for the elevation GP is visualized in Fig. 4.
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Figure 4: The notation used in this paper. The left diagram depicts a 1D elevatiotidapehich maps locations; to elevations
f(x;) and the noisy observations. The right diagram visualizes the corresponding (latent) lengthscatgidan which links
locationsx; to lengthscales;.

The hyper GP represents the function— ¢(x) for the lengthscales of the elevation process. As
the lengthscales have to be positive, we transform itsitrgidata set into log space. The hyper
GP itself uses an isotropic lengthscdlg which can be treated as an additional hyperparameter
of the model. At inference time, we calculate the most likelygthscale given by the mean pre-
diction of the hyper GP and use the resulting kernels foragien predictions of the elevation GP.
The improvement in elevation prediction using the hyper BBR) with respect to the weighted
averaging (WA) approach of Lang et al. (2007) is shown in #imet in Fig. 3. We give the results
for three different fractions of points removed from a reygr@ative training set. As can be seen
from the measured values, HGP leads to a large reductionan seuared prediction error (76.2%,
68.4% and 44.8% for the three different data densities ctispdy).

Learning our model from given training data consists of taotg (1) learning a small number of
system parameters [e.g., the global noise leyeabr the factora in the link function/(x)] and (2)
analytically calculating local lengthscales according&tp (8) and the actual GP model according
to Eq. (3) and (4). In our system, the first part is implemerdgedan outer loop, in which the
system parameters are adapted using random sampling. &knatlve way would be to derive the
gradient of the models data likelihood w.r.t. the systenapeaters and to apply gradient descent-
based optimization. The general schema of such an appreamitlined in (Plagemann et al.,
2008a). For this work, we chose the sampling-based varsamte it is easier to implement and
it has to be executed only once, whenever drastic changée toperational environment occur.
Part two of the learning procedure involves just basic liredgebra and the inversion of the GPs
covariance matrix. Since the latter can be a computatipeafpensive operation for large matrices,



we describe in the following how to divide a single, large rladto several smaller parts—which
leads to a substantial reduction in time and space complexit

3.2 Modd Tiling

Learning a Gaussian process model involves invertingithe. covariance matri¥< [see Eq. (3)],
wheren is the number of data points in the training set, no mattercitiovariance function
is used. This implies a cubic asymptotic time complexityjchiimits the applicability of the
standard model to small and medium-sized data sets. It ieftire not surprising that much
research has been dedicated to the question of how to adparge approximationsf GP models
that are (a) substantially more time and space efficient Bpdefain a high prediction accuracy
(see Sec. 2 for an overview of approaches).

For terrain regression, where the space is typically egplan an incremental manner, we propose
to use an ensemble of overlapping GPs, where every sub-nsoaesigned to a specific region in
the input space. Mixtures of GPs were first introduced by @@600) as a variant of the general
mixture of experts model of Jacobs and Jordan (1991). Thi&alus to create, update and discard
submodels—which we cathodel tiles—on the fly as needed. An efficient 2D indexing function is
used to determine for every surface point the set of affetiies

The tiling approach is motivated by the insight that our kekfanctions are inherently local (the
standard squared exponential as well as its nonstatioméggson). Thus, if the "support region”
of the kernel (i.e., where it is most active) is approprigtghaller than the tiles, there is a minimal
loss of model precision. This can be shown nicely using timeept of theequivalence kerndbor
Gaussian process regression (Sollich and Williams, 2004}ler this view, the GP mean predic-
tions, Eq. (3), are expressed as dot products= h(x*)Tz of the vector of target values and
weight vectorsh(x*). Here, the weight functioh(x*), aka the equivalent kernel (EK), depends
both on the query locatiox* and on the covariance functidn Due to the inversion of the covari-
ance matrix in Eq. (3), the EK is not straightforward to cédte even for the simple case of the
stationary squared exponential [see Eq. (2)]. Sollich ailtidams (2004) derive an approximation
for this case, which shows that the EK is strongly localized,dhus, disregarding target values
that lie far away from the query poist introduces a minimal error fdi(x*)”z. This observation

is indeed the basis for many Gaussian process approxinsasach as that of Shen et al. (2005).
Numerical experiments revealed that our nonstationararcance function as defined in Eq. (5)
is stronger or equally localized compared to the statiosguared exponential components it is
composed of. Thus, we can safely apply the tiled approxonaiutlined above to both the latent
lengthscale process as well as to the nonstationary edevatocess. For ease of implementation,
we use the same tiling and indexing for both processes—misthhot necessary in general.

Concretely, we assume rectangular tiles that overlap wir tieighboring tiles by a fraction

of their side length. The exact placement and size of the lises little influence on the regression
results, as long as reasonable bounds are met. These baenespéored and evaluated in the
experimental section. In principle, the size of the indiadtiles could be linked analytically to
the lengthscales of the covariance function at the reselcications and this is a topic of ongoing
research. In this work, we treatas a constant parameter. For a prediction at input locatiove
determine the GP segment which we consider most likely te hlag best approximation fox,
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Figure5: Left: Real terrain board used for evaluation. The side lengths of theltama approximately 60 cm. Right: The ground
truth elevation structure of the terrain known from manufacturer spatiiits (in meters).

i.e., the segment which has a center that is the shortesdeaal distance t&.

The asymptotic time complexity of the tiled GP approach carestimated as follows. Let us
assume (1) that every segment contains at most a fractadfnall training datan and (2) that
segments overlap by a fractierof their inputs. Every segment then uniquely cowers- cnv =
cn(1 —v) of the training data, which makes it necessary toyse; = (e(1—wv))~! segments to

cover the whole input space. Since the complexity of bugdirsingle segment GP @3 ((cn)?),

the complexity of the whole model turns out to ©é(c(1 — v))~! - (en)?) = O(A(1 — v) - n?).

If the segment size is now set anti-proportionally ta (which corresponds to a constant segment
size) and the segment overlafs held constant, the overall complexity is lineamin

In Sec. 4.3 of the following experimental evaluation, wegltbat the tiles can be resized to
trade off time efficiency against prediction accuracy—ahejdeg on the requirements in the given
application.

4 Experiments

The goal of this experimental evaluation and the followiage study on legged robot locomotion
in Sec. 5 is to demonstrate the usefulness of the approacmddeling real terrain data. We

show that our locally adaptive Gaussian process model ig mmzurate than conceptually simpler
approaches such as stationary GPs or elevation grid mapaduionally analyze the benefits of

our tiling approach introduced in Sec. 4.3 with respect tdimie and accuracy performance.

As the evaluation metric, we consider the mean squaredgti@dierror (MSE), which is defined
as MSE:=m~' > (f(xi)—p:)? , wherem is the number of test pointg,; denotes the predicted
mean elevation at locatiaty and f (x;) is the respective true elevation. The following experirsent
were conducted in a batch setting, that is, full data sets werorded and then randomly split into
training and test sets, respectively. As discussed in SBcodr algorithm is not restricted to the
batch setting in principle.



In the first experiment, in which we compare to the standardsSan process model, we
additionally consider the negative log predictive denghy.PD). This measure is defined as
NLPD := m ™ 3" 1og Pmodel f (X;)[x:), Wherepmodel(-|x;) Stands for the predictive distribution
at locationx; and f(x;) is the true elevation value. In contrast to the MSE, the NLFD #akes
the spread of the predictive distribution into account ahds, arguably is a better measure for
comparing predictive distributions. However, since theBAS more widely used in the literature,
since it is easier to interpret and since the NLPD is not atsel for simpler benchmarks such as
bi-linearily interpolated grids, we use the MSE as the primaeasure in the remainder of the
section.

All experiments were conducted using a C/C++ implementatiora dinux desktop PC with a
single 2 GHz CPU. The linear algebra subroutines were opgidhizsing the UMFPACK pack-
age (Davis, 2004).

4.1 AdaptingtoLocal Terrain Structure

In the first experiment, we evaluated the performance of tRet€brain regression model using
the standard squared exponential (SE) covariance funag@amst our nonstationary covariance
function with local lengthscale adaption. To this aim, wasidered the rocky terrain depicted in
the left image in Fig. 5 and simulated 2 500 laser observatitom a single viewpoint using the
known elevation values depicted in the right diagram in #me figure. We uniformly selected
4 350 points from the true terrain for evaluation. We thendemted Monte Carlo search in the
parameter space of the covariance functions and on the ptaesof the adaption procedure. In a
preliminary run over 34 000 configurations, we determineakegal ranges for the parameters and
in a secondary search, we evaluated 10 000 configuratioh® ipredetermined ranges. A scatter
plot of the results in terms of MSE and NLPD is given in the tefp iagram in Fig. 6.

The (red) boxes in the diagram depict the error values fodoarly sampled parameter vectors
in the standard GP model and the (cyan) crosses show thésrésubur nonstationary extension,
respectively. The goal is to minimize the MSE (error of theameredictions) and also the NLPD
(which considers the entire predictive distribution). dhdoe seen from the diagram that the non-
stationary covariance function is able to achieve betteEM& predictions w.r.t. the ground truth
and also better NLPDs. The improvements in terms of NLPD talvie in particular—for the nor-
mal distribution, an NLPD difference of 0.5 correspondsri@bsolute error of up to one standard
deviation, which is a substantial mismatch.

To give a visual impression of these results in terms of 1o functions, we plot the predictive
distributions for three different settings in Fig. 6. The taght panel shows a cut through the
regression surface obtained using our locally adaptive GBein The x-axis points to the right,
elevations are plotted upwards and the y-coordinate is fixed the secondary axis (scale on
the right-hand side of the diagram), we give the adapted lecgthscales and the respective
tensor traces. As can be seen from the plot, the GP fits thevausdata well and produces a
large predictive uncertainty in un-observed areas. Thaglteorresponds to the optimal parameter
vector marked by the large black cross in the top left diagrafig. 6.

The two lower panels in Fig. 6 show the same cut for the stah@aussian process model. The
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Figure 6: Top left: The Monte Carlo search for the stationary GP’s parametat(mees) and for the nonstationary GP’s (bright
crosses). The selected optima, which minimize the MSE as well as the NtBED &e marked by a large black box and by a
large black cross, respectively. Top right: Regression model ldarsieg our locally adaptive GP approach. Here, we visualize a
vertical cut through the terrain surfacgié fixed, z varies on the horizontal axis in meters, terrain elevation on the verticaliaxis
meters). We also give the adapted lengthscales below the curve usiocgral sertical axis. Bottom: Regression results obtained
using the standard, stationary GP model for two different settings ofdhstant lengthscale parameter (left: large lengthscale,
right: small lengthscale).

left panel shows the results for a comparably large, cohgtagthscale parameter (the respective
errors are marked in the upper left diagram by a large blacy, behile a smaller lengthscale
parameter is used for the right-hand panel. It can be seemthe two plots that none of these
settings yields the tight data fit of the locally adaptive midd the upper right panel. This is due
to the fact that a GP with a stationary covariance functiamoafit all parts of a function (e.qg.,
smooth, wiggly and discontinuous ones) well.

4.2 Alternative Adaptive Models on Benchmark Data

In Sec. 3.1, we proposed to adapt the local lengthscalesideqeon the local terrain gradients.
We evaluated in a second experiment, how this compareséo @hression approaches which also
adapt their scales locally. It should be noted that therei&orrect” lengthscale, which can be
compared against as the ground truth. Rather, the lengéssaeg latent variables (or parameters,
depending on the viewpoint) in our model. Other models thaelsimilarscalevariables may set
these to different values to achieve optimal performandaisTwe evaluate thgrediction errors



Observations X
2 L True function (sinebumps)

| | Time | MSE |
LA-GP A| 2.64 (0.069) | 0.0060 (0.0018
LWPR 11.54 (0.35) 0.0065 (0.0018
LA-GP B| 7.24 (0.66) | 0.0043 (0.0014)

Figure 7. Left: Sinebumps benchmark data set to evaluate nonstationary riegrapproaches (Dimatteo et al., 2001). Right:
The regression results for our locally adaptive, tiled GP approa&hQP A), locally weighted projection regressiolV/PR and
locally adaptive GP4(A-GP B). We give the average time requirements in seconds and the meaadquediction errors (standard
deviations are given in brackets).

of the different approaches on an independent test setéssabsw well the data is modeled.

As the test data set, we use tsiaebumpscenario depicted in the left diagram in Fig. 7. This is
a benchmark data set frequently used to evaluate nonsafioegression approaches (Dimatteo
et al., 2001; Paciorek and Schervish, 2004). It consistssifi@functiony = sin(x) and several
“bumps” generated by an additive teBmexp(—30 - (x — ¢)?)). For each of 30 independent runs,
we generated 600 training points and 200 independent tedsgzer input space unit.

The different models compared were our terrain-gradiesétatiled adaptation scheme (denoted
asLA-GP A, locally weighted projection regressidd/VPR(Vijayakumar et al., 2005) and a dif-

ferent, non-tiled, locally adaptive GP modeA-GP B(Plagemann et al., 2008a). The regression
results in terms of the average time requirements for lagrand prediction (in seconds) and mean
squared prediction errors are given in the table in Fig.ahaard deviations are given in brackets.

For LWPR we optimized the parameters as suggested in Klanke angakijenar (2008). Con-
cretely, we searched for initial valued for the distancermmed by increasing the parameter in
10% steps from 1000 to 100000 and found the optimum at appietely 17 500. Afterwards,

we searched for a learning rate parameten 10% steps between 0.01 and 100 and found the
optimum at approximately 0.66.A-GP Buses the same nonstationary covariance function as pro-
posed in this paper. Instead of linking the local lengthes &b the function gradient, it treats them
as free parameters, which are optimized w.r.t. the da&i&od of the training set. As expected,
this approach can fit the data better—but it is also more ddmgrcomputationally and has not
been made scaleable to larger data sets yet (e.g., usirgespaproximations or model tiling as
proposed in this paper).

4.3 Splitting the Terrain into Overlapping Sub-Models

We evaluated the benefits of segmenting the input space tot®eerlapping tiles. To this aim, we
applied different tile sizes to the terrain model analyzethe first experiment (see Sec. 4.1). We
measured the prediction accuracy in the innermaxt25m? of a tile while linearly increasing the
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Figure8: Top left: A cut through the 2D regression function similar to Fig. 6 for theeaaf a well chosen segment sife0@m?).

Top right: Too small segments (her€:0025m?) lead to large prediction errors. Bottom left: Overly large segments (here
0.056m?) do not improve the predictions, but make the approach less efficittorB right: the relationship between the model
errors (MSE in meters) and the training times (in seconds) for differeginent sizes.

tile area and thereby also the amount of training data ofsee@ated GP. The first three diagrams
in Fig. 8 give a visual impression of the effects that diffdréle sizes have on the regression
function in its center. Increasing the tile size from3m? (top left) to0.056m? (bottom left) does
not lead to a notable improvement. On the other hand, settiemgegment size too small (e.g.,
0.0025m? in the top right diagram) leads to an increased predictioore6See also the caption of
the figure.

The quantitative relationship of the prediction error aintetrequirements for training depending
on the size of the tiles is given in the lower right diagram ig.F8. It can be seen that with
an increasing tile size, the prediction error (MSE) deaeapiickly and almost converges as the
area reache8.03m?. The runtime, however, continues to grow cubically with gegment size
beyond this point. It is relatively straight-forward to abruct a joint cost function that includes
the prediction error and the time requirements and whiclghtsiboth quantities depending on the
requirements of the application.

The runtime requirements for learning from approximatéd® @00 points using our C++ imple-
mentation are on the order of 1.5 seconds with overlappiatosiary GPs and 3 seconds with
overlapping nonstationary GPs. It is not possible to predeata sets of this size with regular GPs
that do not utilize sparse approximations.



Figure 9: Our quadruped robot scans the surface of a terrain board by leitsliegs to sweep the scan line of a back-mounted
laser range finder over the terrain surface.

Laser End Points Elevation Grid Map

Figure 10: Left: Top view on the set of elevation measurements obtained by theotaa (the true terrain is depicted in Fig. 5).
Right: A grid-map approximation of this data set. The elevation values doe-caded ranging from purple/dark (Ocm) to yel-
low/bright (approx. 7cm). .

4.4 Mapping Accuracy on Real Terrain

We evaluated our terrain model with a real quadruped robesituation similar to the one depicted

in Fig. 9. The robot, calledittleDog, was developed by Boston Dynamics. We have equipped the
robot with a Hokuyo URG laser scanner. A high-resolution mottapture system, the Vicon
MX, yields estimates of the robot pose using measurememnts ffieflective markers attached to the
robot’s body. The laser sensor is mounted to the back of that io a25° angle facing towards the
ground so that 3D range scans can be recorded by executihgnation using the front and rear
legs. The evaluation in this section concentrates on thetigureof how accurately the elevation
structure of the terrain board can be recovered from a sswgth 3D scan.

We evaluated our locally adaptive GP approach using scaasrotky terrain surface acquired
by the quadruped robot against a known ground-truth modtdenferrain acquired using a high-
accuracy metrology system. Figure 5 depicts the true etevatructure of this terrain (see the
caption for details). The left diagram in Fig. 10 shows a ta@won the raw set of laser endpoints
that were acquired by the robot when it executed a tilt motitircan be seen from the uneven
distribution of points that parts of the terrain are not skadjplensely due to occlusions and a larger
distance to the sensor location (which was located towékelbottom right w.r.t. the diagram).

The state-of-the-art way of representing such data foh&uprocessing, such as path planning, is
to build an elevation grid map (see Sec. 2 for a discussiorrobabilistic elevation grid map is



Interpolated Grid

Figure 11: Mapping results using the bi-linearily filled elevation grid model (left) and tleampredictions of our adapted GP
model (center). The predictive uncertainties of our model are visdlizthe right diagram (discretized to three classes for better
readability). These uncertainties correspond to the errorbars in thev@isevisualization in Fig. 6.

built by discretizing the x-y space and by fitting 1D Gaussitmthe elevation samples falling into
the grid cells respectively. The result of this operatiodepicted in the right diagram in Fig. 10.
We compare the accuracy of this model as well as its bi-ligdélied completion to our adapted,
tiled Gaussian process model. Alternative, non-sparsesemn models were not able to deal
with the amount of data in this test (approx. 100 000 poimtsl)the standard, stationary Gaussian
process model was not competitive due to the problems disdus Sec. 4.1.

Bi-linear interpolation is the extension of linear intergiodn to bi-variate functions. The result
of such an operation applied to an incomplete elevation mag is depicted in the left diagram
in Fig. 11. The results obtained by our locally adapted GR@ah are depicted in the middle
diagram. Here, we plot the mean predictions for terrainatlems. The predictive uncertainties
of our model are visualized in the right-most diagram in thggire. For better visibility, we
discretized the uncertainties to three classes: high,unednd low predictive uncertainty. These
estimates can be utilized in the cost function of a path mams described in Sec. 5.3 to avoid
uncertain areas.

We quantitatively compared the prediction errors of ounllycadapted GP model to the baseline
elevation grid model models and to a bi-linearily interpeth dense grid. In Fig. 12, we give
the squared error of elevation predictions averaged ove0Q@&Gamples drawn randomly from the
terrain. The error-bars give the standard deviations ofril&vidual sample sets. To assess the
influence of the grid resolution for the two grid-based megdele tested six different numbers of
cells per grid dimension (x-axis). Since the standard élevagrid does not make predictions in
occluded or less densely sampled areas, its performancevahsted on its occupied cells only.

It can be seen from the diagram that our locally adapted GRehpoddicts the true terrain elevation
as accurately as the elevation grid at its optimal resatutidMore importantly, the GP model
achieves this accuracy averaged over all test points, \helgrid model is evaluated on occupied
cells only.
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Figure 12: Errors of elevation predictions for our adapted, tiled GP model, the sgdesation grid and its bi-linear completion.

The elevation grid (without interpolation) was evaluated on occupied celis Gkt its optimal resolution it predicts the true
elevation of occupied cells only as accurately as the locally adapted GR dusdeaveraged over all test points.

45 Discussion

In Sec. 5, we will describe our integrated system for a quaehluobot that scans the terrain, plans
a path to a goal location and executes the plan autonomoBslpre that, we discuss the basic
properties of the locally adapted, tiled GP model as theyalecapparent from this part of the
evaluation.

As a first remark, no algorithm can predict the elevation a@e@m locations perfectly correct and,
thus, a prediction error of zero is not attainable in geneRather, the goal is to minimize the
prediction error as much as possible in different situatif) in densely sampled ares, (2) in
areas containing some measurements and (3) in unobsee&sl &hile all reasonable mapping
approaches output a high model uncertainty in unobseneasgdmcluding probabilistic elevation
grids, Gaussian processes, etc.), the behavior in areasavhigh or a medium sampling density
is quite different. Stationary Gaussian processes, onrteéhand, cannot represent natural terrain
with its locally changing smoothness well, even if it is sd@dpdensely (see, e.g., the lower plots
in Fig. 6). Elevation grids, on the other hand, cannot de#t wiedium or low sampling densities
well, because they either contain a large number of emptg aek high grid resolution, or they
introduce a strong bias by averaging over too large areabat grid resolution.

Our locally adaptive, tiled GP model can be seen as combitiiagoenefits of elevation grids
and Gaussian processes. The nonstationary covariandeéfuatdows the model to adapt well to
densely sampled parts of the elevation function, whileited approximation avoids the cubic run-
time complexity of the standard Gaussian process model. @wedgo grid maps, the GP-based
approaches provide a sound way of extrapolating the obdgrads of the elevation function to
unobserved locations and of estimating the respectivagihezluncertainty. To achieve maximal
robustness in practice, a system would use the uncertaghicgioss only to guide the search for
potential paths towards promising areas. The criticalsiees, however, such as actual foot place-



ments, would be based on the most recent and trustworthgisereasurements. In our approach,
this can be achieved by continuously updating the model @sattdves. There exists a large body
of work on the topic of online updates in Gaussian processetsddee, e.g., Csato and Opper
(2002)]. Such an extension is applicable in principle, kag hot been implemented in the current
system. As such, our current implementation supports erdotaptation only on the tiling level:
new tiles are created on-the-fly as needed, but existingaadyr instantiated and learned tiles are
not updated with newly arriving data.

A certain limitation of the current system is that it assurtied the true terrain elevation is a well-
definedfunctionof 2D locations. This means that overhanging structureg;iwiould violate this
assumption, cannot be dealt with directly. The two most fsorg directions for dealing with such
situation are (1) to take a hybrid approach in which the emritent is represented by a discrete
set of 2D terrain models, each of which is placed at an aritcation in 3D space, or (2) to
consider mixtures of Gaussian process models along thedfhe.g., Tresp (2000) or Rasmussen
and Ghahramani (2002).

Another possible extension to the current system would laelépt the size of the tiles to the local
situations, e.g., depending on the local data density oheratlapted local lengthscales. In this
work, we chose a conservative global partitioning, which lsa implemented more easily.

5 Case Study: Legged Robot L ocomotion

In this section, we describe how the proposed terrain modsl mwtegrated into our quadruped
robot to enable it to scan a terrain surface, select foothatd plan a trajectory to a goal location
that is collision-free and statically stable.

The advantages of using legged robots over traditional lede®bots are the ability to move in
rough and unstructured terrain and to step over obstacleghoM accurate knowledge of the
terrain, these advantages cannot be realized as motiongrkarequire a model of terrain height
for computing stability and avoiding collisions. Our ov@anning approach is an adaptation of
the probabilistic roadmap algorithm (Kavraki et al., 1998ur simplified model of the quadruped
robot is a body with four two-link legs and point feet. Thermplang algorithm is a search for
motions of single legs from static stance to static stanaertfaintain static stability over uneven
terrain. We first randomly sample a set of potential foote@dross the terrain, which are used to
generate a graph of potential “stances”, that is, stayicadible and kinematically feasible positions
of the robot. Graph search is then used to find a sequencenaestérom the start to the goal; the
sequence of stances can then be converted to series of glgimeangles.

5.1 Calibration

One of the critical issues in most robotic systems and in etupsparticularly, is the calibration of
the individual sensors. Already small errors in the tramsfttion between the laser sensor and the
robot, for instance, can lead to large inconsistenciesarctiflected data set. Note that this paper
does not address the problem of simultaneous localizatidm@apping. Rather, we deal with the
terrain inference problem here and assume reasonablyaaedurowledge of the robot’s pose.
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Figure 13: Left: The physical setup used to calibrate the robot. Right: Converdssitavior of the calibration error.

The specifics of the Vicon system used to track the robot'sipasrequired us to automatically
infer the time offsets between the laser data and pose mexasuts and to calculate the six de-
gree of freedom transformation between a known positioh@irbbot and the actual laser sensor
position at the same time. To compute both these calibrafiamtities, we recorded a 3D range
scan of three orthogonal boards placed in front of the rakide(lengths approximately 1m). The
physical setup is depicted in the left image in Fig. 13.

We optimized the seven parameters of the transformationld6€r configuration w.r.t the robot
and a 1D time offset) in a sampling-based fashion similamwkated annealing (Kirkpatrick et al.,
1983). Here, random parameter samples are evaluated ysiedefined objective function. In our
setting, this is the average squared error of the laser emtisp@lative to the known calibration
pattern, that is, the board surfaces. To be more robust sigaiong data associations caused
by strong miscalibration in the beginning of the optimimatiprocedure, we discard laser end
points that fall close to the boundaries of the boards. I &acation, we sample a new parameter
vector from a Gaussian distribution centered at the cuoptinum. The variance of this Gaussian
(which is comparable to themperaturevariable in simulated annealing) defines from which area
new parameter samples should be drawn around the curremtuspt This variance is reduced by
a fixed delta after each iteration. By decreasing the temyerétvel gradually over time, accurate
calibration parameters are typically obtained within 30® iterations. The convergence of the
calibration error during a typical run is visualized in thght diagram in Fig. 13.

5.2 Sampling Footholds

Let us assume that the planning problem is to find a motion filahis essentially a futtock
(midline) motion across the uneven terrain from the stasitmm to the goal. This assumption
will allow us to simplify the sampling to examining potentiaotholds around the straight line to
the goal, selecting footholds= (z, y, z) according to some regular discretization around the line
of intended motion. We do this without loss of generality; @@ easily support more complex
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Figure 14: Parts of a plan generated by our algorithm including the underlying costiéuin, which depends on the terrain gradient
and the uncertainty about elevation predictions estimated by the Gauss@s®model. The red line (filled boxes) depicts the
trajectory of the center of body, the other lines (stars and empty boims)lize feet motions. The cost function is color coded
ranging from black (low costs) to yellow/light-gray (high costs). Axis disiens are given in meters.

scenarios by choosing different sampling strategies. @hg#ing problem is outside the scope of
this paper but has been discussed by Hsu et al. (2005) andg othe

Each sampled foothold is evaluated with respect to a costitmand rejected if the expected cost
is above some threshold. The cost function may consist oyrieatures including terrain elevation
and roughness. In this work we considered only the unceytairthe terrain model (i.e., the GP
predictive uncertainty) at the sampled foothgldnd the terrain gradient (i.e., slope). The terrain
slope can be calculated analytically from the learned GI;lwis an additional advantage of the
Gaussian process approach. An example of a cost functiduding a set of selected footholds
and a path is given in Fig. 14.

5.3 Planning with Stance Graphs

We next generate feasible stances of the robot from theedéesset of footholds. A stance is an
assignment of each footto a foothold,p; = (x;, y;, z;), such that it is kinematically feasible for
the robot to place its feet at each of the four footholds anchie statically stable. Note that de-
termining whether a stance is feasible or not is not diremtiyputable from a set of foot positions
because the feet do not provide a unique description of tke pbthe robot. The robot has 18 de-
grees of freedom total: six degrees of freedom of the cerfitdrecbody(x, y, z, roll, pitch, yaw)

and the three jointghip,, hip,, knee) in each leg. Under the assumption that the positions of the
feet are fixed, the feet constitute 12 constraints, leavixgrsconstrained degrees of freedom, cor-
responding to the position of the center of body. A stafde therefore an assignment of feet to
footholds¢, 4 and a selection of a center of body positton

Given an assignment of the center of the body position fortaoséoot positions, the known
kinematics can be used to recover the joint angles of thedledgsletermine if the pose is consistent
with the dimensions of the leg links and the limits on thefjaingles. Given knowledge of the joint
angles and that the stance is kinematically feasible, theec®ef mass can then be determined; if
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Figure 15: An example stance graph generated from the set of foothold locatiach. $Eance node (yellow) is connected to four
foothold nodes (blue). Each two connected stance nodes have three [gigs in common.

the projection of the center of mass onto the ground plarsedigside the support polygon (the
convex hull of the four feet on the ground plane), then thacas not statically stable and the
robot will fall.

In assigning the position of the center of body for a givenaddbot positions, we would ideally
choose a center of body that provides static stability. dofately, no closed form solution exists
for finding a feasible and stable center of body and the probtein general non-convex. We
therefore use a heuristic search strategy around the adofrthe support polygon. If none of the
sampled centers of body provide a kinematically feasibtestable solution to the robot position
given the foot positions, then the foot positions are rgj@ets an infeasible stance.

The feasible stances constitute nodes in a stance graphj¢b we then add edges between pairs
of stancess; ands; when a feasible motion exists to transform the robot fromdfaet stance

s; (foot positions and center of body) to the end stancésee Fig. 15). This problem is also
underdetermined, in that an arbitrarily complex motion rhayequired to move from one stance
to another. We therefore simplify this problem to considetions consisting of a stance phase,
during which the robot shifts its center of body to remairbktavhile stepping and a foot swing
phase during which a foot is moved from one foothold to anothe

Once the stance graph has been built, we use standard bfgatiearch to find the shortest fea-
sible sequence of stances from the start stance to a goaédtaat gives a center of body position
with somee of the desired goal position, in practice, combining thedearocess with the stance
graph generation. Additionally, we add a gait-order castr so that the plan must consist of a
well-formed gait in which foot is followed by footi + 1 mod 4. By augmenting each stance
variable with an additional foot-ordering variahle this gait-ordering constraint dramatically im-
proved the planning speed. Finally, we also use a hash tahpeune the search, such that if
two different routes are found to the same stance nodeen the search along the longer path is
terminated. The full planning algorithm is given in Algdnm 1.



Algorithm 1 The Planning Process.

Require: Terrain model, start staneg and goalx,.
Sample foothold® using terrain model
Initialize Q < so
while Q is not emptydo
5 < popQ
for all ¢ do
s s
Update position of foot to moves(z)(s’)) « ¢ in s’
Update foot to movey(s’) « 9(s’) +1 mod 4
Search for new center of body positig(s’)
if ||€(s") — xg4]| < € then
return Parentgs’].
end if
if £(s") existsthen
Set parentr[s'] = s
Push@ « s’
end if
end for
end while
return nil

54 Terrain Mapping and Path Planning

In this section, we describe an evaluation of our probatilterrain model in conjunction with the
described trajectory planning algorithm. The first expemtal setup was to sample 1 000 random
starting locations in front of the terrain board depictedrig. 5 and to pick corresponding goal
locations behind it. The resulting paths were approxinyateb meters long, starting in a flat area
and leading over the terrain board to another flat area bahin@oncretely, the lateral offsets
(y-coordinate) of the start and end locations w.r.t. a glrairajectory over the terrain board were
sampled from a uniform distribution over [-10 cm, 10cm].

For each of the location pairs and each of three alternagivaih mapping algorithms (our locally
adaptive GP approach, the elevation grid and the inteklevation grid), the planner generated
a set of footholds and searched for the best path towardsotldagation. We then evaluated (1)
the maximal path length that could be constructed given itnenkatic constraints of the robot and
(2) the errors of the elevation predictions at the seleaethbld locations. An example plan and
the cost function computed from the underlying terrain nhade depicted in Fig. 14

Fig. 16 summarizes our results. The left bar plot shows thanmmreal length of generated plans and

the right plot gives the mean squared errors (scaletby) of elevation predictions at the planned

footholds. It can be seen from the left diagram that it wasgpossible to plan the maximal path
of 2 meters using the interpolated grid and the locally agtA@P model. Using the sparse grid,
however, the plans never exceeded a length of 1.6 metershwdnot surprising given the large

number of unknown cells which prohibit foot placements. Aas de seen from the the mean
squared error values in the right diagram, the locally aeth@P model better predicts the true
terrain elevations at the chosen foothold locations thaririterpolated grid model, which means
that there is a lower risk of failure when executing thesaglarinally, Fig. 17 shows snapshots
from a video documenting our real robot traversing the terp@ard using the Gaussian process
model learned from own elevation measurements. Figure d&sdhe corresponding trajectory

taken by the robot during an autonomous walk over the tebaard in this experiment.



25 L Elevation Grid CCCSH | Interpolated Grid &
’ Interpolated Grid 2 Adapted GP  ne——
Adapted GP ne— 0.1
2 1 s
—_ g 0.08
E E
o
§ 15 | 1 5
“ 3 0.06
=
< [a®
z 1F 1 3
3 £ 004
o
i
05 7 0.02
0 0

Figure 16: Evaluation of 1 000 plans generated using the different terrain modeésIeTt bar plot shows the maximal length of
generated plans and the right plot gives the mean squared erralesi(sy10~?) of elevation predictions at the planned footholds.

6 Conclusions and Outlook

In this paper, we presented a novel, probabilistic terraappmg approach based on nonstationary,
tiled Gaussian processes. Our system balances smoothaigstithe preservation of structural
features and it is capable of accurately predicting elematin the presence of noise and it also
estimates the uncertainty of its predictions. As an appboascenario, we considered the terrain
mapping problem for a legged robot equipped with a lasergdinger. We document the key parts
of an implemented system—including physical setup, catibn, foothold selection and trajectory
planning—that was able to traverse a rocky terrain using @mge measurements only.

In the future, we plan to apply alternative ways of learnimgronstationary GP model (Plagemann
etal., 2008a) and to evaluate the difference in modelingracy. We would also like to address the
more general SLAM problem, in which the robot does not asskmogvledge of its own position.
Future work could also consider a reinforcement learninmgaaa of our foot trajectory planning
along the lines of Neumann et al. (2007) using specific reviandtions to learn obstacle avoid-
ance or stable and energy-efficient movements. Furtherm@evould like to extend our model
towards online model updates beyond the existing capaiildf adding and exchanging entire
model segments and we intend to evaluate whether variatpieese size would lead to additional
benefits.
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Figure 17: Snapshots of a video documenting the walk over the terrain using the det@main model from own elevation obser-
vations (from top left to bottom right).
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